Compressed Industrial Gases Hof Master

Embed Size (px)

Citation preview

  • 7/30/2019 Compressed Industrial Gases Hof Master

    1/97

    This book is designed to provide a convenient source of vital information for anyone who works with or

    studies industrial gases. It is published by Air Liquide America Corporation, a subsidiary of Air Liquide,

    the world's largest industrial gas organization. Through Air Liquide America Corporation, Air Liquide

    markets virtually every industrial gas to industrial, commercial, and public facilities throughout North

    America. Air Liquide is active in more than 60 countries around the world.

    The data contained here is based on sources using standard industry references. It is believed to beaccurate, but is recommended for use as a guideline only.

    INTRODUCTION TO THE INDUSTRIAL GAS DATA BOOK

  • 7/30/2019 Compressed Industrial Gases Hof Master

    2/97

    1.

    2.

    3.

    4.

    5.

    6.

    7.8.

    9.

    10.

    11.

    12.

    13.

    14.

    15.

    16.

    17.

    18.

    19.20.

    21.

    22.

    23.

    24.

    25.

    26.

    27.

    28.

    30.

    31.

    32.

    33.

    34.

    35.

    36.

    37.

    38.

    39.

    40.

    41.

    42.

    43.

    44.

    45.

    Safe Storage Distances for LPG and Liquid Oxygen

    Nitrogen Refrigeration

    Physical Properties of Gases - USA units

    Physical Properties of Gases - Metric units

    Customer Cryogenic Tank

    VGL Parts

    Pressure, Temperature and Density Relationships for Liquid Oxygen, Nitrogen, & Argon

    Saturated Steam Tables - Pressure Basis

    Saturated Steam Tables - Temperature Basis

    Superheated Steam Tables

    Gas Flammability

    Saturated Liquid Flashing

    Gas Turbine Capacity

    Liquid Hydrogen Vapor Release

    Pressure Drop of Compressed Air in Piping

    Minimum Safe Distance for Liquid Hydrogen Storage

    Liquid CO2 Storage Vessel Dimensions and Foot Prints

    Tube Trailers' and Generic Cryogenic Vessels' Capacities

    High Pressure Steel & Aluminum Gas Cylinders' Specifications

    Saturated Densities

    Nitrogen Purging

    Nitrogen Purging Efficiency

    Electric, Steam, and Ambient Vaporizers' Specifications

    Dissociated MeOH & NH3 Conversion Data

    Absolute Temperatures ChartCO2 Cylinder Specifications

    CO & Ozone Conversion Factors

    CGA Gas Cylinder Valves and Specifications

    Length and Weight Conversion Factors

    Liquid Oxygen, Liquid Nitrogen, & Liquid Hydrogen mass conversions to Volume

    Liquid Oxygen & Liquid Nitrogen Tonnage Rate Conversion to Volumetric Rate

    Dew Point Conversion to Parts per Million (Volume)

    Metered Gas Conversion Factors

    Combustion Requirements for Boiler Fossil Fuels

    Helium and Hydrogen Conversion Data

    Krypton and Xenon Conversion Data

    Velocity and Miscellaneous Conversion FactorsDensity and Pressure Conversion Factors

    Energy and Power Conversion Factors

    Area and Volume Conversion Factors

    TABLE OF WORKSHEET CONTENTS

    Introduction (This Worksheet)

    Oxygen and Nitrogen Conversion Data

    Argon and Neon Conversion Data

    Carbon Dioxide, Propane, and Propylene Conversion Data

  • 7/30/2019 Compressed Industrial Gases Hof Master

    3/97

    pounds

    (lb)

    kilograms

    (kg)

    cubic feet

    (scf)

    cu

    meters

    (nm3)

    gallons

    (gal)liters (l)

    1 pound 1.0 0.4536 12.076 0.3174 0.105 0.3977

    1 kilogram 2.205 1.0 26.62 0.6998 0.2316 0.8767

    1 scf gas 0.08281 0.03756 1.0 0.02628 0.008691 0.0329

    1 nm3

    gas 3.151 1.4291 38.04 1.0 0.331 1.2528

    1 gallon liquid 9.527 4.322 115.1 3.025 1.0 3.785

    1 liter liquid 2.517 1.1417 30.38 0.7983 0.2642 1.01 ton 2,000 907.2 24.16 635 209.9 794.5

    pounds

    (lb)

    kilograms

    (kg)

    cubic feet

    (scf)

    cu

    meters

    (nm3)

    gallons

    (gal) liters (l)

    1 pound 1.0 0.4536 13.803 0.3627 0.1481 0.5606

    1 kilogram 2.205 1.0 30.42 0.7996 0.3262 1.2349

    1 scf gas 0.07245 0.03286 1.0 0.02628 0.01074 0.04065

    1 nm3

    gas 2.757 1.2506 38.04 1.0 0.408 1.5443

    1 gallon liquid 6.745 3.06 93.11 2.447 1.0 3.785

    1 liter liquid 1.782 0.8083 24.6 0.6464 0.2642 1.0

    1 ton 2,000 907.2 27.605 725.4 296.2 1,121

    A Scf (standard cubic foot) is gas measured at 1 atmosphere and 70 F.

    A Nm3

    (normal cubic meter) is gas measured at 1 atmosphere and 0 C.Liquid volume is measured at 1 atmosphere and its boiling temperature.

    OXYGEN CONVERSION DATA

    NITROGEN CONVERSION DATA

    Weight Gas Liquid

    Oxygen Quantity

    Nitrogen

    Quantity

    Weight Gas Liquid

  • 7/30/2019 Compressed Industrial Gases Hof Master

    4/97

    pounds

    (lb)

    kilograms

    (kg)

    cubic feet

    (scf)

    cu

    meters

    (nm3)

    gallons

    (gal)liters (l)

    1 pound 1.0 0.4536 9.671 0.2543 0.086 0.3255

    1 kilogram 2.205 1.0 21.32 0.5605 0.18957 0.7176

    1 scf gas 0.1034 0.0469 1.0 0.02628 0.008893 0.03366

    1 nm3

    gas 3.933 1.784 38.04 1.0 0.3382 1.2802

    1 gallon liquid 11.63 5.276 112.5 2.957 1.0 3.785

    1 liter liquid 3.072 1.3936 29.71 0.7812 0.2642 1.01 ton 2,000 907.2 19.342 508.6 172 651

    pounds

    (lb)

    kilograms

    (kg)

    cubic feet

    (scf)

    cu

    meters

    (nm3)

    gallons

    (gal)liters (l)

    1 pound 1.0 0.4536 19.18 0.504 0.09928 0.37581 kilogram 2.205 1.0 42.27 1.1112 0.2191 0.8292

    1 scf gas 0.05215 0.02366 1.0 0.02628 0.005177 0.019594

    1 nm3

    gas 1.984 0.8999 38.04 1.0 0.1971 0.7462

    1 gallon liquid 10.065 4.565 193.2 5.077 1.0 3.7851 liter liquid 2.661 1.207 51.03 1.341 0.2642 1.0

    A Scf (standard cubic foot) is gas measured at 1 atmosphere and 70F.

    A Nm3

    (normal cubic meter) is gas measured at 1 atmosphere and 0 C.

    Liquid volume is measured at 1 atmosphere and its boiling temperature.

    All values are rounded to the nearest 4/5 significant numbers.

    ARGON CONVERSION DATA

    Argon Quantity

    Weight Gas Liquid

    NEON CONVERSION DATA

    Neon Quantity

    Weight Gas Liquid

  • 7/30/2019 Compressed Industrial Gases Hof Master

    5/97

  • 7/30/2019 Compressed Industrial Gases Hof Master

    6/97

    pounds (lb)kilograms

    (kg)

    cubic feet

    (scf)

    cu meters

    (nm3

    )

    gallons

    (gal)

    liters (l)

    1 pound 1.0 0.4536 8.06 0.2118 0.089 0.3355

    1 kilogram 2.205 1.0 17.77 0.4671 0.1954 0.7397

    1 scf gas 0.12406 0.05626 1.0 0.02628 0.011862 0.0449

    1 nm gas 4.72 2.141 38.04 1.0 0.4525 1.7127

    1 gallon liquid 11.283 5.117 84.3 2.21 1.0 3.785ter qu . . . . . 1.0

    pounds (lb)kilograms

    (kg)

    cubic feet

    (scf)

    cu meters

    (nm3)

    gallons

    (gal)liters (l)

    1 pound 1.0 0.4536 13.793 0.3629 0.1475 0.5583

    1 kilogram 2.2050 1.0 30.414 0.8001 0.3252 1.2309

    1 scf gas 0.0725 0.0329 1.0 0.02628 0.0106 0.0401

    1 nm3

    gas 2.7500 1.2474 38.040 1.0 0.4056 1.5352

    1 gallon liquid 6.7800 3.0750 93.516 2.4605 1.0 3.78501 liter liquid 1.7910 0.8125 24.703 0.6499 0.2642 1.0

    A Scf (standard cubic foot) of gas is measured at 1 atmosphere absolute and 70 F.

    A Nm3 (normal cubic meter) of gas is measured at 1 atmosphere absolute and 0 C.Liquid is measured at 1 atmosphere absolute and its boiling temperature.

    All values are rounded to the nearest 4/5 significant numbers.

    OZONE CONVERSION DATA

    Weight Gas Liquid

    Weight Gas LiquidOzone

    Quantity

    CarbonMonoxide

    Quantity

    CARBON MONOXIDE CONVERSION DATA

  • 7/30/2019 Compressed Industrial Gases Hof Master

    7/97

    pounds

    (lb)

    kilograms

    (kg)

    cubic feet

    (scf)

    cu

    meters

    (nm3)

    gallons

    (gal) liters (l)

    1 pound 1.0 0.4536 96.71 2.542 0.9593 3.6311 kilogram 2.205 1.0 213.2 5.603 2.115 8.006

    1 scf gas 0.01034 0.00469 1.0 0.02628 0.009919 0.03754

    1 nm gas 0.3935 0.1785 38.04 1.0 0.3775 1.4289

    1 gallon liquid 1.042 0.4728 100.8 2.649 1.0 3.785ter qu . . . . . 1.0

    pounds

    (lb)

    kilograms

    (kg)

    cubic feet

    (scf)

    cu

    meters

    (nm3)

    gallons

    (gal) liters (l)Lbs H2

    1 pound 1 0.4536 192 5.047 1.6928 6.408 5,000.0

    1 kilogram 2.205 1 423.3 11.126 3.733 14.128

    1 scf gas 0.005209 0.002623 1 0.02628 0.00882 0.03339

    1 nm gas 0.19815 0.08988 38.04 1 0.3355 1.2699

    1 gallon liquid 0.5906 0.2679 113.41 2.981 1 3.785ter qu . . . . .

    Scf (standard cubic foot) gas measured at 1 atmosphere and 70F.

    Nm

    3

    (normal cubic meter) gas measured at 1 atmosphere and 0C.Liquid measured at 1 atmosphere and boiling temperature.

    All values rounded to nearest 4/5 significant numbers.

    Hydrogen gas values expressed in the stable condition 75% ortho, 25% para.

    Hydrogen liquid values expressed in the stable para condition.

    Gas Liquid

    Weight Gas Liquid

    HELIUM CONVERSION DATA

    HYDROGEN CONVERSION DATA

    Helium

    Quantity

    HydrogenQuantity

    Weight

  • 7/30/2019 Compressed Industrial Gases Hof Master

    8/97

    Scf H2

    960,000

  • 7/30/2019 Compressed Industrial Gases Hof Master

    9/97

    KRYPTON CONVERSION DATA

    pounds kilogramscubic feet

    (Scf)

    cu

    meters

    (nm3)

    gallons liters

    1 pound 1.0 0.4536 4.604 0.12098 0.04967 0.188

    1 kilogram 2.205 1.0 10.147 0.2667 0.10939 0.4141

    1 Scf gas 0.2172 0.09582 1.0 0.02628 0.010773 0.04078

    1 nm3

    gas 8.266 3.749 38.04 1.0 0.4101 1.5525

    1 gallon liquid 20.13 9.131 92.69 2.436 1.0 3.7851 liter liquid 5.318 2.412 24.51 0.6441 0.2642 1.0

    XENON CONVERSION DATA

    pounds kilogramscubic feet

    (Scf)

    cu

    meters

    (nm3)

    gallons liters

    1 pound 1.0 0.4536 2.93 0.07692 0.03921 0.1484

    1 kilogram 2.205 1.0 6.451 0.16958 0.08642 0.3271

    1 Scf gas 0.3416 0.15495 1.0 0.02628 0.013392 0.05069

    1 nm3

    gas 13 5.897 38.04 1.0 0.5096 1.9291

    1 gallon liquid 25.51 11.572 74.67 1.9623 1.0 3.7851 liter liquid 6.738 3.056 19.726 0.5185 0.2642 1.0

    A Scf (standard cubic foot) of gas is measured at 1 atmosphere and 70 F.

    A Nm3 (normal cubic meter) of gas is measured at 1 atmosphere and 0 C.

    Liquid volume is measured at 1 atmosphere and its boiling temperature.

    All values are rounded to the nearest 4/5 significant numbers.

    Krypton

    Quantity

    Xenon Quantity

    Weight Gas Volume Liquid volume

    Weight Gas Volume Liquid Volume

  • 7/30/2019 Compressed Industrial Gases Hof Master

    10/97

    VELOCITY CONVERSION FACTORS

    Multiply By To Obtain

    0.01136 Miles/hour

    0.01829 Kilometers/hour0.508 Centimeters/second

    0.01667 Feet/second

    0.6818 Miles per hour

    1.097 Kilometers per hour

    30.48 Centimeters per second

    0.3048 Meters per second

    0.5921 Knots

    3.281 Feet per second

    2.237 Miles per second

    3.6 Kilometers per hour

    1.467 Feet per second

    0.447 Meters per second

    1.609 Kilometers per hour0.8684 Knots

    MISCELLANEOUS CONVERSION FACTORS

    Multiply By To Obtain

    Atmospheres 33.94 Feet of H2O (x 12 = Inches of H2O)

    Atmospheres 29.92 Inches of mercury

    Atmospheres 14.696 Pounds per square inch

    Barrels (oil) 5.6146 Cubic feetBarrels (oil) 42 Gallons

    Barrels/hour 0.7 Gallons per minute

    Cubic feet 0.1781 Barrels

    Cubic feet 7.4805 Gallons (U.S.)

