122
Examensarbete vid Institutionen för geovetenskaper Degree Project at the Department of Earth Sciences ISSN 1650-6553 Nr 370 Compositional Systematics of Sphalerites from Western Bergslagen, Sweden Huvud- och spårelementsystematik i zinkblände från västra Bergslagen, Sverige Aristeidis Kritikos INSTITUTIONEN FÖR GEOVETENSKAPER DEPARTMENT OF EARTH SCIENCES

Compositional Systematics of Sphalerites from Western Bergslagen…uu.diva-portal.org/smash/get/diva2:953522/FULLTEXT01.pdf · The Bergslagen ore province in central Sweden has a

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Compositional Systematics of Sphalerites from Western Bergslagen…uu.diva-portal.org/smash/get/diva2:953522/FULLTEXT01.pdf · The Bergslagen ore province in central Sweden has a

Examensarbete vid Institutionen för geovetenskaper Degree Project at the Department of Earth Sciences

ISSN 1650-6553 Nr 370

Compositional Systematics of Sphalerites from Western

Bergslagen, Sweden Huvud- och spårelementsystematik i

zinkblände från västra Bergslagen, Sverige

Aristeidis Kritikos

INSTITUTIONEN FÖR GEOVETENSKAPER

D E P A R T M E N T O F E A R T H S C I E N C E S

Page 2: Compositional Systematics of Sphalerites from Western Bergslagen…uu.diva-portal.org/smash/get/diva2:953522/FULLTEXT01.pdf · The Bergslagen ore province in central Sweden has a
Page 3: Compositional Systematics of Sphalerites from Western Bergslagen…uu.diva-portal.org/smash/get/diva2:953522/FULLTEXT01.pdf · The Bergslagen ore province in central Sweden has a

Examensarbete vid Institutionen för geovetenskaper Degree Project at the Department of Earth Sciences

ISSN 1650-6553 Nr 370

Compositional Systematics of Sphalerites from Western

Bergslagen, Sweden Huvud- och spårelementsystematik i

zinkblände från västra Bergslagen, Sverige

Aristeidis Kritikos

Page 4: Compositional Systematics of Sphalerites from Western Bergslagen…uu.diva-portal.org/smash/get/diva2:953522/FULLTEXT01.pdf · The Bergslagen ore province in central Sweden has a

ISSN 1650-6553 Copyright © Aristeidis Kritikos Published at Department of Earth Sciences, Uppsala University (www.geo.uu.se), Uppsala, 2016

Page 5: Compositional Systematics of Sphalerites from Western Bergslagen…uu.diva-portal.org/smash/get/diva2:953522/FULLTEXT01.pdf · The Bergslagen ore province in central Sweden has a

Abstract Compositional Systematics of Sphalerites from Western Bergslagen, Sweden Aristeidis Kritikos Sphalerite is, apart from being the main global source of zinc (Zn), also one of the main source for the critical elements indium (In), gallium (Ga) and germanium (Ge), which can be extracted as by-products during Zn mining. In the westernmost part of the Palaeoproterozoic Bergslagen ore province, Sweden, In-anomalies have been reported from sulphide mineralizations. These In-anomalies can be attributed to either pre-ore formation crustal processes manifested by the local (Svecofennian, c. 1.87-1.89 Ga) syn-volcanic mineralisations, or to epigenetic metasomatic events primarily related to younger (c. 1.80-1.79 Ga) granitoids. In this study, sphalerite samples from 19 different mineralisations in westernmost Bergslagen were examined by both electron probe microanalyzer (EPMA) and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), in order to firstly, measure trace element concentrations, and especially those of the critical element In, Ga and Ge, and secondly, to apply this information to gain new information on the trace element inventory and incorporation mechanisms of sphalerite. The dataset also allows for testing the ore-formation process models, not least in cases of elevated In-contents. Utilization of these two analytical methods also provided the opportunity for a direct spot-to-spot comparison of their performance in detecting trace element concentrations in sphalerite. The results verify the In-enrichment of the area, whereas Ga and Ge only follow crustal abundancies. The concentrations of the other trace elements vary significantly, even at a sample scale. The compositional variation shows several patterns between certain elements, suggesting that their incorporation in the sphalerite lattice was allowed via substitution mechanisms (e.g. In3++(Cu+,Ag+)↔2Zn2+; Fe2++Cd2++Mn2+↔3Zn2+; Cu++Mn2++In3+↔3Zn2+). In contrast, some measured high Cd, Ag and Pb concentrations are attributed to nano (or micro) inclusions of primarily galena. Other elements such as As, Sn, Sb, Se, Au, Tl, Ni, Te and Mo yielded, in almost all the samples, concentrations below the detection limit for both analytical methods. Discrimination methods based on trace element concentrations and distribution of the In-enriched mineralizations suggest that the In-anomalies are most likely related to Svecofennian volcanic to subvolcanic hydrothermal processes, forming mineralisations that were later modified during the Svecokarelian orogeny. Finally, the direct comparison of EPMA results to that of LA-ICP-MS, showed the significantly better performance of the latter method in detecting trace-level concentrations, provided that a proper calibration procedure has been followed. Keywords: Western Bergslagen, sphalerite, critical elements, trace elements, substitution mechanisms, EPMA, LA-ICP-MS. Degree Project E1 in Earth Science, 1GV025, 30 credits Supervisors: Karin Högdahl and Erik Jonsson Department of Earth Sciences, Uppsala University, Villavägen 16, SE-752 36 Uppsala (www.geo.uu.se) ISSN 1650-6553, Examensarbete vid Institutionen för geovetenskaper, No. 370, 2016 The whole document is available at www.diva-portal.org

Page 6: Compositional Systematics of Sphalerites from Western Bergslagen…uu.diva-portal.org/smash/get/diva2:953522/FULLTEXT01.pdf · The Bergslagen ore province in central Sweden has a

Populärvetenskaplig sammanfattning Huvud-och spårelementsystematik i zinkblände från västra Bergslagen, Sverige Aristeidis Kritikos Sulfidmineralet zinkblände är, förutom att vara den huvudsakliga globala källan för zink (Zn), också ett av de viktigaste värdmineralen för de kritiska metallerna indium (In), gallium (Ga) och germanium (Ge), vilka kan utvinnas som viktiga biprodukter vid zinkbrytning. I den västligaste delen av malmprovinsen Bergslagen i Mellansverige har In-anomalier rapporterats från flera mineraliseringar. Dessa lokala In-anrikningar kan tillskrivas antingen processer verksamma innan och under den vulkaniska aktiviteten, eller senare geologiska händelser relaterade till yngre graniter. I denna studie har zinkblände från 19 olika mineraliseringar i västra Bergslagen karakteriserats med två olika system för mikrokemisk analys; elektronmikrosond (EPMA) och laserablativ induktivt kopplad plasma-masspektrometri (LA-ICP-MS). Detta har gjorts för att mäta spårelementhalter, och särskilt då för de kritiska metallerna In, Ga och Ge. Genom att använda dessa två metoder parallellt gavs också möjligheten till direkta jämförelser mellan dem vad gäller deras kapacitet för spårelementanalys av zinkblände. Resultaten verifierar att detta område är anomalt In-anrikat, medan halterna av Ga och Ge är låga och endast följer genomsnittshalterna för kontinental jordskorpa. Halterna av de övriga spårelementen varierar avsevärt, även på individuell provskala, och visar i flera fall systematiska mönster mellan vissa element. Dessa mönster tyder på att deras införlivande i zinkbländestrukturen gått via flera specifika utbytes-(substitutions-)mekanismer (t.ex. In3++ (Cu+, Ag+) ↔2Zn2+; Fe2+ + Cd2++ Mn2+ ↔3Zn2+, Cu++ Mn2++ In3+ ↔3Zn2+). Däremot kan förhöjda halter av Cd, Ag och Pd tillskrivas nano- (eller mikro-) inneslutningar av framförallt blyglans. Andra element, som As, Sn, Sb, Se, Au, TI, Ni, Te och Mo uppvisade halter under detektionsgränserna för båda analysmetoderna i nästan alla undersökta prov. Bildningsmässiga (genetiska) diskrimineringsmetoder baserade på spårelementhalter kombinerat med de geologiska och spatiella relationerna för de In-anrikade mineraliseringarna tyder på att de senare bildades genom svekofenniska vulkanisk-hydrotermala processer och därefter modifierats under svekokarelsk bergskedjebildning. Slutligen, i den direkta jämförelsen av EPMA gentemot LA-ICP-MS, visade den senare metoden signifikant bättre kapacitet för spårämnesanalys, förutsatt att ett korrekt kalibreringsprotokoll har följts. Nyckelord: Västra Bergslagen, zinkblände, kritiska metaller, spårelement, substitutionsmekanismer, EPMA, LA-ICP-MS. Examensarbete E1 i geovetenskap, 1GV025, 30 hp Handledare: Karin Högdahl och Erik Jonsson Institutionen för geovetenskaper, Uppsala universitet, Villavägen 16, 752 36 Uppsala (www.geo.uu.se) ISSN 1650-6553, Examensarbete vid Institutionen för geovetenskaper, Nr 370, 2016 Hela publikationen finns tillgänglig på www.diva-portal.org

Page 7: Compositional Systematics of Sphalerites from Western Bergslagen…uu.diva-portal.org/smash/get/diva2:953522/FULLTEXT01.pdf · The Bergslagen ore province in central Sweden has a

Table of Contents 1. Introduction and background ............................................................................................. 1

1.1 Critical elements for energy saving devices .................................................................................. 2

1.2 Sphalerite ...................................................................................................................................... 3

2. Geological setting of the Bergslagen ore province ............................................................ 5

2.1 Volcanic evolution ........................................................................................................................ 9

2.2 Metallogenesis of Bergslagen ..................................................................................................... 10

3. Methodology ....................................................................................................................... 11

3.1 Sample preparation ..................................................................................................................... 13

3.2 Reflected light microscopy ......................................................................................................... 13

3.3 Electron Microprobe Analysis .................................................................................................... 14

3.3.1 EPMA analytical setup ...................................................................................... 15

3.4 LA-ICP-MS ................................................................................................................................. 16

3.4.1 LA-ICP-MS analytical setup .............................................................................. 17

4. Studied mineralizations ..................................................................................................... 18

4.1 Långban ....................................................................................................................................... 20

4.2 Lahäll .......................................................................................................................................... 21

4.3 Myssfallet .................................................................................................................................... 22

4.4 Myssberget/Mysstjärnen ............................................................................................................. 23

4.5 Näset ........................................................................................................................................... 23

4.6 Getberget ..................................................................................................................................... 25

4.7 Skatviken ..................................................................................................................................... 26

4.8 Björkskogsnäs ............................................................................................................................. 27

4.9 Hasselhöjden ............................................................................................................................... 28

4.10 Silvhytte gruvor/Silvbergsfallet ................................................................................................ 29

4.11 Nordmark .................................................................................................................................. 30

4.12 Plåtgruvan ................................................................................................................................. 30

4.13 Hällefors .................................................................................................................................... 31

4.14 Gruvåsen ................................................................................................................................... 32

4.15 Borns Koppargruva ................................................................................................................... 34

4.16 Månhöjden ................................................................................................................................ 35

4.17 Limtjärn ..................................................................................................................................... 35

4.18 Alkvetterns Silvergruvor ........................................................................................................... 36

4.19 Gåsborn ..................................................................................................................................... 37

5. Results ................................................................................................................................. 38

5.1 EMPA analysis ............................................................................................................................ 38

5.2 LA-ICP-MS analysis ................................................................................................................... 41

Page 8: Compositional Systematics of Sphalerites from Western Bergslagen…uu.diva-portal.org/smash/get/diva2:953522/FULLTEXT01.pdf · The Bergslagen ore province in central Sweden has a

Table of Contents (continued) 5.3 Major and trace elements ............................................................................................................ 43

5.3.1 Iron ..................................................................................................................... 43

5.3.2 Cadmium ............................................................................................................ 44

5.3.3 Manganese ......................................................................................................... 45

5.3.4 Cobalt ................................................................................................................. 46

5.3.5 Copper ................................................................................................................ 47

5.3.6 Indium ................................................................................................................ 49

5.3.7 Germanium ........................................................................................................ 50

5.3.8 Gallium .............................................................................................................. 50

5.3.9 Silver .................................................................................................................. 50

5.3.10 Mercury ............................................................................................................ 51

5.3.11 Lead ................................................................................................................. 52

5.3.12 Bismuth ............................................................................................................ 53

5.3.13 Arsenic ............................................................................................................. 53

5.3.14 Selenium .......................................................................................................... 54

5.3.15 Tin .................................................................................................................... 54

5.3.16 Antimony ......................................................................................................... 54

5.3.17 Gold ................................................................................................................. 55

5.3.18 Thallium ........................................................................................................... 55

5.3.19 Nickel ............................................................................................................... 55

5.3.20 Molybdenum .................................................................................................... 55

5.3.21 Tellurium ......................................................................................................... 55

6. Discussion............................................................................................................................ 56

6.1 EMPA vs LA-ICP-MS analyses ................................................................................................. 56

6.1.1 The Pb-Bi problem ............................................................................................. 60

6.2 Substitution mechanisms and data trends ................................................................................... 62

6.3 Elemental patterns ....................................................................................................................... 66

6.3.1 Critical or ‘high-tech’ elements ......................................................................... 66

6.3.2 The other elements ............................................................................................. 69

6.4 Genetic considerations ................................................................................................................ 69

7. Conclusions ......................................................................................................................... 73

8. Acknowledgements ............................................................................................................ 75

9. References ........................................................................................................................... 76

Appendix A: EMPA results .................................................................................................. 85

Appendix B: LA-ICP-MS results ....................................................................................... 105

Appendix C: LA-ICP-MS data of the 1831.1815 sample……………………………......111

Page 9: Compositional Systematics of Sphalerites from Western Bergslagen…uu.diva-portal.org/smash/get/diva2:953522/FULLTEXT01.pdf · The Bergslagen ore province in central Sweden has a

1

1. Introduction and background

During the last decade there has been a rapid increase in the demand for many metals, not least due to

a growing global middle class such as represented by the BRICS countries. This, coupled with concerns

about climate change (e.g. through CO2 emissions) have generated extensive interest in new

technologies that are more energy-efficient and more environmentally friendly. Some elements are

critical components in modern hi-tech and energy saving applications like LCD’s and touchscreens,

solar cells, LED-lamps and in devices such as high-temperature thermometers. One of the most

important sources for some of these elements, including indium, are zinc ores (i.e. mainly sphalerite)

from which they are produced as important by-products (e.g. Moskalyk, 2003; Alfantazi & Moskalyk,

2003; Höll et al., 2007).

The Bergslagen ore province in central Sweden has a long mining tradition, going back at least to the

Middle Ages (Allen et al., 1996), and features more than 8500 mined and explored deposits (SGU

databases). Many of these are sphalerite-bearing base-metal deposits hosted by c. 1.9 Ga metavolcanic

rocks or their intercalated skarns. Sphalerite can host a wide range of minor and trace elements,

including the sought after elements In, Ga and Ge. Actual contents can vary depending on crystallization

temperature, metal source and type of mineralization, and it has been shown that the highest

concentrations of these elements are found in epithermal and skarn deposits (Cook et al., 2009).

Significant anomalies of the critical element In have previously been reported from western

Bergslagen, and the mineral roquesite (CuInS2) has been identified at Lindbom’s Prospect, the Långban

mines and Gåsborn (Burke & Kieft, 1980; Jonsson et al. 2013). Sphalerites from Lindbom’s Prospect

have been shown to contain up to 1.5 wt.% In (Jonsson et al., 2013), and up to 10 and 15 wt.%

respectively at Långban and Gåsborn (Burke & Kieft, 1980; Kieft & Damman, 1990). Additionally,

sphalerite with low but still elevated In concentrations (above c. 25 ppm) have been found in the

southern and western part of the region (the Marketorp, Zinkgruvan, Kaveltorp, Getön, Gruvåsen and

Björkskogsnäs deposits) (Sundblad & Ahl, 2008; Cook et al., 2009). The observation of anomalous In

concentrations in a few deposits in particularly westernmost Bergslagen suggests that this element may

be present in other similar mineralizations in that part of the province. The hypothesis is thus that this

area may harbor overall increased contents of In and associated metals, potentially due to either pre-ore

formation crustal processes, or through later, epigenetic metasomatic events. In order to test this, a suite

of sphalerite samples were chosen for detailed major and trace element analysis.

Thus the element concentrations of sphalerite samples from 19 mineralizations in westernmost

Bergslagen have been analyzed, with special focus on their potential content of these so-called high-

tech elements. The microchemical analyses were carried out using both electron probe microanalyser

(EPMA) and laser ablation inductively coupled plasma mass spectroscopy (LA-ICP-MS). In addition

Page 10: Compositional Systematics of Sphalerites from Western Bergslagen…uu.diva-portal.org/smash/get/diva2:953522/FULLTEXT01.pdf · The Bergslagen ore province in central Sweden has a

2

to geological considerations, the analytical results from EPMA are compared with results from LA-

ICP-MS and the suitability of the latter for trace element analysis in sphalerites evaluated. The generated

datasets have also been applied to test the viability of important known or potential substitution

mechanisms in sphalerite, and the application of trace element systematics for genetic discriminations.

1.1 Critical elements for energy saving devices

Several elements that were previously only known as oddities or ‘’chemical exotica’’ have been

increasingly utilized during the last decades, and now play an important role in many technological

applications. Some of these elements, however, are not easily available in quantities that can cover the

demand. This is due to their very low concentration, or that production is dominated by one or only a

few countries (European Commission, 2014). These elements are in part referred to as energy-critical

elements (APS Physics, 2011) or critical raw materials (European Commission, 2014), or even high-

tech elements. According to an official definition by the European Commission, (2014) critical raw

materials are those of high economic importance and high supply risk (Fig. 1), and presently include 20

different raw materials. The term ‘critical’ does not specifically reflect the geological conditions of their

occurrence, but is rather a subject to political, economic and technological conditions and therefore new

elements can be added to the list or be taken out, as these conditions change. The fact that the European

Commission is updating the list every third year shows how fluid the term ‘critical’ is when applied in

this context.

Gallium (Ga), germanium (Ge), and indium (In) are representative examples to assess the ‘rarity’ of

elements. Although their continental crustal concentrations are not particularly low compared to others

(19, 1.5 and 0.05 ppm for Ga, Ge and In, respectively, whereas Ag has a crustal abundance of around

0.05 ppm), however, efficient geological processes to enrich them in concentrations high enough to

form mineralizations or minerals in which they are an essential component are rare or nonexistent (e.g.

European Commission, 2014). Therefore, the main sources for these three critical elements are

primarily sphalerite for indium and germanium, and bauxite and sphalerite for gallium. In sphalerite

they only occur as trace components incorporated via substitution mechanisms, whereas in the residual

soil bauxite, gallium substitutes for aluminium (e.g. Johan, 1988; Carillo-Rosua et al., 2008; Butcher

and Brown, 2014).

Page 11: Compositional Systematics of Sphalerites from Western Bergslagen…uu.diva-portal.org/smash/get/diva2:953522/FULLTEXT01.pdf · The Bergslagen ore province in central Sweden has a

3

Figure 1. The 20 most critical raw materials as of 2014, in terms of supply risk and economic importance (from European Commission, 2014). Abbreviations: Be=beryllium, Bo=borate, Co=cobalt, Cr=chromium, Fl=fluorspar, Ga=gallium, Ge=germanium, Gr=graphite, HREE=heavy rare earth elements, In=indium, LREE=light rare earth elements, Mg=magnesium, Mt=magnesite, Nb=niobium, PGM=platinum-group metals, Sb=antimony, W=tungsten.

1.2 Sphalerite

Sphalerite is the main zinc mineral in almost all sulphide-dominated base metal deposits, including

sedimentary exhalative (SEDEX), volcanic-hosted massive sulphides (VHMS), epithermal vein

systems, skarns, and Mississippi Valley Type (MVT) deposits (Lockington et al., 2014). While its ideal

chemical formula is ZnS, most sphalerites occur as (Zn,Fe)S due to the high efficiency of Fe

incorporation in the sphalerite crystal lattice through Fe2+ ↔ Zn2+ substitution.

Sphalerite was given its current name by Ernst Friedrich Glocker (1846). Until then, it was known as

blende (Agricola, 1546), or was mistaken for galena, especially dark-colored varieties, but obviously

never yielded any lead. This is the reason why the mineral was named sphalerite after the Greek word

’sfaleros’ for misleading. Sphalerite exhibits a wide range of colors; from colourless, via honey-yellow

and ruby-red, to dark brown or even black. These variations often reflect the Fe content, but also Mn

and Cd can influence the color (Togari, 1978). Its translucency (or, conversely, opacity) ranges from

completely translucent to nearly opaque.

Page 12: Compositional Systematics of Sphalerites from Western Bergslagen…uu.diva-portal.org/smash/get/diva2:953522/FULLTEXT01.pdf · The Bergslagen ore province in central Sweden has a

4

Table 1. Key properties of sphalerite based on data from Anthony et al. (1990).

Sphalerite has a face-centered cubic (FCC) lattice with tetrahedrally coordinated Zn and S ions

(Fig. 2). It is trimorphous with the hexagonal wurtzite and the very rare trigonal matraite (Table 1).

Experimental studies on the stability conditions of ZnS polymorphs by Scott & Barnes (1972) have

shown that the sphalerite-wurtzite transformation is a function of sulfur fugacity (fS2) and temperature

at a given pressure, and that sphalerite is Zn-deficient (mole ratio of S/ (Zn+Fe) > 1) while wurtzite is

S-deficient (S/ (Zn+Fe) ˂ 1).

Sphalerite can incorporate a large number of different elements in its structure via substitution

mechanisms that are mainly governed by similarities in size and charge of substituting ions and Zn2+,

but also by the ease that these ions can be tetrahydrally coordinated (Goldschmidt, 1954). Johan (1988)

suggested the following general substitution mechanisms in sphalerite:

• M+ + M3+ ↔ 2Zn2+

• 2M+ + M2+ + M4+ ↔ 4Zn2+

• (x+2y)M+ + yM2+ + xM3+ + yM4+ ↔ (4-4y-2x)Zn2+

Where M+ = Ag, Cu; M2+ = Cu, Fe, Cd, Hg, Zn; M3+ = In, Ga, Fe, Tl; M4+=Ge, Sn, Mo, W; x and y are

atomic proportions of M3+ and M4+ respectively, substituting for Zn2+. Complete substitution of Cd2+ or

Hg2+ for Zn2+, and Se2-or Te2- for S2- can yield different (end member) minerals that belong to the

sphalerite group: hawleyite (ideally CdS), stilleite (ideally ZnSe), metacinnabar (ideally HgS),

tiemannite (ideally HgSe) and coloradoite (ideally HgTe) (Cook et al., 2009; Lockington et al., 2014).

Page 13: Compositional Systematics of Sphalerites from Western Bergslagen…uu.diva-portal.org/smash/get/diva2:953522/FULLTEXT01.pdf · The Bergslagen ore province in central Sweden has a

5

The minerals that co-exist with sphalerite in a given mineral assemblage can also influence the

incorporation of certain elements within the sphalerite (George et al., 2015). For example, Ag+ is

preferentially incorporated into galena over co-existing sphalerite, while in recrystallized Cu-rich

deposits chalcopyrite will become the primary host of Sn3+, Sn2+ and Ga3+ (Cook & Ciobanu, 2015).

Figure 2. a) Zn-S tetrahedron, b) section of FCC crystal lattice of sphalerite, and c) the hexagonal wurtzite (modified after Weber, 2001)

2. Geological setting of the Bergslagen ore province

The Fennoscandian shield consists of various rock units that range from the Archaean in the northeast,

to Palaeoproterozoic in the central parts and Neooproterozoic in the west (e.g. Lahtinen et al., 2009)

and includes Norway, Sweden, Finland and the north-westernmost part of Russia (Fig. 3). To the west

the Shield is bounded by the Phanerozoic Caledonian orogen and to the east and south it is covered by

Phanerozoic platform sedimentary rocks. The Palaeoproterozoic central part of the shield formed during

the Svecokarelian orogeny, between c. 2.1 and 1.8 Ga, and is proposed to have evolved through several

orogenic stages (e.g. Lahtinen et al., 2009).

Page 14: Compositional Systematics of Sphalerites from Western Bergslagen…uu.diva-portal.org/smash/get/diva2:953522/FULLTEXT01.pdf · The Bergslagen ore province in central Sweden has a

6

Figure 3. The major geological domains in the Fennoscandian Shield with the Bergslagen region outlined with a black rectangle (from Stephens et al., 2009, modified after Koistinen et al., 2001).

The Bergslagen province is located in the southern part of the Svecokarelian orogen and was formed

between c. 1.9 and 1.8 Ga. To the west, Bergslagen is succeeded by the 1.85-1.65 Ga Transscandinavian

Igneous belt (Högdahl et al., 2004). In part, some of the westernmost units are also overprinted by the

1.0-0.9 Ga Sveconorwegian orogeny. Bergslagen is dominated by Palaeoproterozoic rocks, but younger

intrusive rocks and minor Neoproterozoic to Lower Palaeozoic sedimentary rocks are also present

(Allen et al., 1996, Stephens et al., 2009). The Palaeoproterozoic Svecofennian meta-supracrustal units

consist mainly of 1.91-1.87 Ga felsic metavolcanic rocks that are in parts interbedded with marbles,

clastic metasedimentary rocks, as well as metamorphosed mafic extrusive rocks (Stephens et al., 2009

and references therein).

Page 15: Compositional Systematics of Sphalerites from Western Bergslagen…uu.diva-portal.org/smash/get/diva2:953522/FULLTEXT01.pdf · The Bergslagen ore province in central Sweden has a

7

Figure 4. Simplified bedrock geological map of the Bergslagen ore province and near surroundings. The thick black line represents the suggested eastern extension of the Sveconorwegian orogen. From Stephens et al. (2009).

The felsic metavolcanic rocks are particularly abundant in the northwestern and western to

southwestern parts of the province (Fig. 4) and consist mainly of fine to finely medium-grained rhyolitic

ash-siltstones (Allen et al., 1996), and dacitic volcanic to sub-volcanic rocks (Stephens et al., 2009).

The term leptite was previously used to describe the more coarse-grained of these felsic metavolcanic

rocks, whereas the term hälleflinta denoted the very fine-grained types (Geijer & Magnusson, 1944;

Oen et al., 1982). The metasedimentary rocks are most abundant in the southeastern part of Bergslagen.

They occur stratigraphically both under and over the metavolcanic rocks and comprise turbiditic

metagraywackes and metaargillites, respectively, and are often represented by migmatites in the more

Page 16: Compositional Systematics of Sphalerites from Western Bergslagen…uu.diva-portal.org/smash/get/diva2:953522/FULLTEXT01.pdf · The Bergslagen ore province in central Sweden has a

8

high-grade areas. More well-sorted metasedimentary rocks (e.g. metaarkoses and quartzites) are less

common (e.g. Stephens et al., 2009). Marbles, both calcitic and dolomitic occur interbedded with the

metavolcanic rocks, mainly within the upper part of the stratigraphy (e.g. Stephens et al., 2009).

The supracrustal rocks are intruded by numerous intrusions of different generations. The oldest

generation range from tonalite to granite with limited intermediate to mafic intrusions and were

emplaced between 1.90-1.87 Ga, i.e. essentially synchronous with the volcanic activity. They are

abundant in the northern, central and eastern part of the Bergslagen region (Fig. 4) and may be referred

to as GDG rocks after the ‘granitoid-dioritoid-gabbroid’ rock suite (in the terminology of Stephens et

al., 2009). These early-orogenic rocks, together with the metasupracrustal units, have been variably

affected by the deformation and metamorphism associated with the Svecokarelian orogeny (e.g.

Hermansson et al., 2008).

Regional deformation occurred during multiple phases, reflecting a polyphase tectonic scenario with

extensional and compressional periods (Hermansson et al., 2008; Beunk & Kuipers, 2012). At least two

ductile deformation phases have been suggested during the D2 and D4 compressional deformation

episodes forming the F2 and F4 folding systems, respectively (Stephens et al., 2009; Beunk & Kuipers,

2012). The region is structurally dominated by the youngest fold generation (F4) that exhibit mainly

tight to isoclinal geometry and axial surfaces striking E-W to NE-SW (Stephens et al., 2009; Beunk &

Kuipers, 2012). The older fold generation (F2) is locally observed as upright to overturned refolded

folds (Beunk & Kuipers, 2012).

In addition to Svecokarelian deformation, the western part of the Bergslagen region has been

overprinted by the Sveconorwegian orogeny, which is expressed by mainly brittle structures with

increasingly penetrative and ductile character towards the west (Stephens et al., 2009). Formation of

ductile high-strain zones striking NE-SW or N-S, related to this overprint is conspicuous in this area

(Stephens et al., 2009). The northern boundary of Bergslagen coincides with the E-W-striking Gävle-

Rättvik deformation zone, a c. 30 km wide oblique slip deformation zone that displays either dextral or

sinistral strike slip components (Högdahl et al., 2009), formed during a roughly N-S shortening

(Högdahl et al., 2009; Beunk & Kuipers, 2012 and references therein). The timing for the deformation

episodes are inferred to at 1.87-1.86 Ga for D2 and 1.83-1.82 Ga for D4 (Hermansson et al., 2008;

Beunk & Kuipers, 2012).

In Bergslagen regional metamorphism during the Svecokarelian orogeny reached greenschist to

upper amphibolite facies conditions. In general, four metamorphic domains have been recognized

(Stephens et al., 2009). The central domain comprises mainly low pressure amphibolite and upper

greenschist facies rocks (500-700 oC and 0.2-0.6 GPa), (Stephens et al., 2009). To the south and north,

the metamorphic grade is higher, mostly upper amphibolite facies and locally in granulite facies towards

the contact to the TIB (Andersson, 1997 ; Stephens et al., 2009). In the western part, greenschist facies

conditions prevail (Allen et al., 1996; Stephens et al., 2009). Andersson et al. (2006) suggested two

metamorphic events, an older that peaks synchronous with D2 deformation around 1.87-1.86 Ga,

Page 17: Compositional Systematics of Sphalerites from Western Bergslagen…uu.diva-portal.org/smash/get/diva2:953522/FULLTEXT01.pdf · The Bergslagen ore province in central Sweden has a

9

followed by second metamorphic pulse at around 1.8 Ga that is more prominent in the southern part of

the region.

The youngest Svecokarelian rocks in the Bergslagen region are granites and associated pegmatites

that occur scattered throughout the district and are described as the GP (granite-pegmatite) suite

(Stephens at al., 2009). They represent late to post-orogenic, c. 1.85-1.75 Ga intrusions, emplaced

during the waning stage of the Svecokarelian orogeny. To the south and west of Bergslagen there are

intrusions belonging to the 1.85-1.65 Ga Transscandinavian Igneous Belt (TIB) that strictly is not a part

of Bergslagen but rather delimits this region in these directions. The TIB extends from southern Sweden

and continues north-northwest-wards below the Caledonides to the north-western coast of Norway

(Högdahl et al., 2004). The belt consists of various types of igneous rocks, both metavolcanic and

plutonic, ranging from felsic to intermediate and mafic composition (Högdahl et al., 2004). The TIB is

included in the GSDG (granitoid-syenitoid-dioritoid-gabbroid) suite of Stephens et al. (2009) that also

embraces older intrusions (1.88-1.87 Ga and 1.87-1.84 Ga) in the eastern and northern part of

Bergslagen.

2.1 Volcanic evolution

The volcanic succession in several areas in Bergslagen, especially within the western part, shows a

distinctive stratigraphic sequence of coarse-grained, poorly stratified volcanic units, overlain by finer-

grained, more stratified volcanic rocks with abundant limestone interbeds and mineralizations, in turn

overlain by argillite-turbidite sediments. This succession reflects a first order volcano-tectonic evolution

according to Allen et al. (1996), who suggested that Bergslagen was formed in an extensional back-arc

tectonic setting, inboard an active continental margin. The depositional environment has been divided

in two separate stages; an initial stage of intense volcanism and crustal extension, followed by waning

volcanism and thermal subsidence (Allen et al., 1996).

During the early intensive stage a more than 8 km thick pile of mostly relatively coarse-grained,

poorly stratified, rhyolitic rocks were deposited during a time span of about 15 m.y. The marine

depositional depth fluctuated from above to below the wave base, indicating that continuous subsidence

was competing with intense volcanic output and the subsequent crustal doming, as well as with

sedimentation (Allen et al., 1996). The intensive stage was followed by a period of waning volcanism

and regional subsidence when fine grained, stratified rhyolitic rocks and associated limestone interbeds

were formed. The deposition of argillitic turbidites that overlie the volcanic succession is related to

regional, post-volcanic subsidence. The character of the volcanic rocks reflect proximal, medial and

distal facies related to volcanic centra that were scattered throughout the Bergslagen district (Allen et

al., 1996).