    Feet 0.3048 Meters

    Feet of water at 60F 0.4331 Pounds per square inch

    Feet per second 0.68182 Miles per hour

    Gallons (U.S.) 0.02381 Barrels

    Gallons (U.S.) 0.1337 Cubic feet

    Gallons (U.S.) 231 Cubic inches

    Gallons per minute 1.429 Barrels per hour Part/million 8.337 Pounds per million gallons

    Lbf/square inch 2.309 Feet of water at 60F (x 12 = inches of H2O)

    Lbf/square inch 2.036 Inches of mercury at 32 F

    Lbm/million gallons 0.11982 Parts (Mass) per million

    Water (U.S. gallon) 8.3378 Pounds per gallon of water @ 60oF

    Water (cubic foot) 62.371 Pounds per cubic feet of water @ 60oF

    Feet/Minute

    Feet/Second

    Meters per Second

    Miles/Hour

  • 7/30/2019 Compressed Industrial Gases Hof Master

    11/97

    lbf/sq in Int'l atm kg/cm2 mm Hg at 32 F in. Hg at 32 F

    1 pound/cu in 1.0 1728 231 27.68 27,6801 pound/cu ft -- 1.0 0.1337 0.016 16.019

    1 pound/gal 0.00433 7.481 1.0 0.1198 119.83

    1 gram/cu cm 0.03613 62.43 8.345 1.0 1,0001 gram/liter -- 0.06243 0.008345 0.001 1.0

    PRESSURE CONVERSION FACTORS

    lbf/sq in Int'l atm kg/cm2

    mm Hg at 32 F in. Hg at 32 F

    1 pound/sq in 1.0 0.06804 0.0703 51.713 2.0359

    1 int atmosphere 14.696 1.0 1.0333 760 29.921

    1 kilogram/sq cm 14.223 0.9678 1.0 735.56 28.958

    1 mm Hg (Torr) 0.0193 0.00132 0.00136 1.0 0.0394

    1 inch mercury 0.4912 0.0334 0.0345 25.4 1.0

    1 foot water 0.4335 0.0295 0.0305 22.418 0.88261 bar 14.5 0.987 1.0198 750.06 29.529

    Pressure

    Multiply units in left column by proper factor below:

    Multiply units in left column by proper facto

    DENSITY CONVERSION FACTORS

    Pressure

  • 7/30/2019 Compressed Industrial Gases Hof Master

    12/97

    ft. water at 39.2 F bar

    2.307 0.06896

    33.9 1.01325

    32.81 0.9806

    0.0446 0.00133

    1.133 0.03386

    1.0 0.0298933.455 1.0

    below:

  • 7/30/2019 Compressed Industrial Gases Hof Master

    13/97

    ENERGY CONVERSION FACTORS

    ft-lb Btu g-cal Joule kw-hr hp-hr

    1 foot -pound 1.0 0.001285 0.3239 1.3558 -- --

    1 Btu 778.2 1.0 252 1053.1 -- --

    1 gram-calorie 3.088 0.003968 1.0 4.1868 -- --

    1 int Joule 0.7376 0.000948 0.2388 1.0 -- --

    1 int kilowatt-hour 2,655,000 3412.8 859,845 -- 1.0 1.341orsepower- our , , , -- . .

    SPECIFIC ENERGY CONVERSION FACTORS

    1 absolute 1.0 0.99984 0.23901 0.23885 0.42993

    1 int Joule/gram 1.000165 1.0 0.23904 0.23892 0.43

    1 calorie/gram 4.184 4.1833 1.0 0.99935 1.7988

    1 int calorie/gram 4.1867 4.186 1.00065 1.0 1.8tu . . . . .

    POWER CONVERSION FACTORS

    p watt w tu m n tu r t- sec t- m n1 horsepower 1.0 745.7 0.7457 42.41 2,545 550 33,000

    1 watt -- 1.0 0.001 0.057 3.412 0.7376 44.25

    1 kilowatt 1.341 1,000 1.0 56.87 3412.1 737.6 44,254

    1 Btu per minute -- -- -- 1.0 60 12.97 778.2metr c p . . . . , . . .

    Multiply units in left column by proper factor below:

    Multiply units in left column by proper factor below:

    Power (rate of

    energy use)

    Energy

    absolute

    Joule/g

    int

    Joule/g cal/g int cal/g Btu/lb

    Specific Energy

    Multiply units in left column by proper factor below:

  • 7/30/2019 Compressed Industrial Gases Hof Master

    14/97

    g-ca sec metr c p178 1.014

    0.2388 0.00136

    238.8 1,360

    4.199 0.0239. .

  • 7/30/2019 Compressed Industrial Gases Hof Master

    15/97

    AREA CONVERSION FACTORS

    sq in sq ft acre sq mile sq cm sq m hectare

    1 sq inch 1.0 0.0069 -- -- 6.452 -- --

    1 sq foot 144 1.0 -- -- 929 0.0929 --

    1 acre -- 43.56 1.0 0.001563 -- 4047 0.4047

    1 sq mile -- 27,878,400 640 1.0 -- 2,590,000 259

    1 sq centimeter 0.155 0.001076 -- -- 1.0 0.0001 --

    1 sq meter 1550 10.76 0.000247 -- 1 0.000 1.0 --ectare -- -- . -- -- .

    VOLUME CONVERSION FACTORS

    cu in cu ft cu yd cu cm cu meter liter US gallon

    1 cu inch 1.0 -- -- 16.387 -- 0.0164 0.00433

    1 cu foot 1,728 1.0 0.037 28.317 0.0283 28.32 7.481

    1cu yard 46.656 27 1.0 -- 0.7646 764.6 202

    1 cu centimeter 0.061 -- -- 1.0 -- 0.001 --

    1 cu meter 61.024 35.31 1.308 1,000,000 1.0 1,000 264.2

    1 liter 61.024 0.0353 -- 1,000 0.001 1.0 0.2642

    1 US gallon 231 0.1337 -- 3,785.4 -- 3.785 1.0mper a ga on . . -- , . -- . .

    Multiply units in left column by proper factor below:

    Volume

    AreaMultiply units in left column by proper factor below:

  • 7/30/2019 Compressed Industrial Gases Hof Master

    16/97

    Imp

    gallon

    --

    6.229

    168.2

    --

    220

    0.22

    0.8327.

  • 7/30/2019 Compressed Industrial Gases Hof Master

    17/97

    LENGTH CONVERSION FACTORS

    inch ft yd mile mm cm m km

    1 inch 1.0 0.0833 0.0278 -- 25.4 2.54 0.0254 --

    1 foot 12 1.0 0.3333 -- 304.8 30.48 0.3048 --

    1 yard 36 3 1.0 -- 914.4 91.44 0.9144 --

    1 mile -- 5,280 1760 1.0 -- -- 1,069.3 1.609

    1 millimeter 0.0394 0.0033 -- -- 1.0 0.1 0.001 --

    1 centimeter 0.3937 0.03281 0.0109 -- 10 1.0 0.01 --

    1 meter 39.37 3.281 1.094 -- 1,000 100 1.0 0.001ometer -- , . -- -- , .

    WEIGHT CONVERSION FACTORS

    grain oz lb ton gram kgmetric

    ton

    1 grain 1.0 -- -- -- 0.0648 -- --

    1 ounce 437.5 1.0 0.0625 -- 28.35 0.02835 --

    1 pound 7,000 16 1.0 0.0005 453.6 0.4536 --

    1 ton -- 32,000 2,000 1.0 -- 907.2 0.9072

    1 gram 15.43 0.0353 -- -- 1.0 0.001 --

    1 kilogran -- 35.274 2.205 -- 1,000 1.0 0.0011 metric ton -- 35,274 2,205 1.102 -- 1,000 1.0

    Multiply units in left column by proper factor below:

    1 micron = 0.001 millimeter

    Length

    Multiply units in left column by proper factor below:

    Weight

  • 7/30/2019 Compressed Industrial Gases Hof Master

    18/97

    scf/mo

    (millions)ton/day

    scf/mo

    (millions)ton/day

    scf/mo

    (millions)ton/day

    1 1.38 1 1.21 1 0.087

    2 2.76 2 2.42 2 0.174

    3 4.14 3 3.62 3 0.26

    4 5.52 4 4.83 4 0.35

    5 6.9 5 6.04 5 0.43

    6 8.28 6 7.25 6 0.52

    7 9.66 7 8.45 7 0.61

    8 11.04 8 9.66 8 0.69

    9 12.42 9 10.87 9 0.7810 13.8 10 12.08 10 0.87

    20 27.59 20 24.15 20 1.74

    30 41.39 30 36.23 30 2.6

    40 55.19 40 48.3 40 3.4750 69.98 50 60.38 50 4.34

    ton/day scf/mo (millions) ton/day scf/mo (millions) ton/day scf/mo (millions)

    10 7.25 10 8.28 10 115.2

    12.5 9.06 12.5 10.35 12.5 114

    25 18.12 25 20.7 25 288

    50 36.24 50 41.41 50 575

    75 54.36 75 62.11 75 864

    100 72.5 100 82.82 100 1.152

    TONNAGE CONVERSION FACTORS*

    1 lb gaseous oxygen =

    12.08 scf@ 14.7 psia and 70 F

    1 ton gaseous oxygen =

    13.80 scf@ 14.7 psia and 70 F

    383,950 scf@ 14.7 psia and 70 F

    *Based on a 30-day month.

    Oxygen Nitrogen Hydrogen

    1 lb gaseous hydrogen =

    192.0 scf@ 14.7 psia and 70 F

    1 ton gaseous hydrogen =

    24,160 scf@ 14.7 psia and 70 F

    1 lb gaseous nitrogen =

    1 ton gaseous nitrogen =

    27,605 scf@ 14.7 psia and 70 F

  • 7/30/2019 Compressed Industrial Gases Hof Master

    19/97

    TONNAGE CONVERSION CHART

    To obtain values for plants of larger size, multiply each value by the same factor.

  • 7/30/2019 Compressed Industrial Gases Hof Master

    20/97

  • 7/30/2019 Compressed Industrial Gases Hof Master

    21/97

    This table is taken fro

    is badly presented dat

    The table is now label

    Dew

    Point (oF)

    PPM H2O

    (Volume)

    Percent

    Volume

    H2O

    Dew

    Point (oF)

    PPM H2O

    (Volume)

    Percent

    Volume

    H2O

    , . - , .

    82 37,432 3.7432 -5 970 0.097

    81 36,138 3.6138 -6 920 0.092

    80 34,844 3.4844 -7 870 0.087

    79 33,842 3.3842 -8 820 0.082 -130 -9078 32,840 3.284 -9 780 0.078 -120 -84

    77 31,838 3.1838 -10 740 0.074 -110 -7976 30,836 3.0836 -11 700 0.07 -105 -76

    75 29,833 2.9833 -12 660 0.066 -104 -76

    74 28,831 2.8831 -13 630 0.063 -103 -75

    73 27,829 2.7829 -14 590 0.059 -102 -74

    72 26,827 2.6827 -15 560 0.056 -101 -74

    71 25,825 2.5825 -16 530 0.053 -100 -7370 25,057 2.5057 -17 500 0.05 -99 -73

    69 24,290 2.429 -18 475 0.0475 -98 -72

    68 23,522 2.3522 -19 448 0.0448 -97 -72

    67 22,755 2.2755 -20 422 0.0422 -96 -71

    66 21,987 2.1987 -21 400 0.04 -95 -71

    65 21,220 2.122 -22 378 0.0378 -94 -70

    64 20,452 2.0452 -23 359 0.0359 -93 -69

    63 19,685 1.9685 -24 330 0.033 -92 -69

    62 18,917 1.8917 -25 317 0.0317 -91 -68

    61 18,336 1.8336 -26 300 0.03 -90 -6860 17,754 1.7754 -27 283 0.0283 -89 -67

    59 17,174 1.7174 -28 265 0.0265 -88 -6758 16,593 1.6593 -29 250 0.025 -87 -66

    57 16,011 1.6011 -30 235 0.0235 -86 -66

    56 15,430 1.543 -31 222 0.0222 -85 -65

    55 14,849 1.4849 -32 210 0.021 -84 -64

    54 14,268 1.4268 -33 196 0.0196 -83 -64

    53 13,687 1.3687 -34 105 0.0105 -82 -63

    52 13,329 1.3329 -35 174 0.0174 -81 -63

    51 12,971 1.2971 -36 164 0.0164 -80 -6250 12,613 1.2613 -37 153 0.0153 -79 -62

    49 12,255 1.2255 -38 144 0.0144 -78 -61

    48 11,898 1.1898 -39 136 0.0136 -77 -61

    47 11,540 1.154 -40 128 0.0128 -76 -60

    46 11,182 1.1182 -41 119 0.0119 -75 -5945 10,824 1.0824 -42 113 0.0113 -74 -5944 10,466 1.0466 -43 105 0.0105 -73 -58

    43 10,068 1.0068 -44 98 0.0098

    42 9,670 0.967 -45 92 0.0092

    41 9,272 0.9272 -46 87 0.0087 Air Products published

    40 8,874 0.8874 -47 82 0.0082

    39 8,475 0.8475 -48 76 0.0076

    DEWPOINT TO PPM CONVERSION TABLE

    Con

    Dew Point VS. Pa

    Dew Point

    F C

  • 7/30/2019 Compressed Industrial Gases Hof Master

    22/97

    38 8,077 0.8077 -49 72 0.0072

    37 7,679 0.7679 -50 67 0.0067 Moisture content in pu

    36 7,281 0.7281 -51 62 0.0062 use the following table:35 6,883 0.6883 -52 59 0.0059 *At 1 atmosphere pr34 6,633 0.6633 -53 55 0.0055

    33 6,383 0.6383 -54 51 0.005132 6,133 0.6133 -55 48 0.0048

    31 5,883 0.5883 -56 44.6 0.00446

    30 5,633 0.5633 -57 41.8 0.00418

    29 5,383 0.5383 -58 39.0 0.0039

    28 5,133 0.5133 -59 36.5 0.00365

    27 4,883 0.4883 -60 34.0 0.0034

    26 4,633 0.4633 -61 31.7 0.00317

    25 4,453 0.4453 -62 29.4 0.00294

    24 4,274 0.4274 -63 27.5 0.00275

    23 4,094 0.4094 -64 25.6 0.0025622 3,915 0.3915 -65 23.6 0.00236

    21 3,735 0.3735 -66 22.1 0.00221

    20 3,556 0.3556 -67 20.6 0.00206

    19 3,376 0.3376 -68 19.2 0.00192

    18 3,197 0.3197 -69 17.9 0.00179

    17 3,017 0.3017 -70 16.6 0.00166

    16 2,897 0.2897 -71 15.4 0.00154

    15 2,776 0.2776 -72 14.3 0.00143

    14 2,656 0.2656 -73 13.3 0.00133

    13 2,535 0.2535 -74 12.3 0.00123

    12 2,415 0.2415 -75 11.4 0.00114

    11 2,294 0.2294 -76 10.5 0.00105

    10 2,174 0.2174 -77 9.8 0.00098

    9 2,053 0.2053 -78 9.1 0.00091

    8 1,933 0.1933 -79 8.4 0.00084

    7 1,854 0.1854 -80 7.8 0.00078

    6 1,775 0.1775 -81 7.2 0.00072

    5 1,695 0.1695 -82 6.6 0.00066

    4 1,616 0.1616 -83 6.2 0.00062

    3 1,537 0.1537 -84 5.7 0.00057

    2 1,458 0.1458 -85 5.3 0.00053

    1 1,378 0.1378 -86 4.78 0.000478

    0 1,299 0.1299 -87 4.50 0.00045

    -1 1,220 0.122 -88 4.15 0.000415

    -2 1,153 0.1153 -89 3.84 0.000384

    -3 1,087 0.1087 -90 3.53 0.000353

    73

    72

    76

    75

    74

    79

    78

    77

    82

    81

    80

    85

    84

    83

    88

    87

    86

    91

    90

    89

    94

    93

    92

    97

    96

    95

    100

    99

    98

    103

    102

    101

    110

    105

    104

    Dew Point*,oF

    130

    120

  • 7/30/2019 Compressed Industrial Gases Hof Master

    23/97

    39

    42

    41

    40

    45

    44

    43

    48

    47

    46

    51

    50

    49

    54

    53

    52

    57

    56

    55

    60

    59

    58

    64

    63

    62

    67

    66

    65

    70

    *10,000 PPM = 1.0% 69

    68

    71

  • 7/30/2019 Compressed Industrial Gases Hof Master

    24/97

    an Air Liquide Website and shows that the PPM in Gas Data Book

    because it failed to identify the PPM as Volumetric Basis - not Mass.

    d accurately in this worksheet. (Art M. 05/06/03)

    Moisture

    This is yet another sad example of sloppy and un-specific

    engineering that seems to populate even the most

    0.10 serious and large technological business companies

    0.25 world-wide.

    0.63

    1.00 ALL published or communicated engineering data should

    1.06 be clearly and accurately labeled as to specific units

    1.18 as well as significatnt figures.

    1.29

    1.40

    1.531.66

    1.81

    1.96

    2.15

    2.35

    2.54

    2.76

    3.00

    3.28

    3.53

    3.84

    4.154.50

    4.78

    5.3

    5.7

    6.2

    6.6

    7.2

    7.8

    8.4

    9.1

    9.8

    10.5

    11.4

    12.3

    13.3

    the following Dew Point conversion data in their Website:

    ersion Table

    ts Per Million Moisture (Vol.)

    ppm

    (vol/vol)

  • 7/30/2019 Compressed Industrial Gases Hof Master

    25/97

    e gases. To convert parts per million by volume of water vapor to dew point,

    ssure.

    13.3

    14.3

    10.5

    11.4

    12.3

    8.4

    9.19.8

    6.6

    7.2

    7.8

    5.3

    5.7

    6.2

    4.154.50

    4.78

    3.28

    3.53

    3.84

    2.54

    2.76

    3.00

    1.96

    2.15

    2.35

    1.53

    1.66

    1.81

    1.18

    1.29

    1.40

    0.63

    1.00

    1.08

    ppm, Vol/Vol

    0.100.25

  • 7/30/2019 Compressed Industrial Gases Hof Master

    26/97

    136

    113

    119

    128

    92

    98

    105

    76

    82

    87

    62

    67

    71

    51

    55

    59

    41.8

    44.6

    48

    34.0

    36.5

    39.0

    25.6

    27.5

    29.4

    20.6

    22.1

    23.6

    16.6

    17.9

    19.2

    15.4

  • 7/30/2019 Compressed Industrial Gases Hof Master

    27/97

    Calibrated ForSpecific

    GravityAir D.A. Argon

    Endo or

    AmmoniaHelium Hydrogen

    Natural

    GasNitrogen Oxygen Propane

    ir 1 1 1.841 0.851 1.302 2.692 3.793 1.24 1.021 0.951 0.811

    ry Air (D.A.) 0.295 0.543 1 0.462 0.707 1.462 2.06 0.674 0.554 0.517 0.44

    rgon 1.38 1.175 2.163 1 1.529 3.162 4.456 1.457 1.199 1.118 0.952

    ndo or Ammonia 0.59 0.768 1.414 0.654 1 2.068 2.914 0.953 0.784 0.731 0.623elium 0.138 0.371 0.684 0.316 0.484 1 1.409 0.461 0.379 0.353 0.301

    ydrogen 0.0695 0.264 0.485 0.224 0.343 0.71 1 0.387 0.269 0.251 0.214

    atural Gas 0.65 0.806 1.484 0.686 1.05 2.17 3.058 1 0.823 0.767 0.654

    itrogen 0.96 0.98 1.804 0.834 1.276 2.638 3.717 1.215 1 0.932 0.794

    Oxygen 1.105 1.051 1.935 0.895 1.369 2.83 3.987 1.304 1.073 1 0.852

    ropane 1.522 1.234 2.271 1.05 1.606 3.321 4.68 1.53 1.259 1.174 1

    0 0.5 1 2 3 4 5 10 15 20 30 40

    0.5 1.01 1 0.98 0.95 0.93 0.9 0.88 0.78 0.71 0.66 0.58 0.5

    1 1.03 1.02 1 0.97 0.94 0.92 0.89 0.8 0.73 0.67 0.59 0.5

    2 1.06 1.05 1.03 1 0.97 0.94 0.92 0.82 0.75 0.69 0.61 0.5

    3 1.1 1.08 1.06 1.03 1 0.97 0.95 0.85 0.77 0.71 0.63 0.5

    4 1.13 1.11 1.09 1.06 1.03 1 0.97 0.87 0.79 0.73 0.65 0.5

    5 1.16 1.14 1.12 1.09 1.05 1.03 1 0.89 0.81 0.75 0.66 0.

    10 1.3 1.27 1.25 1.22 1.18 1.15 1.12 1 0.91 0.84 0.74 0.6

    15 1.42 1.4 1.38 1.33 1.29 1.26 1.23 1.1 1 0.92 0.82 0.7

    20 1.53 1.51 1.49 1.44 1.4 1.36 1.33 1.18 1.08 1 0.88 0.

    30 1.75 1.71 1.69 1.64 1.59 1.55 1.51 1.34 1.22 1.13 1 0.

    40 1.93 1.9 1.87 1.81 1.76 1.71 1.67 1.49 1.36 1.25 1.11 1

    50 2.1 2.06 2.03 1.97 1.91 1.86 1.81 1.62 1.47 1.36 1.2 1.0

    Actual PSIG

    METERED GAS CONVERSION FACTORS

    Calibration Pressure

    xample: If the flowmeter is calibrated for air and argon is being metered, multiply the reading with 0.851 to get the actual argon flow. If the

    ctual pressure is different from the calibration pressure, use the correction factor from the calibration pressure chart.

    AS CONVERSION FACTORS

  • 7/30/2019 Compressed Industrial Gases Hof Master

    28/97

    onversion factor = (P actual + 14.7/P cal + 14.7)0.5

    P actual = actual pressure, psig

    P cal = calibrated pressure, psig

    xample: If the flowmeter is calibrated for 50 psig and the actual pressure is 10 psig, multiply the reading with 0.62 to get the actual flow. If in addition, the

    alibrated for a different gas than the gas being measured, multiply this number with the correction factor from the metered gas conversion factor.

    Where:

  • 7/30/2019 Compressed Industrial Gases Hof Master

    29/97

    50

    0.48

    0.49

    0.51

    0.52

    0.54

    0.55

    0.62

    0.68

    0.73

    0.83

    0.92

    1

  • 7/30/2019 Compressed Industrial Gases Hof Master

    30/97

    er is

  • 7/30/2019 Compressed Industrial Gases Hof Master

    31/97

    Gross Net O2 + N2 = Air CO2 H2O N2

    Carbon solid C 12.011 14,093 14,093 2.664 8.863 11.527 3.664 -- 8.863

    Hydrogen H2 2.016 61,100 51,623 7.9 26.407 34.344 -- 8.937 26.407

    Carbon monoxide CO 28.010 4,347 4,347 0.6 1.9 2.471 1.571 -- 1.9

    Methane CH4 16.043 23,879 21,520 4 13.257 17.265 2.744 2.246 13.275Ethane C2H6 30.070 22,320 20,432 3.7 12.394 16.119 2.927 1.798 12.394

    Propane C3H8 44.097 21,661 19,994 3.6 12.074 15.703 2.994 1.634 12.074

    Ethylene C2H4 28.054 21,644 20,295 3.4 11.385 14.807 3.138 1.285 11.385

    Propylene C3H6 42.081 21,041 19,691 3.4 11.385 14.807 3.138 1.285 11.385

    Acetylene C2H2 26.038 21,500 20,776 3.1 10.224 13.297 3.381 0.692 10.224

    Gross Net O2 + N2 = Air CO2 H2O N2

    Hydrogen H2 2.016 325 275 0.5 1.882 2.382 -- 1 1.882

    Carbon monoxide CO 28.010 322 322 0.5 1.882 2.382 1 -- 1.882

    Methane CH4 16.043 1,013 913 2 7.528 9.528 1 2 7.528

    Ethane C2H6 30.070 1,792 1,641 3.5 13.175 16.675 2 3 13.175

    Propane C3H8 44.097 2,590 2,385 5 18.821 23.821 3 4 18.821

    Ethylene C2H4 28.054 1,614 1,513 3 11.293 14.293 2 2 11.293

    Propylene C3H6 42.081 12,336 2,186 4.5 16.939 21.439 3 3 16.939

    Acetylene 2 2 26.038 1,499 1,448 2.5 9.411 11.911 2 1 9.411

    Mol

    WeightSymbol Btu per cu ft @ 60F Required for Combustion

    Heat of Combustion Cubic Feet per Cubic Feet of Combustible Gas

    Products of CombustionName of Gas

    COMBUSTION CONSTANTS OF HYDROCARBON GASES (VOLUME BASIS)

    Name of Gas

    COMBUSTION CONSTANTS OF HYDROCARBON GASES (WEIGHT BASIS)

    Mol

    WeightSymbol

    Heat of Combustion

    Btu per Lb

    Pound per Pound of Combustible Gas

    Required for Combustion Products of Combustion

  • 7/30/2019 Compressed Industrial Gases Hof Master

    32/97

    No. 2 Fuel Oil 0.1 86.8 13 -- 7.18 19,214 138,000 14.46 1,381 291No. 4 Fuel Oil 0.3 87.6 12 0.1 7.6 18,821 143,000 14.22 1,437 302

    No. 6 Fuel Oil 0.5 88.2 11 0.3 8.15 18,400 150,000 13.96 1,513 319

    Air

    required

    9.56

    scf/ft3

    Air

    required

    136 scf/lb

    10.22----8Bituminous Coal 1.78

    COMBUSTION REQUIREMENTS OF TYPICAL FUELS

    Name of Fuel% S % C % H % Ash

    Analysis Required for Combustion

    Btu/galnet Btu/lblbs/gas lbs Air/lbscf

    Air/galscf O2/gal

    Heat of Combustion

    5

    O2required 2

    scf/ft3

    75.3

    Natural Gas CH4 90%; C2H6 5%1,000

    Btu/ft3

    Specific

    Grav. 0.6

    13,500

  • 7/30/2019 Compressed Industrial Gases Hof Master

    33/97

    Kw In Out Volts Amps BCLb/Hr

    CO2

    Scfh N2,

    O2, A

    15 0.75" 0.75" 220/440 40/20 6 375 4,00030 0.75" 0.75" 220/440 80/40 8

    1/8 750 7,500

    45 0.75" 0.75" 220/440 120/60 101/4 1,125 11,500

    60 0.75" 0.75" 220/440 160/80 13 1,500 15,000

    75 0.75" 1" 220/440 200/100 151/4 1,875 19,000

    90 0.75" 1" 440 120 171/2 2,250 22,500

    105 0.75" 1" 440 140 193/4 2,625 26,500

    120 0.75" 1" 440 160 22 3,000 30,000

    135 1" 1" 440 180 241/8 3,375 33,750

    150 1" 11/2" 440 200 26

    3/8 3,750 37,500

    165 1" 11/2" 440 220 28

    1/2 4,125 41,500

    180 1" 11/2" 440 240 30

    3/4 4,500 45,000

    195 1"1

    1

    /2"440 260 33 4,875 49,000

    250 Max

    15 Min

    250 Max15 Min

    *Gap or space between the extrusions is 5" for improved resistance to ice bridging.