Page 18: Compositional Systematics of Sphalerites from Western Bergslagen…uu.diva-portal.org/smash/get/diva2:953522/FULLTEXT01.pdf · The Bergslagen ore province in central Sweden has a

10

Prior to ductile deformation and metamorphism, the volcanic rocks were affected to variable extend

by sodic, potassic and magnesian alteration (e.g. Lundström, 1995; Stephens et al., 2009). The alkali

alteration mainly caused readjustments of feldspar compositions while magnesium alteration resulted

in the replacement of feldspars by phyllosilicates and locally amphiboles. A striking feature of the

metavolcanic rocks in the Bergslagen region is that potassium alteration is present mostly in the upper

part of the stratigraphic column while sodium and magnesium alteration is more prominent in the lower

part. This feature was previously believed to be related to stratigraphy (Lagerblad and Gorbatschev,

1985), but is now rather regarded as a result of the relative position in relation to hydrothermal

convection cells (e.g. Jonsson, 2004 and references therein).

2.2 Metallogenesis of Bergslagen

The Bergslagen region has a long mining history and has been continuously mined for at least 1000

years (Allen et al., 1996). Possibly copper and iron mine operation could have started already around

500 AD (Åkerman, 1994). Recent compilations of SGU databases show that there are at least 8500

mines and prospects in this region. Some significant metal deposits that are still in operation or have

been in the near past and include the Cu-(Zn-Pb-Au) deposit at Falun, closed in 1992 (e.g. Sundblad,

1994), the Fe-oxide deposit at Dannemora, closed in 2015 (e.g. Dahlin et al., 2012), the apatite Fe-oxide

deposit at Grängesberg, closed in 1989 (e.g. Jonsson et al., 2010), and the still active Zn-Pb-Cu-Ag-Au

sulphide mine at Garpenberg (e.g. Jansson, 2011), the Zn-Pb-(Ag-Cu-Co), sulphide mine at Zinkgruvan

(e.g. Hedström et al., 1989) and the Lovisagruvan (Zn-Pb-Ag) sulphide mine (e.g. Stephens et al., 2009

and references therein).

In general, the main metallic deposits in Bergslagen can be grouped into six different types (Allen et

al., 1996; Stephens et al., 2009 and references therein). 1) Mn-rich and Mn-poor, Fe-oxide skarn

deposits (e.g. Dannemora); 2) banded iron formations (BIF) and quartz-rich Fe-oxide deposits (e.g.

Striberg); 3) apatite Fe-oxide deposits (e.g. Grängesberg); 4) stratiform Mn-oxides that are locally

associated with Fe-oxides and Mn and Fe-rich skarns (e.g. Långban); 5) W-oxide skarns (e.g.

Yxsjöberg), and 6) Zn-Pb-Ag-(Cu-Au) sulphide deposits (e.g. Sala, Garpenberg) (Fig. 5). The latter

base metal deposits comprise two end-member types: a) stratiform, bedded, ash-siltstone hosted Zn-Pb-

Ag-rich and Fe and Cu-poor deposits (‘SAS type’), and b) stratabound, Zn-Pb-Ag-Cu-rich, volcanic

associated massive and disseminated sulphides associated with marble and skarn (‘SVALS type’)

(Allen et al., 1996).

Most of the metallic mineralization is hosted by felsic metavolcanic rocks and its associated marbles

and skarns (Allen et al., 1996; Stephens et al., 2009). Both sulphide and Mn-rich Fe-oxide

mineralizations and banded iron formations are associated with Mg and often also K-altered

metavolcanic rocks, while the Mn-poor Fe-oxide deposits are hosted by metavolcanic rocks particularly

Page 19: Compositional Systematics of Sphalerites from Western Bergslagen…uu.diva-portal.org/smash/get/diva2:953522/FULLTEXT01.pdf · The Bergslagen ore province in central Sweden has a

11

affected by Na alteration (Lagerblad & Gorbatschev, 1985; Allen et al., 1996). It has been suggested

that during the waning stage of volcanism, which is mainly represented by the K-altered metavolcanic

rocks, the conditions were more favorable for ore formation (e.g. Jansson, 2011). During this stage

localized, deep subaqueous environments became more extensive due to both regional and local

subsidence exceeding the sedimentation rate, and as these were locally associated with the formation of

stable hydrothermal systems, optimal settings for ore formation could be attained. In addition to this,

the regional extension created a hot upper crust, after several million years of intensive volcanism, with

a very high, near-surface geothermal gradient which is necessary for the establishing of extensive

hydrothermal systems (Allen et al., 1996).

The base metal sulphide and associated Fe-oxide mineralizations have been proposed to represent

either synvolcanic, seafloor to sub-seafloor exhalative (Vivallo & Rickard, 1990; Allen et al., 1996) or

synvolcanic, sub-seafloor replacement mineralizations, or a combination of these processes (Allen et

al., 1996; Jansson, 2011).

Over time the origin and genetic mechanisms of the metallic mineralizations in Bergslagen have been

debated extensively, not least whether, and to what extent, the different generations of intrusions have

contributed to the existing ores (e.g. Hellingwerf & Baker, 1985; Bergman et al., 1995). Particularly the

W-oxide skarn deposits have been debated and have been suggested that they were formed by contact

metasomatism related to hydrothermal fluids generated by some granitic intrusions and at least two W-

deposits (Yxsjöberg and Wigström) are related to the younger 1.80 Ga GP suite (Stephens et al., 2009

and references therein).

In the case of the Långban-type deposits, quite conclusive evidence has shown that the main

enrichment of elements such as B, Be, Bi, Mo, Sn and W cannot be attributed to younger intrusives, but

to the original, synvolcanic process (Jonsson & Billström, 2009, and references therein).

The younger granitic intrusive suites, including the TIB rocks have thus been suggested to be

responsible for ore mineralization in the western part of Bergslagen province (e.g. Moore, 1970), which

has later been argued against by Högdahl et al. (2007), Jonsson & Billström (2009) and Andersson

(2014), who concluded that most of the TIB intrusives most likely only caused variable thermal input

that remobilized pre-existing, syngenetic components.

3. Methodology In order to obtain detailed results on the major and trace element concentrations incorporated within

sphalerite 36 samples from 19 mineralizations from westernmost Bergslagen were studied. These

samples were firstly prepared as polished sections and examined in reflected light microscope and

selected samples were analyzed by electron probe microanalyzer (EPMA). Subsequent to this, yet a

selection was analyzed by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS).

Page 20: Compositional Systematics of Sphalerites from Western Bergslagen…uu.diva-portal.org/smash/get/diva2:953522/FULLTEXT01.pdf · The Bergslagen ore province in central Sweden has a

12

Figure 5. Distribution of the metallic deposits throughout Bergslagen. From Stephens et al. (2009). Significant ore deposits: F=Falun, D=Dannemora, G=Garpenberg, Z=Zinkgruvan, Gr=Grängesberg, St=Striberg, L=Långban, Y=Yxsjöberg and S=Sala.

Page 21: Compositional Systematics of Sphalerites from Western Bergslagen…uu.diva-portal.org/smash/get/diva2:953522/FULLTEXT01.pdf · The Bergslagen ore province in central Sweden has a

13

3.1 Sample preparation

The majority of the samples (n=29), had been prepared as polished sections before the initiation of this

project, while an additional seven samples were prepared during this study. Sample preparation

included sawing the hand specimen in smaller parts that fit the 25 mm diameter sample mold. Epoxy

resin was added until solidification and hardening (after c. 48 hours), and was then followed by the

grinding-polishing procedure (Lundh & Rosen, 2011) with the use of silicon carbide (SiC) powder and

diamond spray of successively finer size (down to 0.25 μm). Finally, the prepared polished sections

were documented in reflected light microscope producing maps of the surface of each sample (Fig. 6)

for navigation during the microchemical analyses (EMPA and LA-ICP-MS) as well as for making notes

and highlighting features during the reflected light examination.

3.2 Reflected light microscopy

Prior to microchemical analyses all samples were studied by reflected light (ore) microscopy, which is

the most informative and readily available technique for determining principal ore mineralogical

features, including textures and ore mineral assemblages. The relative proportions of identified mineral

phases, detailed textural observations and inter-mineral relations have been documented and the

sphalerites that were to be analysed were chosen and marked on sample maps (Fig. 6). Descriptions of

fundamental as well as more advanced ore microscopy and its applications are given by Gribble & Hall

(1992) and Craig & Vaughan (1994), respectively.

Figure 6. Examples of sample maps that were used during ore microscopy and served as navigational aids for the microchemical analyses. Red lines highlight occurrence of sphalerite.

Page 22: Compositional Systematics of Sphalerites from Western Bergslagen…uu.diva-portal.org/smash/get/diva2:953522/FULLTEXT01.pdf · The Bergslagen ore province in central Sweden has a

14

3.3 Electron Microprobe Analysis

The ore microscopic study was followed by electron microprobe analysis (EMPA) in a selection of 30

samples (out of 36 in total), that covered all 19 localities.

EMPA is an in situ-analytical technique used to determine the chemical composition of samples,

primarily minerals, metals, glasses and other solids by analyzing the generated X-rays from the sample

when interacted with a beam of electrons (Reed, 2005). The characteristic lines of the X-ray spectra

reveal the elements that are present in the sample volume whereas the intensity of the lines can

determine the concentration of the elements quantitatively when compared with known X-ray spectra

of element standards.

The principle behind an electron microscope to generate images or chemical information is that a

beam of electrons is produced in an electron gun by heating a filament until the heat is enough to

overcome the work function of the material and the electrons can escape from the material. The electron

beam follows a vertical path through an electron column, and with the aid of electromagnetic lenses the

beam is focused and directed towards the specimen (Reed, 2005). Once it hits the sample, interactions

between the beam electrons and the sample produce, at first, backscattered and secondary electrons due

to high-angle deflection and electron to electron repulsion respectively, which are subsequently ejected

from the sample. The signal of both backscattered electrons (BSE) and secondary electrons (SE) is used

to produce high quality imaging of the tested area (BSE and SE images, respectively) (Reed, 2005).

When the electron beam hits the sample it produces internal transitions of electrons within the cell of

the atom of any given element present. These transitions are accompanied by X-ray emissions that are

characteristic of each of the elements. Once X-rays are generated in the sample, they are selected using

an analytical crystal(s) with specific lattice spacing(s). The geometry of the X-ray generating sample

and the analytical crystal is such that they maintain a constant take-off angle (Fig. 7). The wavelength

of the X-rays reflected into the detector may be varied by changing the position of the analyzing crystal

relative to the sample i.e. the X-ray source crystal distance is a linear function of the wavelength.

Consequently, X-rays from only one element at a time can be measured on the spectrometer and the

position of a given analytical crystal must be changed in order to adjust to a wavelength characteristic

of another element (Reed, 2005).

X-rays of specific wavelengths from the analytical crystal are passed on to the X-ray detector. The

sample, crystal, and detector must lie on the so-called Rowland circle and remain on it for all

wavelengths of interest in order to focus X-rays efficiently. Because the sample and take-off angle of

the X-rays are fixed, the analytical crystal and detector must both move to remain on the Rowland circle.

Detectors used in wavelength dispersive spectrometry (WDS) are most commonly gas proportional

counter types, in which incoming X-rays enter the detector through a collimator (slit) and a thin window.

Page 23: Compositional Systematics of Sphalerites from Western Bergslagen…uu.diva-portal.org/smash/get/diva2:953522/FULLTEXT01.pdf · The Bergslagen ore province in central Sweden has a

15

They are absorbed by atoms of the counter gas, and then a photoelectron is ejected by each atom

absorbing an X-ray (Reed, 2005).

Standard materials of known elemental proportions are then used for X-ray signal comparison (Reed,

2005). WDS analysis provide very precise and accurate quantitative analysis for elements with atomic

numbers higher than 5 (B). For most instruments the elements H, He, Li, Be and B (with atomic numbers

1, 2, 3, 4 and 5 respectively) cannot be normally detected in this technique but the EPMA at UU can

analyze both Be and B. In addition to the atomic number limitation, WDS analysis cannot distinguish

among the valence states of the elements (e.g. between Fe2+ and Fe3+).

Figure 7. Configuration of sample, analytical crystal and detector on the Rowland circle within the WDS spectrometer (modified from Henry & Goodge, 2015).

3.3.1 EPMA analytical setup

Prior to EMPA the samples were carbon-coated in order to prevent charging of the non-conductive

minerals, which was done by means of a carbon sputter. The analyses were performed using an electron

beam voltage of 20 kV and a current of 20 nA, count time was 20 sec and 2x10 sec for background.

The following standards were used for calibration (including the detection limits of each element): S

(22 ppm), Zn (sphalerite, 88 ppm), Fe (metallic, 52 ppm), Mn (pyrophanite, 86 ppm), Cd (metallic, 124

ppm), Cu (metallic, 154 ppm), Hg (HgS, 320 ppm), Ge (metallic, 300 ppm), Ga (AsGa, 202 ppm), In

(InP, 126 ppm), Sn (cassiterite, 110 ppm), Se (metallic, 540 ppm), Sb (Sb2S3, 126 ppm), Pb (galena, 400

ppm), Bi (metallic, 272 ppm), Ag (metallic, 130 ppm), Co (metallic, 120 ppm) , and As (AsGa, 130

ppm).

The elements were measured on the following peaks and spectrometers: S (Lα in PETH), Zn (Ka in

LIF), Fe (Kα in LIF), Mn (Kα in PETH), Cd (Lα in PETH), Hg (Mα in PETH), As (Lα in TAP), Cu

(Kα in LIF), Ni (Kα in LIF), Sb (Lα in PETH), Ag (Lα in PETH) and Pb (Mβ in PETH), Ge (Kα in

Page 24: Compositional Systematics of Sphalerites from Western Bergslagen…uu.diva-portal.org/smash/get/diva2:953522/FULLTEXT01.pdf · The Bergslagen ore province in central Sweden has a

16

LIF), Ga (Kα in LIF), In (Lα in PETH), Sn (Lα in PETH), Se (Lα in TAP), Bi (Mα in PETH) and Co

(Kα in LIF).

3.4 LA-ICP-MS

Since it was first commercialized in 1983 ICP-MS has become a widely-used, rapid multielement

technique, even if it displayed rather extensive complexities in its application compared to other similar

methods, as for example optical emission spectrometry (ICP-OES) (Thomas, 2001a). The basic

principle of the laser ablation method can be summarized as the formation of a very fine-particle aerosol

from the sample with use of an UV laser. The aerosol becomes ionized in the form of positively charged

atoms as it passes through an argon-gas plasma torch of very high temperature, and these ions, that

contain the elemental signature of the sample, are transported and analyzed in a mass spectrometer

equipped with specific detectors that transform the mass-charge ratios of the ions to a signal. The signal

is finally compared with calibration standards with known elemental concentration and transformed to

detailed and accurate quantification of the elements present in the sample.

For LA-ICP-MS analyses sample preparation is minor, which is one of several advantages that this

technique offers. Thick sections only need to be wiped off with an ethanol solution prior to entering the

instrument, in order to remove unwanted fine particles. The laser used is a pulsed beam of UV light that

ablates the material. Navigation of the laser beam along the sample holder and image on the samples is

done by an operating software (e.g. MassHunter 4.1, http://www.agilent.com/en-us/products/software-

informatics/atomic-spectroscopy-data-systems/icp-ms-masshunter-software). The beam source lies

within a holder that contains strong magnets. The laser beam diameter is adjustable between 20-80 μm

and is built to have uniform radial power in order to produce flat-bottomed ablation craters for more

accurate measurement. The ablated material aerosol enters the plasma torch (Fig. 8) where it is

transformed to positive charged ions (Thomas, 2001b). The torch consist of three concentric tubes one

inside the other where argon gas is flowing within the outer two tubes and the aerosol in the inner tube

(Thomas, 2001c). As the argon gas flows through the torch, it breaks down to argon atoms, argon ions

and electrons due to the high temperature that can reach up to 10000 oC, and what is known as an

inductively coupled plasma discharge is formed (Thomas, 2001d). When the aerosol is introduced into

the plasma it transforms directly into ions, due to the high temperature and energy of the plasma. This

causes electrons to leave the outer cell of the sample atoms and subsequently produce positively charged

ions that are directed into the mass spectrometer (Thomas, 2001e).

The mass spectrometer of the LA-ICP-MS set-up needs to have a high vacuum in order to operate

properly and the sample ions need to be focused before reaching the mass analyzer. Focusing is crucial

in order to obtain low background levels as well as low detection limits, and is obtained by a set of

special ion lenses (Fig. 8). The focused ions are directed to the mass analyzer where they are separated

Page 25: Compositional Systematics of Sphalerites from Western Bergslagen…uu.diva-portal.org/smash/get/diva2:953522/FULLTEXT01.pdf · The Bergslagen ore province in central Sweden has a

17

according to their mass/charge ratios with the aim to separate the ions of interest from possible

unwanted ions (e.g. matrix, argon and non-analyte) before they reach the detector (Thomas, 2001f). The

detector converts the ions into electrical pulses where the magnitude of these pulses correspond to the

number of analyte ions present in the sample. Trace element analyses can then be carried out by

comparing the ion signal with that of known reference materials that are used as calibration standards

(Thomas, 2002a; Thomas, 2002b).

Figure 8. Schematic representation of a LA-ICP-MS configuration. (Redrawn after Thomas, 2001b).

3.4.1 LA-ICP-MS analytical setup

A selection of 26 samples previously analyzed by EPMA was further selected for analysis by laser

ablation inductively coupled plasma-mass spectrometry (LA-ICP-MS) at the Department of Earth

Sciences, University of Gothenburg. The instruments used were a New Wave NWR-213 for the laser

ablation, and the ICP-MS instrument is a quadrupole-type Agilent 8800QQQ. The following elements

were analyzed (followed by the detection limit of each element): Mn 0.82 ppm, Fe 14 ppm, Co 0.07

ppm, Ni 0.7 ppm, Cu 0.11 ppm, Ga 0.11 ppm, Ge 0.23 ppm, As 1.97 ppm, Se 3.3 ppm, Mo 8.5 ppm,

Ag 0.05 ppm, Cd 0.4 ppm, In 0.007 ppm, Sn 3.66 ppm, Sb 1.14 ppm, Te 2.31 ppm, Au 0.02 ppm, Hg

0.14 ppm, Tl 0.52 ppm, Pb 0.05 ppm, and Bi 0.02 ppm.

The total count time at each spot was set at 60 seconds, including a 24 second background

measurement followed by 30 seconds of ablation. The spot size was set at 30 microns and the fluence

at 4.8 J/cm2. Multiple standard analyses were also run at the beginning and end of every 18-22 sample

analyses to correct for instrument drift. For best results, calibration was done using a combination of

the synthetic sulphide MASS-1 standard (Wilson et al., 2002) and of a natural sphalerite sample, which

was prepared to provide real matrix match. For this, a specimen from Plåtgruvan (1831.1815) which

yielded almost homogeneous ZnS EMPA result, was used. The elements S, Zn, Cd, Mn, Fe, Co and In

were calibrated using the natural sphalerite standard (1831.1815) while the MASS-1 standard was used

Page 26: Compositional Systematics of Sphalerites from Western Bergslagen…uu.diva-portal.org/smash/get/diva2:953522/FULLTEXT01.pdf · The Bergslagen ore province in central Sweden has a

18

for the remaining elements. As internal standard the Fe content obtained by EMPA analyses was used

for each sample. Finally, data reduction and signal filtering was conducted with the software Glitter

(Griffin et al., 2008).

4. Studied mineralizations In total, 36 sphalerite-bearing samples from 19 mineralizations in westernmost Bergslagen were

examined (Fig.9). Below, each locality is described briefly with respect to geology and mineralization.

In addition, ore mineralogical and textural observations made with optical (reflected light) microscopy

are also included.

Figure 9. Overview map of the study area in westernmost Bergslagen with major rock types noted as well as the localities of the examined samples: 1. Långban, 2. Lahäll, 3. Myssfallet, 4. Myssberget, 5. Näset, 6. Getberget, 7. Skatviken, 8. Björkskogsnäs, 9. Hasselhöjden, 10. Silvhytte gruva, 11. Nordmark, 12. Plåtgruvan, 13. Hällefors, 14. Gruvåsen, 15. Borns Koppargruva, 16. Månhöjden, 17. Limtjärn, 18. Alkvettern, 19. Gåsborn. Squares represent inset maps that are used later in this chapter (modified from Stephens et al., 2009).

Page 27: Compositional Systematics of Sphalerites from Western Bergslagen…uu.diva-portal.org/smash/get/diva2:953522/FULLTEXT01.pdf · The Bergslagen ore province in central Sweden has a

19

Table 2. List of samples, their locality and mineralogical assemblage. Abbreviations: asp=arsenopyrite, bo=bornite, bn=bournonite, cp=chalcopyrite, co=covellite, cb=cubanite, ga=galena, hm=hematite, sph=sphalerite, mgn=magnetite, mr=marcasite, py=pyrite, po=pyrrhotite, tet=tetrahedrite.

LAH.001.1 2 Lahäll ga, sph, po dolomitic marble and metavolcanic

rocks

45 9 LAH.001.2 2 Lahäll po, cp, sph 23 10 LAH.001.4 2 Lahäll ga, mgn, sph 6 - LAH.001.6 2 Lahäll sph, po, mgn, ga, hm 25 11 MyB.001.1 4 Myssberget ga, sph skarn 5 3 Myssf.B1.1 3 Myssfallet sph, po

skarn in marble

20 10 Myssf.B2.1 3 Myssfallet sph, ga, cp - - Myssf.B3.1 3 Myssfallet po, py, mr, sph 23 10 Myssf.B4.1 3 Myssfallet sph, po 30 - Getberget I 6 Getberget ga, sph

skarn in marble 60 10

Getberget (a) 6 Getberget ga, sph, po 70 9 Getberget (b) 6 Getberget ga, sph, mgn 11 5 Näset I 5 Näset po, cp, ga, sph

skarn in marble 26 10

Näset II 5 Näset ga, po, sph, cp 12 10 Näset III 5 Näset ga, po, cp, sph - - 1925.0621 1 Långban sph, mgn, ga

skarn in marble 31 -

EJ.BhZ.Ib 1 Långban cp, sph, bo, co 10 6 EJ.MH11.2a 16 Månhöjden sph, mgn, hm, cp, co,

b

marble 25 -

EJ.MH11.2b 16 Månhöjden sph, mgn, hm, cp, co, b

- - Gås IIa 19 Gåsborn cp, py, po, sph, mr

skarn in marble 14 7

Gås IIb 19 Gåsborn cp, py, po, sph, mr 3 - Gås NI And 19 Gåsborn cp, sph 13 9 57.4128 10 Silvhytte gruva sph, ga marble 23 10 57.4154 15 Borns

K / cp, sph, po, cb, bn skarn 38 19

1919.1470 (a) 11 Nordmark sph, cp skarn in marble

20 20 1919.1470 (b) 11 Nordmark sph, cp 70 14 2007.0304 11 Nordmark sph, po, cp 24 11 1831.1815 12 Plåtgruvan sph, cp skarn 22 33 2000.0189 7 Skatviken ga, sph, cp marble/skarn 25 10 66.0010 8 Björkskognäs sph, ga, tet, py, cp marble 22 10 940069 17 Limtjärn sph, ga skarn 33 11 2002.0015 9 Hasselhöjden sph

marble 22 15

2002.0019 9 Hasselhöjden ga, sph - - Gruvåsen 14 Gruvåsen po, cp, sph, cb skarn 80 8 1831.1033 18 Alkvettern sph metavolcanics 27 12 HÄL.01.1 13 Hällefors sph, ga, po, tet, py, asp skarn 35 10

Page 28: Compositional Systematics of Sphalerites from Western Bergslagen…uu.diva-portal.org/smash/get/diva2:953522/FULLTEXT01.pdf · The Bergslagen ore province in central Sweden has a

20

4.1 Långban

The Långban district is situated between the mining areas of Nordmark and Gåsborn, and around 20

km north-northeast of Filipstad (Fig. 9). Långban itself is one of the most mineralogically diverse

deposits in the world, and has been a classic destination for mineral collectors and professional

mineralogists since the 19th century (Holtstam & Langhof, 1999). This complex mineralization

comprises abundant Fe and Mn oxide ores, minor Pb-Zn-(Cu-Fe-As-Ag) sulphides, native metals, as

well as Mn-arsenates, arsenites, Pb-silicates and Pb-oxychlorides (Nysten et al., 1999). The immediate

area around the Långban mines is dominated by dolomitic marble and associated felsic metavolcanic

and metasedimentary rocks (Björk, 1986) (Fig. 10).

Figure 10. Simplified geological map of the Långban district, and nearby deposits, showing major rock types (from SGU datasets).

The main Långban mineralization (1 in Fig. 9 and Fig. 10) consists of iron- and manganese-oxides,

manganese silicates and smaller amounts of sulphides which are mostly found in veins. The iron-oxide

ores are dominated by hematite and magnetite, while the manganese ores are dominated by hausmannite

(Mn2+Mn3+2O4) and braunite (Mn2+Mn3+

6SiO12). Sulphide assemblages include bornite-chalcocite-

chalcopyrite-galena-pyrite-pyrrhotite-sphalerite (Jonsson, 2004; Jonsson & Billström, 2009).

Two samples from Långban were studied by reflected light microscopy. One sample (1925.0621)

consists of sphalerite intergrown with galena and associated iron oxides (magnetite) in fractures in a

silicate groundmass (Fig. 11a) and the other sample (EJ.BhZ.Ib) consists of a more massive sulphide

mineralization consisting mainly by chalcopyrite with lesser amounts of bornite and sphalerite and rare

covellite (Fig. 11b).

Page 29: Compositional Systematics of Sphalerites from Western Bergslagen…uu.diva-portal.org/smash/get/diva2:953522/FULLTEXT01.pdf · The Bergslagen ore province in central Sweden has a

21

Figure 11. Ore mineral assemblages from the Långban deposit showing a) a sphalerite-galena assemblage and the relation to Fe-oxides and silicates (in black) (1925.0621), and b) covellite replacing bornite with abundant chalcopyrite (EJ.BhZ.Ib). Abbreviations: bo=bornite, co=covellite, cp=chalcopyrite, ga=galena, mgn=magnetite, sph=sphalerite. Photomicrographs in reflected, plane polarized light.

4.2 Lahäll

Lahäll is a sulphide (-oxide) mineralization (2 in Fig. 9 and Fig. 10) located around 5 kilometers

northwest of the Långban mines. It is situated in a small marble body near the contact to the Filipstad

granite which is part of the TIB (Björk, 1986). Although mainly hosted by the dolomitic marble, some

local mineralization can be also found in altered K-rich felsic metavolcanic rocks nearby (Jonsson &

Billström, 2009). The Lahäll mineralization comprises both sulphide and oxide ore (Bergkvist &

Jonsson, 2004).

The sulphide mineralization was primarily mined for argentiferous galena-rich ore. Associated

sphalerite, pyrrhotite, chalcopyrite and arsenopyrite also occur. Iron oxides were also mined here at a

modest scale (Magnusson, 1930; Jonsson & Billström, 2009). Ore microscopy of the samples from the

Lahäll deposit showed two main types of assemblages in terms of sphalerite content. One (LAH.001.1)

sphalerite-dominated type with minor pyrrhotite and galena (Fig. 12a) and a galena±pyrrhotite-

dominated type (LAH.001.2), with minor chalcopyrite and sphalerite (Fig. 12c). Fe-oxides are also

present, occasionally as magnetite associated with galena (LAH.001.4), as well as the more uncommon

hematite, with sphalerite (Fig. 12b, d). The textures indicate significant recrystallization as well as

remobilization of less refractory minerals, including most sulphides.

Page 30: Compositional Systematics of Sphalerites from Western Bergslagen…uu.diva-portal.org/smash/get/diva2:953522/FULLTEXT01.pdf · The Bergslagen ore province in central Sweden has a

22

Figure 12. Ore mineral assemblages from Lahäll, a) dominant sphalerite with lesser galena and altered pyrrhotite (LAH.001.1), b) 90o system of spinel exsolution in magnetite (LAH.001.4), c) dominant pyrrhotite with minor chalcopyrite and sphalerite (LAH.001.2) and d) rare hematite associated with sphalerite and pyrrhotite (LAH.001.6). Abbreviations: sph=sphalerite, ga=galena, po=pyrrhotite, mgn=magnetite, hm=hematite, sp=spinel. Photomicrographs in reflected, plane polarized light.

4.3 Myssfallet

Myssfallet (3 in Fig. 9 and Fig. 10) (also known as Fallgruvorna; Magnusson, 1930), is a sulphide

mineralization occurring together with Fe-oxide mines, located about 600 meters E of the Lahäll

deposit. It is hosted by the same skarn-bearing dolomitic marble body with associated felsic

metavolcanic rocks as Lahäll (Fig. 10). The ore assemblage consists mainly of galena and sphalerite,

immediately associated with pyrrhotite-bearing Fe oxide ores (Jonsson & Billström, 2009).

In total, four samples from this locality were studied. Optical microscopy of these samples showed

the rather massive character of the ore, consisting almost exclusively of sphalerite (estimated 80-98%),

while minor ore minerals include galena, chalcopyrite and pyrrhotite (Fig. 13a). The latter is always

present as variably altered grains and aggregates characteristically replaced by a mixture of pyrite,

marcasite and magnetite, sometimes resulting in a ‘bird’s eye’ type of texture (Fig. 13b).

Page 31: Compositional Systematics of Sphalerites from Western Bergslagen…uu.diva-portal.org/smash/get/diva2:953522/FULLTEXT01.pdf · The Bergslagen ore province in central Sweden has a

23

Figure 13. Ore mineral assemblages from Myssfallet a) mineral assemblage in Myssf.B2.1, b) ‘bird’s eye’ texture in pyrrhotite associated with sphalerite and silicates (Myssf.B3.1). Abbreviations: cp=chalcopyrite, ga=galena, mrc=marcasite, py=pyrite, sph=sphalerite. Black is silicate minerals. Photomicrographs in reflected, plane polarized light.

4.4 Myssberget/Mysstjärnen

The mineralizations at Myssberget (4 in Fig. 9 and Fig. 10) (the northernmost one also known as

Mysstjärnen), are located just south of the contact between the Svecofennian meta-supracrustal rocks

and the Filipstad granite, and has been divided into two types according to the character of

mineralization and host rocks (Jonsson, 2004; Jonsson & Billström, 2009). The first type is found in

scapolite-bearing amphibole-pyroxene skarn formed in marble, while the other type is hosted by locally

extensively altered K-rich felsic metavolcanic rocks (Jonsson & Billström, 2009). In general, the area

is dominated by quartz-rich to even quartzitic metasomatic rocks containing abundant gedritic

amphibole, cordierite and pyroxene (Magnusson, 1930), that have been more recently interpreted as

metamorphosed products of hydrothermally altered felsic metavolcanic rocks (Jonsson & Billström,

2009). Granitic dykes also occur and in places they intrude and cross cut the ore-bearing rocks (Jonsson

& Billström, 2009).

Ore microscopy showed that the studied sample (MyB.001.1) is dominated by galena, while

sphalerite occurs only in minor amounts (Fig. 14). The latter exhibits characteristic orange to red

internal reflections.

4.5 Näset

The Näset mines (5 in Fig. 9 and Fig. 10) (also known as Notnäset) are located south-east of the

Getberget deposit and represent a dolomite-hosted mineralization similar to the Getberget deposit

(Jonsson & Billström, 2009). The studied Näset samples (Näset I, II, III) exhibit more or less identical

assemblages. The dominant ore mineral is chalcopyrite with abundant pyrrhotite and lesser amounts of

Page 32: Compositional Systematics of Sphalerites from Western Bergslagen…uu.diva-portal.org/smash/get/diva2:953522/FULLTEXT01.pdf · The Bergslagen ore province in central Sweden has a

24

galena and sphalerite (Fig. 15a). Pyrrhotite occasionally exhibits extensive break-down and replacement

features (Fig. 15b), while the content of galena varies between the samples, from being a minor to a

major phase. The very fine-grained alteration of pyrrhotite inhibits precise identification of the

alteration minerals but they may consist of magnetite and pyrite ± marcasite. The overall textures are

indicative of extensive remobilization of the sulphide minerals.

Figure 14. Ore mineral assemblage from Myssberget (Mysstjärnen) (MyB.001.1) showing pre-dominant galena mineralization with minor sphalerite and silicates (black). Photomicrographs in reflected, plane polarized light.

Figure 15. Ore mineral assemblages from Näset, a) mineral assemblage in Näset I. The three black spots created during LA-ICP-MS analysis, and b) extensive pyrrhotite breakdown texture in Näset II. Abbreviations: cp=chalcopyrite, ga=galena, po=pyrrhotite, sph=sphalerite. Black is silicates. Photomicrographs in reflected, plane polarized light.

Page 33: Compositional Systematics of Sphalerites from Western Bergslagen…uu.diva-portal.org/smash/get/diva2:953522/FULLTEXT01.pdf · The Bergslagen ore province in central Sweden has a

25

4.6 Getberget

The Getberget mine (6 in Fig. 9 and Fig. 10) is a carbonate-hosted Pb-Zn-Ag mineralization located

about 2 km north of the Långban deposit. It is hosted in serpentine-rich skarn that occurs in a dolomitic

marble (Magnusson, 1930; Zakrzewski, 1982). This marble body is potentially a northerly extension of

the dolomite body that hosts the Långban deposit (Björk, 1986; Jonsson & Billström, 2009). In general,

the sulphide mineralization is mainly disseminated and in veins and fractures and only sparingly does

massive mineralization occur (Zakrzewski, 1982).