    STEAM VAPORIZER SPECIFICATIONS

    AMBIENT VAPORIZER SPECIFICATIONS

    ELECTRIC VAPORIZER SPECIFICATIONS (for vaporizing stored Liquefied Gases)

    Flow scfh Fluid

    3" 300 lb

    ANSI Flange 1,400

    2" Female

    Pipe

    Steam

    Pressure

    Steam

    Inlet psig

    50,000 N2/O2 500

    1" Mueller

    Flange

    2" Mueller

    Flange 700

    2" Female

    Pipe

    MAWP

    psigN2 Inlet N2 Outlet Required

    100,000 N2/O2 500

    1.5" Mueller

    Flange

    Rating -- 8 Hr

    Rating --

    Continuous

    A2SSEG-10X1 23 x 10 x 165

    23 x 23 x 165

    23 x 36 x 165

    Model Dimension, inches

    2,000 scfh

    2,400 scfh

    23 x 49 x 165

    23 x 62 x 165

    36 x 49 x 165

    A4SSEG-10X1

    A6SSEG-10X1

    A8SSEG-10X1

    A10SSEG-10X1

    A12SSEG-10X1

    4,800 scfh

    A16SSEG-10X1 49 x 49 x 165

    A30SSEG-10X1

    400 scfh1,428 scfh

    2,856 scfh 800 scfh

    1,200 scfh

    1,600 scfh

    A36SSEG-10X1

    49 x 75 x 165

    62 x 75 x 16575 x 75 x 165 25,704 scfh

    3,200 scfh

    49 x 62 x 165A20SSEG-10X1

    A24SSEG-10X1

    4,000 scfh

    6,000 scfh7,200 scfh

    4,284 scfh

    5,712 scfh

    7,140 scfh

    8,568 scfh

    11,424 scfh

    14,280 scfh

    17,136 scfh

    21,420 scfh

  • 7/30/2019 Compressed Industrial Gases Hof Master

    34/97

    Wt lbs

    100150

    180

    210

    240

    275

    310

    345

    375

    405

    440

    575

    605

    Fluid Fluid

    Inlet Outlet

    Condensate

    Out

    2" Male Pipe 320 F 70 F

    2" Male Pipe 320 F 70 F

  • 7/30/2019 Compressed Industrial Gases Hof Master

    35/97

    Art Montemayor LCO2 Vaporization March 15, 2004

    Rev: 0Hi Montemayor, 15-Mar-04

    Thank you very much for your reply. Your willingness to help is greatly appreciated.

    The problem we deal with is CO2 supply for carbonated beverage bottling facility with several bottling

    lines, and varying working regime.

    The normal CO2 consumption is 3,000 Kg/Hr, but we have to take into account peak loads of

    4,800 Kg/Hr and lowest load of 1,200 Kg/Hr.

    Liquid CO2 source is @ -20 C (19.25 Bar a). [-4oF & 264.4 psig]

    Gaseous CO2 min. temp. supply requirement is @ 0 C.

    Water source is 100 CU.M (26,406 gallons) treated water storage tank. This is an external, not insulated

    tank, thus its temp. is effected by the ambient temp. The a.m. tank is foodstuff grad, so using of antifreeze

    is not permitted. (What is "a.m. tank"??)

    Preference of water heating is for energy saving considerations, and the experience of steam heating for

    this application is very troublous (and nearest steam source available is 200 MTR away).

    Average water supply temp. is 14 C, lowest winter temp. is 10 C, max. temp. is 28 C.

    Water supply circulation pump: 70 CU.M/Hr(308 gpm).

    As I've mentioned before, my concern is of water freezing and ice accumulation on external tube surface.

    Another question is whether flow rate reduction is permitted when CO2 consumption is at its lower level?

    (In case CO2 consumption is stopped, water circulation remains, and CO2 space is drained off).

    I hope now you can have the full information needed in order to handle this problem.

    Excel Workbook you suggest for Industrial Gas data and information is most interesting to me for both

    this job and other jobs we have.

    My address is: [email protected]

    Once again, thank you very, very much for your assistance!

    Page 35 of 97FileName: 142168304.xls.ms_office

    WorkSheet: LCO2 Vaporization

  • 7/30/2019 Compressed Industrial Gases Hof Master

    36/97

    Art Montemayor LCO2 Vaporization March 15, 2004

    Rev: 0

    Vaporizer Control Operation:

    1. LCO2 automatic valve opens when storage tank pressure is less than pre-set value (19.25 barA)

    2. Water heat sink source is constantly circulating a minimum of 285 gpm of water at

    50 oC. This water exits the vaporizer at 41 oF and is circulated to a heating source prior to being

    circulated at the required 50oF MINIMUM.

    3. The vaporized LCO2 is vented directly back to the storage tank vapor space and the gaseous

    consumption is derived from the common pipe joining the vaporizer and the storage tank.

    If the gaseous CO2 demand decreases, the storage tank pressure starts to increase and the pressure

    controller on the LCO2 block valve activates the actuator on the block valve, shutting LCO2 flow

    to the vaporizer. Storage tank pressue ceases to increase.

    4. Upon subsequent gaseous CO2 demand increase, storage tank pressure starts to decrease and

    the pressure controller opens the LCO2 block valve to the vaporizer, initiating vaporization and an

    increase in gaseous CO2 availability for the consumption.

    5. The vaporizer coil must be physically and mechanically situated at a lower level than the lowest

    LCO2 tank level in order to have gravity flow to the coil. The coil must be allowed to freely vaporize

    LCO2 and return the product vapor directly back to the tank vapor space. The LCO2 block valvemust have bubble-tight capability to positively shut-off LCO2 supply when required. The heating

    water source must be available at the design rate 100% of the time that vaporization is required.

    Water source @ 50 oFWater overflow

    @ 41 oF

    Liquid CO2 Storage Tank

    PC

    To BottlingMachineconsumption

    Page 36 of 97FileName: 142168304.xls.ms_office

    WorkSheet: LCO2 Vaporization

  • 7/30/2019 Compressed Industrial Gases Hof Master

    37/97

    Art Montemayor LCO2 Vaporization March 15, 2004

    Rev: 0

    Page 37 of 97FileName: 142168304.xls.ms_office

    WorkSheet: LCO2 Vaporization

  • 7/30/2019 Compressed Industrial Gases Hof Master

    38/97

    Art Montemayor LCO2 Vaporization March 15, 2004

    Rev: 0

    308 gpm

    4,800 kg/hr = 10,560 lb/hr

    121.57 Btu/lb @ -4.3 oF & 284.7 psia, saturated liquid

    1,283,737 Btu/hr

    Design water inlet temperature = 10oC = 50

    oF

    5oC = 41

    oF

    W = Water rate, lb/hr

    Cp = 1.00 Btu/lb -oF

    DT = 9oF

    W = 142,637 lb/hr = 285 gpm

    Water Storage tank capacity = 26,406 gallons

    93 minutesVaporizer time available =

    Heating water rate available =

    Vaporizer Heat Load =

    LCO2 Latent Heat of Vaporization =

    LCO2 Design vaporization rate =

    Design water outlet temp. =

    TCp

    QW

    TCpWQ

    D

    D

    Page 38 of 97FileName: 142168304.xls.ms_office

    WorkSheet: LCO2 Vaporization

  • 7/30/2019 Compressed Industrial Gases Hof Master

    39/97

    Art Montemayor LCO2 Vaporization March 15, 2004

    Rev: 0

    Page 39 of 97FileName: 142168304.xls.ms_office

    WorkSheet: LCO2 Vaporization

  • 7/30/2019 Compressed Industrial Gases Hof Master

    40/97

    Art Montemayor LCO2 Vaporization March 15, 2004

    Rev: 0

    Page 40 of 97FileName: 142168304.xls.ms_office

    WorkSheet: LCO2 Vaporization

  • 7/30/2019 Compressed Industrial Gases Hof Master

    41/97

    Art Montemayor NIST Thermodynamic Values for Saturated C

    -109.40 14.696 97.560 0.010250 -64.111 -0.13031 0.17575

    -100.00 22.310 96.900 0.010320 -61.211 -0.12201 0.26316

    -68.98 76.696 73.463 0.013612 35.291 35.484 0.12701 0.23713 0.46671 3123.9 0.87775

    -67.91 78.696 73.329 0.013637 35.79 35.989 0.12829 0.23627 0.46701 3112.2 0.89960

    -66.85 80.696 73.196 0.013662 36.279 36.484 0.12953 0.23545 0.46730 3100.6 0.92145

    -65.81 82.696 73.065 0.013686 36.76 36.970 0.13076 0.23468 0.46757 3089.2 0.94329

    -64.80 84.696 72.936 0.013711 37.232 37.447 0.13195 0.23394 0.46783 3078.0 0.96513

    -63.80 86.696 72.809 0.013735 37.696 37.917 0.13313 0.23325 0.46808 3066.9 0.98697

    -62.82 88.696 72.683 0.013758 38.152 38.379 0.13428 0.23259 0.46832 3056.1 1.0088

    -61.85 90.696 72.560 0.013782 38.601 38.833 0.13541 0.23196 0.46855 3045.4 1.0306

    -60.90 92.696 72.437 0.013805 39.042 39.280 0.13652 0.23136 0.46877 3034.8 1.0525

    -59.97 94.696 72.317 0.013828 39.477 39.719 0.13760 0.23079 0.46899 3024.4 1.0743

    -59.05 96.696 72.197 0.013851 39.904 40.153 0.13867 0.23025 0.46920 3014.1 1.0961

    -58.14 98.696 72.080 0.013874 40.326 40.579 0.13972 0.22974 0.46940 3004.0 1.1180

    -57.25 100.7 71.963 0.013896 40.741 41.000 0.14076 0.22924 0.46961 2993.9 1.1398

    -56.37 102.7 71.848 0.013918 41.149 41.414 0.14177 0.22878 0.46981 2984.0 1.1616

    -55.50 104.7 71.735 0.013940 41.552 41.823 0.14277 0.22833 0.47001 2974.2 1.1835

    -54.65 106.7 71.622 0.013962 41.95 42.226 0.14375 0.22790 0.47021 2964.5 1.2053

    -53.81 108.7 71.511 0.013984 42.342 42.623 0.14472 0.22750 0.47042 2954.9 1.2272

    -52.98 110.7 71.402 0.014005 42.728 43.016 0.14567 0.22711 0.47062 2945.4 1.2490

    -52.16 112.7 71.293 0.014027 43.11 43.403 0.14661 0.22674 0.47082 2936.1 1.2709

    -51.35 114.7 71.185 0.014048 43.487 43.785 0.14753 0.22638 0.47102 2926.8 1.2928

    -50.55 116.7 71.079 0.014069 43.858 44.163 0.14844 0.22605 0.47123 2917.5 1.3147

    -49.76 118.7 70.974 0.014090 44.225 44.535 0.14934 0.22572 0.47144 2908.4 1.3366

    -48.98 120.7 70.870 0.014110 44.588 44.904 0.15022 0.22541 0.47165 2899.4 1.3585

    -48.21 122.7 70.767 0.014131 44.946 45.268 0.15110 0.22512 0.47187 2890.4 1.3804

    -47.46 124.7 70.665 0.014151 45.3 45.627 0.15196 0.22484 0.47209 2881.6 1.4023

    -46.71 126.7 70.564 0.014172 45.65 45.983 0.15280 0.22457 0.47232 2872.7 1.4242

    -45.96 128.7 70.464 0.014192 45.996 46.335 0.15364 0.22431 0.47254 2864.0 1.4461

    -45.23 130.7 70.364 0.014212 46.338 46.682 0.15447 0.22406 0.47278 2855.4 1.4681

    -44.51 132.7 70.266 0.014232 46.676 47.026 0.15528 0.22382 0.47302 2846.8 1.4900

    -43.79 134.7 70.169 0.014251 47.011 47.367 0.15609 0.22360 0.47326 2838.3 1.5120

    -43.08 136.7 70.072 0.014271 47.342 47.703 0.15689 0.22338 0.47351 2829.8 1.5340

    -42.38 138.7 69.977 0.014290 47.669 48.036 0.15767 0.22318 0.47376 2821.4 1.5560

    -41.69 140.7 69.882 0.014310 47.993 48.366 0.15845 0.22298 0.47402 2813.1 1.5780

    -41.00 142.7 69.788 0.014329 48.314 48.693 0.15922 0.22279 0.47428 2804.8 1.6000

    -40.32 144.7 69.695 0.014348 48.631 49.016 0.15997 0.22261 0.47455 2796.6 1.6221

    -39.65 146.7 69.602 0.014367 48.946 49.336 0.16072 0.22244 0.47483 2788.5 1.6441

    -38.98 148.7 69.511 0.014386 49.257 49.653 0.16146 0.22227 0.47511 2780.4 1.6662

    -38.32 150.7 69.420 0.014405 49.565 49.968 0.16220 0.22211 0.47539 2772.3 1.6883-37.67 152.7 69.329 0.014424 49.871 50.279 0.16292 0.22196 0.47569 2764.4 1.7104

    -37.02 154.7 69.240 0.014443 50.173 50.587 0.16364 0.22182 0.47599 2756.4 1.7325

    -36.38 156.7 69.151 0.014461 50.473 50.893 0.16435 0.22168 0.47629 2748.5 1.7546

    -35.75 158.7 69.063 0.014480 50.77 51.196 0.16505 0.22155 0.47660 2740.7 1.7767

    -35.12 160.7 68.975 0.014498 51.065 51.496 0.16575 0.22142 0.47692 2732.9 1.7989

    -34.50 162.7 68.888 0.014516 51.356 51.794 0.16643 0.22130 0.47724 2725.2 1.8211

    -33.88 164.7 68.802 0.014534 51.646 52.089 0.16711 0.22118 0.47757 2717.5 1.8433

    -33.27 166.7 68.717 0.014553 51.933 52.382 0.16779 0.22107 0.47790 2709.9 1.8655

    -32.67 168.7 68.631 0.014571 52.217 52.672 0.16846 0.22097 0.47824 2702.3 1.8877

    -32.07 170.7 68.547 0.014589 52.499 52.960 0.16912 0.22087 0.47859 2694.8 1.9100

    -31.47 172.7 68.463 0.014606 52.779 53.246 0.16977 0.22077 0.47894 2687.3 1.9322

    -30.88 174.7 68.380 0.014624 53.056 53.530 0.17042 0.22068 0.47930 2679.8 1.9545

    -30.29 176.7 68.297 0.014642 53.332 53.811 0.17106 0.22060 0.47966 2672.4 1.9768

    -29.71 178.7 68.215 0.014660 53.605 54.090 0.17170 0.22051 0.48003 2665.0 1.9991

    Temperature

    (F)