Zakrzewski (1984) presented detailed observations on the ore mineralogy of the Getberget mine, and

described the following main ore assemblage: galena-sphalerite-chalcopyrite-pyrrhotite, but also notes

a number of other minor or trace minerals, such as stannoidite, ilmenite, acanthite, arsenopyrite, bornite,

magnetite, cubanite, covellite, pyrite, molybdenite, tetrahedrite and digenite. For sphalerite, which is

the second most abundant ore mineral at Getberget, he distinguished one type featuring high Fe and low

Cd content and a second one of low Fe and high Cd. In addition, galena at Getberget is known to be

enriched in silver (Zakrzewski, 1982; Jonsson & Billström, 2009). Chalcopyrite is usually accompanied

by cubanite and is locally replaced by digenite and bornite.

Figure 16. Ore mineral assemblages from Getberget, a) coarse grained galena-sphalerite mineralization in Getberget (a), b) small occurrence of chalcopyrite within galena and sparse magnetite (Getberget b), c) vein-controlled galena in Getberget (b), d) contact between coarse and fine-grained mineralization in Getberget I. Black is silicates. Abbreviations: cp=chalcopyrite, ga=galena, mgn=magnetite, sph=sphalerite. Photomicrographs in reflected, plane polarized light.

Page 34: Compositional Systematics of Sphalerites from Western Bergslagen…uu.diva-portal.org/smash/get/diva2:953522/FULLTEXT01.pdf · The Bergslagen ore province in central Sweden has a

26

Reflected light microscopy of the Getberget samples (Fig. 16) showed abundant galena and coarse-

grained sphalerite (Getberget a and Getberget b). Locally an abrupt contact between coarse and fine

grained mineralization occurs (Getberget I). The samples are almost completely dominated by galena

and sphalerite and only rarely do chalcopyrite and magnetite occur (Getberget b). Overall, sulphide

mineralization here seems to be vein-controlled. Distinct fracture- or vein-hosted mineralization is

common, and even more massive sulphide assemblages exhibit textures indicating a late remobilization

(Fig. 16).

4.7 Skatviken

Skatviken is a minor mineralization (7 in Fig. 9 and Fig. 17) that occurs in a small marble body south-

west of Grythyttan. The marble host-rock is locally skarn-bearing and represents carbonate interbeds

that are found in the higher stratigraphic levels of the Svecofennian meta-supracrustal sequence (e.g.

Burke & Zakrzewski, 1990).

Figure 17. Simplified geological map showing the positions of Skatviken and nearby occurrences Björkskogsnäs and Hasselhöjden (based on SGU datasets).

The studied Skatviken sample (2000.0189) is galena-sphalerite-dominated, with minor chalcopyrite,

usually as inclusions in sphalerite without showing any distinct ‘’chalcopyrite disease’’ texture (Fig.

18a). Mineralization of two general types are present within the sample and are represented by coarse-

grained massive galena-sphalerite intergrowths, and as very fine-grained disseminated mineralization

of the same minerals in carbonates (Fig. 18b).

Page 35: Compositional Systematics of Sphalerites from Western Bergslagen…uu.diva-portal.org/smash/get/diva2:953522/FULLTEXT01.pdf · The Bergslagen ore province in central Sweden has a

27

Figure 18. Ore mineral assemblages of the Skatviken sample (2000.0189) showing a) a sphalerite-galena-chalcopyrite ore type and b), fine-grained, disseminated galena and sphalerite. Abbreviations: cp=chalcopyrite, ga=galena, sph=sphalerite. Photomicrographs in reflected, plane polarized light.

4.8 Björkskogsnäs

The Björkskogsnäs mineralization (8 in Fig. 9 and Fig. 17) lies c. 2 kilometers north-east of Skatviken

and a few kilometers south-west of the municipality of Grythyttan. Like Skatviken, it is a small, sub-

economic polymetallic mineralization hosted in a marble body within Svecofennian metavolcanic rocks

(Fig. 17). The sulphide mineralization consists of layers, nests and veinlets with a thickness of up to

several tens of centimeters, and is often surrounded by serpentine, tremolite and quartz (Burke &

Zakrzewski, 1990). The main ore minerals are sphalerite, galena and chalcopyrite, with lesser pyrrhotite

and pyrite. There is also a number of trace minerals that are found in small inclusions in sphalerite or

galena, such as bournonite, Ag-rich tetrahedrite, cubanite, native antimony, and boulangerite as well as

the rare mineral herzenbergite (SnS) (Burke & Zakrzewski, 1990). In Björkskogsnäs In-anomalies have

been identified (Sundblad & Ahl, 2008).

The studied Björkskogsnäs sample (66.0010) exhibits the following assemblage: sphalerite-galena-

tetrahedrite-chalcopyrite, with a predominance of sphalerite (~ 90%), while tetrahedrite occurs as

sparsely distributed large, euhedral to subhedral crystals scattered in the sample, and chalcopyrite as

rare fracture fillings (Fig. 19).

Page 36: Compositional Systematics of Sphalerites from Western Bergslagen…uu.diva-portal.org/smash/get/diva2:953522/FULLTEXT01.pdf · The Bergslagen ore province in central Sweden has a

28

Figure 19. Ore mineral assemblages from Björkskogsnäs (66.0010), a) large euhedral tetrahedrite crystals and minor galena within massive sphalerite, b) intense internal reflections in sphalerite. Abbreviations: ga=galena, sph=sphalerite, tet=tetrahedrite. Photomicrographs in reflected, (a), plane polarized light and (b), crossed-polarized light.

4.9 Hasselhöjden

The Hasselhöjden marble deposit (9 in Fig. 9 and Fig. 17) is situated c. 5 kilometers south of Grythyttan,

and in close vicinity of the Skatviken and Björkskognäs mineralizations (Fig. 17). The carbonate body

is about 1000m long and 200m wide at the surface. It is surrounded by a fine-grained felsic metavolcanic

rock to the west and by slate to the east. Moderate-scale excavations of the marble have resulted in two

quarries showing localized sulphide and oxide mineralization (Holtstam, 2002). The rock is

heterogeneous, and there are elements of both calcitic and dolomitic marble, with varying proportions

of impurities of e.g. quartz, hematite, and phyllosilicates (Holtstam, 2002 and references therein).

Samples from this locality (2002.0015 and 2002.0019) examined in reflected light, consist of

predominantly sphalerite, with galena as the only other ore mineral present (Fig. 20a).

Figure 20. Ore mineral assemblages from Hasselhöjden (2002.0015) a) sphalerite-galena mineralization and b) translucent sphalerite as seen in crossed polars. Abbreviations: ga=galena, sph=sphalerite. Photomicrographs in reflected, (a) plane polarized light, and (b), cross-polarized light.

Page 37: Compositional Systematics of Sphalerites from Western Bergslagen…uu.diva-portal.org/smash/get/diva2:953522/FULLTEXT01.pdf · The Bergslagen ore province in central Sweden has a

29

4.10 Silvhytte gruvor/Silvbergsfallet

The area around Nordmark hosts abundant iron-oxide mineralization as well as, minor manganese-

oxide, and sulphide mineralizations. One of the latter is Silvhytte gruvor (10 in Fig. 9 and Fig. 21) (also

known as Silverbergsfallet) situated about 4 kilometers northwest of Nordmark. It is hosted by a small

marble body of few hundreds of meters in length that occurs with felsic metavolcanic rocks, cut by

gabbroid and granitic TIB intrusions belonging to the Filipstad suite (Fig. 21).

Figure 21. Simplified geological map of the Nordmark area showing the studied ore deposits (based on SGU

datasets).

The studied sample (57.4128) exhibits a sphalerite-galena-rich assemblage featuring two main

textural types. Firstly, the two ore minerals, and especially sphalerite are found undeformed with few

fractures (Fig. 22a), whereas the other part of the sample contains sphalerite with abundant fractures,

surrounded by less strained galena. This texture most likely represents late-stage deformation and

remobilization of galena (Fig. 22b), being less refractive than the sphalerite.

Figure 22. Ore mineral assemblages from Silvhytte gruvor (57.4128), a) sphalerite-galena mineralization and b) deformed and fractured sphalerite grains surrounded by galena. Abbreviations: ga=galena, sph=sphalerite. Photomicrographs in reflected, plane polarized light.

Page 38: Compositional Systematics of Sphalerites from Western Bergslagen…uu.diva-portal.org/smash/get/diva2:953522/FULLTEXT01.pdf · The Bergslagen ore province in central Sweden has a

30

4.11 Nordmark

The Nordmark mine field (11 in Fig. 9 and Fig. 21) is located c. 10 kilometers north of Filipstad . The

field consists mainly of magnetite-bearing skarn mineralizations and was only mined for iron. It is

hosted in a small marble body, similar to the Skatviken deposit. Both occur within felsic metavolcanic

rocks and in immediate contact with younger intrusives (Filipstad and Hyttsjö granites; Björk, 1986;

Högdahl et al., 2007). The intrusion of these magmas most likely resulted in a second stage of skarn

formation and there are also indications of at least partial remobilization of pre-existing ore elements

(Högdahl et al., 2007).

Sphalerites from Nordmark occur as two paragenetic types. The first type is dark-brown and massive,

representing early-stage mineralization, and the second type only occurs in cross-cutting skarn fractures

formed at a later stage (E. Jonsson, pers. comm.). The studied Nordmark samples (1919.1470a,

1919.1470b and 2007.0304) otherwise exhibit similar features. They are almost completely dominated

by sphalerite with minor to trace chalcopyrite and pyrrhotite (Fig. 23a). A striking feature in the

sphalerite is the vivid orange-red internal reflections. (Fig. 23b).

Figure 23. Ore mineral assemblages from Nordmark (2007.0304), a) sphalerite-chalcopyrite-pyrrhotite mineralization and b) internal reflection in sphalerite under crossed polars. Abbreviations: cp=chalcopyrite, po=pyrrhotite, sph=sphalerite. Photomicrographs in reflected, (a) plane polarized light, and (b), cross-polarized light.

4.12 Plåtgruvan

Plåtgruvan (12 in Fig. 9 and Fig. 21) is another minor metallic deposit in the Nordmark area, occurring

almost equidistant between Nordmark and Filipstad, and forms part of the relatively extensive

Aggruvorna ore field of predominantly Fe-oxide skarn deposits (Björk, 1986). These occur in a thin

sliver of Svecofennian metavolcanic rocks, sandwiched between the subvolcanic to volcanic rocks of

the c. 1.89 Ga Horrsjö complex (Jonsson, 2004; Högdahl & Jonsson, 2004a) to the east and the Filipstad

granite of the TIB suite, to the west. It is a typical skarn-hosted Fe-oxide deposit with magnetite being

Page 39: Compositional Systematics of Sphalerites from Western Bergslagen…uu.diva-portal.org/smash/get/diva2:953522/FULLTEXT01.pdf · The Bergslagen ore province in central Sweden has a

31

the principal ore mineral mined. Localized sulphide mineralizations were encountered here during the

mining of the iron-oxide ore in the 18th and 19th centuries.

Figure 24. Ore mineral assemblages from Plåtgruvan (1831.1815) with characteristic sparse ’chalcopyrite disease’ structure within a homogeneous sphalerite mass. Gray mottling of the surface of the sphalerite are carbon coating remnants. Photomicrograph in reflected, plane polarized light.

The studied sample (1831.1815) consists of almost completely homogeneous sphalerite only sparsely

affected by the so called ‘chalcopyrite disease’ (Fig. 24). This refers to small-scale chalcopyrite

inclusions that are scattered within the sphalerite, a phenomenon that has been known for as long as ore

microscopy has been practiced. It has been casually attributed to exsolution, but according to Barton &

Bethke (1987), it most likely originates from replacement processes.

4.13 Hällefors

The Hällefors mines (13 in Fig. 9) are located directly east of the village Hällefors Silvergruvan within

the so-called Grythyttan syncline, which is a major fold structure in western Bergslagen. The mines

were in operation from the seventeenth century to the late 1970s (Hedström, 1984) and during the last

year of production from the so-called eastern field (1977-1978) it produced 4.5 tons of Ag, 2.412 tons

of Zn and 2.303 tons of Pb (Zakrzewski & Nugteren, 1984). Overall, the Grythyttan-Hällefors district

hosts several types of ore deposits such as banded iron formations (BIFs), quartz-bearing skarn iron

ores, Långban type manganese and iron ores, Mn-rich iron ores in carbonates and skarns, Mn ores in

tuffites, as well as sulphidic Cu-Pb-Zn-Ag ores (Zakrzewski & Nugteren, 1984).

Page 40: Compositional Systematics of Sphalerites from Western Bergslagen…uu.diva-portal.org/smash/get/diva2:953522/FULLTEXT01.pdf · The Bergslagen ore province in central Sweden has a

32

Figure 25. Ore mineral assemblage from Hällefors (HÄL.01.1) a) euhedral to subhedral crystals of arsenopyrite and pyrite in massive sphalerite, and b) abundant galena and pyrrhotite inclusions hosted by sphalerite. Abbreviations: ars=arsenopyrite, ga=galena, po=pyrrhotite, py=pyrite, sph=sphalerite. Photomicrographs in reflected, plane polarized light.

The sulphide mineralization is situated in the eastern limb of the syncline and is concentrated in a 2.5

x 0.5 NW-SE trending lens (Hedström, 1984). It hosts Zn-Pb-(Ag-Sb-As) deposits that are locally

unusually rich in sulphosalt minerals (e.g. Wagner et al., 2005 and references therein). The mines have

been divided into three fields: the western, the middle and the eastern fields (Hedström, 1984). The

three ore fields differ in their structure. In the western and middle fields the mineralization appears

along cross-cutting faults (Hedström, 1984), while in the eastern field, two principal mineralization

styles can be identified: (1) stratabound massive sphalerite-galena-(arsenopyrite) ore closely associated

with magnetite-rich Fe-Mn skarns in carbonates, and (2) discordant silver-rich sulphide-sulphosalt

fissure veins (Zakrzewski & Nugteren, 1984; Wagner et al., 2005).

Wagner et al. (2005) describe the major paragenesis of the stratabound massive sulphides in the

following order: sphalerite, arsenopyrite, galena, in association with minor magnetite. Pyrrhotite is also

present as elongate lamellar inclusions in sphalerite, 20-100μm in size. In the vein and fault related

assemblages sphalerite, galena, pyrrhotite, chalcopyrite, arsenopyrite, tetrahedrite, bournonite,

boulangerite and gudmundite are present (Hedström, 1984; Wagner et al., 2005).

The studied sample (HÄL.01.1) is from the eastern field and it exhibits the following main ore

assemblage: sphalerite, galena, pyrrhotite, tetrahedrite, pyrite, and arsenopyrite. The sphalerite contains

small inclusions of pyrrhotite, pyrite and large euhedral crystals of arsenopyrite, while tetrahedrite is

present as small rounded grains (Fig. 25). Sphalerite is also rather massive, representing the stratabound,

massive syngenetic sulphide part of the eastern field.

4.14 Gruvåsen

The Gruvåsen mine field is located almost halfway between Filipstad and the municipality of Hällefors

in the thin landmass that separates the lakes Yngen in the west and Saxen in the east (Fig. 9).

Page 41: Compositional Systematics of Sphalerites from Western Bergslagen…uu.diva-portal.org/smash/get/diva2:953522/FULLTEXT01.pdf · The Bergslagen ore province in central Sweden has a

33

Figure 26. Simplified geological map showing the Gruvåsen and Borns Koppargruva deposits (based on SGU datasets).

The bedrock in the Gruvåsen area (14 in Fig. 9 and Fig. 26) is dominated by a marble lens that is

interlayered within metasedimentary and metavolcanic rocks. The mineralizations are located inside the

marble body close to Filipstad granite in the SW.

All metal mineralization at Gruvåsen consists mainly of sulphide minerals in a skarn-type sulphide

deposit (Hellingwerf, 1987; Hellingwerf & Raaphorst, 1988). These authors suggest that skarn were

associated to two different alteration styles, which consist of a central zone of intense potassic alteration

with Cu-Zn-Fe sulphide-rich pyroxene skarn, and a peripheral zone with weak potassic alteration

hosting Zn-Fe-Pb-As sulphide-rich amphibole skarn.

The central zone is dominated by the assemblage chalcopyrite-cubanite-pyrrhotite-sphalerite with

minor molybdenite. Cubanite (CuFe2S3) is found as exsolution lamellae in chalcopyrite or as rims

around pyrrhotite when it is in contact with chalcopyrite. The sphalerite of the central zone is Cd-rich

(up to 1 wt. %) (Hellingwerf, 1992). The assemblage for the peripheral zone is pyrrhotite-arsenopyrite-

sphalerite-galena (Hellingwerf, 1987).

The studied Gruvåsen sample (Gruvåsen) contains in decreasing order sphalerite-chalcopyrite-

cubanite-pyrrhotite (Fig. 27). According to the paragenetic zoning described by Hellingwerf (1987), the

sample seems to be part of the central zone of the mineralization.

Page 42: Compositional Systematics of Sphalerites from Western Bergslagen…uu.diva-portal.org/smash/get/diva2:953522/FULLTEXT01.pdf · The Bergslagen ore province in central Sweden has a

34

Figure 27. Ore mineral assemblage from Gruvåsen, featuring sphalerite (sph), chalcopyrite (cp), cubanite (cb) and pyrrhotite (po). Photomicrograph in reflected, plane polarized light.

4.15 Borns Koppargruva

The Borns Koppargruva (copper-mine in English; 15 in Fig. 9 and Fig. 26) is part of the general

Gruvåsen area (Hellingwerf, 1987) and it is a skarn-hosted mineralization within a marble lens with

metavolcanic intercalations.

The studied sample (57.4154) is chalcopyrite-pyrrhotite-dominated, with lesser amounts of sphalerite

and minor amounts of bournonite (PbCuSbS3), (Fig. 28). Extensive exsolution of cubanite from

chalcopyrite (Fig. 28b) indicates that it is from the central alteration zone (Hellingwerf, 1987).

Figure 28. Ore mineral assemblages from Borns Koppargruva (57.4154), a) chalcopyrite-sphalerite-pyrrhotite mineralization and coarse amphibole crystals (black), b) cubanite exsolution within chalcopyrite, pyrrhotite and rare bournonite. Abbreviations: bn=bournonite, cb=cubanite, cp=chalcopyrite, po=pyrrhotite, sph=sphalerite. Photomicrographs in reflected, plane polarized light.

Page 43: Compositional Systematics of Sphalerites from Western Bergslagen…uu.diva-portal.org/smash/get/diva2:953522/FULLTEXT01.pdf · The Bergslagen ore province in central Sweden has a

35

4.16 Månhöjden

The Månhöjden deposit is located almost 10 kilometers northwest of Gåsborn (16 in Fig. 9). It

represents a mineralization in an inlier of marble and felsic metavolcanic rock in an area dominated by

TIB intrusives (E. Jonsson, pers. comm.; SGU datasets).

The samples (EJ.MHII.2a and EJ.MHII.2b) from Månhöjden show sulphides occurring together with

iron oxide mineralization, and primarily consist of sphalerite, chalcopyrite, bornite, covellite, with

abundant magnetite and hematite. Minor phases include Co-bearing sulphides. Chalcopyrite is partially

replaced by bornite, and the latter is being replaced by covellite, mostly along fractures. Magnetite

exhibits abundant replacement by hematite (Fig. 29).

Figure 29. Ore mineral assemblages from Månhöjden (EJ.MH11.2a) featuring a) sphalerite mineralization and hematite alteration within magnetite, b) replacement of chalcopyrite by bornite and successive fracture-related covellite alteration within bornite. Abbreviations: bo=bornite, co=covellite, cp=chalcopyrite, hm=hematite, mgn=magnetite, sph=sphalerite. Photomicrographs in reflected, plane polarized light.

4.17 Limtjärn

The Limtjärn deposit (17 in Fig. 9 and Fig. 30) is located about 5 kilometers west of the municipality

of Persberg. It consists mainly of iron oxides (magnetite) ores with local concentrations of sulphides

hosted by skarn-bearing marble and felsic metavolcanic rocks (Fig. 30). These immediate host rocks

occupy a very limited area in a sliver between the Filipstad granite of the TIB suite to the west, and the

Horrsjö complex to the east. There is, however, possible that the host rocks belong entirely to the

Horrsjö complex (E. Jonsson, pers. comm.). The studied sample (940069) consists almost entirely of

sphalerite, with traces of galena.

Page 44: Compositional Systematics of Sphalerites from Western Bergslagen…uu.diva-portal.org/smash/get/diva2:953522/FULLTEXT01.pdf · The Bergslagen ore province in central Sweden has a

36

Figure 30. Simplified geological map of the area around Limtjärn, (based on SGU datasets).

4.18 Alkvetterns Silvergruvor

Alkvetterns Silvergruvor (18 in Fig. 9) is a small scale mineralization in a felsic metavolcanic sliver

within the Filipstad granite, some 14 kilometers southeast of Storfors.

The studied sample (1831.1033) is composed of a completely homogeneous sphalerite (Fig. 31).

Figure 31. Ore mineral assemblage from Alkvettern (1831.1033), a) light yellow-white internal reflections and b) twinning of sphalerite grains. Photomicrographs in reflected, plane polarized light.

Page 45: Compositional Systematics of Sphalerites from Western Bergslagen…uu.diva-portal.org/smash/get/diva2:953522/FULLTEXT01.pdf · The Bergslagen ore province in central Sweden has a

37

4.19 Gåsborn

The Gåsborn area (19 in Fig. 9) is located c. 20 kilometers north-east of Filipstad and comprises a

number of manganiferous iron-oxide mines and some minor sulphide mineralizations. The latter are

relatively complex (Damman, 1988a) and are mainly hosted in skarn-altered marbles within mineralized

felsic metavolcanic rocks. Metasedimentary rocks (mainly meta-graywackes) and some metabasite-

lenses also occur in the area that is volumetrically dominated by younger TIB intrusions (Fig. 9). The

sulphide ore assemblage comprise sphalerite-molybdenite-galena-arsenopyrite-pyrrhotite-chalcopyrite-

pyrite-cubanite (Kieft & Damman, 1990).

The studied samples from Gåsborn (Gås IIa, Gås IIb and Gås NI And) exhibit abundant pyrrhotite

and chalcopyrite and minor sphalerite (estimated about 10%) (Fig. 32). Alteration of primary pyrrhotite

and replacement by pyrite and marcasite is characteristically extensive in some of the samples (Fig.

32b, d). Another characteristic textural feature is the extent of fracture-controlled mineralization

composed of altered pyrrhotite (Fig. 32d), indicating either a late introduction of ore-forming

components, or local remobilization of the original sulphidic ore assemblage.

Figure 32. Ore mineral assemblages from Gåsborn a) chalcopyrite-pyrite-sphalerite-pyrrhotite mineralization in Gås II(a), b) sphalerite together with pyrrhotite featuring breakdown structure from Gås II(b), c) sphalerite-chalcopyrite assemblage from Gås NI And, d) fracture controlled mineralization of pyrrhotite in part replaced by pyrite and marcasite. Abbreviations: cp=chalcopyrite, py=pyrite, po=pyrrhotite, sph=sphalerite. Photomicrographs in reflected, plane polarized light.

Page 46: Compositional Systematics of Sphalerites from Western Bergslagen…uu.diva-portal.org/smash/get/diva2:953522/FULLTEXT01.pdf · The Bergslagen ore province in central Sweden has a

38

5. Results 5.1 EMPA analysis

Thirty samples from 19 localities were analyzed by wave-length dispersive analyzer (WDS-EPMA)

yielding 896 spot analyses in total. The totals of the analyses vary significantly, and a range between

98.5 and 101.5 wt. % was considered as acceptable. In total, 666 spot analyses fall within this range (all

EMPA results are listed in Table 7 in Appendix A).

The As, Ga, Ge and Sb concentrations were below the detection limit of the method in all samples,

as was the majority of the analyses for Ag, Hg, In, Sb and Se. Mean and standard deviation values of

each sample are presented in Table. 3. Results below the detection limits are not considered further.

Page 47: Compositional Systematics of Sphalerites from Western Bergslagen…uu.diva-portal.org/smash/get/diva2:953522/FULLTEXT01.pdf · The Bergslagen ore province in central Sweden has a

39

LocalitySam

ple(no. of spots) Zn

S Fe

Mn

Co Cu

Ga Ge

As Se

Ag Cd

In Sn

Sb Hg

Pb Bi

LahällLAH.001.1

Mean

56.733.1

8.99232

˂ d.l˂ d.l

˂ d.l˂ d.l

˂ d.l˂ d.l

˂ d.l2554

˂ d.l˂ d.l

˂ d.l˂ d.l

30611065

(34)stdev

0.50.21

0.27468

130604

501LAH.001.2

Mean

56.132.9

9.511028

185˂ d.l

˂ d.l˂ d.l

˂ d.l˂ d.l

˂ d.l630

˂ d.l˂ d.l

˂ d.l˂ d.l

2822995

(23)stdev

0.60.20

0.16756

61203

319570

LAH.001.4M

ean55.9

32.48.6

2380˂ d.l

˂ d.l˂ d.l

˂ d.l˂ d.l

˂ d.l˂ d.l

11154˂ d.l

˂ d.l˂ d.l

˂ d.l4854

1272(5)

stdev0.16

0.210.16

2162155

537570

LAH.001.6M

ean57.3

33.09.2

5922202

˂ d.l˂ d.l

˂ d.l˂ d.l

˂ d.l˂ d.l

2617˂ d.l

˂ d.l˂ d.l

5862685

1155(21)

stdev0.5

0.140.18

34853

149202

377469

Mysstjärnen

MyB.001.1

Mean

54.932.6

10.12050

550˂ d.l

˂ d.l˂ d.l

˂ d.l˂ d.l

˂ d.l27037

˂ d.l˂ d.l

˂ d.l˂ d.l

4477750

(3)stdev

0.420.11

0.40572

176437

647156

Myssfället

Myssf.B1.1

Mean

58.432.7

8.71844

˂ d.l˂ d.l

˂ d.l˂ d.l

˂ d.l˂ d.l

˂ d.l2078

˂ d.l˂ d.l

˂ d.l˂ d.l

26011077

(20)stdev

0.450.12

0.24253

171332

461M

yssf.B3.1M

ean58.7

32.88.9

1255˂ d.l

˂ d.l˂ d.l

˂ d.l˂ d.l

˂ d.l˂ d.l

2064˂ d.l

˂ d.l˂ d.l

˂ d.l2622

1177(23)

stdev0.24

0.150.13

228272

469512

Myssf.B4.1

Mean

56.933.5

8.52685

˂ d.l˂ d.l

˂ d.l˂ d.l

˂ d.l˂ d.l

˂ d.l2275

˂ d.l˂ d.l

˂ d.l˂ d.l

26291379

(29)stdev

0.350.13

0.23117

113358

255Getberget

Getberget IM

ean55.8

33.58.5

3030˂ d.l

2374˂ d.l

˂ d.l˂ d.l

˂ d.l˂ d.l

2000˂ d.l

˂ d.l˂ d.l

˂ d.l3427

1311(36)

stdev0.7

0.150.5

2272705

2182472

252Getberget(a)

Mean

54.333.5

9.94216

˂ d.l˂ d.l

˂ d.l˂ d.l

˂ d.l˂ d.l

˂ d.l2087

˂ d.l˂ d.l

˂ d.l˂ d.l

29271409

(26)stdev

0.220.09

0.10342

151522

272Getberget(b)

Mean

55.833.6

8.58595

230266

˂ d.l˂ d.l

˂ d.l˂ d.l

˂ d.l7031

˂ d.l˂ d.l

˂ d.l˂ d.l

29591268

(11)stdev

0.80.10

0.331270

5631

1234638

138Näset

Näset IM

ean55.4

32.910.4

4855801

965˂ d.l

˂ d.l˂ d.l

˂ d.l˂ d.l

6913˂ d.l

˂ d.l˂ d.l

˂ d.l2828

1083(26)

stdev1.7

0.180.8

731274

1627798

392601

Näset IIM

ean56.8

32.69.6

4508547

333˂ d.l

˂ d.l˂ d.l

˂ d.l˂ d.l

8034˂ d.l

˂ d.l˂ d.l

6403302

994(12)

stdev0.8

0.410.36

849133

139806

3321230

553Långban

1925.0621M

ean65.6

32.41.2

4320˂ d.l

˂ d.l˂ d.l

˂ d.l˂ d.l

˂ d.l˂ d.l

2221˂ d.l

˂ d.l˂ d.l

˂ d.l2903

1054(34)

stdev0.7

0.140.44

1030207

410450

Ej.BhZ.IbM

ean62.4

31.91.6

˂ d.l900

10300˂ d.l

˂ d.l˂ d.l

˂ d.l˂ d.l

10740˂ d.l

˂ d.l˂ d.l

6103180

2190

Table 3. Presentation of the EM

PA analyses results.

All elem

ents apart from Zn, S and Fe (w

t.%) are show

n in ppm. EJ.B

hZ.Ib and 66.0010 data are based in only one spot analysis therefore standard deviation couldn’t be calculated. N

umbers in brackets show

number of spots analyzed.

Page 48: Compositional Systematics of Sphalerites from Western Bergslagen…uu.diva-portal.org/smash/get/diva2:953522/FULLTEXT01.pdf · The Bergslagen ore province in central Sweden has a

40

LocalitySam

ple(no. of spots) Zn

S Fe

Mn

Co Cu

Ga Ge

As Se

Ag Cd

In Sn

Sb Hg

Pb Bi

Manhöjden

Ej.MHII.2a

Mean

66.532.2

0.5˂ d.l

1019˂ d.l

˂ d.l˂ d.l

˂ d.l˂ d.l

˂ d.l6849

˂ d.l˂ d.l

˂ d.l˂ d.l

26981191

(25)stdev

0.50.19

0.12122

592289

627Gåsborn

Gås IIaM

ean57.8

32.79.2

631564

4776˂ d.l

˂ d.l˂ d.l

˂ d.l˂ d.l

2935˂ d.l

˂ d.l˂ d.l

˂ d.l2636

1145(8)

stdev0.34

0.170.44

22596

2598176

332324

Gås IIbM

ean56.4

33.18.8

873357

6933˂ d.l

˂ d.l˂ d.l

˂ d.l˂ d.l

2870˂ d.l

˂ d.l˂ d.l

˂ d.l2890

1470(3)

stdev0.44

0.401.1

255133

3893147

3930

Silvhytte57.4128

Mean

67.332.1

0.371155

297˂ d.l

˂ d.l˂ d.l

˂ d.l˂ d.l

˂ d.l984

˂ d.l˂ d.l

˂ d.l˂ d.l

26151129

(23)stdev

0.440.14

0.02266

61142

396437

Borrns Koppargruva

57.4154M

ean56.5

33.09.0

3085377

1920˂ d.l

˂ d.l˂ d.l

˂ d.l187

6448˂ d.l

˂ d.l˂ d.l

7612882

1148(38)

stdev0.9

0.190.6

651152

412764

735382

382552

Nordmark

1919.1470(b)M

ean56.1

33.59.2

3235229

264˂ d.l

˂ d.l˂ d.l

˂ d.l˂ d.l

˂ d.l˂ d.l

˂ d.l˂ d.l

˂ d.l1962

1356(70)

stdev0.16

0.060.08

10761

77939

246Nordm

ark2007.0304

Mean

59.732.6

8.21322

˂ d.l˂ d.l

˂ d.l˂ d.l

˂ d.l˂ d.l

˂ d.l539

˂ d.l˂ d.l

˂ d.l˂ d.l

2648979

(10)stdev

0.260.23

0.09354

154394

410Plåtgruvan

1831.1815M

ean65.1

32.33.1

1062401

˂ d.l˂ d.l

˂ d.l˂ d.l

˂ d.l˂ d.l

1177˂ d.l

˂ d.l˂ d.l

˂ d.l2555

1011(14)

stdev0.42

0.120.33

387107

208400

493Skatviken

2000.0189M

ean59.7

32.55.8

210260

˂ d.l˂ d.l

˂ d.l˂ d.l

˂ d.l˂ d.l

1603˂ d.l

˂ d.l˂ d.l

˂ d.l2810

1207(3)

stdev0.25

0.200.06

1428

103212

640Björkskognäs

66.0010M

ean65.2

31.42.5

100˂ d.l

330˂ d.l

˂ d.l˂ d.l

˂ d.l˂ d.l

1730˂ d.l

˂ d.l380

˂ d.l3570

660

Limtjärn

940069M

ean66.8

32.20.36

1409276

˂ d.l˂ d.l

˂ d.l˂ d.l

˂ d.l˂ d.l

909˂ d.l

˂ d.l˂ d.l

˂ d.l2613

984(33)

stdev0.32

0.300.03

45392

127341

562Hasselhöjden

2002.0015M

ean68.5

31.80.04

˂ d.l120

230˂ d.l

˂ d.l˂ d.l

960160

2260˂ d.l

210˂ d.l

3803045

970(2)

stdev0.05

0.090.03

240346

28Gruvåsen

GruvåsenM

ean55.0

33.69.9

2108288

608˂ d.l

˂ d.l˂ d.l

˂ d.l˂ d.l

˂ d.l˂ d.l

˂ d.l˂ d.l

˂ d.l2459

1369(77)

stdev0.7

0.120.7

205153

805806

255Alkvettern

1831.1033M

ean67.0

32.40.34

1303273

˂ d.l˂ d.l

˂ d.l˂ d.l

˂ d.l˂ d.l

912˂ d.l

˂ d.l˂ d.l

10162857

993(27)

stdev0.29

0.150.01

35764

136558

293480

HälleforsHÄL.01.1

Mean

60.233.0

6.3948

˂ d.l341

˂ d.l˂ d.l

˂ d.l˂ d.l

2734688

285˂ d.l

˂ d.l˂ d.l

30251294

(28)stdev

0.60.18

0.31596

250113

19376

502695

Table 3. C

ontinued.

Page 49: Compositional Systematics of Sphalerites from Western Bergslagen…uu.diva-portal.org/smash/get/diva2:953522/FULLTEXT01.pdf · The Bergslagen ore province in central Sweden has a

41

5.2 LA-ICP-MS analysis

Laser ablation inductively coupled plasma mass spectrometer (LA-ICP-MS) analyses were conducted

on 26 sphalerite samples from 16 of the localities, yielding a total of 269 spot analyses. As for the

EMPA analyses, an acceptable total was considered to be between 98.5-101.5 %; 203 spot analyses fell

within this range, (all LA-ICP-MS results are listed in Table 8 in Appendix B), thus leading to the

exclusion of e.g. the sample from Björkskognäs that fell outside of this range. Samples that contained

significant amounts of magnetic minerals (i.e. magnetite) could not be analyzed by the LA-ICP-MS

method due to the strong magnets that are located in the laser-holder system of the instrument, and

therefore the samples from Månhöjden were not analyzed.

LA-ICP-MS has very low detection limits for most elements and yields, once properly calibrated,

high precision measurements of concentrations of a few ppm or less. In this case, As, Mo and Te were

below the detection limits in all of the analyses while the concentration of Se, Sn, Sb, Ni, Tl, and Au

were below the detection limits for most of the analyzed samples. Mean concentration and standard

deviation values of each sample are presented in Table 4.

Page 50: Compositional Systematics of Sphalerites from Western Bergslagen…uu.diva-portal.org/smash/get/diva2:953522/FULLTEXT01.pdf · The Bergslagen ore province in central Sweden has a

42

LocalitySam

ple (no spots)Zn

SFe

Mn

Co

Ni

Cu

Ga

Ge

As

SeM

oA

gC

dIn

SnSb

TeA

uH

gTl

PbB

i

Lahäll LA

H.001.1

mean

58.2931.67

9.010220

132˂ d.l

480.32

0.68˂ d.l

˂ d.l˂ d.l

282723

67˂ d.l

˂ d.l˂ d.l

˂ d.l12

˂ d.l33

˂ d.l(9)

stdev0.18

0.220.26

2595

20.33

0.0417

580.9

3.150

Lahäll LA

H.001.2

mean

56.9930.96

9.311917

164˂ d.l

260.25

0.68˂ d.l

˂ d.l˂ d.l

3.91055

15˂ d.l

˂ d.l˂ d.l

0.196

˂ d.l1.0

˂ d.l(6)

stdev0.17

0.250.13

27411

100.06

0.063.9

314

0.231.2

0.9Lahäll

LAH

001.6m

ean57.96

31.369.7

6799143

˂ d.l74

0.450.66

˂ d.l˂ d.l

˂ d.l2.4

286383

˂ d.l˂ d.l

˂ d.l˂ d.l

˂ d.l˂ d.l

160.5

(5)stdev

0.360.33

0.1181

85

0.030.09

0.620

11.9

0.7M

yssbergetM

yB 001.1

mean

54.4431.54

10.62833

5690.8

35˂ d.l

0.69˂ d.l

˂ d.l˂ d.l

3.524470

31˂ d.l

˂ d.l˂ d.l

˂ d.l9

˂ d.l324

0.28(3)

stdev0.26

0.190.08

22628

0.319

0.043.4

33031

0.5509

0.33M

yssfalletM

yssf.B1.1

mean

57.4031.84

8.82332

26˂ d.l

700.5

0.64˂ d.l

˂ d.l˂ d.l

1.62312

64˂ d.l

˂ d.l˂ d.l

0.0313

˂ d.l2.8

0.05(1)

stdevM

yssfalletM

yssf.B3.1

mean

59.2731.50

8.71525

32˂ d.l

522.1

0.69˂ d.l

˂ d.l˂ d.l

1.42375

28˂ d.l

˂ d.l˂ d.l

0.0415

˂ d.l3.5

0.27(10)

stdev0.30

0.260.17

411.1

300.23

0.100.9

542

0.13.6

60.48

Getberget

Getberget I

mean

58.8331.85

8.73162

32˂ d.l

12151.2

0.60˂ d.l

3.6˂ d.l

3.41928

74˂ d.l

8˂ d.l

˂ d.l8

˂ d.l139

0.03(10)

stdev0.27

0.140.19

2512.5

14090.07

0.071.1

1.4137

311

0.6208

0.01G

etbergetG

etberget am

ean57.84

31.5510

443830

˂ d.l145

2.20.72

˂ d.l˂ d.l

˂ d.l1.8

2431107

˂ d.l0

˂ d.l0.07

10˂ d.l

470.08

(9)stdev

0.380.18

0.1869

0.714

0.090.08

1.635

10

0.080.9

470.06

Getberget

Getberget b

mean

57.5631.44

8.611511

119˂ d.l

3890.40

0.73˂ d.l

˂ d.l˂ d.l

2649633

22734

162˂ d.l

˂ d.l27

˂ d.l7215

223(4)

stdev1.40

0.110.99

191413

2850.37

0.12260

193524

30215

185742

169N

äsetN

äset Im

ean56.95

31.2310.3

5649735

˂ d.l903

˂ d.l0.76

˂ d.l˂ d.l

˂ d.l7

6935151

˂ d.l˂ d.l

˂ d.l0.38

13˂ d.l

5˂ d.l

(5)stdev

0.420.34

0.41299

70945

0.165

2303

0.63.1

6N

äsetN

äset IIm

ean58.18

31.059.2

5229557

1.1442

0.220.68

˂ d.l˂ d.l

˂ d.l12

8270185

˂ d.l˂ d.l

˂ d.l0.08

8˂ d.l

12˂ d.l

(10)stdev

0.360.20

0.35373

1410.5

4750.06

0.1213

61721

0.121.7

29Långban

EJ-BhZ-Ib

mean

66.1332.27

0.1264

10050.9

347˂ d.l

0.60˂ d.l

184˂ d.l

3.710134

144˂ d.l

˂ d.l˂ d.l

˂ d.l27

˂ d.l1.3

1.7(2)

stdev2.6

1.10.004

38130

0.07160

0.1710

0.28624

120.7

1.31.2

Gåsborn

Gås IIa

mean

56.0730.77

10.0949

588˂ d.l

140310.29

0.56˂ d.l

37˂ d.l

223474

76˂ d.l

˂ d.l˂ d.l

0.0510

˂ d.l6

9(1)

stdevG

åsbornG

ås NI A

ndm

ean55.17

31.7912.1

768233

˂ d.l3319

0.330.72

˂ d.l31

˂ d.l45

6182335

˂ d.l˂ d.l

˂ d.l˂ d.l

172

119

(4)stdev

1.30.9

0.4364

51415

0.210.36

850

68660

101

88

Silvhytte gruvor57.4128

mean

66.2833.18

0.401604

2921.1

510.14

0.50˂ d.l

6˂ d.l

3.3813

0.20˂ d.l

˂ d.l˂ d.l

0.0545

˂ d.l2.1

0.3(10)

stdev0.48

0.220.01

466

0.339

0.040.08

22.9

180.01

0.0411

1.90.2

Borns kop/va

57.4154m

ean57.91

31.909.1

3489446

˂ d.l534

1.20.70

˂ d.l56

˂ d.l11

622583

18˂ d.l

˂ d.l˂ d.l

20˂ d.l

101.4

(19)stdev

0.50.34

0.47391

69455

0.340.09

37

67534

196

111.5

Nordm

ark1919.1470b

mean

59.0531.39

9.13482

149˂ d.l

1660.47

0.66˂ d.l

8˂ d.l

1.1621

224˂ d.l

˂ d.l˂ d.l

˂ d.l87

˂ d.l0.10

0.03(14)

stdev0.32

0.220.20

1114

100.17

0.091

0.0510

1442

0.040.01

Nordm

ark2007.0304

mean

60.4831.42

7.91381

33˂ d.l

211.1

0.66˂ d.l

˂ d.l˂ d.l

1.2866

0.9˂ d.l

˂ d.l˂ d.l

0.039

˂ d.l0.8

0.6(11)

stdev0.38

0.340.14

291

370.05

0.110.20

170.2

0.021

0.90.9

Nordm

ark1919.1470a

mean

59.0831.53

8.83323

154˂ d.l

1680.52

0.67˂ d.l

8˂ d.l

1.2618

218˂ d.l

˂ d.l˂ d.l

0.0462

˂ d.l0.27

0.1(19)

stdev0.23

0.170.07

301.5

160.1

0.092

0.1713

19.00.02

290.27

0.2Skatviken

2000.0189m

ean61.23

31.516.9

342195

˂ d.l29

3.80.61

˂ d.l˂ d.l

˂ d.l3.0

15916

˂ d.l˂ d.l

˂ d.l˂ d.l

48˂ d.l

2.7˂ d.l

(5)stdev

0.70.41

0.148

58

0.40.11

1.528

0.047

1.8Lim

tjärn940069

mean

66.7932.25

0.391816

315˂ d.l

5˂ d.l

0.59˂ d.l

˂ d.l˂ d.l

1.1859

0.28˂ d.l

˂ d.l˂ d.l

˂ d.l49

˂ d.l0.9

0.4(11)

stdev1.6

0.90.02

18212

50.32

0.724

0.0221

0.80.4

Hasselhöjden

2002.0015m

ean66.07

33.330.18

˂ d.l3

˂ d.l17

70.63

˂ d.l13

˂ d.l3.5

201919

˂ d.l˂ d.l

˂ d.l0.03

50˂ d.l

80.11

(13)stdev

0.470.39

0.260.8

310

0.138

1.570

20.02

116

0.08G

ruvåsenG

ruvåsenm

ean57.82

31.559.8

2249304

˂ d.l296

2.10.67

˂ d.l72

˂ d.l4.3

5989118

˂ d.l˂ d.l

˂ d.l˂ d.l

7˂ d.l

1.40.4

(8)stdev

0.470.17

0.4387

38325

0.30.10

21.8

22615

1.21.6

0.4A

lkvettern 1831.1033

mean

66.7932.52

0.361713

302˂ d.l

6˂ d.l

0.5˂ d.l

˂ d.l˂ d.l

0.9827

0.41˂ d.l

˂ d.l˂ d.l

˂ d.l90

˂ d.l2.9

0.24(12)

stdev0.43

0.380.01

787

50.10

0.2720

0.3345

3.50.22

Hällefors

L.01.1m

ean57.85

31.357.9

8891˂ d.l

˂ d.l359

0.270.61

˂ d.l˂ d.l

˂ d.l78

4252398

˂ d.l27

˂ d.l˂ d.l

18˂ d.l

5291˂ d.l

(2)stdev

1.80.27

1.511248

1760.07

0.0378

302129

225

7349Plåtgruvan

1831.1815m

ean65

322.9

1257507

˂ d.l30

˂ d.l0.81

˂ d.l48

˂ d.l0.7

9885

˂ d.l˂ d.l

˂ d.l˂ d.l

11˂ d.l

2.4˂ d.l

(33)stdev

0.400.4

0.2495

19110

0.123.3

0.0743

0.302.4

5

Table 4. Presentation of the LA

-ICP-M

S analyses results

All elem

ents apart from S, Zn and Fe (w

t. %) are show

n in ppm. M

yssf.BI.I and G

ås IIa are based in only one spot analysis therefore standard deviation could not be m

easured. Num

bers in brackets show num

ber of spots analyzed. Num

bers in bold represent homogeneous distribution of

the element (standard deviation ≤ 25%

) whereas num

bers in italics represent heterogeneous distribution (standard deviation ≥ 35%) follow

ing the rough first order distinction of Zack et al. (2002).

The sample from

Björkskognäs (66.0010) yielded totals outside the accepted range (98.5-101-5 %

), therefore the LA-IC

P-MS results from

this sam

ples were not considered for this table

The sam

ples from M

ånhöjden (EJ.MH

II.2A, EJ.M

HII.2B

) could not be analyzed by LA-IC

P-MS due to high content of m

agnetic minerals.

Page 51: Compositional Systematics of Sphalerites from Western Bergslagen…uu.diva-portal.org/smash/get/diva2:953522/FULLTEXT01.pdf · The Bergslagen ore province in central Sweden has a

43

5.3 Major and trace elements

The results from LA-ICP-MS and EMPA analyses on sphalerite are presented below in terms of mean

concentrations and standard deviation for each element. Standard deviation is given in percent for easier

comparison between different samples, while the concentrations are given in ppm unless otherwise

stated. A brief description of the trend of each element in natural sphalerite is also given, as reported in

the literature. For the major elements (Fe, Mn, and Cd) EMPA data is used while the trace elements

data is derived from LA-ICP-MS analysis, due to the higher accuracy and capacity of this method. A

comparison between the two methods is presented in the discussion.

5.3.1 Iron

Fe is the most commonly appearing substituted element in sphalerite, and the concentration is often

high enough for it to be included in the chemical formula, as (Zn,Fe)S. In some exceptionally Fe-rich

examples the FeS solid solution with ZnS can reach up to 50 mol. % (e.g. Barton & Toulmin, 1966;

Lepetit et al., 2003). In systems where sphalerite is in equilibrium with pyrite and pyrrhotite, Fe

incorporation in sphalerite is pressure-dependent (Scott & Barnes, 1971). The Fe content in sphalerite

has therefore been used for barometric determinations of e.g. metamorphogenic and metamorphosed

ore deposits (e.g. Scott & Barnes, 1971), although there is some controversy over the application of this

method (Wright & Julian, 2010, and references therein).

Figure 33. Plot of mean Fe concentrations of sphalerites from different localities of western Bergslagen, showing a relatively high local variation. Numbers next to the locality names show location in Fig. 9. Data derived from EMPA analyses.

The Fe-value obtained by the EMPA was used as the internal standard for the LA-ICP-MS data

reduction process and therefore the presented results on Fe is based on the EMPA data. Overall, the

samples show great variation in mean Fe content (Fig. 33) ranging from traces, near the detection limit

Page 52: Compositional Systematics of Sphalerites from Western Bergslagen…uu.diva-portal.org/smash/get/diva2:953522/FULLTEXT01.pdf · The Bergslagen ore province in central Sweden has a

44

as in Hasselhöjden (2002.0015 with 380 ppm) up to ≥ 10 wt. % in the Näset (Näset I) and Myssberget

(MyB.001.1) samples. Out of 30 samples, five have Fe mean concentrations ˂ 1 wt. %, while 19 samples

contain ≥ 8 wt. % Fe.

The low standard deviation values (stdev ≤ 10%), on the other hand, show that Fe is homogeneously

distributed in the sphalerite matrix for the Fe-rich samples. There are however, some exceptions with

very high standard deviation in the Fe-poor samples (Fig. 34).

Figure 34. Plot of standard deviation of Fe content between the localities. Two samples (from Långban and Björkskogsnäs) yielded only one analysis within the acceptable total range (98.5-101.5 %) therefore standard deviation values could not be measured. Numbers next to the locality names show location in Fig. 9.

5.3.2 Cadmium

The Cd contents in sphalerite have been extensively studied due to the significant role they play in the

economic value of Zn deposits. Even though Cd is not a main component of the mineral, sphalerite is

the main sink for Cd, which can substitute for Zn (Cd2+ ↔ Zn2+) due to their similar ionic radii (e.g.

Qian, 1987; Pfaff et al., 2011; Julien et al., 2014). Considering the toxicity of Cd, the presence of Cd-

bearing sphalerite in tailings and dumps can be a major environmental hazard (Cook et al., 2009 and

references therein). The Cd contents in sphalerite are usually rather constant in a given deposit type,

and normally range between 0.1-1.5 wt.% for stratiform deposits, while it can be even higher in

Mississippi Valley Type (MVT) and Zn-rich veins in carbonate rocks (Lockington et al. 2014 and

references therein). Gottesmann & Kampe (2007) used the Zn/Cd ratio to show genetic relationships of

calc-silicate-hosted sphalerite ores.

Cd concentrations obtained by EMPA analyses range between 0.1-1.5 wt. % in all but seven samples.

Six samples contain less (530-950 ppm) and the sample from Myssberget (MyB.001.1) is exceptionally

Page 53: Compositional Systematics of Sphalerites from Western Bergslagen…uu.diva-portal.org/smash/get/diva2:953522/FULLTEXT01.pdf · The Bergslagen ore province in central Sweden has a

45

Cd-rich with 2.7 wt. % (Fig. 35). In addition, the relatively low standard deviation values (Table 3) for

most of the samples (stdev ≤ 20%) suggest that Cd is quite homogeneously distributed in the sphalerite

lattice. The LA-ICP-MS analyses gave even lower standard deviation values (≤10%) due to the much

lower detection limits of this method. These results are consistent with observations from other

metamorphosed sphalerite-bearing massive sulphide deposits which show an even distribution of Cd in

sample or even deposit scale (Lockington et al. 2014).

Figure 35. Plot of mean Cd concentrations of all analyses in the different localities. Gray horizontal lines represent 0.1 and 1.5 wt. %. Data derived from EMPA analyses. Numbers next to the locality names show location in Fig. 9.

5.3.3 Manganese

Mn is commonly found in sphalerite and the concentrations normally range from ppm-levels to a few

wt. % (e.g. Graeser, 1969) and it can act as a strong chromophore even at low concentrations (Graeser,

1969). Mn is incorporated in the sphalerite structure by cation substitution (Mn+2 ↔ Zn+2), with an upper

limit of around 7 mol. %, (c. 2 wt. %) of MnS (alabandite component) in solid solution with sphalerite.

The upper limit is controlled by the contrasting structures of the two phases (Cook et al., 2009). It has

been noted that there is a negative correlation of Mn with Fe in sphalerite, suggested to be a result as

these elements compete at the mineral-fluid interface (Di Benedetto et al., 2005).

The results from the EMPA analyses show that the Mn concentrations range from below detection

limit in samples from Långban (Ej.BhZ.Ib), Månhöjden (Ej.MHII.2a), and Hasselhöjden (2002.0015),

to more than 1 wt. % in Lahäll (LAH.001.2) (Fig. 36).

Page 54: Compositional Systematics of Sphalerites from Western Bergslagen…uu.diva-portal.org/smash/get/diva2:953522/FULLTEXT01.pdf · The Bergslagen ore province in central Sweden has a

46

Figure 36. Plot of mean Mn concentrations of all analyses in the different localities. Data derived from EMPA analyses. Numbers next to the locality names show location in Fig. 9. Gaps in the graph due to below d.l concentrations.

The Mn mean concentrations of the vast majority of analyses are in the 0.1-1 wt. % range. The

variation in a given deposit is large (Fig. 37) and the Mn-poor sphalerites tend to show the highest

heterogeneity. This can potentially be due to Mn-bearing nano-inclusions within these samples, or just

reflect the difficulty in measuring accurate Mn-concentrations when it is near the detection limit.

Figure 37. Standard deviation values of Mn concentrations showing wide inter-deposit variation. Gaps in the graph due to below d.l concentrations or data based in only one analyses (i.e. in Björkskogsnäs). Numbers next to the locality names show location in Fig. 9.

5.3.4 Cobalt

The size of Co2+ ion is similar to that of Zn2+ and therefore sphalerite can contain considerable amounts

of Co through extensive CoS-ZnS solid solution (e.g. Cook et al. 2009; George et al., 2015). Increased

Co concentrations may, however, decrease the economic value of a given Zn-deposit (e.g. Axelsson &

Rodushkin, 2001). The variable Co contents in sphalerites from different ore deposit types most likely

depend on its availability in the ore-forming system (Lockington et al., 2014). Sphalerites that are Co-

bearing tend to have a characteristic green color (Cook et al. 2009).

Page 55: Compositional Systematics of Sphalerites from Western Bergslagen…uu.diva-portal.org/smash/get/diva2:953522/FULLTEXT01.pdf · The Bergslagen ore province in central Sweden has a

47

The Co concentrations were below the EPMA detection limit for several of the samples, and therefore

the presented results are from the LA-ICP-MS analyses (Fig. 38). The Co concentrations range from a

few tens to several hundreds of ppm for most of the samples, with the exception of the sphalerites from

Hällefors and Hasselhöjden that contain Co below detection limit and 3 ppm, respectively. Contrasting

these, the sphalerite from Långban (Ej.BhZ.Ib) exhibits a Co concentration of about 1000 ppm. The

standard deviation is low (Table 4) as expected as Co is incorporated in sphalerite by substitution. Most

of the samples are found to be rather homogeneous (˂15% stdev), with the exception of Näset (Näset

II) and the Co-poor sphalerite from Hasselhöjden (2002.0015).

Figure 38. Plot of mean Co concentrations of all analyses in the different localities. Data from LA-ICP-MS analyses. Gap in the graph due to below d.l concentrations (i.e. in Hällefors). Numbers next to the locality names show location in Fig. 9.

5.3.5 Copper

Cu is an element that is not easily incorporated in the sphalerite lattice, except when trivalent ions are

present (e.g. In3+, Sb3+, Fe3+) allowing the coupled substitutions (e.g. Cu+ + In3+(Fe3+) ↔ 2Zn2+ and Sb3+

+ Cu+ + Cu2+↔3Zn2+) (e.g. Johan, 1988; Carillo-Rosua et al., 2008; George et al., 2015). Seemingly, it

can only be substituted in concentrations of some tens of ppm. However, it is quite common that micro

or nano-scale Cu-rich inclusions, typically in the form of chalcopyrite, can give apparent and variable

Cu concentrations in sphalerite analyses. The texture referred to as ‘chalcopyrite disease’ featuring

chalcopyrite inclusions in sphalerite on varying scales, is often the result of replacement of the original

Fe-bearing sphalerite by an aggregate of chalcopyrite and low-Fe sphalerite (Barton & Bethke, 1987).

This is a common feature in many Cu-bearing Zn-deposits. The time-resolved LA-ICP-MS depth

profiles can indirectly detect these inclusions by the recorded peaks in the signal profile.

Page 56: Compositional Systematics of Sphalerites from Western Bergslagen…uu.diva-portal.org/smash/get/diva2:953522/FULLTEXT01.pdf · The Bergslagen ore province in central Sweden has a

48

Figure 39. Plot of mean Cu concentrations of all analyses in the different localities. Data derived from LA-ICP-MS analyses. Numbers next to the locality names show location in Fig. 9.

The LA-ICP-MS results for Cu show a high variability (Fig. 39) and the concentrations range

between a few ppm (Limtjärn, Alkvettern) to a few thousands of ppm with maximum of 14000 ppm

(1.4 wt. %) in Gås IIa from Gåsborn. The high standard deviation values of the samples (Table 4) as

well as the discrete peaks in the signal profiles from the LA-ICP-MS analyses (Fig. 40) suggest that the

higher Cu concentrations reflect the occurrence of Cu-rich micro to nano inclusions (e.g. of

chalcopyrite), rather than lattice-bound Cu. Notably, such inclusions were not observed in the reflected-

light microscopy study.

Figure 40. LA-ICP-MS Cu-signal profiles, a) smooth and flat, free of inclusions Cu-signal and b) peaks indicating Cu-rich inclusions present.

Page 57: Compositional Systematics of Sphalerites from Western Bergslagen…uu.diva-portal.org/smash/get/diva2:953522/FULLTEXT01.pdf · The Bergslagen ore province in central Sweden has a

49

5.3.6 Indium

Sphalerite is the main ore mineral for the global production of In, even though it is locally found in

higher concentrations in chalcopyrite (Schwarz-Schampera & Herzig, 2002). In can be incorporated

into sphalerite via the coupled substitution Cu+ + In3+ ↔ Zn2+ + Fe2+ that is reflected in the negative

correlation between In and Zn+Fe (e.g. Johan, 1988; Cook et al. 2009). Sphalerites with In

concentrations of up to 7 wt. % have been reported from tin base-metal deposits in Canada, but these

high In contents have been interpreted to be the result of exsolutions of minute grains of In-bearing

minerals like roquesite (CuInS2). Burke & Kieft (1980) reported In contents up to 10.4 wt. % in a

sphalerite from Långban, and Kieft & Damman (1990) noted very high In contents, up to over 15 wt.

% in altered sphalerite from Gåsborn. It is likely that some of these higher values represent micro- or

nano-inclusions of In-rich phases. Nevertheless, wt. % In contents in sphalerites due to substitution

mechanisms have been determined by electron microprobe analysis (Cook et al. 2009 and references

therein). Roquesite is known to form extensive solid solution with sphalerite and is locally important

sources for In, like for example in the Toyoha mine, Japan (Ohta, 1989).

The LA-ICP-MS analyses show that In concentrations vary from traces to up to 400 ppm (Fig. 41).

Most of the samples contain more than 10 ppm while a few (Getberget, Gåsborn and Hällefors) are

significantly enriched, with concentrations of 230 ppm (Getberget b), 335 ppm ( Gås NI And) and 400

ppm (HÄL.01.1), respectively. Regardless of the concentration, In is most likely incorporated in the

crystal structure given the low standard deviation values of the analyses (Table 4).

Figure 41. Plot of mean In concentrations of all analyses in the different localities. Data derived from LA-ICP-MS analyses. Numbers next to the locality names show location in Fig. 9.

Page 58: Compositional Systematics of Sphalerites from Western Bergslagen…uu.diva-portal.org/smash/get/diva2:953522/FULLTEXT01.pdf · The Bergslagen ore province in central Sweden has a

50

5.3.7 Germanium

Sphalerite is currently also the major source of Ge, particularly from low-temperature, epigenetic and

sediment-hosted deposits where it may be concentrated to up to 3000 ppm (Bernstein, 1985). Low-

temperature (typically in MVT deposits), Fe-poor sphalerites are more Ge-enriched, especially if galena

is absent from the ore mineral assemblage (e.g. Ye et al., 2011; Frenzel et al., 2015). The mechanism

that allows Ge to be incorporated in sphalerite structure has been debated, because Ge occurs as both

Ge2+ and Ge4+, and two main substitution mechanisms (2Ge2+ + Ga3+ + 2Cu2+ + Cu+ ↔ 6Zn2+ and Ge4+

+ 2Cu+ + Cu2+ ↔ 4Zn2+) have been proposed (e.g. Johan, 1988; Carillo-Rosua et al., 2008; Cook et al.,

2015). Belissont et al. (2015) showed that presence of monovalent elements (Cu, Ag, Tl) enhance the

incorporation of Ge4+ in sphalerite via coupled substitutions such as Ge4+ + 2(Ag,Cu)+↔2Zn2+.

LA-ICP-MS analyses of the sphalerites from western Bergslagen show insignificant Ge

concentrations but nonetheless above detection limit (0.5-1 ppm).

5.3.8 Gallium

Sphalerite is the second most important source of Ga after bauxite deposits (e.g. European Commission,

2014). It is incorporated in sphalerite by solid solution of Ga2S3 and is usually present only as a trace

component (Krämer et al., 1987). Low-temperature, Fe-poor sphalerites have been proved to contain

increased Ga content (Cook et al., 2009; Frenzel et al., 2015). High-Ga sphalerites characteristically

exhibit strong emerald-green internal reflections (Picot & Johan, 1977). The results from the LA-ICP-

MS analyses show that among the studied localities, Ga occurs in trace concentrations with the highest

concentration of 6.5 ppm in the Hasselhöjden sample (2002.0015).

5.3.9 Silver

Sphalerite can accommodate up to c. 100 ppm Ag in its structure, but it is more commonly present as

micro- and nano-inclusions of Ag-rich phases (Cook et al., 2009 and references therein). Ag

concentrations in the samples from westernmost Bergslagen exhibit a significant variation, from 1 ppm

in the Alkvettern sample (1831.1033) to more than 250 ppm in Getberget (Getberget b). The majority

of the samples (19 out of 26 samples) contain amounts in the 1-10 ppm range (Fig. 42).

Page 59: Compositional Systematics of Sphalerites from Western Bergslagen…uu.diva-portal.org/smash/get/diva2:953522/FULLTEXT01.pdf · The Bergslagen ore province in central Sweden has a

51

Figure 42. Plot of mean Ag concentrations of all analyses in the different localities. Data from LA-ICP-MS analyses. Numbers next to the locality names show location in Fig. 9.

The standard deviation is high, and coupled with the observed peaks in the depth signal profiles,

suggest that silver is not incorporated in the sphalerite lattice but it is present as nano or (sub-) micro-

inclusions (Fig. 43).

Figure 43. A) Standard deviation values of Ag concentration, and B) Ag signal-profile from the LA-ICP-MS analyses showing presence of Ag-rich micro-inclusions. Numbers next to the locality names show location in Fig. 9.

5.3.10 Mercury

Sphalerite has been observed to contain up to 16 wt. % of Hg (Grammatikopoulos et al., 2006). It is

suggested to be incorporated by a direct Hg2+ ↔ Zn2+ substitution, and the highest Hg concentrations

are found in low Fe-sphalerites (Cook et al. 2009). Hg-rich sphalerites characteristically occur together

with Hg-bearing tetrahedrite and cinnabar (Cook et al. 2009).

The mean Hg concentrations in the analyzed sphalerite samples are less than 100 ppm and they

generally range between 4 and 90 ppm (Fig. 44). The medium to low standard deviations (Table 4)

favors the direct substitution mechanism and lattice-bound mercury in these samples.

Page 60: Compositional Systematics of Sphalerites from Western Bergslagen…uu.diva-portal.org/smash/get/diva2:953522/FULLTEXT01.pdf · The Bergslagen ore province in central Sweden has a

52

Figure 44. Plot of mean Hg concentrations of all analyses in the different localities. Data from LA-ICP-MS analyses. The Lahäll sample (LAH.001.6) yielded an Hg content below the detection limit. Numbers next to the locality names show location in Fig. 9.

5.3.11 Lead

The Pb concentrations in sphalerite can vary considerably, not only between samples from the same

deposit, but also within the same crystal (e.g. Cook et al. 2009; Lockington et al. 2014). This is due to

the presence of Pb-bearing (sub-)micro and nano-inclusions of galena or other Pb-sulphides that

produce outliers that skew any real lattice-bound lead content (Lockington et al. 2014). Cook et al.

(2009) interpreted the commonly limited Pb substitution into sphalerite as a result of the large ionic size

difference between Zn2+ and Pb2+, with Pb partitioned mostly into the commonly coexisting galena.

Figure 45. Plot of mean Pb concentrations of all analyses in the different localities. Data from LA-ICP-MS analyses. Numbers next to the locality names show location in Fig. 9.

Page 61: Compositional Systematics of Sphalerites from Western Bergslagen…uu.diva-portal.org/smash/get/diva2:953522/FULLTEXT01.pdf · The Bergslagen ore province in central Sweden has a

53

Measured Pb concentrations by LA-ICP-MS show a large variation between the different samples

(Fig. 45). The lowest content (0.1 ppm) was in a sample from Nordmark (1919.1470b), and the highest

yielded up to 7200 ppm, in a sample from Getberget (Getberget b). This high variation coupled with

very high standard deviations between spots of the same samples and the peaked signal profiles (Fig.

46), clearly suggest the presence of inclusions of Pb-bearing minerals.

Figure 46. A) Standard deviation values of the Pb-analyses, B) a significant heterogeneity of the Pb distribution in sphalerite (Myssf.B1.1) as indicated by the LA-ICP-MS signal profile. Numbers next to the locality names show location in Fig. 9.

5.3.12 Bismuth

Bi is seemingly only found in sphalerites in the form of Bi-bearing inclusions (Cook et al. 2009;

Lockington et al. 2014). The Bi concentrations in all but one sample from westernmost Bergslagen

(from LA-ICP-MS analyses) are either below detection limit, or as minute traces. The only exception

is one of the Getberget samples (Getberget b) which exhibits an elevated bismuth content of 220 ppm.

The mean Bi-concentrations yield high standard deviation values (Table 4) indicating the presence of

Bi-bearing phases.

5.3.13 Arsenic

Solidly confirmed As-bearing sphalerites have only been reported from black shale-deposits (e.g.

Orberger et al., 2003), and in a pink, Fe-poor, sphalerite from the Alacran deposit in Chile (Clark, 1970).

The latter author proposed a low-temperature (below 200oC), limited ZnAs ↔ ZnS solid solution (i.e.

As2- ↔ S2- substitution) (up to 1.7±0.3 w.t. %) for these types of sphalerites (Clark, 1970). The As

concentrations (from LA-ICP-MS) in the analyzed samples from westernmost Bergslagen were

consistently below the detection limit in all the samples (Table 4).