    Pressure

    (psia)

    Density(l)

    (lbm/ft3)

    Volume(l)

    (ft3/lbm)

    Cp(l)

    (BTU/lbm*R)

    Sound Spd.(l)

    (ft/s)

    Density(v)

    (lbm/ft3)

    Internal Energy(l)

    (BTU/lbm)

    Enthalpy(l)

    (BTU/lbm)

    Entropy(l)

    (BTU/lbm*R)

    Cv(l)

    (BTU/lbm*R)

    Page 41 of 97

  • 7/30/2019 Compressed Industrial Gases Hof Master

    42/97

    Art Montemayor NIST Thermodynamic Values for Saturated C-29.14 180.7 68.133 0.014677 53.876 54.367 0.17233 0.22044 0.48040 2657.7 2.0215

    -28.57 182.7 68.052 0.014695 54.145 54.642 0.17295 0.22036 0.48079 2650.4 2.0439

    -28.00 184.7 67.971 0.014712 54.412 54.915 0.17357 0.22029 0.48117 2643.2 2.0662

    -27.44 186.7 67.891 0.014730 54.677 55.186 0.17419 0.22022 0.48157 2636.0 2.0886

    -26.88 188.7 67.811 0.014747 54.939 55.455 0.17480 0.22016 0.48196 2628.8 2.1111

    -26.33 190.7 67.732 0.014764 55.201 55.722 0.17540 0.22010 0.48237 2621.7 2.1335

    -25.78 192.7 67.653 0.014781 55.46 55.988 0.17600 0.22004 0.48278 2614.6 2.1560

    -25.23 194.7 67.575 0.014798 55.717 56.251 0.17659 0.21999 0.48319 2607.5 2.1785

    -24.69 196.7 67.497 0.014816 55.973 56.513 0.17718 0.21994 0.48361 2600.5 2.2010

    -24.16 198.7 67.419 0.014833 56.227 56.773 0.17777 0.21989 0.48404 2593.5 2.2235

    -23.63 200.7 67.342 0.014850 56.479 57.031 0.17835 0.21985 0.48447 2586.5 2.2461

    -23.10 202.7 67.266 0.014866 56.729 57.287 0.17892 0.21981 0.48491 2579.6 2.2687

    -22.57 204.7 67.189 0.014883 56.978 57.542 0.17949 0.21977 0.48535 2572.7 2.2913

    -22.05 206.7 67.113 0.014900 57.225 57.795 0.18006 0.21973 0.48580 2565.9 2.3139

    -21.53 208.7 67.038 0.014917 57.47 58.047 0.18062 0.21969 0.48626 2559.0 2.3365

    -21.02 210.7 66.963 0.014934 57.714 58.297 0.18118 0.21966 0.48671 2552.3 2.3592

    -20.51 212.7 66.888 0.014950 57.957 58.546 0.18173 0.21963 0.48718 2545.5 2.3819

    -20.00 214.7 66.814 0.014967 58.197 58.793 0.18228 0.21961 0.48765 2538.8 2.4046

    -19.50 216.7 66.740 0.014984 58.437 59.038 0.18282 0.21958 0.48812 2532.1 2.4274

    -19.00 218.7 66.666 0.015000 58.675 59.283 0.18337 0.21956 0.48860 2525.4 2.4502

    -18.50 220.7 66.593 0.015017 58.911 59.525 0.18390 0.21954 0.48909 2518.8 2.4730

    -18.01 222.7 66.520 0.015033 59.146 59.766 0.18444 0.21952 0.48958 2512.2 2.4958

    -17.52 224.7 66.448 0.015049 59.38 60.006 0.18497 0.21950 0.49008 2505.6 2.5186

    -17.03 226.7 66.376 0.015066 59.612 60.245 0.18549 0.21948 0.49058 2499.1 2.5415

    -16.55 228.7 66.304 0.015082 59.843 60.482 0.18602 0.21947 0.49108 2492.5 2.5644

    -16.07 230.7 66.232 0.015098 60.073 60.718 0.18653 0.21946 0.49159 2486.1 2.5873

    -15.59 232.7 66.161 0.015115 60.301 60.953 0.18705 0.21945 0.49211 2479.6 2.6103-15.12 234.7 66.090 0.015131 60.528 61.186 0.18756 0.21944 0.49263 2473.2 2.6332

    -14.65 236.7 66.019 0.015147 60.754 61.418 0.18807 0.21943 0.49316 2466.7 2.6562

    -14.18 238.7 65.949 0.015163 60.978 61.649 0.18858 0.21943 0.49369 2460.4 2.6793

    -13.71 240.7 65.879 0.015179 61.202 61.879 0.18908 0.21943 0.49422 2454.0 2.7023

    -13.25 242.7 65.809 0.015196 61.424 62.107 0.18958 0.21942 0.49476 2447.7 2.7254

    -12.79 244.7 65.739 0.015212 61.645 62.335 0.19007 0.21942 0.49531 2441.4 2.7485

    -12.34 246.7 65.670 0.015228 61.865 62.561 0.19057 0.21942 0.49586 2435.1 2.7717

    -11.88 248.7 65.601 0.015244 62.084 62.786 0.19106 0.21943 0.49641 2428.8 2.7948

    -11.43 250.7 65.532 0.015260 62.301 63.010 0.19154 0.21943 0.49697 2422.6 2.8180

    -10.98 252.7 65.464 0.015276 62.518 63.233 0.19203 0.21943 0.49754 2416.4 2.8413

    -10.53 254.7 65.396 0.015292 62.733 63.455 0.19251 0.21944 0.49810 2410.2 2.8645

    -10.09 256.7 65.328 0.015307 62.947 63.676 0.19299 0.21945 0.49868 2404.1 2.8878

    -9.65 258.7 65.260 0.015323 63.161 63.895 0.19346 0.21946 0.49926 2397.9 2.9111

    -9.21 260.7 65.193 0.015339 63.373 64.114 0.19394 0.21946 0.49984 2391.8 2.9345

    -8.77 262.7 65.125 0.015355 63.584 64.332 0.19441 0.21948 0.50043 2385.7 2.9578-8.34 264.7 65.058 0.015371 63.794 64.548 0.19487 0.21949 0.50102 2379.7 2.9812

    -7.91 266.7 64.992 0.015387 64.004 64.764 0.19534 0.21950 0.50162 2373.6 3.0047

    -7.48 268.7 64.925 0.015402 64.212 64.979 0.19580 0.21951 0.50222 2367.6 3.0281

    -7.05 270.7 64.859 0.015418 64.419 65.193 0.19626 0.21953 0.50282 2361.6 3.0516

    -6.63 272.7 64.793 0.015434 64.626 65.406 0.19672 0.21954 0.50343 2355.6 3.0751

    -6.20 274.7 64.727 0.015450 64.831 65.617 0.19717 0.21956 0.50405 2349.7 3.0987

    -5.78 276.7 64.661 0.015465 65.036 65.829 0.19762 0.21958 0.50467 2343.8 3.1223

    -5.37 278.7 64.596 0.015481 65.239 66.039 0.19807 0.21960 0.50529 2337.8 3.1459

    -4.95 280.7 64.530 0.015497 65.442 66.248 0.19852 0.21962 0.50592 2332.0 3.1695

    -4.54 282.7 64.465 0.015512 65.644 66.456 0.19897 0.21964 0.50655 2326.1 3.1932

    -4.13 284.7 64.400 0.015528 65.845 66.664 0.19941 0.21966 0.50719 2320.2 3.2169

    -3.72 286.7 64.336 0.015543 66.045 66.871 0.19985 0.21968 0.50783 2314.4 3.2407

    -3.31 288.7 64.271 0.015559 66.244 67.076 0.20029 0.21970 0.50848 2308.6 3.2645

    -2.91 290.7 64.207 0.015575 66.442 67.281 0.20073 0.21973 0.50913 2302.8 3.2883

    Page 42 of 97

  • 7/30/2019 Compressed Industrial Gases Hof Master

    43/97

    Art Montemayor NIST Thermodynamic Values for Saturated C-2.50 292.7 64.143 0.015590 66.64 67.486 0.20116 0.21975 0.50979 2297.0 3.3121

    -2.10 294.7 64.079 0.015606 66.837 67.689 0.20159 0.21978 0.51045 2291.3 3.3360

    -1.70 296.7 64.015 0.015621 67.033 67.892 0.20202 0.21980 0.51111 2285.5 3.3599

    -1.31 298.7 63.952 0.015637 67.228 68.094 0.20245 0.21983 0.51178 2279.8 3.3838

    -0.91 300.7 63.888 0.015652 67.423 68.295 0.20287 0.21986 0.51245 2274.1 3.4078

    -0.52 302.7 63.825 0.015668 67.616 68.495 0.20330 0.21989 0.51313 2268.5 3.4318

    -0.13 304.7 63.762 0.015683 67.809 68.695 0.20372 0.21992 0.51381 2262.8 3.4559

    0.26 306.7 63.699 0.015699 68.001 68.894 0.20414 0.21995 0.51450 2257.2 3.4799

    0.65 308.7 63.636 0.015714 68.193 69.092 0.20456 0.21998 0.51519 2251.5 3.5040

    1.04 310.7 63.574 0.015730 68.384 69.289 0.20497 0.22001 0.51588 2245.9 3.5282

    1.42 312.7 63.511 0.015745 68.574 69.486 0.20539 0.22004 0.51658 2240.3 3.5524

    1.80 314.7 63.449 0.015761 68.763 69.682 0.20580 0.22007 0.51728 2234.8 3.5766

    2.18 316.7 63.387 0.015776 68.951 69.877 0.20621 0.22010 0.51799 2229.2 3.6008

    2.56 318.7 63.325 0.015792 69.139 70.072 0.20662 0.22014 0.51870 2223.7 3.6251

    2.94 320.7 63.263 0.015807 69.327 70.266 0.20702 0.22017 0.51942 2218.2 3.6495

    3.31 322.7 63.201 0.015823 69.513 70.459 0.20743 0.22021 0.52014 2212.7 3.6738

    3.68 324.7 63.139 0.015838 69.699 70.652 0.20783 0.22024 0.52087 2207.2 3.6982

    4.06 326.7 63.078 0.015853 69.884 70.844 0.20823 0.22028 0.52160 2201.7 3.7226

    4.43 328.7 63.017 0.015869 70.069 71.035 0.20863 0.22031 0.52233 2196.3 3.7471

    4.79 330.7 62.956 0.015884 70.253 71.226 0.20903 0.22035 0.52307 2190.8 3.7716

    5.16 332.7 62.894 0.015900 70.436 71.416 0.20943 0.22039 0.52381 2185.4 3.7962

    5.53 334.7 62.834 0.015915 70.619 71.606 0.20982 0.22042 0.52456 2180.0 3.8207

    5.89 336.7 62.773 0.015930 70.801 71.795 0.21021 0.22046 0.52531 2174.6 3.8454

    6.25 338.7 62.712 0.015946 70.982 71.983 0.21061 0.22050 0.52606 2169.2 3.8700

    6.61 340.7 62.652 0.015961 71.163 72.171 0.21099 0.22054 0.52682 2163.9 3.8947

    6.97 342.7 62.591 0.015977 71.343 72.358 0.21138 0.22058 0.52759 2158.5 3.9194

    7.33 344.7 62.531 0.015992 71.523 72.545 0.21177 0.22062 0.52836 2153.2 3.9442

    7.68 346.7 62.471 0.016008 71.702 72.731 0.21216 0.22066 0.52913 2147.9 3.9690

    8.04 348.7 62.411 0.016023 71.881 72.916 0.21254 0.22070 0.52991 2142.6 3.9939

    8.39 350.7 62.351 0.016038 72.059 73.101 0.21292 0.22074 0.53069 2137.3 4.0188

    Page 43 of 97

  • 7/30/2019 Compressed Industrial Gases Hof Master

    44/97

    pounds kilograms cubic feet cu meters cubic feet cu meters gallons

    lbs kg scf nm3

    scf nm3

    gal1 pound 1.0 0.4536 36.1423 0.94982 12.04744 0.3166 0.151315

    1 kilogram 2.205 1.0 79.6788 2.09396 26.55961 0.698 0.3336

    1 scf gas

    dissociated 0.0277 0.01255 1.0 0.02628 0.3333 0.00876 0.004187

    1 nm3

    gas

    dissociated 1.0528 0.4776 38.04 1.0 12.68 0.3333 0.1593

    1 scf gas

    undissociated 0.083 0.0377 3 0.07884 1.0 0.02628 0.01256

    1 nm3

    gas

    undissociated 3.1585 1.4327 114.16 3 38.04 1.0 0.47927

    1 gal liquid 6.609 2.9977 238.855 6.277106 79.61828 2.09 1.0

    1 liter liquid 1.746 0.792 63.1056 1.658416 21.03521 0.55 0.2642

    pounds kilograms cubic feet cu meters cubic feet cu meters gallons

    lbs kg scf nm3 scf nm

    3 gal

    1 pound 1.0 0.4536 45.3318 1.19132 22.6659 0.5957 0.1467

    1 kilogram 2.205 1.0 99.9378 2.62636 49.9689 1.3132 0.3234

    1 scf gas

    dissociated 0.0221 0.01 1.0 0.02628 0.5 0.0131 0.0032

    1 nm3 gas

    dissociated 0.8394 0.3808 38.04 1.0 19.03 0.5 0.1231

    1 scf gas

    undissociated 0.0441 0.02 2 38.04 1.0 0.02628 0.0065

    1 nm3 gas

    undissociated 1.679 0.7615 76.1 2 38.04 1.0 0.24626

    1 gal liquid 6.817 3.0923 309.042 8.12162 154.521 4.06 1.01 liter liquid 1.8011 0.817 81.6491 2.14574 40.8246 1.07 0.2642