Page 62: Compositional Systematics of Sphalerites from Western Bergslagen…uu.diva-portal.org/smash/get/diva2:953522/FULLTEXT01.pdf · The Bergslagen ore province in central Sweden has a

54

5.3.14 Selenium

Se can be incorporated in sphalerite by solid solution between ZnS and ZnSe (stilleite) (i.e Se2- ↔ S2-

substitution) (Pirri, 2002), and Se-bearing sphalerite (up to 1300 ppm Se) has been found in black shale

deposits (Orberger et al., 2003). Most of the examined samples in this study (15 out of 26) have Se

concentrations below the detection limit (from LA-ICP-MS). The highest concentration is found in one

of the Gåsborn samples (Gås IIa), and in the Borns Koppargruva and Gruvåsen samples, which contain

37, 56, and 72 ppm Se respectively. The Långban sample (EJ-BhZ.Ib) is as high as 180 ppm. The

standard deviation (Table 4) for all these samples is low, which suggests that Se is lattice-bound, i.e.

incorporated by a solid solution mechanism as stated above.

5.3.15 Tin

Sn is present in sphalerite as discrete Sn-bearing inclusions or rarely incorporated in limited amounts

through the sphalerite-stannite (Cu2FeSnS4) solid solution (Oen et al., 1980). Carillo-Rosua et al. (2008)

and Murakami & Ishihara (2013) suggested the coupled substitution mechanism; Sn4+ + 2Cu2+ ↔ 3Zn2+

for minor amounts of Sn incorporated in the sphalerites from various deposits (e.g. from Spain, Bolivia,

and China). Twenty three (out of 26) samples from westernmost Bergslagen yielded Sn-contents below

detection limit (from LA-ICP-MS). Two samples, from Getberget and Borns Koppargruva (Getberget

b and 57.4154 respectively), contain a few tens of ppm Sn, but have high standard deviation values

indicating the presence of Sn-bearing micro-inclusions (Table 4).

5.3.16 Antimony

Sphalerite is not commonly reported as a Sb-carrier (Ramdohr, 1969), but Carillo-Rosua et al. (2008)

found appreciable amounts of Sb in sphalerite from the Palai-Islica deposit and suggested the

substitution mechanism Sb3+ + Cu+ + Cu2+ ↔ 3Zn2+. Black-shale sphalerites have been reported to

contain up to 250 ppm Sb (Orberger et al., 2003). All analyses of Sb in this study showed concentrations

(from LA-ICP-MS) below the detection limit (Table 4).

Page 63: Compositional Systematics of Sphalerites from Western Bergslagen…uu.diva-portal.org/smash/get/diva2:953522/FULLTEXT01.pdf · The Bergslagen ore province in central Sweden has a

55

5.3.17 Gold

Sphalerite is generally not considered a host mineral for lattice-bound Au, but sphalerite formed by

metamorphic remobilization can contain Au inclusions (e.g. Hurley & Crocket, 1985). Most of the

analyzed samples contain traces of Au (~ 0.05 ppm) or Au below the detection limit (from LA-ICP-

MS), with the highest concentrations reported in the Lahäll (LAH.001.2) and Näset (Näset I) samples

with 0.19 and 0.38 ppm Au, respectively. The high standard deviation values however, indicate

existence of (micro-) nano-inclusions of Au-bearing phases (Table 4).

5.3.18 Thallium

It has been suggested that sphalerite can be a major sink for Tl (Nriagu, 1998), but in most cases Tl

occurs only in concentrations in the range of few tens of ppm. For the 24 of the 26 analyzed samples

the Tl concentrations are below detection limit (from LA-ICP-MS) and the remaining sample (Gåsborn

Gås NI And) contains 1.6 ppm.

5.3.19 Nickel

Ni is not common in sphalerite (Cook et al. 2009) but concentrations of up to 2000 ppm have been

reported in sphalerites from VHMS deposits in Australia (Huston et al., 1995). Four of the samples in

this study (from LA-ICP-MS), from Myssberget (MyB.001.1), Näset (Näset II), Långban (EJ-BhZ-Ib)

and Silvhytte gruvor (57.4128), showed detectable Ni concentrations around c. 1-2 ppm (Table 4).

5.3.20 Molybdenum

Mo concentrations are usually very low in sphalerite, but contents up to 95 ppm of Mo were reported

by Huston et al. (1995), who suggested that it possibly reflects Mo3+ substitution into the lattice.

Orberger et al (2003) reported Mo concentrations up to 5000 ppm in black shale sphalerites. None of

the analyzed sphalerites in this study contain detectable Mo (from LA-ICP-MS).

5.3.21 Tellurium

Te incorporation in sphalerite is rather limited but it has been suggested that some solid solution

between ZnTe and ZnS (i.e. Te2- ↔ S2- substitution) can occur (Tomashic et al. 1978). None of the

analyzed samples contains any detectable amounts of Te (from LA-ICP-MS).

Page 64: Compositional Systematics of Sphalerites from Western Bergslagen…uu.diva-portal.org/smash/get/diva2:953522/FULLTEXT01.pdf · The Bergslagen ore province in central Sweden has a

56

6. Discussion

6.1 EMPA vs LA-ICP-MS analyses

Applying both EMPA and LA-ICP-MS techniques, the most commonly used microchemical in-situ-

methods, gives the opportunity for a direct comparison of the two methods. Comparable studies on

trace-element analyses in Fe-oxides (i.e. magnetite) have shown that the LA-ICP-MS method is better

on the expense of the spatial resolution (e.g. Dupuis & Beaudoin, 2011; Makvandi et al., 2016), however

a similar study for sphalerite has not been conducted.

The analytical results of both methods are listed in Tables 7 and 8 in Appendixes A and B

respectively, but an overview of the EMPA vs LA-ICP-MS comparison can be seen in Table 5. In total,

142 analyses were conducted on the same spot, providing a direct spot to spot comparison between the

two methods.

Table 5. Overview table of the results from both EMPA and LA-ICP-MS analyses. Number of samples, spots analyzed as well as the detection limits of the minor and trace elements are noted (EMPA-left, LA-ICP-MS-right).

Page 65: Compositional Systematics of Sphalerites from Western Bergslagen…uu.diva-portal.org/smash/get/diva2:953522/FULLTEXT01.pdf · The Bergslagen ore province in central Sweden has a

57

Figure 47. EMPA vs LA-ICP-MS concentration plots of S, Zn, Fe, Mn, Cd and Co. S, Zn and Fe contents are shown in %, and Mn, Cd and Co in ppm. Red line represents a 1:1 correlation between the methods.

Measurements of the major elements of sphalerite as well as for Fe and Mn that comprise the most

abundant minor elements are presented (Fig. 47). Obviously, S and Zn concentrations are very well

defined, showing very small scattering with almost all the analyses plotting on or along the 1:1 line.

Page 66: Compositional Systematics of Sphalerites from Western Bergslagen…uu.diva-portal.org/smash/get/diva2:953522/FULLTEXT01.pdf · The Bergslagen ore province in central Sweden has a

58

Figure 48. EMPA vs LA-ICP-MS concentration plots of Cu, Hg, Pb, Bi, Se and Ag in ppm. Red line represents a 1:1 correlation between the methods.

Deviation between EMPA and LA-ICP-MS for these elements are as low as 4.2% for S and 2.5% for

Zn. Fe shows a similar correlation (7.3% mean deviation), which is expected as the Fe content from

EPMA analyses has been used as an internal standard for the LA-ICP-MS analysis. Mn contents range

between 0.1-1% in both methods and beside a few outliers there is a close to 1:1 correlation between

the two methods, with a deviation of about 20%.

The results for Cd (Fig. 47) also show a good correlation (15% mean deviation). However, the

correlation is more precise in the Cd-rich points. At concentrations close to the detection limit of the

EPMA (i.e. 125 ppm), the correlation is noticeable lower. Cu concentrations by the LA-ICP-MS range

Page 67: Compositional Systematics of Sphalerites from Western Bergslagen…uu.diva-portal.org/smash/get/diva2:953522/FULLTEXT01.pdf · The Bergslagen ore province in central Sweden has a

59

between 2 and 2000 ppm, while EMPA measurements are in the range of 150 to 1000 ppm, indicating

a deviation of approximately 80% between the methods. Co concentrations are, for a majority of the

points, on the same order of magnitude in both methods, and a ‘modest’ deviation of 35% is observed.

Analyses of Pb and Bi record a striking feature. Both elements are measured from traces (0.05 ppm) to

a few tens of ppm in the LA-ICP-MS analyses, while the EMPA analyses of the same spots yielded

concentrations several orders of magnitude higher (Fig. 48). The same pattern is also seen for Se, Ag,

and Hg, although to a lesser extent. Additionally, these elements provided much fewer points for the

analytical comparison.

For the majority of the EMPA analyses, indium is below detection limit, with a few exceptions with

relatively high indium concentrations. In contrast all LA-ICP-MS analyses yield indium signals which

reflect the much lower detection limits of this method compared to EMPA (0.007 vs 125 ppm for In).

It is notable that even for In concentrations that (according to LA-ICP-MS) are higher than the detection

limit-value of the EPMA, is not recorded by this method (Fig. 49). Only analyses with indium contents

˃250 ppm are detectable in both the methods, but then with surprisingly good correlation (18% mean

deviation). This pattern indicates that the suggested EPMA detection limit of 125 ppm for In is

underestimated and should be closer to 250 ppm.

Figure 49. Plot of EMPA and LA-ICP-MS point analyses of indium in sphalerite. Dashed line represents the detection limit of EMPA analysis (125 ppm).

The remaining analyzed elements i.e. Sn, Sb, As, Ga and Ge, were constantly below the detection

limit of the EPMA (As, Ga, Ge, Sb) or for a few analyses (Sn) above did not show a good correlation

with the LA-ICP-MS analyses. It is obvious that the precision of EMPA and LA-ICP-MS shows a

reverse relation with the abundancy of the elements (Fig. 50). Main (S, Zn) or major elements (Fe) have

good correlation (under 7% mean deviation), while for the most abundant minor elements (Co, Mn, and

Cd) the measurement inaccuracy lies below 35%. For the less abundant elements like, Pb, Bi, Se, Hg,

Page 68: Compositional Systematics of Sphalerites from Western Bergslagen…uu.diva-portal.org/smash/get/diva2:953522/FULLTEXT01.pdf · The Bergslagen ore province in central Sweden has a

60

Ag and Sn the deviation between EMPA and LA-ICP-MS analyses is high, often several orders of

magnitude. Cu records moderate to high deviation of 85%.

An exception among the trace elements is In, which matched well between the two methods when

concentrations are ≥ 250 ppm (less than 20% mean deviation).

Figure 50. Mean deviation values in the measurements of the two methods for each element separately, given in percent.

6.1.1 The Pb-Bi problem

The Pb and Bi analyses exhibit the highest deviation between the EMPA and the LA-ICP-MS methods.

EMPA analyses show unrealistically high concentrations of these two elements (in the order of

thousands of ppm) that should be in the order of a few ppm according to LA-ICP-MS analyses. The

reason for this observation can, possibly, be explained by the background-hole phenomenon (Self et al.,

1990; Remond et al., 2002). A false element-signal can be produced when the background, for some

reason, creates a trough, a so called background-hole and the height distance between the trough and

the rest of the background can mistakenly be measured as a peak by the instrument. A similar effect has

been observed for Au analyses in arsenopyrite (Remond et al., 2002).

One of the samples from Myssfallet (Myssf-B1-1) was selected for detailed background scanning in

order to examine whether a background-hole phenomenon could explain the high Pb and Bi

concentrations measured by the EPMA. The instrument was set to scan the background spectrum-range

between 158-168 mm for 4000 sec (dwell time) using 15.0 kV acceleration current and a 5 μm circular

beam.

0

50

100

150

200

250

Zn S Fe Cd In Mn Co Cu Sn Hg Ag Se Pb Bi

dev.

in %

EMPA vs LA-ICP-MS

Page 69: Compositional Systematics of Sphalerites from Western Bergslagen…uu.diva-portal.org/smash/get/diva2:953522/FULLTEXT01.pdf · The Bergslagen ore province in central Sweden has a

61

The result of the background scanning shows that a high S-peak is the most prominent feature (Fig.

51a). This peak was measured at 161.1mm and disrupts the otherwise flat, background-signal on either

side of the peak. The Pb-peak was measured at 162.470 mm (39 mm intensity) with the minus

background measurement at 159.030 mm (39 mm) and the plus background measurement at 166.0.73

(19 mm). For Bi, the peak was measured at 163.807 mm (27 mm), minus background at 159.307 mm

(29 mm) and plus background at 166.807 mm (11 mm) (Fig. 51b).

Figure 51. Background scan of a) the spectrum range 158-168 mm, and b) close up view of the 162-167 mm part.

Page 70: Compositional Systematics of Sphalerites from Western Bergslagen…uu.diva-portal.org/smash/get/diva2:953522/FULLTEXT01.pdf · The Bergslagen ore province in central Sweden has a

62

Table 6. Peak and background analytical measurements for Pb and Bi. Peak (-) Bg (+) Bg

Pb

162.470 mm-39 mm

159.030 mm-39 mm

166.073 mm-19 mm

Bi

163.807 mm-27 mm

159.307 mm-29 mm

166.807 mm-11 mm

The (-) background measurements show equal values for the measured peaks for Pb and almost equal

for Bi, whereas (+) background values are noticeably lower (Table 6), suggesting that both Pb and Bi

were measured at the 162.470 mm and 163.807 mm part of the spectrum, respectively. However, a close

up view of the spectrum range that includes Pb and Bi peaks and (+) background measurements shows

that they are measured at the S-peak tail (Fig. 51b). The obtained concentrations of Pb and Bi are

therefore only apparent.

The existence of ‘unrealistic peaks’ producing false concentrations of Pb and Bi cannot be ruled out

for the other samples that all show a similar pattern.

6.2 Substitution mechanisms and data trends

The extensive dataset acquired from both EMPA and LA-ICP-MS analyses provides an opportunity of

recording correlation trends between elements as well as an opportunity to determine incorporation and

substitution mechanisms that can occur in sphalerite. Several studies have suggested substitution

mechanisms that allow a number of elements to be incorporated in the lattice (e.g. Johan, 1988; Carillo

et al., 2008; Murakami & Ishihara, 2013; Julien et al., 2014; Belissont et al., 2014, 2015; Cook et al.,

2015). Johan (1988) summarized the substitution mechanisms in sphalerites from hydrothermal veins

in the following general equations:

• M+ + M3+ ↔ 2Zn2+

• 2M+ + M2+ + M4+ ↔ 4Zn2+

• (x+2y)M+ + yM2+ + xM3+ + yM4+ ↔ (4-4y-2x)Zn2+

Where M+=Ag, Cu; M2+=Cu, Fe, Cd, Hg, Zn; M3+=In, Ga, Fe, Tl; M4+=Ge, Sn, Mo, W; x and y are

atomic proportions of M+, M2+, M3+ and M4+ , substituting for Zn2+.

Correlation plots of various sets of elements can reveal the substitution mechanisms in the studied

sphalerites from western Bergslagen (Fig. 52 and Fig. 54). Correlation coefficient values (±R value)

have been calculated for each correlation plot. The degree of correlation is:

• R˂0.25 – no correlation,

• 0.25˂R˂0.5 – weak correlation,

Page 71: Compositional Systematics of Sphalerites from Western Bergslagen…uu.diva-portal.org/smash/get/diva2:953522/FULLTEXT01.pdf · The Bergslagen ore province in central Sweden has a

63

• 0.5˂R˂0.75 – moderate correlation,

• 0.75˂R˂1 – strong to perfect correlation

Incorporation of Fe in sphalerite via the direct substitution Fe2+ ↔ Zn2+ is well established (e.g. Johan,

1988; Julien et al., 2014; Belissont et al., 2014, 2015) which is also apparent in the Bergslagen samples

given by the correlation coefficient value R=-0.974. A coupled substitution with Cd2+ in addition to

Fe2+ is suggested by the increased R value (R=-0.984) as Fe2+ + Cd2+ ↔ 2Zn2+ (e.g. Julien et al., 2014;

Belissont et al., 2014, 2015). Mn is also possible to be part of the latter substitution mechanism i.e. Fe2+

+ Cd2+ + Mn2+↔ 2Zn2+ given by the increased R value (R=-0.986) (Fig. 52a).

When all Cu analyses are considered there is no correlation (R=0.073) between Cu and In. However,

for In concentration higher than 10 ppm and excluding analyses with unrealistically high Cu content

(i.e. >5000 ppm due to e.g. chalcopyrite disease) the R value is significantly higher (R= 0.49) (Fig.

52b). Subsequently, for these sphalerites the coupled substitution Cu++In3+↔2Zn2+ can be suggested

(e.g. Johan, 1988; Murakami & Ishihara, 2013). The moderate degree of correlation can be due to the

likelihood of other competing substitutions by which elements with 3+ and 4+ oxidation states entering

sphalerite (Ye et al., 2011).

It has also been suggested that the Ag content (as a monovalent ion) can be part of the latter

substitution mechanism as (Cu+,Ag+)+In3+↔2Zn2+ (e.g. Murakami & Ishihara, 2013). The correlation

plot between Cu+Ag vs In, (Fig. 52c) show a moderate correlation (R=0.52) which is higher than for

the Cu vs In (0.52 vs 0.49), which implies that Ag favors the suggested substitution mechanism.

However, most of the Ag in the sphalerite is associated with elevated Pb and is thus hosted in galena

micro-inclusions (Figs. 43 and 46). This suggest that the strong Ag-Pb correlation of R=0.912 (Fig.

52d) is not related to sphalerite, but is attributed to these micro-, nano-inclusions. Galena can

incorporate high concentrations of Ag due to similar ionic size between Ag+ and Pb2+, and the coupled

substitution Ag+ + (Bi3+,Sb3+) ↔ 2Pb2+ can occur (e.g. Lockington et al., 2014; George et al., 2015 and

references therein). Ag-rich galena in western Bergslagen has been known from a long time (e.g.

Tegengren, 1924) and it has also been mined for silver in several localities. Ag enrichment can also

occur within the lattice of low-temperature sphalerites that may be remobilized with Pb during

metamorphism to form galena exsolutions (Lockington et al., 2014).

The galena micro-inclusions are related with increased Cd concentrations in a number of samples

(e.g. MyB.001.1, Getberget b, Gås NI And, 57.4154, 2000.0189 and HÄL.01.1) (Fig. 53) indicating

that Cd is hosted in these inclusions. Galena can incorporate substantial amounts of Cd (Bethke &

Barton, 1971), even though sphalerite is one of the most important sink and ore of this element (e.g.

Cook et al., 2009). Due to the competitive behavior between Cd and Fe to enter the sphalerite structure,

high Cd should be followed by low Fe concentrations which is not the case for these samples.

Page 72: Compositional Systematics of Sphalerites from Western Bergslagen…uu.diva-portal.org/smash/get/diva2:953522/FULLTEXT01.pdf · The Bergslagen ore province in central Sweden has a

64

Figure 52. Correlation plots of a) (Fe + Mn + Cd) vs Zn, b) Cu vs In, c) (Cu + Ag) vs In, and d) Ag vs Pb. Red line represents 1:1 positive correlation between concentrations. In plots b) and c) only the analyses with In>10 ppm and Cu˂5000ppm are considered.

Although Mn and Fe are typically competing in substituting Zn in the sphalerite lattice (Mn2+,

Fe2+↔Zn2+), this negative correlation is not reported in the analyzed samples. On the contrary, the

samples from Långban (EJ-BhZ-Ib), Silvhyttegruvor (57.4128), Hasselhöjden (2002.0015) and

Alkvettern (1831.1033) show low concentrations in both Fe and Mn. This observation can be related to

the overall Mn budget of the area.

There is a weak negative correlation in the studied samples between Hg and Cd (R= -0.403) and in

low In samples there is no correlation between Mn-In, Cu-Ag, and Mn-Cd (Fig. 54).

Page 73: Compositional Systematics of Sphalerites from Western Bergslagen…uu.diva-portal.org/smash/get/diva2:953522/FULLTEXT01.pdf · The Bergslagen ore province in central Sweden has a

65

Figure 53. Relationship between Cd, Ag and Pb throughout the study localities. MyB.001.1, Getberget b, Gås NI And, 57.4154, 2000.0189 and HÄL.01.1 have high Pb and Ag concentrations indicating galena micro-inclusions that are also the main Cd carrier. Numbers next to the locality names show location in Fig. 9.

Figure 54. Correlation plots of a) Hg vs Cd, b) Mn vs In, c) Cu vs Ag, and d) Mn vs Cd. Red ellipsoid represents reverse correlation.

Page 74: Compositional Systematics of Sphalerites from Western Bergslagen…uu.diva-portal.org/smash/get/diva2:953522/FULLTEXT01.pdf · The Bergslagen ore province in central Sweden has a

66

6.3 Elemental patterns

6.3.1 Critical or ‘high-tech’ elements

Even though the number of sphalerite samples analyzed in this study is limited (1-4 for each deposit

locality) the acquired data show a high variation in trace element concentrations within and between

nearby mineralizations. This is not unexpected as high trace element variations are common in

sphalerite and can reach an order of magnitude even within a simple crystal (Cook et al., 2009; Shimizu

& Morishita, 2012).

Ge and Ga are usually associated with low-T deposits (e.g. Cook et al., 2009; Ye et al., 2011; Frenzel

et al., 2015) therefore concentrations below the detection limits in the western Bergslagen samples are

not surprising. The In concentration varies between 0.1 to 400 ppm and there is notable that there is a

positive relationship between Cu and In (Fig. 55) and a correlation that is corroborated with the coupled

substitution (Cu+ + In3+)↔2Zn2+ (Cook et al., 2009; Shimizu & Morishita, 2012).

Elevated In contents are also often accompanied by enrichment of Mn, which is most apparent in

Hällefors (HÄL.01.1), Getberget (Getberget b) and Nordmark (1919.1470a and 1919.1470b) (Fig. 55a

and b). This potentially suggests the substitution mechanism Cu++Mn2++In3+↔3Zn2+ for these

sphalerites. In sphalerite a positive correlation between Fe and Mn has been observed, and to some

degree between Fe and In for sphalerites from VMS deposits (Ye at al., 2011). With a few exceptions

(Näset, Nordmark vein and Hasselhöjden) sphalerite with a In content > 20 ppm has a high Fe

concentration and Fe-poor crystals are also low in In (Fig. 55c).

The In-rich sphalerites (≥150 ppm In) are all from a rather restricted area but locations with

significant In anomalies (≥ 30 ppm) are more widespread (Fig. 56). Sphalerites from mineralizations in

supracrustal slivers within or at the boundary to the Filipstad granite and in veins (Skatviken,

Silvhyttegruvor, Nordmark-vein, Limtjärn and Alkvettern) are In-poor (˂20 ppm In).

Page 75: Compositional Systematics of Sphalerites from Western Bergslagen…uu.diva-portal.org/smash/get/diva2:953522/FULLTEXT01.pdf · The Bergslagen ore province in central Sweden has a

67

Figure 55. Indium concentration plots throughout the studied localities in relation to, a) Cu-In correlation corresponding to the coupled substitution Cu+ + In3+↔2Zn2+, b) most of the sphalerites show a correlation between Mn and In and c) correlation between Fe and In. Red lines show the trend that sphalerite crystals with low Fe content are also low in In. However there are exceptions to this trend (arrows). Data derived from LA-ICP-MS analyses. Numbers next to the locality names show location in Fig. 9.

Page 76: Compositional Systematics of Sphalerites from Western Bergslagen…uu.diva-portal.org/smash/get/diva2:953522/FULLTEXT01.pdf · The Bergslagen ore province in central Sweden has a

68

Figure 56. Overview map of the study area with In-rich and In-poor sphalerite samples noted (modified from Stephens et al., 2009). Thick black line shows the occurrence of the Gåsborn granite. In anomalies in literature from Burke & Kieft (1980), Kieft & Damman (1990), Sundblad & Ahl (2008) and Jonsson et al. (2013).

Page 77: Compositional Systematics of Sphalerites from Western Bergslagen…uu.diva-portal.org/smash/get/diva2:953522/FULLTEXT01.pdf · The Bergslagen ore province in central Sweden has a

69

6.3.2 The other elements

The variations of other trace elements such as Co and Cd, and to some degree Mn, are also large even

between nearby deposits such as Lahäll, Myssberget and Myssfallet that are hosted in the same marble

body within a few hundreds of meters to each other (Figs. 9 and 10). The Mn content varies from 0.15

wt. % to 1.2 wt. % between Myssfallet (Myssf.B3.1) and Lahäll (LAH.001.2). The Co content varies

significantly as well, from 32 ppm in Myssfallet (Myssf.B3.1) to 570 ppm in Myssberget. The

Myssf.B3.1 sample is pyrite-bearing and sphalerites occurring together with pyrite are known to be Co-

poor due to the preferable incorporation of Co in the pyrite structure (Lockington et al., 2014), which

could explain the low Co content in this sample. Cd concentrations range between 0.1 wt. % (Lahäll

LAH.001.2) to 2.4 wt. % (Myssberget MyB.001.1). The highest Cd concentrations are in most cases

hosted by galena micro-inclusions (Fig. 53).

In addition to large variation in Co, sphalerites from the dolomite-hosted Getberget and Näset and

the skarn-hosted Långban deposits, located within about a kilometer of each other (Figs. 9 and 10), also

exhibit a wide range in Mn content. Sphalerites from Långban (EJ.BhZ.Ib) have 65 ppm Mn while the

Mn concentrations in Getberget (Getberget b) and Näset (Näset I) are 1.1 wt. % and 0.5 wt. %,

respectively. This variation is most likely related to the local Mn budget. Långban is a polymetallic Fe-

Mn deposit with numerous different Mn-phases (e.g. Holtstam & Langhof, 1999) acting as efficient

sinks for this element. In the Getberget and Näset deposits Mn minerals are insignificant or not at all

present. Pyrite is known from the Getberget deposit (Zakrewski, 1982), even though it was not observed

in the studied samples, and the sphalerite (i.e. from Getberget) is Co-poor (30 ppm). This indicates that

pyrite has been the main Co carrier. Another set of deposits that occur in close vicinity to each other

are the Hasselhöjden and Skatviken deposits (Fig. 9) with measured Co-concentrations of 3 and 200

ppm, respectively. The marble-hosted Hasselhöjden sample shows the lowest Co concentration between

all the samples examined.

Finally, for sphalerites that show significant enrichment in some elements (i.e. in Ag, Pb and Cu) it

is most likely that they are hosted by inclusions rather than reflecting lattice bound concentrations. This

applies specifically for the Getberget sample (Getberget b, Ag and Pb), the Hällefors sample (HÄL.01.1,

Ag and Pb) and for the Gåsborn sample (Gås IIa, Cu).

6.4 Genetic considerations

The distribution of minor and trace elements in sphalerite have been used as discriminators between

different mineralization types (e.g. Gottesmann & Kampe, 2007; Ye et al., 2011). It has been proposed

that sphalerites in exoskarns are high in Co and Mn, sphalerites in massive sulphide deposits, both

stratiform and stratabound are high in In, Sn and Ga, and sphalerites in Mississippi Valley Type (MVT)

Page 78: Compositional Systematics of Sphalerites from Western Bergslagen…uu.diva-portal.org/smash/get/diva2:953522/FULLTEXT01.pdf · The Bergslagen ore province in central Sweden has a

70

deposits are high in Ge, Cd, Tl and As (Ye et al., 2011). Likewise, the Zn/Cd ratio has been used to

differentiate between syngenetic submarine and epigenetic hydrothermal mineralizations (Gottesmann

& Kampe, 2007).

Most of the skarn and dolomite-dominated marble deposits from western Bergslagen plot in or close

to the massive sulphide field (Fig. 57) as defined by Ye et al. (2011). The calcite-dominated marble

deposits and the Långban skarn sample are more scattered but fall outside the massive sulphide field in

all plots (Fig. 57) and with the exception for the Fe vs Cd plot (Fig. 57e), none of the samples plot in

the exoskarn field.

The Zn/Cd ratio in skarn-hosted sphalerite is higher in submarine syngenetic compared to epigenetic

and remobilized deposits (Gottesmann & Kampe, 2007). The syngenetic deposits have ratios >300

whereas the Zn/Cd ratios of the epigenetic ones are below 300. This systematic variation cannot be

discerned in the sphalerite-bearing deposits in western Bergslagen, where e.g. epigenetic vein-hosted

(Nordmark 2007.0304) as well as earlier formed sphalerite from the same deposit both plot in the

syngenetic field (Fig. 58). In the carbonate-hosted sphalerite the Zn/Cd is <300, and the sphalerite from

skarn deposits plot in both fields without any obvious systematic trends.

The Zn/Cd ratio as a discriminator was established for modern ocean ridge deposits and applied to a

Mesozoic zinc mineralization in Mongolia, but it is suggested to be applicable for sphalerite-bearing

skarn deposits generally (Gottesmann & Kampe, 2007). However, the results from the Bergslagen

deposits, essentially formed in a diversified, Palaeoproterozoic continental crust, show that the

processes behind the Zn/Cd ratios in sphalerite are more complex than in ocean crust settings, and that

the Zn/Cd ratio therefore cannot be universally used as a discriminator, at least not for deposits formed

in a continental setting.

Seemingly, the area around the Gåsborn granite (Cruden et al., 1999) in western Bergslagen (Fig 56)

hosts several mineralizations with anomalously high In contents, carried by Cu-sulphides, sphalerite

and roquesite (Burke & Kieft, 1980; Kieft & Damman, 1990; Sundblad & Ahl, 2008; Jonsson et al.,

2013; Sundblad, 2016). It has been suggested that this anomaly is related to anorogenic, granite-derived

systems comparable to rapakivi-related mineralizations in Finland (Sundblad & Ahl 2008; Cook et al.,

2011; Valkama et al., 2016). This has been disputed based on textural relationships and mineral

chemistry in the roquesite-bearing Lindbom’s prospect and observations in the nearby polymetallic

deposit at Långban (Jonsson et al., 2013 and references therein), which indicate that the In-bearing

assemblages represent an originally synvolcanic mineralization that was later modified through high

temperature remobilization and recrystallization processes during Svecokarelian regional

metamorphism (Jonsson et al., 2013). High Co and Mn content in the sphalerite advocate an epigenetic,

intrusion-related origin (Ye et al. 2011). However, an originally syngenetic volcanic-hydrothermal

origin is indicated by the distribution of minor and trace elements presented in the discrimination

diagrams (Fig. 57).

Page 79: Compositional Systematics of Sphalerites from Western Bergslagen…uu.diva-portal.org/smash/get/diva2:953522/FULLTEXT01.pdf · The Bergslagen ore province in central Sweden has a

71

Figure 57. Binary plots of a) In vs Fe, b) In vs Cu, c) Fe vs Mn, d) Cd/Fe vs In/Fe and e) Fe vs Cd, between sphalerites of different deposit types of western Bergslagen. Blue and red areas represent massive sulphide and exoskarn plot areas, respectively, according to Ye et al. (2011).

The In-rich polymetallic Toyoha deposit (Japan), formed by high temperature (300-400 °C), volcanic

to sub-volcanic hydrothermal fluids (Shimizu & Morishita, 2012) and the massive sulphide deposits

from the western part of the South China Terrane (Ye et al., 2011) are also rich in Sn or Sn, Cu and Ag.

Several of the sampled deposits in western Bergslagen are Cu-rich, the sphalerites from Myssberget,

Getberget, Gåsborn, Borns koppargruva and Hällefors are additionally Ag anomalous.

Page 80: Compositional Systematics of Sphalerites from Western Bergslagen…uu.diva-portal.org/smash/get/diva2:953522/FULLTEXT01.pdf · The Bergslagen ore province in central Sweden has a

72

Figure 58. Zn/Cd ratios between the skarn deposits of western Bergslagen. In red color is shown the skarn-hosted sphalerite ore classification by Gottesmann & Kampe (2007).

Cassiterite and/or elevated Sn contents are known from the area and have been observed in Långban

(Holtstam & Langhof, 1999), Hällefors (Sundius et al., 1966), Lahäll (Bergkvist & Jonsson, 2004),

Gåsborn (Kieft & Damman, 1990), Lindbom’s Prospect (Jonsson et al., 2013) and Nordmark (E.

Jonsson pers. comm.), which could be related to ‘’syngenetic’’ volcanic-hydrothermal fluids in a similar

way as for the Japanese and Chinese mineralisations (Shimizu & Morishita, 2012; Ye et al. 2011).

Supporting a volcanic-hydrothermal, ‘’syngenetic’’ origin as opposed to formation through epigenetic

processes are occurrences of high-In sphalerite at some distance from the rather shallowly emplaced

Gåsborn granite, which would be the closest potential source for post-Svecofennian overprinting fluids.

Sphalerite with In >150 ppm is found in Nordmark c. 5 km to the west of the Gåsborn granite and 5 to

15 km to the south there are sphalerite deposits with elevated In contents (>30 ppm; Gruvåsen, Borns

koppargruva and Björkskognäs). Even though both Nordmark and Björkskognäs are located close to

the large Filipstad granite this intrusion is an unlikely source for In and other metals. Several of the

sampled mineralizations along or within the Filipstad granite are essentially In-barren, which can be

compared to the polymetallic Hornkullen deposit, located in a Svecofennian metavolcanic inlier within

the Filipstad granite. This mineralization is likely to have been affected both by the Svecokarelian

orogeny and the later TIB magmatism, but shows no apparent evidence for introduction of metals during

this later stage (Andersson, 2014).