    METHANOL AND DISSOCIATED METHANOL CONVERSION DATA

    AMMONIA AND DISSOCIATED AMMONIA CONVERSION DATA

    Quantity

    Liq

    Weight Gas (Dissociated) Gas (Undissociated) Liq

    Weight Gas (Dissociated) Gas (Undissociated)

    Quantity

  • 7/30/2019 Compressed Industrial Gases Hof Master

    45/97

    liters

    l0.5727

    1.2626

    0.0158

    0.603

    0.048

    1.809

    3.785

    1.0

    liters

    l

    0.5552

    1.224

    0.0122

    0.466

    0.024

    0.9321

    3.7851.0

    uid

    uid

  • 7/30/2019 Compressed Industrial Gases Hof Master

    46/97

    ABSOLUTE TEMPERATURE CHART

  • 7/30/2019 Compressed Industrial Gases Hof Master

    47/97

    Art Montemayor March 12, 2002

    inches cm lbs kg psi bars cu in liters

    Medical B 3AA 2015 3.31 x 13.125 8.4 x 33.3 4.18 1.89 2,015 138.9 88 1.44

    D 3AA 2015 4.18 x 16.75 10.6 x 42.5 7.5 3.39 2,015 138.9 180 2.95

    E 3AA 2015 4.18 x 25.75 10.6 x 65.4 10.5 4.76 2,015 138.9 295 4.84M 3AA 2015 7 x 43 178 x 109.2 61.3 27.8 2,015 138.9 1,345 22.04

    inches cm lbs kg psi bars cu in liters

    10 oz 3E 1800 1.94 x 11.88 4.928 x 30.175 2.3 1.04 1,800 124.1 25.5 0.418

    21/2 lbs 3AA 1800 3.56 x 14.62 9.042 x 37.135 5.25 2.38 1,800 124.1 108 1.77

    5 lbs 3AA 1800 5.73 x 14.00 13.385 x 35.6 10.1 4.58 1,800 124.1 221 3.62

    10 lbs 3AA 1800 7.0 x 18.0 17.78 x 45.72 23 10.43 1,800 124.1 495 8.11

    15 lbs 3AA 1800 7.0 x 22.88 17.78 x 58.115 30 13.61 1,800 124.1 644 10.55

    20 lbs 3AA 1800 7.75 x 23.25 19.685 x 59.0 31.2 14.95 1,800 124.1 840 13.7750 lbs 3AA 1800 8.625 x 45.38 21.908 x 115.2 84.9 38.5 1,800 124.1 2,160 35.4

    All CO2, stored and distributed using these type of high pressure steel cylinders, exists as a saturated liquid at the

    storage pressure that corresponds to the contents' temperature. For CO2 at an ambient temperature of80oF, the

    corresponding cylinder pressure is 955 psig. These cylinders are filled with LCO2 at high pressure.

    These cylinders, with the exception of those used as fire extinguishers, have valves that release saturated CO 2 gas

    from the top, vapor portion of the cylinder while the cylinder is held upright. If the cylinder is inverted, the valves will

    dispel saturated LCO2 to the atmosphere, which flashes into a mixed-product stream of cold CO 2 gas and dry ice "snow".

    The product mixture resulting from this "flash" of LCO2 is initially at a temperature of-109oF and can cause severe

    burns to human skin.

    This effect, attained by adiabatically expanding the LCO2, is used to good advantage in CO2 Fire Extinguishers. The

    fire extinguisher is manufactured in the same manner and under the same mechanical design parameters as the

    conventional storage and distribution CO2 cylinder. The only exception is that the CO2 Fire Extinguisher has a valve

    that incorporates a copper or brass syphon tube that preferentially dispels (and expands) LCO2 and not CO2 gas.

    That is why a CO2 Fire Extinguisher should be held upright when applying it to a fire.

    All CO2 cylinders contain saturated Liquid CO2 when at a temperature below its Critical Temperature (87.908oF).

    When the cylinders are at a temperature above the Critical, the CO 2 exists in the Supercritical Phase - where the fluid

    is neither a gas or a liquid.

    When the cylinders contain a liquefied gas, the cylinder must have a vapor space allowed over the saturated liquid in

    order to allow for liquid expansion upon high ambient temperatures, without generating excessive hydraulic pressures.The observable filling densities of the various cylinder sizes are calculated below:

    cu in

    10 oz 3E 1800 25.5 0.70 89.13% 110.28%

    21/2 lbs 3AA 1800 108 2.97 84.18% 104.15%

    Model DOT Spec

    0.57

    2.40

    Water

    Capacity

    Liq. CO2

    Capacity @

    70oF, lb

    Fill

    Density

    @ 70oF

    Liq. CO2 Capacity

    @ 85oF, lb

    Fill

    Density

    @ 85oF

    Note: All medical gas capacities assume oxygen with 10% overfill.

    CARBON DIOXIDE GAS CYLINDER SPECIFICATIONS

    Water Capacity

    (volume)Model DOT Spec

    Dimensions Nominal Weight Service Pressure

    MEDICAL GAS CYLINDER SPECIFICATIONS

    Water Capacity

    (volume)Model DOT Spec

    Dimensions Nominal Weight Service Pressure

    Page 47 of 97FileName: 142168304.xls.ms_office

    WorkSheet: CO2 Cylinder Specs

  • 7/30/2019 Compressed Industrial Gases Hof Master

    48/97

    Gas CGA#

    Acetylene (commercial) 300 .825-14NGO-RH-EXT (flat nipple) 3,000

    Acetylene 510 .885-14NGO-LH-INT(bullet nipple) 500

    Acetylene (B) 520 .895-18NGO-RH-EXT 500Acetylene (MC) 200 .625-20NGO-RH-EXT (conical nipple) 500

    Air (industrial) 590 .965-14NGO-LH-INT 3,000

    Air (breathing) 346 .825-14NGO-RH-EXT (large round nipple) 3,000

    Air (to 5,500 psig) 347 .825-14NGO-RH-EXT (long round nipple) 5,500

    Ammonia 240 3/8-18NGT-RH-INT 500

    Argon 580 .965-14NGO-RH-INT 3,000

    Argon (to 5500 psig) 680 1.045-14NGO-RH-INT 5,500

    Butane 510 .885-14NGO-LH-INT (bullet nipple) 500

    Carbon Dioxide 320 .825-14NGO-RH-EXT (flat nipple) 3,000

    Carbon Monoxide 350 .825-14NGO-LH-EXT (round nipple) 3,000

    Corrosive 660 1.030-14NGO-RH-EXT (face washer) 3,000

    Ethane 350 .825-14NGO-LH-EXT (round nipple) 3,000

    Fuel Gas 350 .825-14NGO-LH-EXT (round nipple) 3,000

    Fuel Gases (to 5,500 psi) 695 1.045-14NGO-LH-INT 5,500

    Helium 580 .965-14NGO-RH-INT 3,000

    Helium (to 5,500 psig) 680 1.045-14NGO-RH-INT 5,500

    Hydrogen 350 .825-14NGO-LH-EXT (round nipple) 3,000

    Hydrogen (to 5,500 psig) 695 1.045-14NGO-LH-INT 5,500

    Medical Mixtures 500 .885-14NGO-RH-INT (bullet nipple) 3,000

    Methane 350 .825-14NGO-LH-EXT (round nipple) 3,000

    Methane (to 5,500 psig) 695 1.045-14NGO-LH-INT 5,500

    Nitrogen 580 .965-14NGO-RH-INT 3,000

    Nitrogen (to 5,500 psig) 680 1.045-14NGO-RH-INT 5,500

    Nitrous Oxide 326 .825-14NGO-RH-EXT (small round nipple) 3,000

    Oxygen 540 .903-14NGO-RH-EXT 3,000

    Oxygen (to 4,000 psig) 577 .960-14NGO-RH-EXT 4,000

    Oxygen (to 5,500 psig) 701 1.103-14NGO-RH-EXT 5,500

    Ozone 755 1.125-14UNS-2A-LH-EXT (short nipple) 3,000

    Propane 510 .885-14NGO-LH-INT (bullet nipple) 500

    Propane + Butane 555 .903-14NGO-LH-EXT 3,000

    Sulfur Hexafluoride 590 .965-14NGO-LH-INT 3,000

    CGA VALVE SPECIFICATIONSOutlet Connections PSIG

  • 7/30/2019 Compressed Industrial Gases Hof Master

    49/97

    Art Montemayor Liquid CO2 Storage Tanks March 12, 2003

    Rev: 0

    Capacity (tons)Empty Weight*

    (lbs)Dim. A Dim. B Dim. C

    13 11,500 19' 18' 6"

    14 12,500 24' 19' 10" - 6"

    24 18,600 30' 29' 6"

    31 23,500 37' 36' 6"

    34 30,000 44' 39'-11" 8"

    45 34,500 50' 50' 8"50 40,000 60' 55'-11" 12"

    Capacity (tons) Empty Weight*(lbs)

    Height Dia. PadDimensions

    14 15,500 19' - 9" 7' - 4" 9' x 9'

    30 30,000 35' - 9" 7' - 4" 10' x 10'50 40,000 39' - 5" 8' - 8" 13' x 13'

    Liquid Carbon Dioxide (LCO2) is conventionally stored and distributed to consumers under saturated

    conditions. Normal Design conditions are 250 psig and -8.34oF.

    However, the usual and customary conditons under which LCO2 is initially charged to storage vessels is

    200 psig and -20oF --- which are the process conditions under which LCO 2 is liquefied in a production plant.

    The reason for producing -20oF saturated LCO2 is that an Ammonia mechanical refrigeration cycle is

    normally employed to liquefy the CO2 and the Ammonia evaporator temperature that best suits this application

    TYPICAL CO2 VESSEL (HORIZONTAL)

    * Estimate onlySee Tech Specs 1068

    * All concrete pad thickness = 24"

    * Estimate onlySee Tech Specs 1067 and 1016

    * All concrete pads are 11' wide x "A" long

    TYPICAL CO2 VESSEL (VERTICAL)

    Page 49 of 97FileName: 142168304.xls.ms_office

    WorkSheet: LCO2 Storage Vessels

  • 7/30/2019 Compressed Industrial Gases Hof Master

    50/97

    Art Montemayor Liquid CO2 Storage Tanks March 12, 2003

    Rev: 0is approximately -25oF and this results in a -20

    oF LCO2 product.

    LCO2 main storage and consumer tanks are kept refrigerated (usually at 250 psig & -8.34oF) by integrated

    mechanical refrigeration units that employ either Ammonia or Freon refrigerants. The refrigeration system cycles

    on-and-off, as required to keep the LCO2 pressure within the design criteria of the tank.

    Art Montemayor

    Page 50 of 97FileName: 142168304.xls.ms_office

    WorkSheet: LCO2 Storage Vessels

  • 7/30/2019 Compressed Industrial Gases Hof Master

    51/97

    30 21' 9 - 5/8" 43,322 45,623 45,330 43,038 43,67034 21' 9 - 5/8" 48,066 50,619 50,294 47,751 48,453

    38 21' 9 - 5/8" 53,516 56,359 55,996 31,655 53,947

    49 21' 9 - 5/8" 69,604 73,302 72,830 69,147 70,164

    55 34' 9 - 5/8" 127,881 134,675 133,808 127,043 128,910

    10 34' -4" 22" 127,881 134,761 133,894 127,124 128,993

    7 40' 22" 108,510 114,275 112,539 -- 109,3839 40' 22" 139,372 146,776 145,832 -- 140,494

    1500 MVE

    (SS) 66 180 7,400 22,081 17,797 25,332 1,541

    3000 MVE

    (SS) 96 194 16,600 45,181 36,841 51,490 3,000

    6000 MVE

    (NP) 96 330 28,800 85,962 69,282 98,580 6,000

    9000 VCS

    (NP) 114 372 46,700 132,443 107,423 151,370 9,00011,000 MVE

    (NP) 114 433 57,681 162,478 131,876 185,611 11,000

    Note 1:

    Note 2:

    Note 4:

    Note 5:

    Tare Wt

    lbs

    Note 3: For 3,000 11,000 gallon vessel standard vaporization is 5,000 scfh.

    For 1,500-gallon vessel standard vaporization is 2,000 scfh.

    Taylor Wharton numbers are slightly different.

    This table is not for construction use.

    TUBE TRAILER VOLUME CAPACITIES

    GENERIC CRYOGENIC VESSEL INFORMATION

    For oxygen vessel pads an apron of 12' x 12' must be added.

    Tube

    Length

    Filled Wt

    O2 (lbs)

    Filled Wt

    N2 (lbs)

    Filled Wt

    Ar (lbs)

    Net Cap

    gallons

    For total volume in scf mulitiply gallons times 93.11 for N2, 115.1 for O2, and 112.5

    Tube

    O.D.

    Helium

    scf

    Height

    inches

    Oxygen

    scf

    Nitrogen

    scf

    Argon

    scf

    Hydrogen

    scf

    Capacities shown are trailers filled at 2,640 psig and 70 F.