Page 81: Compositional Systematics of Sphalerites from Western Bergslagen…uu.diva-portal.org/smash/get/diva2:953522/FULLTEXT01.pdf · The Bergslagen ore province in central Sweden has a

73

7. Conclusions

New sphalerite-bearing, skarn and carbonate deposits hosting the critical (or high-tech) element In have

been identified in westernmost Bergslagen and the previously known In-anomalous area has been

extended. Sphalerites with the highest In contents (>150 ppm) are found in the vicinity of the Gåsborn

granite (Hällefors, Getberget, Näset, Gåsborn and Långban), but also to the west (Nordmark), at a

significant distance from this intrusion, and to west of the already known In-enriched deposits. With

the exception of the Nordmark sample, sphalerite occurrences along the contact to the Filipstad granite

are In-poor (<10 ppm). Sphalerites from later veins are also low in In. The mean In contents in the In-

enriched samples are higher than 30 ppm, with a highest concentration of c. 400 ppm (Hällefors). In

most cases elevated In contents are accompanied by enrichment of Cu, Mn, and often also Ag. The

contents of the other sought-after critical elements Ge and Ga are insignificant (i.e. ˂ 1 ppm in most

samples), and at least for Ge this was expected, as it is characteristically associated with low-T deposits.

The concentrations of other trace elements in the sphalerite vary significantly, even within a given

deposit, and anomalously high contents of Pb, Ag, Cd and Cu are attributed to micro (or nano)

inclusions of primarily galena (Ag, Pb and Cd) and chalcopyrite (Cu i.e. chalcopyrite ‘disease’),

respectively. Elements like As, Mo and Te that that can be present in low concentrations in sphalerite

were not detected, and Se, Sn, Sb, Ni, Tl and Au were found, but in very low quantities.

Some of the minor and trace elements (Fe, Mn, Cd, Cu, In and Ag) are incorporated into the sphalerite

lattice by substitution for Zn and follow the known substitution mechanisms In3++(Cu+,Ag+)↔2Zn2+,

Fe2++Cd2++Mn2+↔3Zn2+, respectively. For the most In rich samples there is a positive correlation

between Cu, In and Mn, and the following substitution mechanism Cu++Mn2++In3+↔3Zn2+ is

suggested.

Minor and trace elements have been used to test discrimination methods, and to potentially unravel

whether the In-rich sphalerite was related to syngenetic, volcanic-hydrothermal, i.e. Svecofennian, or

later, granite-related (epigenetic) processes. In most discrimination diagrams the skarn occurrences plot

in the syngenetic massive sulphide field, whereas the carbonate-hosted sphalerites are scattered. Yet,

they plot, with few exceptions, outside the epigenetic exoskarn field.

Taken together, the trace element distribution and occurrences of In-enriched mineralizations distal

to younger, shallowly emplaced intrusions like the Gåsborn granite and that most of the deposits in and

along the boundary to the Filipstad granite are In-poor suggest that the In-anomalous sphalerite

mineralizations were formed through Svecofennian volcanic-hydrothermal (syngenetic) processes later

modified during the Svecokarelian orogeny.

Overall, the findings confirm that westernmost Bergslagen is In anomalous but not extremely so.

This coupled with the small size of the known deposits makes mining them unlikely to be economically

profitable, at least in the near future.

Page 82: Compositional Systematics of Sphalerites from Western Bergslagen…uu.diva-portal.org/smash/get/diva2:953522/FULLTEXT01.pdf · The Bergslagen ore province in central Sweden has a

74

A comparison between the two analytical methods used, EMPA and LA-ICP-MS, shows that the

latter has significantly lower detection limits for trace elements of low concentrations, on the behalf of

the spatial resolution.

Page 83: Compositional Systematics of Sphalerites from Western Bergslagen…uu.diva-portal.org/smash/get/diva2:953522/FULLTEXT01.pdf · The Bergslagen ore province in central Sweden has a

75

8. Acknowledgements

Firstly my supervisors Karin Högdahl (UU) and Erik Jonsson (SGU/UU) for the support and the

valuable comments during the period of the project. Professor Thomas Zack, the staff of the mineral

geochemistry laboratory of the department of Earth Sciences in the University of Gothenburg as well

as Dr. Jarek Majka are also thanked for the help during all the LA-ICP-MS and EMP-WDS analysis

respectively.

This study was supported by the Uppsala University, the Geological Survey of Sweden (SGU) and

through funding from the Swedish science council (Vetenskapsrådet) to a project at Uppsala University

focused on rare and critical metals in central Sweden. Finally, the sphalerite samples were provided by

the Natural History museum in Stockholm, the Museum of Evolution at Uppsala University, in addition

to samples that were collected in the field specifically for this project.

Page 84: Compositional Systematics of Sphalerites from Western Bergslagen…uu.diva-portal.org/smash/get/diva2:953522/FULLTEXT01.pdf · The Bergslagen ore province in central Sweden has a

76

9. References

Agricola, G. (1546): De ortue t causiss ubterraneorum, lib.V. De naturae orumq ue effluuntext erra, lib. IV. De naturafossilium, lib. X. De ueteribusetn ouism etallis, lib.II. Bermannus, siue de re metallica dialogus.In terpretatio germanica uocum rei metallicae addito indice focecundissimo. Basileae: Per Hieronymvm Frobenium et Nic. Bischoff.

Åkerman, C. (1994): Ores and mineral deposits. In: C. Fredén (ed.): Geology. National Atlas of Sweden, SNA Publications, pp. 55-66.

Alfantazi, A. M. & Moskalyk, R. (2003): Processing of indium: a review. Minerals Engineering, 16, pp. 687-694.

Allen, R.L., Lundström, I., Ripa, M., Simeonov, A. & Christofferson, H. (1996): Facies analysis of a 1.9 Ga continental margin, back arc, felsic caldera province with diverse Zn-Pb-Ag-(Cu-Au) sulphide and Fe oxide deposits, Bergslagen region, Sweden. Economic Geology, 91, pp. 979-1008.

Andersson, S. (2014): Deformation, metamorphism and remobilization in the Hornkullen polymetallic deposit, Western Bergslagen, Sweden. Unpublished master’s thesis, Uppsala University, Department of Earth Sciences, 284, 112 pp.

Andersson, U. B. (1997): The late Svecofennian, high-grade contact and regional metamorphism in southwestern Bergslagen (central southern Sweden). SGU report, 03-819/93, pp. 36.

Andersson, U. B., Högdahl, K., Sjöström, H. & Bergman, S. (2006): Multistage growth and reworking of the Palaeoproterozoic crust in the Bergslagen area, southern Sweden: evidence from U-Pb geochronology. Geological Magazine, 143, pp. 679-697.

Anthony, J. W., Bideaux, R. A., Bladh, K. & Nichols, M. C. (ed.) (1990): Handbook of Mineralogy, Chantilly, VA: Mineralogical Society of America. http://www.handbookofmineralogy.org/ [12-8-2015].

APS physics (2011): Energy Critical Elements: Securing Materials For Emerging Technologies. A report by the APS panel on public affairs & the materials research society. http://www.aps.org/publications/apsnews/201103/energycritical.cfm [12-8-2015].

Axelsson, M.D. & Rodushkin, I. (2001): Determination of major and trace elements in sphalerite using laser ablation double focusing sector field ICP-MS. Journal of Geochemical Exploration, 72, pp. 81-89.

Barton, P. B. & Toulmin, P. (1966): Phase relations involving sphalerite in the Fe-Zn-S system. Economic Geology, 61, pp. 815-849.

Barton, P. B. & Bethke, P. M. (1987): Chalcopyrite disease in sphalerite: Pathology and epidemiology. American Mineralogist, 72, pp. 451-467.

Belissont, R., Boiron, M. C., Luais, B. & Cathelineau, M. (2014): LA-ICP-MS analyses of minor and trace elements and bulk Ge isotopes in zoned Ge-rich sphalerites from Noailhac-Saint-Salvy deposit (France): Insights into incorporation mechanisms and ore deposition processes. Geochimica et Cosmochimica Acta, 126, pp. 518-540.

Belissont, R., Boiron, M. C., Luais, B., Muchez, P., Oliveira, D. & Munoz, M. (2015): Germanium distribution and isotopic study in sulphides from MVT-related and VMS-remobilized ore deposits. In:

Page 85: Compositional Systematics of Sphalerites from Western Bergslagen…uu.diva-portal.org/smash/get/diva2:953522/FULLTEXT01.pdf · The Bergslagen ore province in central Sweden has a

77

Andre-Mayer, A. S., Cathelineau, M., Muchez, P., Pirard, E. & Sindern, S. (ed.): Mineral resources in a sustainable world. Proceedings of the 13th SGA Biennial Meeting, Nancy France 24-27 August, 2, pp. 683-686.

Bergkvist, L. & Jonsson, E. (2004): The Lahäll Pb-Zn-(Ag-Fe-As-Cu-Sn) sulphide deposit, Långban Bergslagen-a metamorphosed Svecofennian mineralization? GFF, 126, pp. 147.

Bergman, T., Schöberg, H. & Sundblad, K. (1995): Geochemistry, age and origin of the Högberget granite, western Bergslagen, Sweden. GFF, 117, pp. 87-96.

Bernstein, L. R. (1985): Germanium geochemistry and mineralogy. Geochemica et Cosmochimica Acta, 49, pp. 2409-2422.

Bethke, P. M. & Barton, P. B. (1971): Sob-solidus relations in the system PbS-CdS. The American Mineralogist, 56, pp. 2034-2039.

Beunk, F. F., & Kuipers, G. (2012): The Bergslagen ore province, Sweden: Review and update of an accreted orocline 1.9-1.8 Ga BP. Precambrian Research, 216– 219, pp. 95–119.

Björk, L. (1986): Beskrivning till berggrundskartan 11E Filipstad NV. Sveriges Geologiska Undersökning, Serie Af, 147. 110 pp.

Burke, E., & Kieft, C. (1980): Roquesite and Cu-In bearing sphalerite from Långban, Bergslagen, Sweden. Canadian Mineralogist, 18, pp. 361-363.

Burke, E., & Zakrzewski, M. (1990): Herzenbergite and associated antimony minerals from Björkskogsnäs, Hällefors, Sweden. Geologiska Föreningen i Stockholm Förhandlingar, 112, pp. 85-86.

Butcher, T. & Brown, T. (2014): Gallium. In: Gunn, G. (ed.) Critical metals handbook, John Wiley & Son Ltd., pp. 150-176.

Carillo-Rosua, J., Morales-Ruano, S., & Hach-Ali, P. F. (2008): Textural and chemical features of sphalerite from the Palai-Islica deposit (SE Spain): implications for ore genesis and color. Journal of Mineralogy and Geochemistry, 185, pp. 63-78.

Clark, A. H. (1970): Arsenian sphalerite from Mina Alcaran, Pampa Larga, Copiapo, Chile. American Mineralogist, 55, pp. 1794-1797.

Cook, N. J., Ciobanu, C. L., Pring, A., Skinner, W., Shimizu, M., Danyushevsky, L., Saini-Eidukat, B. & Melcher, F. (2009): Trace and minor elements in sphalerite: A LA-ICP-MS study. Geochimica et Cosmochimica Acta, 73, pp. 4761-4791.

Cook, N. J., Sundbled, K., Valkama, M., Nygård, R., Ciobanu, C. L. & Danyushevsky, L. (2011): Indium mineralization in A-type granites in southeastern Finland: Insights into mineralogy and partitioning between coexisting minerals. Chemical Geology, 284, pp. 62-73.

Cook, N. J. & Ciobanu, C. L. (2015): Mineral hosts for critical metals in hydrothermal ores. In: Andre-Mayer, A. S., Cathelineau, M., Muchez, P., Pirard, E. & Sindern, S. (ed.): Mineral resources in a sustainable world. Proceedings of the 13th SGA Biennial Meeting, Nancy France 24-27 August, 2, pp. 707-710.

Cook, N. J., Etschmann, B., Ciobanu, C. L., Geraki, K., Howard, D. L., Williams, T., Rae, N., Pring, A., Chen, G., Johannessen, B. & Brugger, J. (2015): Distribution and substitution mechanism of Ge in a Ge-(Fe)-bearing sphalerite. Minerals, 5(2), pp. 117-132.

Page 86: Compositional Systematics of Sphalerites from Western Bergslagen…uu.diva-portal.org/smash/get/diva2:953522/FULLTEXT01.pdf · The Bergslagen ore province in central Sweden has a

78

Craig, J. R. & Vaughan, D. J. (1994): Ore microscopy and ore petrograpfy, 2nd edition. New York: John Wiley & Sons, 434 pp.

Cruden, A.R., Sjöström, H. & Aaro, S. (1999): Structure and geophysics of the Gåsborn granite, central Sweden: an example of fracture-fed asymmetric pluton emplacement. In: A. Castro, C. Fernández, & J.L. Vigneresse (eds.): Understanding granites: Integrating new and classical techniques. Geological Society of London, Special Publications 168, pp. 141–160.

Dahlin, P., Allen, R. & Sjöström, H. (2012): Palaeoproterozoic metavolcanic and metasedimentary succession hosting the Dannemora iron ore deposits, Bergslagen region, Sweden. GFF, 134, pp. 71-85.

Damman, A. H. (1988a): Hydrothermal subsilicic sodium gedrite from the Gåsborn area, West Bergslagen, central Sweden. Mineralogical Magazine, 52, pp. 193-200.

Di Benedetto, F., Bernardini, G. P., Costagliola, P., Plant, D. & Vaughan, D. J. (2005): Compositional zoning in sphalerite crystals. American Mineralogist, 90, pp. 1384-1392.

Dupuis, C. & Beaudoin, G. (2011): Discriminant diagrams for iron oxide trace element fingerprinting of mineral deposit types. Minerallium Deposita, 46, pp. 319-335.

European Commission (2014): Critical Raw Materials for the EU. Report by the ad-hoc working group on defining critical raw materials. http://ec.europa.eu/growth/sectors/raw-materials/specific-interest/critical/index_en.htm [12-08-2015]

Frenzel, M., Hirsch, T & Gutzmer, J. (2015): Concentration of Ga, Ge, In and Fe in sphalerite as a function of deposit type-A meta-analysis. In: Andre-Mayer, A. S., Cathelineau, M., Muchez, P., Pirard, E. & Sindern, S. (ed.): Mineral resources in a sustainable world. Proceedings of the 13th SGA Biennial Meeting, Nancy France 24-27 August, 2, pp. 729-732.

Geijer, P. & Magnusson, N. H. (1944): De mellansvenska järnmalmernas geologi. Sveriges Geologiska Undersökning, Ca 35, 654 pp.

George, L., Cook, N. & Ciobanu, C. (2015): Trace element partitioning between co-existing sphalerite, galena and chalcopyrite. In: Andre-Mayer, A. S., Cathelineau, M., Muchez, P., Pirard, E. & Sindern, S. (eds.): Mineral resources in a sustainable world. Proceedings of the 13th SGA Biennial Meeting, Nancy France 24-27 August, 2, pp. 737-740.

Glocker, E. F. (1846): Honigstein in Mähren. Journal fṻr Praktische Chemie, 36, pp. 321-324.

Goldschmidt, V. M. (1954): Geochemistry. Soil Science, 78, 156 pp.

Gottesmann, W., Kampe, A. (2007): Zn/Cd ratios in calcsilicate-hosted sphalerite ores at Tumurtijn-ovoo, Mongolia. Chemie der Erde, 67, pp. 323-328.

Graeser, S. (1969): Minor elements in sphalerite and galena from Binnatal. Contributions to Mineralogy and Petrology, 24, pp. 156-163.

Grammatikopoulos, T. A., Valeyev, O. & Roth, T. (2006): Compositional variation in Hg-bearing sphalerite from the polymetallic Eskay Creek deposit, British Columbia, Canada. Chemie der Erde Geochemistry, 66, pp. 307-314.

Gribble, C. D. & Hall, A. J. (1992): Optical Mineralogy. Principles & Practice. London: UCL Press, 303 pp.

Page 87: Compositional Systematics of Sphalerites from Western Bergslagen…uu.diva-portal.org/smash/get/diva2:953522/FULLTEXT01.pdf · The Bergslagen ore province in central Sweden has a

79

Griffin, W. L., Powell, W. J., Pearson, N. J. & O'Reilly, S. Y. (2008): GLITTER: data reduction software for laser ablation ICP-MS. Laser Ablation-ICP-MS in the earth sciences. Mineralogical association of Canada short course series, 40, pp. 204-207.

Hedström, P. (1984): Geological and genetic aspects of the Hällefors sulphide ores, Bergslagen, Sweden. Geologiska Föreningen i Stockholm Förhandlingar, 106, pp. 151-166.

Hedström, P., Simeonov, A. & Malmström, L. (1989): The Zinkgruvan ore deposit, south central Sweden; a Proterozoic, proximal Zn-Pb-Ag deposit in distal volcanic facies. Economic Geology, 84, pp. 1235-1261.

Hellingwerf, R. H. & Baker, J. H. (1985): Wall-rock alteration and tungsten and molybdenum mineralizations associated with older granites in western Bergslagen, Sweden. Economic Geology, 80, pp. 479-487.

Hellingwerf, R. H. (1987): Formation of sulphide deposits and its relation to sodic and potassic alteration of Proterozoic metabasites in the Saxå rift basin, Bergslagen, Sweden. Mineralium Deposita, 22, pp. 53-63.

Hellingwerf, R. H. & Raaphorst, J. G. (1988): Sulphur isotopes from the Gruvåsen skarn deposit, Bergslagen, Sweden. Mineralogy and Petrology, 38, pp. 161-170.

Hellingwerf, R. H. (1992): Trace element zonation is marbles hosting Cu-Zn-Pb-Fe-As sulphides at Gruvåsen, south central Sweden. Geologiska Föreningen i Stockholm Förhandlingar, 114, pp. 17-27.

Henry, D. & Goodge, G. (2015): Geochemical instrumentation and analysis: wavelength-dispersive spectroscopy (WDS). http://serc.carleton.edu/research_education/geochemsheets/wds.html [12-09-2015].

Hermansson, T., Stephens, M. B. & Page, L. M. (2008): Migratory tectonic switching, western Svecofennian orogeny, central Sweden: Constraints from U/Pb zircon and titanite geochronology. Precambrian Research, 161, pp. 250-278.

Holtstam, D. & Langhof, J., (eds.) (1999): Långban. The mines, their minerals, geology and explorers. Stockholm: Raster Förlag, 215 pp.

Holtstam, D. (2002): New occurrences of willemite-franklinite assemblages in Bergslagen, central Sweden. European Journal of Mineralogy, 14, pp. 621-626.

Högdahl, K. & Jonsson, E. (2004a): The Horrsjö complex in the Bergslagen ore province: a Palaeoproterozoic caldera with a mineralized rim? GFF, 126, p. 23.

Högdahl, K. & Jonsson, E. (2004b): U-Pb geochronology of Hyttjö granites in the Långban-Nordmark ore district, western Bergslagen. GFF, 126, pp. 23-24.

Högdahl, K., Andersson, U, B. & Eklund, O. (eds.) (2004): The Transscandinavian Igneous Belt (TIB) in Sweden: a review of its character and evolution. Geological Survey of Finland, Special Paper 37, 125 pp.

Högdahl, K., Jonsson, E. & Selbekk, R. S. (2007): Geological relations and U-Pb geochronology of Hyttsjö granites in the Långban-Nordmark area, western Bergslagen, Sweden. GFF, 129, pp. 43-54.

Högdahl, K., Sjöström, H. & Bergman, S. (2009): Ductile shear zones related to crustal shortening and domain boundary evolution in the central Fennoscandian Shield. Tectonics, 28, pp. 1-18.

Page 88: Compositional Systematics of Sphalerites from Western Bergslagen…uu.diva-portal.org/smash/get/diva2:953522/FULLTEXT01.pdf · The Bergslagen ore province in central Sweden has a

80

Högdahl, K., Jonsson, E., Kritikos, A. & Sahlström, F. (2015): Turning yesterday’s waste into tomorrow’s treasure: Searching for base and critical metals in Central Sweden’s ancient mine dumps. In: Andre-Mayer, A. S., Cathelineau, M., Muchez, P., Pirard, E. & Sindern, S. (ed.): Mineral resources in a sustainable world. Proceedings of the 13th SGA Biennial Meeting, Nancy France 24-27 August, 2, pp. 757-761.

Höll, R., Kling, M. & Schroll, E. (2007): Metallogenesis of germanium-a review. Ore Geology Reviews, 30, pp. 145-180.

Hurley, T. D. & Crocket, J. H. (1985): A gold-sphalerite association in a volcanogenic base metal sulphide deposit near Tilt Cove, Newfoundland. Canadian Mineralogist, 23, pp. 423-430.

Huston, D. L., Sie, S. H., Suter, G. F., Cooke, D. R. & Both R. A. (1995): Trace elements in sulfide minerals from eastern Australian volcanic-hosted massive sulfide deposits: Part I, Proton microprobe analyses of pyrite, chalcopyrite and sphalerite and Part II, Selenium levels in pyrite: Comparison with delta 34S values and implications for the source of sulfur in volcanogenic hydrothermal systems. Economic Geology, 90, pp. 1167-1196.

Jansson, N. F. (2011): The origin of Iron ores in Bergslgan, Sweden, and their relationship with polymetallic sulphide ores. Doctoral Thesis, Luleå University of Technology, 292 pp.

Johan, Z. (1988): Indium and Germanium in the structure of sphalerite: an example of coupled substitution with copper. Mineralogy and Petrology, 39, pp. 211-229.

Jonsson, E. (2004): Fissure mineral formation and metallogenesis in the Långban Fe-Mn-(Ba-As-Pb-Sb) deposit, Bergslagen, Sweden. Meddelanden från Stockholms Universitets Institution för Geologi och geokemi, 318, pp. 22.

Jonsson, E. & Billström, K. (2009): Lead isotope systematics in the Långban deposit and adjacent sulphide mineralizations in western Bergslagen, Sweden. GFF, 131, pp. 215-227.

Jonsson, E., Nilsson, K., P., Hallberg, A. & Högdahl, K. (2010): The Palaeoproterozoic apatite-iron oxide deposits of the Grängesberg area: Kiruna-type deposits in central Sweden. In: H. A. Nakrem, A.O. Harstad, G. Haukdal, (eds.). NGF abstracts and proceedings 1, pp. 88-89.

Jonsson, E., Högdahl, K., Majka, J. & Lindeberg, T. (2013): Roquesite and associated indium-bearing sulphides from a Paleoproterozoic carbonate-hosted mineralization: Lindbom’s prospect, Bergslagen, Sweden. Canadian Mineralogist, 51, pp. 629-641.

Julien, B., Regime, M. R., Anne-Sylvie, A. M., Jean, C., & Laurent, B. (2014): Germanium Distribution in Sphalerite from North‐East America MVT Deposits: A Multiscale Study. Acta Geologica Sinica (English Edition), 88, pp. 437-439.

Kieft, C. & Damman, A. H. (1990): Indium-bearing chalcopyrite and sphalerite from the Gåsborn area, West Bergslagen, Central Sweden. Mineralogical Magazine, 54, pp. 109-112.

Krämer, V., Hirth, H., Hofherr, M. & Trah, H. (1987): Phase studies in the systems Ag2Te-Ga2Te3, ZnSe-In2Se3 and ZnS-Ga2S3. Thermochimica Acta, 112, pp. 89-94.

Lagerblad, B. & Gorbatschev, R. (1985): Hydrothermal alteration as a control of regional geochemistry and ore formation in the central Baltic Shield. Geologische Rundschau, 74, pp. 33-49.

Lahtinen, R., Korja, A., Nironen, M. & Heikkinen, P. (2009): Palaeoproterozoic accretionary processes in Fennoscandia. In: P. A. Cawood, & A. Kröner, (eds.): Earth Accretionary Systems in Space and Time. Geological Society of London Special Publications 318, pp. 237-256.

Page 89: Compositional Systematics of Sphalerites from Western Bergslagen…uu.diva-portal.org/smash/get/diva2:953522/FULLTEXT01.pdf · The Bergslagen ore province in central Sweden has a

81

Lepetit, P., Bente, K., Doering, T. & Luckhaus, S. (2003): Crystal chemistry of Fe-containing sphalerites. Physics and Chemistry of Minerals, 30, pp. 185-191.

Lockington, A. J., Cook, N. J. & Ciobanu, C. L. (2014): Trace and minor elements in sphalerite from metamorphosed sulphide deposits. Mineralogy and Petrology, 108, pp. 873-890.

Lundström, I. (1995): Description to the map of solid rocks Filipstad NO, SO. Sveriges Geologiska Undersökning, Af 117, 185. 218 pp.

Lundh, J. & Rosen Å. (2011): Malmmikroskopi och framställning av polerprov. Bachelor thesis, Uppsala Universitet, Institutionen för geovetenskapen. 74 pp.

Magnusson, N.H. (1929): Nordmarks malmtrakt. Sveriges Geologiska Undersökning, Ca 13, 90 pp.

Magnusson, N.H. (1930): Långbans malmtrakt. Sveriges Geologiska Undersökning, Ca 23, 111 pp.

Makvandi, S., Ghasemzadeh-Barvarz, M., Beaudoin, G., Grunsky, E., McClenaghan, M. & Duchesne, C. (2016): Principal component analysis of magnetite composition from volcanogenic massive sulfide deposits: Case studies from the Izok Lake (Nunavut, Canada) and Halfmile Lake (New Brunswick, Canada) deposits. Ore Geology Reviews, 72, pp. 60-85.

Moore, P. B. (1970): Mineralogy and chemistry of Långban-type deposits in Bergslagen, Sweden. Mineralogical Record, 1, pp. 154-172.

Moskalyk, R. R. (2003): Gallium: the backbone of the electronics industry. Minerals Engineering, 16, pp. 921-929.

Murakami, H. & Ishihara, S. (2013): Trace elements of Indium-bearing sphalerite from tin-polymetallic deposits in Bolivia, China and Japan: A femto-second LA-ICPMS study. Ore Geology Reviews, 53, pp. 223-243.

Nriagu, J. O. (1998): History, production and uses of thallium. In: J.O. Nriagu, (eds.): Thallium in the Environment. New York: John Wiley and Sons, pp. 1-14.

Nysten, P., Holtstam, D. & Jonsson, E. (1999): The Långban minerals. In: Holtstam, D & Langhof, J. (eds.) Långban: The mines, their minerals, geology and explorers. Stockholm: Raster Förlag, 215 pp.

Oen, I.S., Kager, P. & Kieft, C. (1980): Oscillatory zoning of a discontinuous solid-solution series. American Mineralogist, 65, pp. 1220-1232.

Oen, I.S., Helmers, H., Verschure, R.H. & Wiklander, U. (1982): Ore deposition in a Proterozoic incipient rift zone environment: a tentative model for the Filipstad-Grythyttan-Hjulsjö, Bergslagen, Sweden. Geologische Rundschau, 71, pp. 182-194.

Ohta, E. (1989): Occurrence and chemistry of indium-containing minerals from the Toyoha mine, Hokkaido, Japan. Mining Geology, 36, pp. 355-372.

Orberger, B., Pasava, J., Gallien, J., Daudin, L. & Trocellier, P. (2003): Se, As, Mo, Ag, Cd, In, Sb, Pt, Au, Tl, Re traces in biogenic and abiogenic sulphides from Black Shales (Selwyn Basin, Yukon territories, Canada): a nuclear microprobe study. Nuclear Instruments and Methods in Physics Research section B. Beam interactions with Materials and Atoms, 210, pp. 441-448.

Pfaff, K., Koenig, A., Wenzel, T., Ridley, I., Hildenbrandt, L., Leach, D. & Markl, D. (2011): Trace and minor element variations and sulfur isotopes in crystalline and colloform ZnS: Incorporation mechanisms and implications for their genesis. Chemical Geology, 286, pp. 118-134.

Page 90: Compositional Systematics of Sphalerites from Western Bergslagen…uu.diva-portal.org/smash/get/diva2:953522/FULLTEXT01.pdf · The Bergslagen ore province in central Sweden has a

82

Picot, P. & Johan, Z. (1977): Atlas de mineraux metallique. Memoires du BRGM, 90, 403 pp.

Pirri, I. V. (2002): On the occurrence of selenium in sulfides of the ore deposit of Baccu Locci (Gerrei, SE Sardinia). Neues Jahrbuch für Mineralogie Monatshefte, 2002.5, pp. 207-224.

Qian, Z. (1987): Trace elements in galena and sphalerite and their geochemical significance in distinguishing the genetic types of Pb-Zn ore deposits. Chinese Journal of Geochemistry, 6, pp. 177-190.

Ramdohr, P. (1969): The ore minerals and their intergrowths. English Translation of the 3rd Edition. Oxford: Pergamon Press. 1174 pp.

Reed, S. J. B. (2005): Electron microprobe analysis and scanning electron microscopy in geology. 2th edition. Cambridge: University Press, 187 pp.

Remond, G., Myklebust, R., Fialin, M., Nockolds, C., Phillips, M. & Roques-Carnes, C. (2002): Decomposition of wavelength dispersive X-ray spectra. Journal of Reasearch of the National Institute of Standards and Technology, pp. 509-529.

Schwarz-Schampera, U. & Herzig, P. M., (eds) (2002): Indium: geology, mineralogy and economics. Heidelberg: Springer-Verlag, 257 pp.

Scott, S. D. & Barnes, H. L. (1971): Sphalerite geothermometry and geobarometry. Economic Geology, 66, pp. 653-669.

Scott, S. D. & Barnes, H. L. (1972): Sphalerite-wurtzite equilibria and stoichiometry. Geochemica et Cosmochimica Acta, 86, pp. 1275-1295.

Self, P. G, Norrish, K., Milnes, A. R., Graham, J. & Robinson, B. (1990): Holes in the background in XRS, X-Ray Spectrometry, 19, pp. 59-61.

Shimizu, T. & Morishita, Y. (2012): Petrography, chemistry and near-infrared microthermometry of indium-bearing sphalerite from the Toyoha polymetallic deposit, Japan. Economic Geology, 107, pp. 723-735.

Stephens, B. M., Ripa, M., Lundström, I., Pesson, L., Bergman, T., Ahl, M., Wahlgren, C. H., Persson, P-O. & Wickström, L. (2009): Synthesis of the bedrock geology in the Bergslagen region, Fennoscandian Shield, south-central Sweden. Geological Survey of Sweden, Ba 58, 260 pp.

Sundblad, K. (1994): A genetic reinterpretation of the Falun and Åmneberg ore types, Bergslagen, Sweden. Mineralium Deposita, 29, pp. 170-179.

Sundblad, K. (2016): 300 million years of indium-forming processes in A-type igneous environments in the Fennoscandian Shield. In: Staboulis, S., Karvonen, T. & Kujanpaa, A., (ed.): Bulletin of the Geological Society of Finland. Special Volume. Abstracts of the 32nd Nordic Geological Winter meeting, 13-15 January, Helsinki, Finland, pp. 111-112.

Sundius, N., Parwel, A. & Rajandi, B. (1966): The minerals of the silver mines of Hällefors. Sveriges Geologiska Undersökning, C 614, 20 pp.

Tegengren, F. (1924): Sveriges ädlare malmer och bergverk. Sveriges Geologiska Undersökning, Ca 17, 406 pp.

Thomas, R. (2001a): A beginner’s guide to ICP.MS, Part I. Spectroscopy, 16(4), pp. 40-42.

Page 91: Compositional Systematics of Sphalerites from Western Bergslagen…uu.diva-portal.org/smash/get/diva2:953522/FULLTEXT01.pdf · The Bergslagen ore province in central Sweden has a

83

Thomas, R. (2001b): A beginner’s guide to ICP.MS, Part II: The Sample-Introduction System. Spectroscopy, 16(5), pp. 56-60.

Thomas, R. (2001c): A beginner’s guide to ICP.MS, Part III: The Plasma source. Spectroscopy, 16(6), pp. 26-30.

Thomas, R. (2001d): A beginner’s guide to ICP.MS, Part IV: The Interface Region. Spectroscopy, 16(7), pp. 26-34.

Thomas, R. (2001e): A beginner’s guide to ICP.MS, Part V: The Ion Focusing System. Spectroscopy, 16(9), pp. 38-44.

Thomas, R. (2001f): A beginner’s guide to ICP.MS, Part VI: The Mass Analyzer. Spectroscopy, 16(10), pp. 44-48.

Thomas, R. (2002a): A beginner’s guide to ICP.MS, Part VIII: Mass Analyzers: Time-of-Flight Technology. Spectroscopy, 17(1), pp. 36-41.

Thomas, R. (2002b): A beginner’s guide to ICP.MS, Part X: Detectors. Spectroscopy, 17(4), pp. 34-39.

Togari, K. (1978): Color of sphalerite. Journal of the Faculty of Science, Hokkaido University, 18, pp. 283-290.

Tomashic, V. N., Oleinik, G. S. & Mizetskaya, I. B. (1978): The ternary mutual system CdTe + ZnS = CdS + ZnTe. Inorganic Material, 14, pp. 1428.

Valkama, M., Sundblad, K., Nygård, R. & Cook, N.J. (2016): Mineralogy and geochemistry of indium-bearing polymetallic veins in the Sarvlaxviken area, Lovisa, Finland. Ore Geology Reviews, 75, pp. 206-209.

Vivallo, W. & Rickard, D (1990): Genesis of an early Proterozoic zinc deposit in high-grade metamorphic terrane, Saxberget, central Sweden. Economic Geology, 85, pp. 714-736.

Wagner, T., Jonsson, E. & Boyce, J. A. (2005): Metamorphic ore remobilization in the Hällefors district, Bergslagen, Sweden: constraints from mineralogical and small scale sulphur isotope studies. Mineralium Deposita, 40, pp. 100-114.

Weber, S.: VRML structure type gallery. http://jcrystal.com/steffenweber/gallery/StructureTypes/st2.html [01-09-2015]

Wilson, S. A., Ridley, W. I. & Koenig, A. E. (2002): Development of sulphide calibration standards for the laser ablation inductively-coupled plasma mass spectrometry technique. Journal of Analytical Atomic Spectrometry, 17, pp. 406-409.

Wright, K. & Julian, G. (2010): A first principles study of the distribution of iron in sphalerite. Geochimica et Cosmochimica Acta, 74, pp. 3514-3520.

Ye, L. & Tiegeng, L. (1999): Sphalerite chemistry, Niujiaotang Cd-rich zinc deposit, Guizhou, southwest China. Chinese Journal of Geochemistry, 18, pp. 62-68.

Ye, L., Cook, N., Ciobanu, C., Yuping, L., Qian, Z., Tiegeng, L., Wei, Gao., Yulong, Y. & Danyushevskiy, L. (2011): Trace and minor elements in sphalerite from base metal deposits in South China: A LA-ICP-MS study. Ore Geology Reviews, 39, pp. 188-217.

Zakrzewski, M. (1982): Geochemical facies model of ore formation in the Grythyttan-Hällefors area, Bergslagen, central Sweden. Geologische Rundschau, 71, pp. 195-205.

Page 92: Compositional Systematics of Sphalerites from Western Bergslagen…uu.diva-portal.org/smash/get/diva2:953522/FULLTEXT01.pdf · The Bergslagen ore province in central Sweden has a

84

Zakrzewski, M., & Nugteren, H. (1984): Mineralogy and origin of the distal volcanosedimentary deposit at the Hällefors silver mine, Bergslagen, central Sweden. Canadian Mineralogist, 22, pp. 583-593.

Zakrzewski, M. (1984): Ore minerals from the Getberget mine, Långban area, Sweden; the probable Co-analogue of nisbite. Neues Jahrbuch fur Mineralogie, Monatshefte, 4, pp. 145-154.

Page 93: Compositional Systematics of Sphalerites from Western Bergslagen…uu.diva-portal.org/smash/get/diva2:953522/FULLTEXT01.pdf · The Bergslagen ore province in central Sweden has a

85

Appendix A: EMPA results

No

Ag

As

Bi

Cd

Co

Cu

Fe G

a G

e H

g In

Mn

Pb S

Sb Se

Sn Zn

Total Sam

ple ID

10.012

00.114

0.0840.027

00.329

00

0.090

0.20.281

32.2180.011

00

67.201100.567

1831.10332

00

0.2060.086

0.0320

0.360

00.068

00.114

0.27632.535

00.006

0.01467.11

100.8071831.1033

30

00.127

0.1170.025

00.335

00

0.1780

0.1070.269

32.2890

0.1040.039

67.447101.037

1831.10334

00

0.0520.097

0.0260

0.3630

00.061

00.167

0.32532.331

0.010

067.772

101.2041831.1033

50

00.103

0.1010.012

00.347

00

00

0.1580.281

32.4260

00

66.907100.335

1831.10336

00

0.2080.078

0.030

0.3390

00

0.0040.034

0.31732.227

0.0010.049

066.966

100.2531831.1033

70

00.054

0.0860.029

0.0150.375

00

00.002

0.1680.307

32.6550

0.120.002

66.948100.761

1831.10338

00

0.0940.101

0.0380

0.3350

00.223

0.0020.113

0.2432.136

00

066.953

100.2351831.1033

90

00.028

0.0760.022

00.349

00

0.1320.004

0.1380.316

32.3410.013

0.0330

66.822100.274

1831.103310

0.0190

0.1290.083

0.020.028

0.3240

00.086

00.088

0.29732.349

00

066.99

100.4131831.1033

110

00.03

0.080.035

00.322

00

00

0.1330.247

32.6070

0.0190

66.796100.269

1831.103312

00

0.1430.104

0.0240.009

0.3250

00

00.151

0.34532.285

00

067.053

100.4391831.1033

130

00.128

0.0930.036

00.322

00

00.001

0.2040.255

32.2030.015

0.010

67.048100.315

1831.103314

00

0.0660.101

0.0170

0.3250

00.061

0.0110.106

0.29232.496

0.0320

067.456

100.9631831.1033

150

00.103

0.0670.006

0.020.344

00

0.0070

0.0940.282

32.4360.007

0.0060

67.002100.374

1831.103316

00

0.0890.088

0.0220

0.3430

00.047

00.143

0.25432.364

00.052

066.453

99.8551831.1033

170.025

00

0.1180.043

00.323

00

0.0080

0.1390.286

32.3110

0.0550.002

67.019100.329

1831.103318

00

0.110.08

0.0250.008

0.3350

00.056

00.15

0.34232.542

00.025

067.031

100.7041831.1033

190

00.076

0.0860.027

00.344

00

00

0.1040.283

32.2750.024

00.006

66.60899.833

1831.103320

0.0050

0.090.088

0.0230.009

0.3760

00

00.081

0.24532.482

0.0260

0.0367.002

100.4571831.1033

210.009

00.133

0.0860.022

00.336

00

0.0710

0.1350.243

32.5660

00.003

66.865100.469

1831.103322

0.0110

0.0420.077

0.0230

0.3480

00.012

00.127

0.31632.279

0.0160.064

0.01367.049

100.3771831.1033

230.001

00.016

0.1180.027

00.336

00

00.001

0.1490.287

32.0460.003

00

66.41799.401

1831.103324

00

00.107

0.0310

0.3530

00.02

00.122

0.25432.102

0.0320.03

066.923

99.9741831.1033

250

00.108

0.0940.031

00.343

00

0.0230

0.1290.296

32.3550

00

66.59299.971

1831.103326

0.0020

0.0130.092

0.0050

0.3430

00.146

00.148

0.29132.477

0.0110

066.951

100.4791831.1033

270.003

00.052

0.0750.019

00.341

00

0.0010

0.1150.287

32.3190.016

00

66.75999.987

1831.103328

0.0270

0.0490.099

0.0120

0.3780

00.012

00.116

0.28932.003

00.011

066.986

99.98257.4128

290.005

00.135

0.1110.031

00.381

00

00

0.0720.228

32.1790

00

67.097100.239

57.412830

00

0.0750.103

0.0330.013

0.3980

00

00.107

0.32231.996

00.071

0.0166.992

100.1257.4128

310.013

00.108

0.0930.033

00.389

00

00

0.1570.246

31.8790

0.0040.027

66.83999.788

57.412832

0.0110

0.1420.092

00

0.3550

00.021

00.114

0.29632.225

00

066.505

99.76157.4128

330.007

00.196

0.0830.029

00.376

00

00

0.1040.331

32.080

00

66.72699.932

57.412834

0.0180

0.1260.089

0.0450.006

0.3730

00

00.138

0.27331.964

00

067.186

100.21857.4128

350.001

00.104

0.060.025

0.0120.368

00

00

0.0830.224

32.2070.013

00

67.166100.263

57.412836

0.0040

0.1320.11

0.0320.008

0.3560

00

00.148

0.27231.742

00.032

0.02467.244

100.10457.4128

370.011

00.165

0.1020.008

00.365

00

0.0850.003

0.1340.275

32.0440

0.0390

67.147100.378

57.412838

00

0.0690.091

0.0220

0.3610

00.059

00.096

0.23532.198

00.042

067.224

100.39757.4128

390.014

00.138

0.120.034

00.376

00

0.0370

0.1070.322

32.2710.034

0.0460

67.383100.882

57.412840

00

0.140.092

0.0240.027

0.3830

00.018

00.107

0.18932.022

0.0010.046

067.144

100.19357.4128

410

00.053

0.1050.022

00.403

00

0.0120

0.0970.288

32.090.02

0.0210.003

67.542100.656

57.412842

00

0.1880.097

0.0260.005

0.3660

00

00.107

0.28931.956

0.0090

067.062

100.10557.4128

430

00.135

0.1180.036

00.37

00

0.0260.003

0.0660.27

32.1750.032

0.0830

66.959100.273

57.412844

00

0.0910.111

0.0250.011

0.3720

00.109

00.147

0.27732.127

00.008

0.03467.708

101.0257.4128

450

00.129

0.1190.024

0.0210.392

00

00

0.1270.219

32.070

00.006

67.762100.869

57.4128

Table 7. EMPA

sphalerite analyses raw data. A

ll elements are show

n in percentage of concentration.

Page 94: Compositional Systematics of Sphalerites from Western Bergslagen…uu.diva-portal.org/smash/get/diva2:953522/FULLTEXT01.pdf · The Bergslagen ore province in central Sweden has a

86

No

Ag

As

Bi

Cd

Co

Cu

Fe G

a G

e H

g In

Mn

Pb S

Sb Se

Sn Zn

Total Sam

ple ID46

00

0.0670.081

0.0250

0.3870

00.005

00.08

0.19431.885

00

068.086

100.8157.4128

470

00.145

0.0920.031

00.36

00

00.004

0.1630.226

31.7960

0.0070

67.86100.684

57.412848

00

0.0770.111

0.0240

0.3820

00.041

00.137

0.2432.036

00

067.687

100.73557.4128

490

00.1

0.0970.035

0.0350.31

00

0.0490.004

0.1180.28

32.1570

0.0340

68.243101.462

57.412850

0.010

0.0320.087

0.0370.023

0.3650

00

00.132

0.2332.221

00.015

067.665

100.81757.4128

510.027

00.138

0.1350.055

0.0012.995

00

00

0.1150.294

32.5130

00.007

65.437101.717

1831.181552

00

0.0980.122

0.0210

3.2680

00.029

00.113

0.25432.435

00.075

064.818

101.2331831.1815

530

00.087

0.1320.043

0.0043.185

00

0.0540

0.0040.299

32.5160

00.01

64.913101.247

1831.181554

00

0.1340.134

0.0150

3.2350

00

0.0030.035

0.2832.468

0.0130.051

0.08865.193

101.6491831.1815

550.019

00.046

0.1320.04

0.0093.302

00

00

0.1030.27

32.2580

0.0750.01

65.221101.485

1831.181556

00

0.0780.131

0.0390

3.4380

00.053

00.056

0.25832.748

0.0230.018

064.834

101.6761831.1815

570

00.022

0.1650.032

03.377

00

0.0230

0.1710.193

32.3060

0.0690

64.919101.277

1831.181558

00

0.1370.125

0.0480.004

3.4630

00.008

00.126

0.20432.635

00

065.2

101.951831.1815

590.006

00.037

0.1260.026

03.277

00

00

0.1070.274

32.6480.016

00.002

65.055101.574

1831.181560

00

00.096

0.0560

3.260

00

00.119

0.24932.311

0.0190.044

0.00164.8

100.9551831.1815

610

00.162

0.120.069

02.534

00

0.0190

0.110.282

32.2430.003

0.0670

66.066101.675

1831.181562

00

0.0950.101

0.0340

3.1370

00

00.102

0.21132.558

00

064.491

100.7291831.1815

630.003

00.141

0.1150.032

02.986

00

0.0750.001

0.0440.288

32.1070

00

64.992100.784

1831.181564

0.0060

0.0980.106

0.0380.032

2.7020

00

0.0040.134

0.28132.399

00.003

065.223

101.0261831.1815

650.013

00.126

0.0930.064

03.106

00

00

0.1250.216

32.3280

0.0230.004

65.337101.435

1831.181566

00

0.1060.112

0.040

3.1060

00.039

0.010.08

0.19132.138

0.0010.001

065.331

101.1551831.1815

670.001

00.2

0.1250.029

03.19

00

0.0460

0.1610.296

32.5050

00.018

65.225101.796

1831.181568

0.0020

0.1840.102

0.0310

2.2390

00.005

00.09

0.28532.266

00

0.01866.223

101.4451831.1815

690

00.058

0.0990.052

02.57

00

0.040

0.0340.264

32.1860

0.0260

65.48100.809

1831.181570

00

0.0490.122

0.0480.013

3.3320

00

00.172

0.25532.381

00

0.0265.235

101.6271831.1815

710

00

0.1380.043

03.265

00

00

0.110.253

32.3450.023

0.0460

65.057101.28

1831.181572

00

0.0730.135

0.0350.003

3.3120

00

0.0030.155

0.32332.375

00.025

065.006

101.4451831.1815

730.021

00.028

0.0380.013

0.0218.529

00

0.020.012

0.2350.202

31.2970.02

0.1210.047

52.37192.975

1919.1470.a74

0.0140

0.0880.027

0.010.032

8.6030

00.048

0.010.226

0.29530.799

00.091

050.503

90.7461919.1470.a

750

00.008

0.0220.014

08.714

00

0.0330.022

0.3020.247

31.420.004

0.0570

51.94792.79

1919.1470.a76

0.0170

0.1180.027

0.0070.018

8.1530

00

0.0160.201

0.26130.804

0.0130.01

0.01848.626

88.2891919.1470.a

770.009

00.033

0.0380.022

0.0298.289

00

00.009

0.250.319

30.4840.014

0.050.025

49.60489.175

1919.1470.a78

00

0.0270.04

0.020.035

8.6480

00

0.0140.353

0.2531.077

00.014

050.901

91.3791919.1470.a

790.005

00.068

0.0360.02

0.0068.398

00

00.011

0.2940.242

30.8370

0.0250

51.29791.239

1919.1470.a80

0.0050

0.0890.021

00.01

8.1670

00.023

0.0070.203

0.24630.425

00.094

047.31

86.61919.1470.a

810.008

00.003

0.0410.005

0.0068.353

00

00.017

0.2420.249

30.5590

00

49.41188.894

1919.1470.a82

0.0050

0.1080.024

0.0120.013

8.4340

00.017

0.0180.288

0.25731.253

0.0010.002

0.01651.961

92.4091919.1470.a

830

00.042

0.0340.015

0.0088.651

00

00.004

0.2780.221

30.9240.018

00.021

51.41391.629

1919.1470.a84

00

0.0330.04

0.0310

8.4240

00.104

0.0190.254

0.20130.949

00.039

0.0550.271

90.4151919.1470.a

850

00.066

0.0320.021

0.0228.461

00

0.0460.019

0.2160.222

30.950

0.0560

49.68489.795

1919.1470.a86

0.0030

0.1880.032

0.0220.004

8.3620

00

0.010.287

0.19531.004

0.0020.03

0.02550.005

90.1691919.1470.a

870.006

00.125

0.0430.012

0.0158.298

00

0.0050.014

0.2510.278

30.3260

00

48.38287.755

1919.1470.a88

00

0.0710.02

0.0180.004

8.3280

00.002

0.0010.252

0.23830.458

00.02

0.00348.566

87.9811919.1470.a

890

00.048

0.0120.007

0.0238.253

00

0.0050.003

0.3010.29

30.7330

00.005

49.38789.067

1919.1470.a90

0.0020

00.036

0.0030.032

8.620

00.034

0.0020.296

0.27330.951

00.015

051.682

91.9461919.1470.a

Table 7. Continued

Page 95: Compositional Systematics of Sphalerites from Western Bergslagen…uu.diva-portal.org/smash/get/diva2:953522/FULLTEXT01.pdf · The Bergslagen ore province in central Sweden has a

87

No

Ag

As

Bi

Cd

Co

Cu

Fe G

a G

e H

g In

Mn

Pb S

Sb Se

Sn Zn

Total Sam

ple ID91

00

0.1340.037

0.0120

8.4380

00

00.247

0.30430.777

00.029

050.521

90.4991919.1470.a

920

00.092

0.020.012

08.582

00

00.013

0.2370.255

30.7040.006

00

50.8790.791

1919.1470.a93

0.0070

0.0850.198

0.0120

1.390

00

00.498

0.24232.379

00

0.02865.175

100.0141925.0621

940.018

00.075

0.2390.006

0.0061.471

00

00

0.4880.287

32.5490

0.0550.017

64.823100.034

1925.062195

0.0070

0.1670.188

00.008

1.4470

00

00.511

0.31232.496

00.035

064.974

100.1451925.0621

960.024

00.225

0.2160.001

0.0011.522

00

0.0020

0.510.301

32.3120

00.01

64.78399.907

1925.062197

0.0020

0.0770.212

0.0110.002

1.660

00

00.481

0.34732.428

00

064.687

99.9071925.0621

980

00.05

0.2310.012

01.96

00

0.0310

0.5180.306

32.3750

0.1080.003

64.476100.07

1925.062199

00

0.1670.187

00

1.9120

00.027

00.565

0.3532.372

00

064.62

100.21925.0621

1000

00.012

0.2020.006

01.735

00

0.1130

0.5180.258

32.380

0.0060

65.114100.344

1925.0621101

00

0.1330.201

0.0110

1.3650

00

00.466

0.3232.304

00.001

065.31

100.1111925.0621

1020.014

00

0.2470

01.916

00

0.0020

0.5520.252

32.2990

0.0430

64.7100.025

1925.0621103

00

0.1240.239

00

1.5530

00

00.499

0.22332.404

00.052

0.00364.655

99.7521925.0621

1040.017

00.018

0.2410

01.305

00

00

0.4690.279

32.520.013

0.0810.007

65.102100.052

1925.0621105

00

0.1210.241

0.0120

0.9860

00

00.33

0.26632.278

0.0150.038

0.04265.98

100.3091925.0621

1060.004

00.133

0.2190.008

01.216

00

0.0860

0.4410.263

32.3430

0.0380.019

65.738100.508

1925.0621107

00

00.23

0.0030

1.2720

00.057

00.494

0.29332.631

00.024

065.392

100.3961925.0621

1080

00.062

0.1960.005

01.337

00

00.003

0.5050.39

32.4730

00.026

65.296100.293

1925.0621109

00

0.1020.218

0.0150.007

1.3590

00

00.502

0.26432.345

0.0270

065.203

100.0421925.0621

1100

00.031

0.2440.014

00.909

00

0.0080

0.3140.269

32.2710

00.04

66.088100.188

1925.0621111

00

0.0770.209

00.002

0.360

00.011

00.186

0.36832.189

00.014

066.152

99.5681925.0621

1120.005

00.16

0.2160

00.456

00

00.003

0.2950.32

32.0910

00

66.538100.084

1925.0621113

00

0.1180.229

00.002

0.7650

00.085

0.0070.33

0.30632.488

00.035

066.238

100.6031925.0621

1140

00.14

0.2350.017

00.763

00

00

0.360.229

32.4660.007

0.0240

66.402100.643

1925.0621115

0.0050

0.0760.218

0.010

0.4780

00.094

00.231

0.27232.547

00

067.068

100.9991925.0621

1160.004

00

0.2460.014

00.402

00

00.002

0.1790.351

32.5260

0.0310

67.165100.92

1925.0621117

00

0.030.251

0.0090

0.9890

00.012

00.369

0.29132.451

0.0050.004

066.309

100.721925.0621

1180

00.075

0.2160

01.291

00

00.002

0.4410.316

32.5780

0.0840

65.517100.52

1925.0621119

00

0.0740.244

0.0010

0.9640

00.081

00.415

0.32732.354

00.03

0.00966.176

100.6751925.0621

1200

00.147

0.1840

0.0121.57

00

00

0.5010.284

32.840

0.0460

64.817100.401

1925.0621121

0.0190

0.1010.19

0.0010.017

0.6390

00

0.0020.351

0.27132.292

00.059

0.03466.587

100.5631925.0621

1220.003

00.136

0.2570.016

01.154

00

00

0.4490.216

32.6090.03

0.0790.013

65.857100.819

1925.0621123

00

00.211

0.010

1.2470

00.052

00.435

0.30132.376

0.0210.018

0.00666.228

100.9051925.0621

1240

00.084

0.2330

01.244

00

00.001

0.4260.279

32.4630

00

66.269100.999

1925.0621125

0.0030

0.0710.217

0.0080

1.6090

00

00.553

0.25532.555

00.088

0.01365.725

101.0971925.0621

1260

00.11

0.2480.009

01.471

00

00

0.5070.263

32.3790

0.0950

65.882100.964

1925.0621127

00

0.1410.164

0.0160.028

5.640

00

00.066

0.32232.398

00.059

058.722

97.5562000.0189

1280.003

00.15

0.0960.001

0.0055.768

00

00

0.0260.282

32.270.054

0.070.024

58.90197.65

2000.0189129

0.0060

0.1250.167

0.0260

5.7270

00

00.023

0.32332.292

00

058.971

97.662000.0189

1300

00.089

0.140.014

05.835

00

0.0370

00.307

32.3510.02

0.0520

58.91797.762

2000.0189131

0.0020

0.0560.167

0.010.013

5.7940

00

00.024

0.27332.129

0.0110.028

0.00858.604

97.1192000.0189

1320.009

00.023

0.1380.015

05.756

00

0.0130

0.0180.274

32.2530

0.0060

58.76897.273

2000.0189133

00

0.0960.151

00

5.7690

00.05

00.01

0.29232.554

00.003

0.00559.114

98.0442000.0189

1340.02

00.021

0.1630.008

05.87

00

00

0.0640.262

32.280

0.0510

59.39798.136

2000.0189135

0.0140

0.1760.13

00

5.8420

00

00.019

0.21832.528

00.016

059.071

98.0142000.0189

Table 7. Continued

Page 96: Compositional Systematics of Sphalerites from Western Bergslagen…uu.diva-portal.org/smash/get/diva2:953522/FULLTEXT01.pdf · The Bergslagen ore province in central Sweden has a

88

No

Ag

As

Bi

Cd

Co

Cu

Fe G

a G

e H

g In

Mn

Pb S

Sb Se

Sn Zn

Total Sam

ple ID136

0.0130

0.0930.116

0.0190.001

5.740

00

00.017

0.32432.448

00

059.188

97.9592000.0189

1370

00.149

0.1410.02

05.977

00

00

0.0360.289

32.4040

00.006

58.90697.928

2000.0189138

00

0.0740.119

0.0160

5.90

00

00

0.33432.579

00.008

059.33

98.362000.0189

1390.007

00.052

0.1230.01

0.0325.865

00

0.0270

00.241

32.3470

0.0550.016

59.31298.087

2000.0189140

00

0.1180.121

00.005

5.8570

00

00.044

0.34632.477

0.0070

059.365

98.342000.0189

1410.005

00.157

0.1290.023

05.835

00

0.0080

00.242

32.5110

0.0520.006

59.26998.237

2000.0189142

0.0020

00.169

0.0280

5.8450

00.093

00.007

0.33132.279

00.015

059.09

97.8592000.0189

1430

00.088

0.1610.009

0.0025.862

00

0.0190

0.0220.324

32.350

0.050

59.13198.018

2000.0189144

00

0.0930.128

0.0060

5.7940

00

00.034

0.31232.62

0.0240

059.431

98.4422000.0189

1450

00.141

0.1460

0.0145.625

00

00

0.0210.285

32.250.026

00.01

59.26897.786

2000.0189146

0.0070

0.1940.169

0.0040

5.8860

00.011

00.022

0.26532.431

00.048

059.584

98.6212000.0189

1470.013

00.092

0.1490.028

05.813

00

00

0.020.273

32.6580.007

00

59.5798.623

2000.0189148

00

0.1150.159

0.0330

5.8840

00.006

00.052

0.3532.223

0.0090.003

0.01759.069

97.922000.0189

1490.003

00.113

0.1280.028

05.875

00

00

0.0240.276

32.2430.016

0.0260

59.40998.141

2000.0189150

0.010

0.0640.152

0.0050.013

5.7460

00.036

00.029

0.30332.289

00

059.571

98.2182000.0189

1510.015

00.076

0.1630.024

05.773

00

0.0430

00.305

32.2610

0.0060.033

60.00498.703

2000.0189152

00

0.0110.232

00

0.0150

00

00

0.23632.448

0.0130.003

068.79

101.7482002.0015

1530

00.171

0.2310.009

00.001

00

0.0520.004

00.294

32.6680

0.0620.028

69.164102.684

2002.0015154

00

0.1790.193

00

00

00.001

00

0.22332.343

00.012

0.01368.788

101.7522002.0015

1550

00.039

0.2340.004

00.024

00

0.0320.009

00.283

32.8470

00

69.026102.498

2002.0015156

0.0140

0.1730.217

00.015

00

00

00.015

0.26732.734

00.092

068.966

102.4932002.0015

1570.007

00.027

0.2020.005

00.024

00

0.0880

00.259

32.4110

0.0570.001

68.642101.723

2002.0015158

0.0130

0.1010.226

0.0010

0.0160

00

0.0080.001

0.23632.411

00.019

068.794

101.8262002.0015

1590.001

00.099

0.2090.012

00.017

00

0.0090

00.329

31.780

0.0490.021

68.422100.948

2002.0015160

00

0.0470.203

00

0.0160

00

00

0.2332.561

00.023

068.94

102.022002.0015

1610

00.177

0.1720

00.333

00

00.004

0.0240.298

32.2640

0.0370.003

69.107102.419

2002.0015162

00

0.0970.22

0.0040

0.0080

00.022

00.008

0.26732.562

00

0.02468.826

102.0382002.0015

1630

00.184

0.2260.001

00.011

00

0.0450.001

0.080.325

32.8270

00

68.917102.617

2002.0015164

0.0060

0.0720.217

0.0180

0.0190

00.097

0.0020.01

0.2632.523

0.0070

0.02469.001

102.2562002.0015

1650

00.129

0.1960

00

00

00.005

00.226

32.4480.026

0.0390

68.657101.726

2002.0015166

00

00.207

0.0160

0.0090

00.069

00.019

0.25832.591

00

0.04269.325

102.5362002.0015

1670.016

00.099

0.2190.026

00.017

00

00

00.213

32.7030

0.0130.029

68.787102.122

2002.0015168

0.0130

0.0490.234

00

0.0140

00

00.023

0.26232.712

00.015

068.339

101.6612002.0015

1690

00.165

0.220

00.014

00

0.1140.007

0.0010.237

32.6050

00

68.437101.8

2002.0015170

0.0160

0.0950.243

00.023

0.0590

00.038

00

0.2831.914

0.0120.096

068.496

101.2722002.0015

1710.002

00.022

0.2470

00.073

00

00

00.278

32.4260.007

00

68.484101.539

2002.0015172

0.0250

0.0130.215

0.0020

0.0230

00

00

0.29732.841

00.053

0.00568.301

101.7752002.0015

1730.014

00

0.150.008

0.0090.029

00

0.0320.001

0.0390.286

32.7570

00.015

68.859102.199

2002.0015174

0.0120

0.0550.071

00.005

8.3730

00

00.15

0.28833.003

00.029

060.044

102.032007.0304

1750

00

0.0810.006

08.236

00

0.0120

0.1870.282

32.7230.007

0.0370

59.679101.25

2007.0304176

00

0.1870.064

0.010.023

8.3140

00.064

00.076

0.29832.436

00.087

059.997

101.5562007.0304

1770.002

00.051

0.0260

08.307

00

00

0.0860.228

32.7120.002

00

59.809101.223

2007.0304178

0.0080

0.0820.08

0.0010.006

8.3030

00.028

00.085

0.28332.755

00

0.02960.335

101.9952007.0304

1790.013

00.131

0.0590

08.128

00

0.1030

0.1810.236

32.7230

0.0220

60.153101.749

2007.0304180

00

0.1030.053

0.0060

8.2760

00

00.134

0.29232.579

00.009

059.694

101.1462007.0304

Table 7. Continued

Page 97: Compositional Systematics of Sphalerites from Western Bergslagen…uu.diva-portal.org/smash/get/diva2:953522/FULLTEXT01.pdf · The Bergslagen ore province in central Sweden has a

89

No

Ag

As

Bi

Cd

Co

Cu

Fe G

a G

e H

g In

Mn

Pb S

Sb Se

Sn Zn

Total Sam

ple ID181

0.0050

0.1110.037

00

8.4240

00

00.095

0.35632.686

00

059.883

101.5972007.0304

1820

00.085

0.0540

0.0188.211

00

0.0080

0.1750.181

32.7060

0.0590

59.823101.32

2007.0304183

00

0.1050.065

0.0030

8.2980

00

00.054

0.22332.838

0.0110.059

0.02460.155

101.8352007.0304

1840

00.088

0.0420.001

08.122

00

00

0.1040.271

32.7420

00

59.769101.139

2007.0304185

00

0.0450.016

0.0030.01

8.30

00

00.123

0.26132.777

0.0210.091

0.02260.291

101.962007.0304

1860

00.013

0.060

08.315

00

00

0.0870.263

32.4050

00

59.318100.461

2007.0304187

00

0.1010.07

0.0020.01

8.0340

00.122

00.146

0.24232.204

00.001

059.529

100.4612007.0304

1880.01

00.156

0.060.012

08.336

00

0.0040

0.0710.305

33.0580.015

0.0420

59.667101.736

2007.0304189

0.0080

0.0750.047

00

8.2320

00.018

00.12

0.31432.239

0.010.098

059.615

100.7762007.0304

1900

00.233

0.0630.014

0.0078.242

00

00

0.150.293

32.7780.007

0.0560

59.962101.805

2007.0304191

00

0.1820.045

00

8.2460

00.037

00.12

0.27132.919

00.168

0.01159.181

101.182007.0304

1920.006

00.01

0.0610

08.176

00

00

0.0890.282

32.9310

0.0580

60.419102.032

2007.0304193

00

0.1760.075

00

8.4250

00

00.125

0.20332.832

0.010.025

0.00359.905

101.7792007.0304

1940.003

00.03

0.0270.019

0.0048.333

00

0.0130

0.1020.302

32.7030

0.0780

59.909101.523

2007.0304195

0.0120

0.0930.068

0.0110.006

8.1450

00

00.115

0.3332.767

00.016

060.129

101.6922007.0304

1960.007

00

0.0610

08.24

00

0.0280

0.1630.304

32.4760.012

00

60.088101.379

2007.0304197

00

0.050.06

00.016

8.2710

00.031

00.086

0.22632.697

0.0330

060.255

101.7252007.0304

1980.01

00

0.0850.039

00.369

00

0.0780.005

0.0760.232

32.2970

00

67.507100.698

940069199

00

0.0320.107

0.0280

0.3410

00.102

00.164

0.2431.811

0.0120.023

0.00167.072

99.933940069

2000.001

00.158

0.090.043

00.357

00

00.002

0.110.237

32.2820

00

67.332100.612

940069201

0.0080

0.1040.112

0.0160

0.370

00.087

00.171

0.22432.251

0.0210

067.318

100.682940069

2020.014

00.142

0.1050.018

00.369

00

00

0.1310.326

32.1650

0.0430.031

67.229100.573

940069203

00

0.0550.085

0.0390

0.3280

00.004

00.144

0.25732.314

0.0290.017

067.178

100.45940069

2040.003

00.153

0.0940.023

0.0120.366

00

0.0030.006

0.2140.253

31.3460.006

00.012

66.60999.1

940069205

0.0070

0.0270.084

0.0120

0.3580

00

00.11

0.25832.309

0.0360

066.738

99.939940069

2060

00.063

0.0980.017

00.393

00

0.0080

0.1960.204

32.5050

00

67.221100.705

940069207

00

0.1240.086

0.0230.001

0.3970

00.003

00.223

0.25232.024

00

066.686

99.819940069

2080

00.012

0.0780.026

0.0150.409

00

00.005

0.1540.256

32.110

0.0510.003

66.983100.102

940069209

0.0170

0.0650.08

0.0140

0.2820

00

00.185

0.25533.394

0.010.076

0.00366.311

100.692940069

2100.026

00.076

0.0980.034

0.0060.351

00

0.0150

0.1360.274

32.2850

00.016

66.708100.025

940069211

00

0.0880.062

0.0320

0.3130

00

0.0070.121

0.29232.15

0.0080

066.685

99.758940069

2120

00.072

0.0940.026

0.0040.324

00

0.0270

0.0850.281

32.2220

0.0920

66.947100.174

940069213

0.0060

00.114

0.0280

0.3870

00.08

00.173

0.24632.58

00

066.513

100.127940069

2140

00.131

0.0860.015

00.393

00

00

0.1650.333

32.3940

00

66.47499.991

940069215

0.010

0.0240.089

0.0150

0.3930

00

0.0020.173

0.22832.381

00.009

066.631

99.955940069

2160

00

0.0770.029

00.348

00

0.0250.002

0.2190.258

32.0830.019

0.0530

66.85199.964

940069217

0.0090

0.0540.084

0.0310.016

0.3220

00

00.093

0.23332.057

00.06

0.01666.788

99.763940069

2180.014

00.142

0.0820.043

00.365

00

0.0250

0.0920.326

32.1190

0.0580.006

66.959100.231

940069219

00

0.0310.086

0.0350.007

0.4210

00

00.2

0.26932.278

00

0.03766.808

100.172940069

2200.026

00.052

0.10.022

00.362

00

0.0070

0.1640.297

32.3620.016

0.0530

66.724100.185

940069221

00

0.2140.109

0.0270.003

0.4190

00

00.203

0.20432.3

0.0050

066.732

100.216940069

2220

00.244

0.1030.014

0.0140.399

00

00

0.120.266

32.1370

00

66.892100.189

940069223

00

0.0540.096

0.0010

0.3360

00.14

00.128

0.27132.316

0.0090.076

0.03867.043

100.508940069

2240.002

00.036

0.0770.006

00.352

00

0.0630.005

0.110.223

32.1740

00

66.81299.86

940069225

00

0.0490.084

0.0390

0.3690

00

0.0050.096

0.30132.353

00.078

066.76

100.134940069

Table 7. Continued

Page 98: Compositional Systematics of Sphalerites from Western Bergslagen…uu.diva-portal.org/smash/get/diva2:953522/FULLTEXT01.pdf · The Bergslagen ore province in central Sweden has a