    Size gallonsDia

    inches

    Number of

    Tubes on

    Trailer

  • 7/30/2019 Compressed Industrial Gases Hof Master

    52/97

    63,61451,438

    57,270

    74,486

    136,852

    --

    116,122149,149

    250/400/600 14' x 14' x 15" #4 @ 12" #6 @ 12"

    250/400/600 18' x 14' x 15" #4 @ 12" #7 @ 10"

    250/400/600 6' x 16' x 18" #4 @ 12" #7 @ 8"

    250/400/600 36' x 20' x 18" #4 @ 12" #8 @ 8"

    250/400/600 36' x 20' x 21" #4 @ 10" #8 @ 11"

    Pad Size

    Breathing Air

    scf

    for Ar.

    Bottom

    RebarTop RebarMAWP psi

  • 7/30/2019 Compressed Industrial Gases Hof Master

    53/97

    Art Montemayor High Pressure Compressed Gas Cylinders March 12, 2003

    Rev: 0

    inches cm lbs kg psi bars cu in liters

    20 Scf 3AA 2015 5.27 x 14 13.4 x 35.6 10.1 4.58 2,015 138.9 221 3.6

    40 Scf 3AA 2015 7 x 18 17.8 x 45.7 23 10.43 2,015 138.9 495 8.1

    55 Scf 3AA 2015 7 x 22.88 17.8 x 58.1 30 13.61 2,015 138.9 644 10.6

    80 Scf 3AA 2015 7 x 32.38 17.8 x 82.2 42 19.05 2,015 138.9 985 16.1

    110 Scf 3AA 2015 7 x 43 17.8 x 109.2 55 24.94 2,015 138.9 1,345 22

    125 Scf 3AA 2265 7 x 43 17.8 x 109.2 55 24.94 2,265 156.2 1,345 22

    150 Scf 3AA 2015 7 x 46.25 17.8 x 117.5 59 26.76 2,015 138.9 1,660 27.2

    220 Scf 3AA 2015 8.99 x 51 22.8 x 129.5 114 51.7 2,015 138.9 2,640 43.3

    250 Scf 3AA 2265 9.04 x 51 23 x 129.5 115 52.2 2,265 156.2 2,640 43.3

    300 Scf 3AA 2400 9.27 x 55 23.5 x 139.7 135 61.2 2,400 165.5 2,980 48.4

    400 Scf 3AA 2400 10.51 x 56 26.7 x 142.2 190 86.2 2,400 165.5 3,960 64.9

    3600 psi 3AA 3600 9.31 x 51 23.6 x 129.5 180 81.6 3,600 248.2 2,640 43.3

    6000 psi 3AA 6000 9.28 x 51 23.5 x 129.5 267 121.1 6,000 413.7 2,285 37.4

    inches cm lbs kg psi bars cu in liters

    AL-150 3AL2015 8 x 48 20 x 122 50 23 65 30 1.04 30

    AL-88 3AL2216 7 x 33 18 x 84 32 15 35 16 0.56 16

    AL-33 3AL2216 7 x 16 18 x 41 16 7.3 13 5.9 0.21 5.9

    Water Capacity

    (volume)

    HIGH PRESSURE STEEL CYLINDER SPECIFICATIONS

    Water Capacity

    (volume)DOT Spec

    Model(Cap., Scf)

    Dimensions Nominal Weight Service Pressure

    Dimensions Nominal Weight Service Pressure

    HIGH PRESSURE ALUMINUM CYLINDER SPECIFICATIONS

    Model DOT Spec

    Page 53 of 97FileName: 142168304.xls.ms_office

    WorkSheet: HP Cylinders

  • 7/30/2019 Compressed Industrial Gases Hof Master

    54/97

    DENSITIES AT VARIOUS SATURATION PRESSURES

    Liquid

    Densitylbs/ft

    3

    Gas

    Densityscf/gal

    Liquid

    Densitylbs/ft

    3

    Gas

    Densityscf/gal

    Liquid

    Densitylbs/ft

    3

    Gas Density

    scf/gal

    0 71.17 115.10 50.44 93.11 87.51 112.50

    5 70.42 113.72 49.62 91.55 85.77 110.89

    10 69.80 112.73 49.00 90.40 84.77 109.60

    25 67.86 109.59 47.50 87.63 82.46 106.61

    50 65.55 105.86 45.69 84.18 79.90 103.31

    75 63.76 102.97 44.19 81.53 77.90 100.71

    100 62.43 100.82 42.88 79.12 76.15 98.45

    150 59.80 96.57 40.70 75.08 73.16 94.59

    200 57.62 93.05 38.76 71.51 70.28 90.87250 55.60 89.79 36.83 67.95 67.79 87.65

    Oxygen Nitrogen ArgonSaturation

    Pressure

    psig

  • 7/30/2019 Compressed Industrial Gases Hof Master

    55/97

    Nitrogen purging is easily adapted to any process installation. Different methods are used depending on

    the type and shape of the equipment to be purged and on the location of the purging inlets and outlets

    .

    This method is used for equipment with simple cross sections - such as piplines. The volume of nitrogen

    required corresponds to the physical volume of the pipe. In many piplines, a rubber scraping piston, or "pig,"

    is introduced and propelled through the pipe by the nitrogen pressure to clean the line.

    The nitrogen volume required to purge equipment with a simple cross section is determined using the

    Where: V = Total nitrogen volume required (scf) = 340

    Vo = Water volume of pipeline (cf) = 1,000.0

    P = Nitrogen absolute pressure in the pipeline during purging (psia) = 5.0(Fill in the data in the YELLOW cells and get the answer in BOLD RED.)

    This method is used when conditions do not permit a sweeping action of nitrogen through the vessel. The

    vessel is repeatedly pressurized and mixed with nitrogen gas and then the mixture is exhausted. The total

    volume of nitrogen depends on the number of pressurizing purges required to reduce the contaminant to an

    acceptable level and can be determined by using this formula:

    Where: V = Total nitrogen volume required (scf)

    Vo = Water volume of vessel or tank (cf)P = Absolute pressure after pressurization with nitrogen (psia)

    Pa = Absolute pressure after exhaust (psia)

    n = Number of purges = C log Co/(log Pa log P)

    Co = Initial content of gas to be removed

    C = Final content of gas to be removed

    This method is used for equipment cross sections such as distillation columns, kilns, reactors, etc.

    Nitrogen partially mixes with the gas to be purged out, and then the mixture exits through an outlet located

    as far as possible from the inlet. The nitrogen required to reduce a contaminate to a desired level can befound using the graph below and the total volume of nitrogen needed can be computed from the following

    formula:

    2. Pressurization Purging

    V = 1.2nVoP/Pa

    3. Dilution Purging

    1. Displacement Purging

    HOW TO PURGE WITH NITROGEN

    following formula:

    V = VoP/14.7

  • 7/30/2019 Compressed Industrial Gases Hof Master

    56/97

    Where: V = Total nitrogen volume required (scf)

    Vo = Water volume of equipment (cf)

    n = Number of nitrogen volumes required

    V = nVo

  • 7/30/2019 Compressed Industrial Gases Hof Master

    57/97

    1 Displacement

    2 Dilution Pf = Pi = 14.7

    3 Dilution Pi = 14.7; Pf = 29.4

    4 Pressure Purge Pi = 19.7; Pf = 24.7

    5 Pressure Purge Pi = 19.7; Pf = 34.7

    Where: Pf = pressure final

    Pi = pressure initial

    Purging Technique:

    PURGING EFFICIENCY (C/Co) AS A FUNCTION OF NITROGEN VOLUME

    (TANK VOLUMES) FOR VARIOUS PURGING TECHNIQUES

  • 7/30/2019 Compressed Industrial Gases Hof Master

    58/97

    Lean Rich

    Acetaldehyde 70 36 365 4.1 55 12

    Acetone 133 0 1,000 2.6 12.8 11.6

    Acetylene 119 -- 571 2.5 81 --

    Alkyl chloride 113 -25 737 3.3 11.1 12.6

    Ammonia 28 -- 1,204 16 25 15

    Benzene 176 12 1,044 1.4* 7.1 11.2

    1-3 Butadiene 24 -- 804 2 11.5 10.4

    Butane 32 -- 761 1.9 8.5 12.1

    1-Butene 20 -- 723 1.6 9.3 11.4

    2-Butene 34 -- 615 1.8 9.7 11.7

    n- Butyl formate 225 64 612 1.7 8 12.4

    Carbon disulfide 115 22 212 1.3 44 5.4

    Carbon monoxide 310 -- 1,128 12.5 74 5.6Cyclopropane 27.4 -- 928 2.4 10.4 11.7

    11 Dischloroethylene 99 5 856 5.6 11.4 10

    Dimethyl 22 butane 121 54 797 1.2 7 12.1

    Ethane 127 -- 959 3 12.5 11

    Ethanol 173 55 793 4.3 19 10.6

    Ethyl bromide 101 -- 952 6.7 11.3 14

    Ethyl chloride 54 58 966 3.8 15.4 13

    Ethylene 152 -- 842 3.1 32 10

    Ethylene oxide 56.4 < 0 804 3 100 --

    Ethyl ether 94 -49 356 1.9 48 --

    Ethyl formate 130 -4 851 2.7 13.5 10.4

    Gasoline (octane 60) -45 536 1 7.6 11.6 --Gasoline (octane 92) 734 1.5 8 11.6 -- --

    Gasoline (octane 100) -36 853 1 7.4 11.6 --

    Heptane 209 25 433 1.2 6 11.6

    Hexane 156.2 7 453 1.2 7.5 11.9

    Hydrogen 422 -- 1,085 4 75 5

    Isobutane 11 -- 864 1.8 8.4 12

    Isopropyl Ether 154.4 -18 830 1.4 21 10

    Methane -263 -- 999 5.3 14 12.1

    Methanol 151 52 867 7.3 35 9.7

    Methyl acetate 135 14 935 3.1 16 10.9

    Methylamine 19.4 -- 806 4.9 20.7 10.7

    Methyl butene 87.4 < 20 -- -- -- 11.4

    Methyl chloride -11 -- 1,170 10.7 17.4 15

    Methyl formate 89.6 -2 853 5.9 20 10.1

    Pentane 97 < -40 588 1.5 7.8 12.1

    Propane -44 -- 871 2.2 10 11.4

    Propylene -54.4 -- 770 2.4 10.3 11.5ny c or e --

    Flammability Limit

    in Air Volume % (4)

    Max.

    Oxygen

    Content

    Vol. % (5)

    FLAMMABILITY CHARACTERISTICS OF COMMON GASES AND LIQUIDS

    Product

    Boiling

    Point F

    (1)

    Flash

    Point F

    (2)

    Auto-

    Ignition F

    (3)

  • 7/30/2019 Compressed Industrial Gases Hof Master

    59/97

    1. Boiling point temperature at standard atmospheric pressure.

    2. Flash point minimum temperature at which the vapors of a combustible liquid will be ignited by

    a flame in certain experimental conditions.

    3. Auto-ignition temperature: minimum temperature at which a product will spontaneously oxidize in air

    4. Flammability limit: volume percentage of combustible gas in air such that below the lean limit or

    above the rich limit, the mixture is non-flammable.

    5. Maximum oxygen content: oxygen percentage in a combustible gas mixture below which the mixturis non-flammable at 212 F.

  • 7/30/2019 Compressed Industrial Gases Hof Master

    60/97

  • 7/30/2019 Compressed Industrial Gases Hof Master

    61/97

    .

  • 7/30/2019 Compressed Industrial Gases Hof Master

    62/97

    *Flash gas as a percentage of liquid after depressurization to atmospheric pressure.

    Flash gas as a percentage of saturated pressurized liquid.

    Example: Estimate how much vapor is released when 1000 gallons of liquid nitrogen at 80 psig is with

    from a vessel into a transport trailer at atmospheric pressure.

    Solution: From the chart above, using the lower line with the storage tank pressure of 80 psig, the va

    released is 18% of the liquid discharged.

    FLASH FROM SATURATED PRESSURIZED LIQUIDS

  • 7/30/2019 Compressed Industrial Gases Hof Master

    63/97

    drawn

    or

  • 7/30/2019 Compressed Industrial Gases Hof Master

    64/97

    240#

    Satt

    ABB GT 35 16,900 10,670 180.3 22,800 7,880 179.7 60.5

    ABB GT 10 24,630 9,970 245.6 35,500 6,755 239.8 108.0

    ABB GT 8C 52,800 9,920 523.8 77,700 6,640 515.9 234.6

    ABB GT11N 83,800 10,370 869 125,400 6,825 855.9 397.2

    ABB GT 13D 97,700 10,564 1032.1 147,100 6,920 1,017.9 466.6

    ABB GT 11N2 109,300 9,977 1090.5 163.8 6,550 1,072.9 490.0

    General Electric LM1600PA 13,425 9,560 128.3 18,700 6,870 128.5 53.1

    General Electric LM2500 22,800 9,273 211.4 30,900 6,850 211.7 92.2

    General Electric PG5371PA 26,300 11,990 315.3 38,700 8,146 315.3 143.4

    General Electric LM2500+ 27,040 9,330 252.3 38,480 6,637 255.4 100.7

    General Electric LM5000 34,450 9,180 316.3 44,600 7,094 316.4 259.9General Electric LM6000 36,970 8,795 325.2 53,000 6,620 350.9 132.9

    General Electric PG6541B 38,340 10,880 417.1 59,200 7,020 415.6 193.2

    General Electric PG6101FA 70,150 9,980 700.1 108,400 6,440 698.1 330.7

    General Electric PG7111EA 83,500 10,480 875.1 128,700 6,800 875.2 399.8

    General Electric PG7161EC 116,000 9,890 1147.2 177,800 6,460 1,148.6 517.2

    General Electric PG9171E 123,400 10,100 1246.3 188,400 6,610 1,245.3 707.8

    Pratt & Whitney FT 8 25,420 8,950 227.5 32,280 7,010 226.3 85.0

    Pratt & Whitney FT 8 Twin 51,100 8,905 455 65,310 6,930 452.6 190.0

    Siemens V64.3A 70,000 9,270 648.9 101,000 6,230 629.2 296.8

    Siemens V84.2 106,180 10,120 1074.5 151,000 6,625 1,000.4 512.3

    Siemens V84.3A 170,000 8,980 1526.6 254,000 6,890 1,750.1 602.9

    Solar Mars 100S 10,695 10,505 112.4 28,700 7,750 222.4 48.9Westinghouse 251B12 47,680 10,670 508.7 69,800 7,230 504.7 233.0

    Westinghouse Trent 48,690 8,570 417.3 61,788 6,778 418.8 145.0

    Westinghouse 501D5A 119,200 9,910 1181.3 168,070 7,024 1,180.5 530.0

    Westinghouse 501F 162,410 9,660 1568.9 236,200 6,425 1,517.6 750.0

    1.

    2.

    3.

    4.

    5.

    1.

    2.

    Combined CycleBase Ste

    KPPH

    GAS TURBINE CAPACITY TABLE

    kwOutput

    Heat Ratebtu/kw

    Simple Cycle

    Model

    Notes:

    MMbtuInput

    kwOutput

    Heat Ratebtu/kw

    ManufacturerMmbtuInput

    substantially alter the kw output.

    Base steam is at GTG base rate, open cycle, open cycle, with no supplemental firing for two points only for illu

    Remarks:

    This information is for preliminary estimating only. Accurate estimations require a detailed set of site condition

    Simple cycle output is at ISO conditions with no HRSG and with DLN burner technology where available.

    Combined cycle kw output is using most favorable steram generation conditions for equipment. ISO condition

    Some machines can use water or steam injection for NO x control or power augmentation. Such injection may

    Most any combination of pressure and temperature is available.

    50 Hz configuration is available with no appreciable change in KW output.

    This turbine can be steam or water injected for additional power output and/or NOx control.

  • 7/30/2019 Compressed Industrial Gases Hof Master

    65/97

    3.

    4.

    50 Hertz only.

    This turbine burns heavy fuel oil only.

  • 7/30/2019 Compressed Industrial Gases Hof Master

    66/97

    Remarks

    42.0 1, 2

    98.0 1, 2

    200.0 1, 2

    335.9 2

    390.0 3, 4

    430.0

    44.3

    79.0 1, 2

    119.6 1, 2

    84.6 1

    238.0 1, 2109.5 1

    168.8 1, 2

    293.9

    343.8 1, 2

    450.0 1, 2

    621.7 2, 3

    67.0 1

    134.0 1

    260.0 1

    442.9

    589.1 1, 2

    40.8 2200.0 2

    110.0 1

    450.0 2

    660.0 2

    am,

    600#600F

    stration.

    s.

    and inlet and outlet

  • 7/30/2019 Compressed Industrial Gases Hof Master

    67/97

  • 7/30/2019 Compressed Industrial Gases Hof Master

    68/97

    VAPOR RELEASE LIQUID HYDROGEN CHART

  • 7/30/2019 Compressed Industrial Gases Hof Master

    69/97

    60F and

    14.7 psia

    60F and

    100 psig1/4" 3/8" 1/2" 3/4" 1" 1-1/4" 1-1/2" 2"

    1 0.128 0.018

    2 0.256 0.285 0.064 0.02

    3 0.384 0.605 0.133 0.042

    4 0.153 1.04 0.226 0.071

    5 0.641 1.58 0.343 0.106 0.027

    6 0.769 2.23 0.408 0.148 0.037

    8 1.025 3.89 0.848 0.255 0.062 0.019

    10 1.282 5.96 1.26 0.356 0.094 0.029

    15 1.922 13 2.73 0.334 0.201 0.062

    20 2.563 22.8 4.76 1.43 0.345 0.102 0.026

    25 3.204 7.34 2.21 0.526 0.156 0.039 0.019

    30 3.845 10.5 3.15 0.748 0.219 0.055 0.026

    35 4.486 14.2 4.24 1 0.293 0.073 0.035

    40 5.126 18.4 5.49 1.3 0.379 0.095 0.044

    45 5.767 23.1 6.9 1.62 0.474 0.116 0.55550 6.408 8.49 1.99 0.578 0.149 0.067 0.019

    60 7.69 2-1/2" 12.2 2.85 0.819 0.2 0.094 0.027

    70 8.971 16.5 3.83 1.1 0.27 0.126 0.036

    80 10.25 0.019 21.4 4.96 1.43 0.35 0.162 0.04690 11.53 0.023 27 6.25 1.8 0.437 0.203 0.058

    100 12.82 0.029 3" 7.69 2.21 0.534 0.247 0.07

    125 16.02 0.044 11.9 3.39 0.825 0.38 0.107

    150 19.22 0.062 0.021 17 4.87 1.17 0.537 0.151

    175 22.43 0.083 0.028 23.1 6.6 1.58 0.727 0.205

    200 25.63 0.107 0.036 30 8.54 2.05 0.937 0.264

    225 28.84 0.134 0.045 10.8 2.59 1.19 0.331

    250 32.04 0.164 0.055 13.3 3.18 1.45 0.404

    275 35.24 0.191 0.666 16 3.83 1.75 0.484

    300 38.45 0.232 0.078 19 4.65 2.07 0.573325 41.65 0.27 0.09 22.3 5.32 2.42 0.673

    350 44.87 0.313 0.104 25.8 6.17 2.8 0.776

    375 48.06 0.119 29.6 7.05 3.2 0.887

    400 51.26 0.134 33.6 8.02 3.64 1

    425 54.47 0.151 37.9 9.01 4.09 1.13

    450 57.67 0.168 10.2 4.59 1.26

    475 60.88 0.187 11.3 5.09 1.4

    500 64.08 0.206 12.5 5.61 1.55

    550 70.49 0.248 15.1 6.79 1.87

    600 76.9 0.293 18 8.04 2.21

    650 83.3 0.342 21.1 9.43 2.6

    700 89.71 0.395 24.3 10.9 3750 96.12 0.451 27.9 12.6 3.44

    800 102.5 0.513 31.8 14.2 3.9

    850 108.9 0.576 35.9 16 4.4

    900 115.3 0.642 40.2 18 4.91

    950 121.8 0.715 20 5.47

    1,000 128.2 0.788 22.1 6.06

    1,100 141 0.948 26.7 7.29

    1200 153.8 1.13 31.8 8.63

    PRESSURE DROP IN PIPE (AIR)

    Cfm of Compressed air

    at:

    Air pressure drop in pounds per square inch per 100 feet of Schedule 40 pipe for air

    at 100 psig and 60F

  • 7/30/2019 Compressed Industrial Gases Hof Master

    70/97

    1,300 166.6 1.32 37.3 10.1

    1,400 179.4 1.52 11.8

    1,500 192.2 1.74 13.5

    1,600 205.1 1.97 15.3

    1,800 203.7 2.5 19.3

    2,000 256.3 3.06 23.9

  • 7/30/2019 Compressed Industrial Gases Hof Master

    71/97

    MINIMUM SAFE DISTANCE FOR LIQUID HYDROGEN

    39.633 ,500 350115,000 15,00175,000

    1

    (a)

    -1

    Sprinklered

    building/stru

    cture or

    unsprinklere

    d

    building/stru

    cture having

    noncombusti

    ble contents. 5(1,3)

    5(1,3)

    5(1,3)

    -2

    Unsprinklere

    d

    building/stru

    cture with

    combustible

    contents.

    Adjacent

    wall(s) with

    fire-

    resistancerating less

    than 3

    hours(2)

    25 50 75Adjacent

    wall(s) with

    fire-

    resistance

    rating of 3

    hours or

    greater(2)

    5 5 5

    (b)

    -1

    Sprinklered

    building/stru

    cture 50 50 50

    -2

    Unsprinklere

    d

    building/stru

    cture 50 75 100

    2

    Type of Exposure

    Building Structure

    Wall(s) adjacent to

    system constructed of

    noncombustible or

    system constructed of

    combustible materials

    Minimum Distance (ft) from Liquefied Hydrogen Systems to Exposures(4)

    Total Liquefied Hydrogen Storage

    (cap in gal)

    Wall openings

  • 7/30/2019 Compressed Industrial Gases Hof Master

    72/97

    (a) Openable 75 75 75

    (b)

    Unopenab

    le 25 50 50

    3 75 75 75

    4 50 75 100

    5 5 5 5

    6 50 75 75

    7 75 75 75

    8 50 75 100

    9 50 50 50

    10 75 75 75

    11 25 50 75

    12 5(3)

    5(3)

    5(3)

    1

    2

    3

    4

    Flammable gas storage (other than

    oxidizers (See NFPA 50B, 5-1.3)

    Combustible solids

    Open flames and welding

    ,

    conditioning or ventilating

    combustible liquids (above ground

    and vent or fill openings if belowground) (See NFPA 50B, 5-1.3)

    hydrogen containers

    Exclusive of windows and doors.

    of product shall be considered. The 5-ft distance in Nos. 1 and 12

    facilitates maintenance and enhances ventilation.

    protective structures have a minimum fire resistance rating of two

    hours interrupt the line of sight between uninsulated portions of the

    Places of public assembly

    Public ways, railroads and property

    Protective structures

    of a system shall have a fire resistance rating of at least

    1/2 hour.

  • 7/30/2019 Compressed Industrial Gases Hof Master

    73/97

    MINIMUM SAFE DISTANCE FOR LIQUID PETROLEUM GAS

    Safe distance from:

    0 to 500 gal w.c. 501 to 1000 gal w.c.

    Central A/C compressor (any electrical service) 10 feet 15 feet

    Perimeter of the building 10 feet 15 feet

    Nearest line of adjoining property 10 feet * 15 feet

    MINIMUM SAFE DISTANCE FOR LIQUID OXYGEN

    Type of Exposure

    Building structures

    *a) 'Wood frame construction

    *b) 'Other than wood frame construction

    c) 'Confining areas

    Wall openings

    All classes of flammable and combustible liquid storage

    a) 'Above-ground storage

    0 to 1000 gallons

    >1000 gallons

    Distance may be

    reduced to 15 ft forClass III b combustible

    liquids

    b) Below ground storage

    Horizontal: Distance

    between tanks

    ASME Containers

    * LP-gas container(s) of 500 gallon aggregate capacity or less in vapor service is exempt from adjoining

    property line requirements.

    Note: Proximity of power lines cannot reach vessel if broken.

    Minimum Distance (ft) from Bulk Oxygen Systems to Exposures

  • 7/30/2019 Compressed Industrial Gases Hof Master

    74/97

    Distance between O2

    and tank openings

    Flammable gases above ground

    a) Liquified hydrogen

    b) Other liquified gases

    0 to 1000 gallons

    >1000 gallons

    c)

    Non-liquified or

    dissolved gases

    0 to 25,000 scf

    >25,000 scf

    Rapid burning solid materials (paper, excelsior,etc.)

    Slow burning solid materials (coal, heavy timber)

    Place of public assembly

    Piping outlets and vent/fill connections from areas occupied by non-ambulatory patients

    Public sidewalks or parked vehicles

    Nearest property line

    *These distances do not apply where protective structures having a minimum fire resistance of two hours

    interrupt the line-of-sight between uninsulated portions of the bulk oxygen storage installation and the

    exposure. In such cases, the minimum distance required should be that required for system maintenance.

    For SI units: 1 ft = 0.305M; 1 gallon = 3.785 L

  • 7/30/2019 Compressed Industrial Gases Hof Master

    75/97

    Total

    Line of

    Sight

    Distance

    50 ft

    1 ft

    75ft/35ft

    10 ft

    25 ft

    50 ft

    15 ft

  • 7/30/2019 Compressed Industrial Gases Hof Master

    76/97

    25 ft

    75 ft

    25 ft

    50 ft

    25 ft

    50 ft

    50 ft

    25 ft

    50 ft

    50 ft

    10 ft

    5 ft

  • 7/30/2019 Compressed Industrial Gases Hof Master

    77/97

    Btu(IT)/min Btu (IT)/hr kg cal/hr ton (US)

    comm

    ton (Brit)

    commfrigorie/hr

    1 ton (US ) comm 200 12,000 3,025.9 1 0.8965 3,025.9

    1 ton (British) comm 223.08 13,385 3,375.2 1.1154 1 3,375.2

    1 frigorie/hr 0.06609 3.9657 1 0.0003305 0.0002963 1

    RefrigerantRefrigerant

    Temp F

    Pressure

    psia

    Latent Heat

    Btu/Lb

    Sensible

    Heat Btu/Lb

    Total Heat

    Btu/Lb

    Ice (H2O) (melting) 32 14.7 144 8 152Liquid CO2 (flashed to snow) 109 14.7 113.0* 29.8 149.8

    Dry Ice (subliming) 109 14.7 246.3 29.8 276.1

    PSIGRefrigerant

    Temp F

    Pressure

    psia

    Latent Heat

    Btu/Lb

    Sensible

    Heat Btu/Lb

    Total Heat

    Btu/Lb

    0 at 1 atm 320.4 14.7 85.4 90.8 176.2

    15 at 30 psia 308.6 30 81.5 88.9 170.4

    26 at 40 psia 303.2 40 79.8 87.9 167.7

    36 at 50 psia 298.7 50 77.7 87.4 165.1

    56 at 70 psia 291.3 70 74.7 86.4 161.5

    REFRIGERATION CONVERSION FACTORS

    CO2 snow is flashed from liquid CO2 at 314.7 psia storage pressure. Snow yield is 46% by weight.

    Liquid carbon dioxide is stored at zero degrees and maintained at zero degrees by a mechanical

    refrigerator. This permits storage of liquid carbon dioxide without loss.

    Refrigeration

    REFRIGERATION VALUES TO +40 F FOR EXPENDABLE REFRIGERANTS

    during a continuous 24-hour period.

    Water Ice (H2O) has a liquid residue while the other refrigerants are converted to the gas phase.

    Multiply units in left column by proper factor below:

    The Btu here is the International Steam Table Btu (IT). However, 1 frigorie = 1 kg cal (NOT IT)

    One ton of refrigeration is the heat required to melt one ton (2,000 lbs) of ice at 32 F to water at 32 F

    NITROGEN REFRIGERATION CONVERSION FACTORS

    *This latent heat value