90

No

Ag

As

Bi

Cd

Co

Cu

Fe G

a G

e H

g In

Mn

Pb S

Sb Se

Sn Zn

Total Sam

ple ID226

0.0190

0.1080.103

0.040

0.3420

00.013

00.082

0.31132.253

00.045

065.917

99.233940069

2270

00.161

0.0960.02

00.355

00

00.001

0.0580.256

32.1440.012

0.0530.018

66.71399.887

940069228

0.0190

0.0620.065

0.0270.007

0.3370

00

0.0010.101

0.21132.175

0.010.034

066.721

99.77940069

2290.001

00.014

0.0840.039

0.0110.306

00

0.0040

0.1270.269

32.4040

0.0140.01

67.112100.395

940069230

00

0.0880.107

0.0270

0.3470

00.005

00.126

0.27932.201

0.0130

0.00166.527

99.721940069

2310

00.056

1.0530.071

0.2490.455

00

0.0130.003

00.303

31.6360

0.0960

63.25797.192

Ej-BhZ-Ib232

0.0020

0.0251.037

0.0890.44

0.4890

00

0.010

0.22831.477

00.028

062.989

96.814Ej-BhZ-Ib

2330

00.102

1.1130.077

0.5040.64

00

0.0020.005

0.0090.19

31.7680

0.0190

63.10597.534

Ej-BhZ-Ib234

00

0.011.092

0.0670.063

0.1720

00

0.0140

0.31431.715

00

0.01364.16

97.62Ej-BhZ-Ib

2350

00.115

1.0850.061

0.4960.704

00

00.01

00.226

31.2220

0.040

62.43596.394

Ej-BhZ-Ib236

0.0060

01.1

0.0810.55

0.770

00

00

0.29231.799

00.019

063.414

98.031Ej-BhZ-Ib

2370

00.219

1.0740.09

1.031.574

00

0.0610

00.318

31.8620

0.0120.001

62.41298.653

Ej-BhZ-Ib238

00

01.057

0.0760.274

0.4610

00

0.0070

0.28131.499

00.021

062.97

96.646Ej-BhZ-Ib

2390

00.14

1.0730.053

0.2690.487

00

0.1010.002

0.0430.29

31.1630

0.0030

62.19695.82

Ej-BhZ-Ib240

00

0.21.069

0.0550.578

0.8340

00

0.0020.018

0.21531.63

00

0.01662.684

97.301Ej-BhZ-Ib

2410

00.116

0.6990.091

00.594

00

00

00.283

32.2180

0.080

66.222100.303

EJ-MH11-2a

2420.007

00.057

0.7170.106

00.516

00

00.006

00.239

32.4010

0.0330.013

65.88799.982

EJ-MH11-2a

2430

00.123

0.7430.086

0.0050.442

00

00.007

00.267

32.330

00

66.593100.596

EJ-MH11-2a

2440.009

00.153

0.6870.129

0.0460.44

00

00

00.297

32.3560

0.1160

66.185100.418

EJ-MH11-2a

2450.005

00.113

0.7130.097

0.0140.469

00

00.018

0.0440.298

32.3630.003

00

66.814100.951

EJ-MH11-2a

2460.014

00.056

0.7030.095

00.617

00

0.0090.009

00.237

31.7580

0.0020.021

66.4499.961

EJ-MH11-2a

2470

00

0.7470.106

0.0060.57

00

00.014

00.304

32.3950

0.0120

66.682100.836

EJ-MH11-2a

2480.009

00.095

0.7090.098

0.010.582

00

0.050.015

00.271

32.0170

0.0240

66.513100.393

EJ-MH11-2a

2490.008

00.114

0.7050.106

0.0110.527

00

0.0650.016

0.0030.242

32.4570

00

66.26100.514

EJ-MH11-2a

2500

00

0.7060.112

0.0070.56

00

00.009

00.3

32.4270

00

66.694100.815

EJ-MH11-2a

2510.004

00.092

0.6450.105

0.010.472

00

00.008

0.0630.27

31.9820.012

0.0090

66.498100.17

EJ-MH11-2a

2520.002

00.03

0.7110.101

0.3090.411

00

00.008

0.0020.273

31.9930

00

66.681100.521

EJ-MH11-2a

2530

00.129

0.6790.079

1.5950.806

00

00.004

0.0160.274

32.1510

0.0240

64.818100.575

EJ-MH11-2a

2540.008

00.232

0.6930.112

00.516

00

00.022

0.0020.232

32.320.001

00

66.579100.717

EJ-MH11-2a

2550.009

00.172

0.6840.112

00.535

00

00.011

00.221

32.1790.011

00

65.81299.746

EJ-MH11-2a

2560

00.028

0.7310.086

00.535

00

00.005

00.239

32.5520

0.0460

66.65100.872

EJ-MH11-2a

2570.01

00.221

0.7470.111

0.0330.462

00

00.008

00.304

32.4420

00

66.795101.133

EJ-MH11-2a

2580.004

00.151

0.6960.117

0.0130.412

00

0.040.015

0.0060.244

32.1070

00.031

66.848100.684

EJ-MH11-2a

2590.004

00.036

0.6690.1

0.0080.449

00

00

00.33

32.2350

00

66.894100.725

EJ-MH11-2a

2600.008

00.222

0.4430.078

0.0130.1

00

0.0780.012

0.030.281

32.2920.038

00.013

67.32100.928

EJ-MH11-2a

2610.011

00.156

0.630.1

0.0150.454

00

00.009

00.313

32.1160

0.0170

66.868100.689

EJ-MH11-2a

2620.015

00.169

0.6350.108

0.0060.433

00

00.001

0.0410.24

32.1660

00

66.954100.768

EJ-MH11-2a

2630

00.124

0.6790.09

0.0330.481

00

00.01

0.060.266

32.4170.037

0.0460

66.747100.99

EJ-MH11-2a

2640

00.032

0.6710.11

0.0050.481

00

0.0250.005

0.0190.254

32.0010

0.0020

66.684100.289

EJ-MH11-2a

2650.001

00

0.680.113

00.493

00

0.040.01

00.266

32.3770

00.017

66.566100.563

EJ-MH11-2a

2660

00.125

0.290.047

0.3439.053

00

0.0170

0.0750.271

32.8940

00

58.095101.21

Gås IIa267

0.0130

0.1080.264

0.0354.552

10.1430

00.061

00.041

0.29132.826

0.0030.045

053.462

101.844Gås IIa

2680

00.069

0.2940.064

0.3579.265

00

00.002

0.0680.29

32.830

0.0020.016

57.725100.982

Gås IIa269

00

0.1490.295

0.0460.292

9.5990

00.022

00.053

0.27232.735

0.020.073

057.6

101.156Gås IIa

2700.01

00.065

0.2950.05

0.989.1

00

0.0730

0.0410.287

32.6470.038

0.060

57.663101.309

Gås IIa

Table 7. Continued

Page 99: Compositional Systematics of Sphalerites from Western Bergslagen…uu.diva-portal.org/smash/get/diva2:953522/FULLTEXT01.pdf · The Bergslagen ore province in central Sweden has a

91

No

Ag

As

Bi

Cd

Co

Cu

Fe G

a G

e H

g In

Mn

Pb S

Sb Se

Sn Zn

Total Sam

ple ID271

00

0.1260.315

0.070.651

9.0790

00

00.053

0.23232.619

00.052

057.457

100.654Gås IIa

2720

00.111

0.310.051

0.1448.196

00

00

0.1120.308

32.6260

0.0460

58.45100.354

Gås IIa273

00

0.0560.281

0.0361.025

8.6920

00.048

00.081

0.27232.832

00

058.304

101.627Gås IIa

2740

00.151

0.2930.055

0.5859.542

00

0.0860

0.0470.237

32.5130

0.0440

57.497101.05

Gås IIa275

0.0050

0.1960.284

0.0351.275

9.3280

00

00.053

0.21932.719

0.0170

057.885

102.016Gås IIa

2760

00.12

0.2560.068

0.4699.389

00

0.0310

0.0560.212

33.0430.003

0.0910

57.677101.415

Gås IIa277

00

0.1070.285

0.0660.353

9.460

00

00.152

0.26132.938

00

0.03957.845

101.506Gås IIa

2780.005

00.015

0.2740.048

0.4019.596

00

00

0.1110.231

32.9870.012

00

58.31101.99

Gås IIa279

0.0290

0.1850.277

0.0570.493

9.7750

00.006

00.078

0.28332.883

0.0020

057.858

101.926Gås IIa

2800

00.016

0.5130.039

0.05610.69

00

00.007

0.0830.346

32.3080.038

0.1420

53.12397.361

Gås NI And

2810

00.049

0.7140.031

0.55910.386

00

0.0880.034

0.0140.23

32.2480

00

52.24696.599

Gås NI And

2820.004

00.119

0.510.016

0.20610.654

00

0.020.001

0.1220.307

32.1310.021

0.0220.013

52.95897.104

Gås NI And

2830

00.104

0.5520.027

0.11111.085

00

0.110

0.0140.238

31.7590

0.0370.036

52.62996.702

Gås NI And

2840.01

00

0.5570.001

0.03210.866

00

0.0580.005

0.0710.209

31.770

00

53.00896.587

Gås NI And

2850.005

00.063

0.5470.007

0.02710.697

00

00.003

0.0750.268

31.8470.001

00

53.17396.713

Gås NI And

2860

00.103

0.5650.022

0.06410.976

00

0.0560.001

0.0570.269

32.2650

0.0670

52.95697.401

Gås NI And

2870

00.153

0.5510.006

0.01410.283

00

0.0270

0.0320.271

32.4950.006

0.0970.019

53.84697.8

Gås NI And

2880.01

00.076

0.5390.024

0.02910.476

00

0.0030.006

0.0790.235

32.0280

0.0780.013

53.54397.139

Gås NI And

2890

00.13

0.5450.019

0.01210.602

00

00

0.0510.299

31.7080

00.028

52.91796.311

Gås NI And

2900.002

00.127

0.5330.009

0.04610.363

00

00

0.0290.231

32.0950

0.0290

53.08496.548

Gås NI And

2910

00.182

0.5380.014

010.464

00

00

0.0220.27

31.9590.02

0.0260

52.59296.087

Gås NI And

2920

00.142

0.5530.02

010.682

00

00.001

0.1140.28

31.9890

0.0510

52.10295.934

Gås NI And

2930

00.11

0.0360.014

09.799

00

00

1.2490.268

33.0750

00.012

56.906101.469

LAH-001-2294

00

0.0320.061

0.0130.011

9.6650

00.073

01.121

0.24332.869

00.035

056.805

100.928LAH-001-2

2950.002

00

0.0260.016

09.582

00

0.0450

1.0390.279

32.8830

0.0190

57.105100.996

LAH-001-2296

0.0010

0.0860.084

0.0110

9.4270

00

01.079

0.31432.975

00

056.781

100.758LAH-001-2

2970.019

00.143

00.016

09.656

00

0.0060

1.0150.265

33.0440

00.06

56.777101.001

LAH-001-2298

00

0.1270.061

0.0160.006

9.6270

00.006

01.027

0.2432.829

00.006

056.707

100.652LAH-001-2

2990

00.133

0.0750.005

0.019.555

00

0.1310

1.1090.275

33.4570.005

0.0140

56.56101.329

LAH-001-2300

00

0.1430.048

0.0170

9.4630

00

01.061

0.24632.673

00

056.82

100.471LAH-001-2

3010.006

00.02

0.0650.024

09.607

00

00

0.9530.252

32.7260.005

00

56.631100.289

LAH-001-2302

00

0.0130.079

0.0140

9.5580

00

01.147

0.31532.592

00.034

056.656

100.408LAH-001-2

3030.008

00.029

0.090.004

0.0159.417

00

00

1.0720.302

33.0190

0.0940

56.43100.48

LAH-001-2304

00

0.0690.046

0.0170

9.3270

00

01.12

0.27332.767

00.042

056.011

99.672LAH-001-2

3050.012

00.046

0.0860.014

09.551

00

0.040

1.1650.232

32.9260

0.0050.003

55.26399.343

LAH-001-2306

0.0060

0.0640.036

0.0250

9.3790

00.029

01.079

0.31932.56

00

0.01755.604

99.118LAH-001-2

3070

00.087

0.0360.036

09.407

00

0.1580

1.1160.29

32.9580

00

55.50899.596

LAH-001-2308

0.0110

0.020.064

0.0050.014

9.5120

00

01.089

0.33632.979

00.016

055.998

100.044LAH-001-2

3090

00

0.0760.004

09.308

00

00

1.2230.277

32.9940

00

55.70899.59

LAH-001-2310

0.0040

0.0430.073

0.0180

9.3280

00

01.059

0.30732.712

00.013

0.01855.902

99.477LAH-001-2

3110

00.242

0.0840

09.649

00

00

1.0910.29

33.0480

00.016

55.33499.754

LAH-001-2312

00

0.0760.056

0.0150

9.5430

00

01.002

0.28332.674

00

055.653

99.302LAH-001-2

3130

00.079

0.0360.023

0.0099.963

00

0.0870

1.1160.34

33.0070

00

55.31799.977

LAH-001-2314

00

00.091

0.0030

9.5830

00.129

01.192

0.30932.87

0.0160.044

054.926

99.163LAH-001-2

3150.006

00.182

0.0770.011

0.0039.334

00

0.0160

1.240.236

32.9490

0.0730

55.80699.933

LAH-001-2

Table 7. Continued

Page 100: Compositional Systematics of Sphalerites from Western Bergslagen…uu.diva-portal.org/smash/get/diva2:953522/FULLTEXT01.pdf · The Bergslagen ore province in central Sweden has a

92

No

Ag

As

Bi

Cd

Co

Cu

Fe G

a G

e H

g In

Mn

Pb S

Sb Se

Sn Zn

Total Sam

ple ID316

00

0.1010.209

0.0060.021

8.5170

00

00.173

0.333.022

00

058.135

100.484M

ysst-B1-1317

00

0.1030.221

0.0160.009

8.8250

00

00.201

0.25232.655

00

0.03758.215

100.534M

ysst-B1-1318

00

0.1190.19

0.0030

8.6120

00

00.203

0.28232.695

00.018

0.0258.178

100.32M

ysst-B1-1319

00

0.0480.234

0.0230.003

8.3930

00.019

00.222

0.30332.611

00.021

057.612

99.489M

ysst-B1-1320

00

0.1820.192

0.0030.027

8.8150

00

00.171

0.16532.817

00

058.147

100.519M

ysst-B1-1321

00

0.1590.205

00

8.8120

00.033

00.187

0.27832.625

00

058.059

100.358M

ysst-B1-1322

00

0.0970.21

0.0040

8.2940

00.121

00.176

0.24732.562

00

0.00258.359

100.072M

ysst-B1-1323

0.0160

0.1020.199

00

8.3930

00

00.148

0.26132.466

00.032

058.453

100.07M

ysst-B1-1324

00

0.0590.209

0.0130.014

8.8960

00.024

00.212

0.23632.715

00

058.188

100.566M

ysst-B1-1325

0.0010

0.0240.246

00

9.1450

00

00.186

0.28932.753

00.069

0.03857.925

100.676M

ysst-B1-1326

0.0130

0.0080.189

00.013

8.9340

00

00.199

0.26332.608

00

058.334

100.561M

ysst-B1-1327

00

0.0240.223

00.008

8.7850

00.016

00.184

0.28432.671

00

058.284

100.479M

ysst-B1-1328

0.0020

0.1360.19

0.0080.006

8.7710

00

00.232

0.24632.594

0.0050.102

058.375

100.667M

ysst-B1-1329

0.0010

0.0270.209

00.106

8.4540

00

00.166

0.23332.573

0.0090.036

058.851

100.665M

ysst-B1-1330

0.0020

0.080.202

0.0020.012

8.9030

00.029

00.124

0.28932.579

0.0020

058.545

100.769M

ysst-B1-1331

0.0010

0.1280.155

00.012

8.60

00

00.145

0.17622.04

00.013

0.00957.999

89.278M

ysst-B1-1332

00

0.0750.216

00.011

8.1670

00

00.17

0.27332.725

00.035

059.358

101.03M

ysst-B1-1333

00

0.050.2

00.017

8.6390

00.094

00.158

0.21532.767

0.0050

058.475

100.62M

ysst-B1-1334

0.0050

0.2040.218

00.01

8.8170

00.054

00.188

0.23532.66

0.0170.062

059.122

101.592M

ysst-B1-1335

00

0.0230.173

00

8.6340

00.124

00.186

0.26232.74

0.0480.011

059.118

101.319M

ysst-B1-1336

0.0090

0.1010.221

0.0040.01

8.6560

00

00.202

0.28932.675

00.043

059.001

101.211M

ysst-B1-1337

00

0.1310.204

00

9.0660

00.017

00.127

0.22433.091

00.055

058.568

101.483M

ysst-B3-1338

0.0130

0.0780.201

0.0120

8.8060

00

00.109

0.27332.764

00

058.757

101.013M

ysst-B3-1339

00

0.1120.214

00

8.6240

00

00.138

0.25232.691

00

058.997

101.028M

ysst-B3-1340

00

0.0870.208

00.003

8.7070

00.095

00.102

0.26132.687

00

0.01758.476

100.643M

ysst-B3-1341

00

0.1230.218

0.0060.003

8.8720

00

00.109

0.21432.533

00.012

0.00358.658

100.751M

ysst-B3-1342

00

0.1370.19

00

8.8780

00.046

00.117

0.24732.814

00.032

058.548

101.009M

ysst-B3-1343

0.0060

00.203

0.0070

8.8950

00

00.11

0.24432.473

00.098

058.954

100.99M

ysst-B3-1344

00

0.2080.207

00

8.9710

00

00.138

0.25432.713

00.024

058.465

100.98M

ysst-B3-1345

00

0.1620.214

00.001

8.9480.006

00.026

00.128

0.24733.075

0.0170.026

0.01558.546

101.411M

ysst-B3-1346

00

0.1890.25

0.0020

8.8930

00.02

00.153

0.19832.667

0.0020.079

0.0158.843

101.306M

ysst-B3-1347

0.010

0.120.236

0.0230

8.8920

00

00.156

0.31432.691

00.041

058.644

101.127M

ysst-B3-1348

0.0080

0.1390.158

00.012

8.9190.001

00

00.113

0.26632.84

00

059.11

101.566M

ysst-B3-1349

00

0.0880.214

0.0080.036

8.9920

00.047

00.137

0.27232.857

00.001

058.309

100.961M

ysst-B3-1350

0.0120

0.1170.201

00.002

8.8120

00.026

00.123

0.38432.814

0.0390.009

0.00658.553

101.098M

ysst-B3-1351

00

0.0830.224

0.0090

9.0420

00.041

00.141

0.2332.883

00

058.74

101.393M

ysst-B3-1352

0.0060

0.1030.22

00.036

8.6660

00

00.151

0.19832.748

0.0020.046

059.07

101.246M

ysst-B3-1353

0.0120

0.0830.203

0.0040

8.8550

00.144

00.114

0.37332.767

0.0140

058.805

101.374M

ysst-B3-1354

00

0.120.205

0.0090.02

8.7670

00

00.114

0.27932.647

0.0040.002

058.872

101.039M

ysst-B3-1355

00

0.0460.248

0.0050

8.7320

00

00.121

0.25732.723

00.013

058.91

101.055M

ysst-B3-1356

00

0.2410.138

00.012

8.6910

00.039

00.107

0.22632.907

00.082

058.987

101.43M

ysst-B3-1357

00

0.1410.15

0.0110

9.0580

00.096

00.089

0.23832.793

00.054

058.478

101.108M

ysst-B3-1358

00

0.0350.219

00

8.8150

00.053

00.19

0.30632.704

0.0010.121

0.01158.457

100.912M

ysst-B3-1359

00

0.0470.222

00

8.9970

00

00.099

0.27332.974

0.020.009

059.113

101.754M

ysst-B3-1

Table 7. Continued

Page 101: Compositional Systematics of Sphalerites from Western Bergslagen…uu.diva-portal.org/smash/get/diva2:953522/FULLTEXT01.pdf · The Bergslagen ore province in central Sweden has a

93

No

Ag

As

Bi

Cd

Co

Cu

Fe G

a G

e H

g In

Mn

Pb S

Sb Se

Sn Zn

Total Sam

ple ID360

00

00.788

0.1341.638

11.4610

00.107

00.529

0.21832.693

00

052.381

99.949N

äset I361

0.0010

0.2330.718

0.0870.099

11.640

00.042

00.608

0.26132.551

00

053.814

100.054N

äset I362

00

0.1120.9

0.1510.184

11.4520

00

00.592

0.32832.737

00

053.862

100.318N

äset I363

0.020

0.1610.886

0.140.617

11.0680

00

0.1210.586

0.2832.829

00.058

053.598

100.364N

äset I364

00

0.2210.764

0.0790.074

11.6050

00

00.587

0.30433.02

0.0220.053

053.664

100.393N

äset I365

0.0030

00.733

0.1110.021

11.4980

00.045

00.558

0.25133.137

00

054.267

100.624N

äset I366

0.0040

0.0410.737

0.0860.041

11.2510

00

00.529

0.3132.902

0.0110

0.01754.398

100.327N

äset I367

00

0.0510.703

0.0820.014

10.7410

00

00.577

0.30932.974

00.046

054.907

100.404N

äset I368

0.0120

0.1990.671

0.0494.063

11.1990

00.077

00.409

0.2532.581

00.03

0.01550.371

99.926N

äset I369

00

0.0390.691

0.0690.009

10.0620

00.086

00.446

0.25232.927

00.045

0.00655.677

100.309N

äset I370

0.0080

0.1010.647

0.0670.037

9.7840

00

00.522

0.26532.958

00

056.344

100.733N

äset I371

00

0.1110.699

0.0570.007

9.7180

00

00.457

0.30533.007

00.032

056.25

100.643N

äset I372

0.010

0.0940.697

0.0650.029

9.7870

00

00.499

0.40132.857

00

055.925

100.364N

äset I373

0.0140

0.0730.653

0.0440.005

9.520

00.013

00.406

0.31333.112

00

056.906

101.059N

äset I374

00

0.1290.619

0.0690.007

9.5970

00.028

00.367

0.23132.854

00

0.01756.975

100.893N

äset I375

0.0060

0.0170.632

0.1030.033

10.0840

00.079

00.487

0.29433.003

00.057

056.474

101.269N

äset I376

0.0140

0.060.64

0.0660.033

10.6050

00

0.0050.467

0.31732.798

0.0040

055.921

100.93N

äset I377

00

0.0620.663

0.0630.022

9.8030

00

00.458

0.29633.007

00

0.0156.478

100.862N

äset I378

00

0.0380.657

0.0830

9.9210

00

00.339

0.25432.963

0.0130

056.567

100.835N

äset I379

00

0.1940.639

0.060

9.8880

00.091

00.49

0.33132.46

00.111

0.02656.398

100.688N

äset I380

00

0.0370.624

0.0630

9.660

00

00.431

0.24433.129

00.029

0.00156.98

101.198N

äset I381

0.0110

0.1450.547

0.070

9.4230

00.089

00.389

0.27132.765

00.103

057.105

100.918N

äset I382

00

0.0780.712

0.0730

10.5120

00

00.524

0.24132.964

00.002

055.835

100.941N

äset I383

00

0.0740.624

0.0640.034

10.0380

00

00.465

0.27432.985

0.0250.021

0.02756.538

101.169N

äset I384

00

0.1140.606

0.0580

9.840

00

00.451

0.26832.597

00

056.944

100.878N

äset I385

00

0.1230.723

0.090.031

10.9310

00

00.449

0.28633.049

00

055.318

101N

äset I386

0.0040

0.1820.841

0.0630.042

9.8010

00.002

0.010.508

0.29132.67

00.048

056.854

101.316N

äset II387

0.0010

0.0430.841

0.0540

9.9040

00.035

0.0070.564

0.27332.577

00

056.112

100.411N

äset II388

0.0160

0.1220.87

0.0620.017

9.9180

00

00.427

0.28832.598

00

056.772

101.09N

äset II389

00

0.1370.832

0.0730.036

9.7710

00.129

00.493

0.23932.688

0.0020.033

056.758

101.191N

äset II390

0.0240

0.0350.793

0.0780.013

9.5430

00.079

00.539

0.70531.446

00.074

0.00654.941

98.276N

äset II391

0.0010

0.070.671

0.050.013

9.960

00

00.354

0.26433.035

00.016

0.00656.149

100.589N

äset II392

00

0.1370.952

0.0560.055

9.3740

00

00.576

0.34532.792

00.083

056.871

101.241N

äset II393

0.0070

0.0510.673

0.0520

9.7390

00

00.433

0.31932.611

00.047

056.644

100.576N

äset II394

0.0220

0.0140.732

0.0550

9.70

00.059

0.0040.315

0.34432.589

00

0.03356.86

100.727N

äset II395

00

0.0510.84

0.0330

9.0140

00.035

0.0020.393

0.34332.609

00.009

058.005

101.334N

äset II396

0.0090

0.0050.809

0.0380.027

8.9760

00.043

0.0070.431

0.27633.087

00

057.605

101.313N

äset II397

00

0.1660.787

0.0420.023

9.140

00.068

00.377

0.27532.872

00.001

057.575

101.326N

äset II398

00

0.0680.547

0.040.016

8.5450

00.006

00.289

0.24232.633

00

058.083

100.46957-4154

3990

00.01

0.5370.038

08.583

00

0.1150

0.3130.251

32.840

00.006

57.626100.319

57-4154400

00

0.0950.587

0.0340.005

8.6610

00.063

00.228

0.30432.711

00

057.717

100.40557-4154

4010.014

00.13

0.5830.033

0.0118.594

00

0.0810

0.2650.314

32.9650

00

57.945100.935

57-4154402

00

0.0370.535

0.0140

8.3880

00.175

00.304

0.30632.819

00.088

057.755

100.42157-4154

4030.003

00.155

0.5490.032

0.0868.404

00

00

0.2480.3

33.0980

00

57.72100.595

57-4154404

0.0250

0.2510.544

0.0220

8.3670

00

00.282

0.2732.998

00.049

057.855

100.66357-4154

4050.006

00.125

0.5630.009

0.028.477

00

00

0.2630.295

32.8690

00

57.20499.831

57-4154

Table 7. Continued

Page 102: Compositional Systematics of Sphalerites from Western Bergslagen…uu.diva-portal.org/smash/get/diva2:953522/FULLTEXT01.pdf · The Bergslagen ore province in central Sweden has a

94

No

Ag

As

Bi

Cd

Co

Cu

Fe G

a G

e H

g In

Mn

Pb S

Sb Se

Sn Zn

Total Sam

ple ID406

0.0310

0.1280.555

0.0380.031

8.4160

00

00.276

0.30933.106

00.101

057.365

100.35657-4154

4070

00.102

0.550.04

0.0048.279

00

0.0450

0.250.296

33.1340

00

57.74100.44

57-4154408

0.0180

0.0630.681

0.0320.052

9.6670

00

00.397

0.26633.023

00.016

0.00855.778

100.00157-4154

4090.014

00.251

0.680.035

0.0029.626

00

0.090

0.330.307

32.9830

0.0650

56.196100.579

57-4154410

00

0.1040.65

0.0180.009

9.5830

00

00.341

0.23732.819

00.041

0.03556.011

99.84857-4154

4110.031

00.106

0.6270.035

09.274

00

00

0.3360.313

33.2280

0.0180

55.78399.751

57-4154412

0.0190

0.0580.656

0.0420.636

9.6470

00

00.403

0.27833.111

00.055

0.01155.278

100.19457-4154

4130.006

00.086

0.7770.066

0.1848.639

00

0.060

0.3870.364

32.930

0.0810.047

56.04499.671

57-4154414

00

0.0350.821

0.0950.149

8.0620

00

00.157

0.27132.917

00.015

0.01456.961

99.49757-4154

4150.013

00

0.7240.06

0.0638.975

00

0.0480

0.4090.267

32.8920

0.0390

55.44698.936

57-4154416

0.0130

0.1930.749

0.0540.064

7.5050

00.037

00.325

0.37932.829

0.0160.071

0.0355.963

98.22857-4154

4170

00.001

0.7320.026

0.1059.083

00

0.1010

0.3420.29

32.8820

00

55.48799.049

57-4154418

0.0080

0.0840.738

0.020.228

8.9610

00

00.369

0.29632.977

00.009

055.719

99.40957-4154

4190

00.141

0.6210.026

0.0069.107

00

0.0970

0.3050.255

32.9220

00

56.39499.874

57-4154420

00

0.1140.619

0.0310.102

8.1620

00

00.152

0.26233.336

00.051

0.09557.188

100.11257-4154

4210.002

00.154

0.6260.049

0.0219.003

00

0.0490

0.3730.185

32.4310

00

56.91599.808

57-4154422

00

0.1050.662

0.020

8.9370

00

00.192

0.25733.132

00.036

0.02256.877

100.2457-4154

4230.014

00.034

0.5810.038

09.014

0.0030

00

0.280.302

32.8240

0.0310

56.978100.099

57-4154424

0.0190

0.080.64

0.0260.007

8.8630

00

00.248

0.28933.106

00.069

0.00556.958

100.3157-4154

4250.015

00.023

0.6040.036

1.94510.055

00

00

0.2950.274

33.320

0.060

53.534100.161

57-4154426

00

0.1250.621

0.0440.007

9.1120

00.045

00.237

0.32532.592

00.081

055.968

99.15757-4154

4270

00.152

0.6460.039

0.0069.572

00

0.0280

0.3390.248

33.1880

00

56.581100.799

57-4154428

0.0170

0.0990.618

0.0280.017

9.2540

00.014

00.35

0.30433.056

00.036

055.955

99.74857-4154

4290

00.019

0.6870.04

0.0599.624

00

0.0230.003

0.310.31

33.0470

0.110

56.353100.585

57-4154430

00

0.0180.717

0.0610.026

9.7230

00

00.315

0.36732.95

00.006

055.756

99.93957-4154

4310.005

00.161

0.6740.028

0.1038.848

00

0.1210

0.3440.287

33.0870

0.0190.032

56.04499.753

57-4154432

0.0110

0.1320.683

0.0360.007

9.650

00.04

00.361

0.23433.071

00

056.336

100.56157-4154

4330

00.039

0.6840.049

0.1319.453

00

00

0.3230.264

32.8670

00

56.259100.069

57-4154434

00

0.0820.695

0.0380.076

9.640

00.051

00.409

0.30332.901

00

0.03856.313

100.54657-4154

4350.004

00.186

0.740.032

0.1119.705

00

00

0.3770.33

32.8580

00

56.102100.445

57-4154436

0.0030

0.0950.173

00.007

2.1830

00

00.04

0.28133.518

00.057

065.666

102.02366-0010

4370

00.018

0.1960.014

02.347

00

0.0840.005

00.267

32.60

0.0540

66.243101.828

66-0010438

00

0.0610.184

0.0120

2.3430

00

00

0.27232.459

0.0070.059

066.498

101.89566-0010

4390

00.179

0.1560.008

0.0042.411

00

0.0080

0.0060.232

32.9540

00

66.307102.265

66-0010440

00

0.0540.183

0.0020.016

2.3690

00.251

00.026

0.22133.06

00.07

0.00666.754

103.01266-0010

4410

00.066

0.1730.007

0.0332.454

00

0.0040

0.010.357

31.4020.038

00

65.24899.792

66-0010442

00

0.0980.187

0.0130.001

2.3920

00.003

00.034

0.24732.832

00.047

066.537

102.39166-0010

4430.01

00.164

0.1650.009

02.406

00

00

00.26

32.430

00

66.502101.946

66-0010444

00

0.1260.164

0.030

2.2370

00

00.004

0.24632.716

00.073

066.472

102.06866-0010

4450.005

00.188

0.1710

02.451

00

0.0480

00.226

32.2270

0.0530

66.458101.827

66-0010446

00

0.0540.189

00.013

2.4590

00

00.033

0.27132.68

0.0010

066.456

102.15666-0010

4470

00.215

0.1660.01

01.985

00

0.0640

0.0190.24

33.0390.009

00

67.383103.13

66-0010448

00

0.1120.17

0.0020.004

2.2840

00.117

00.01

0.18932.775

00.075

066.561

102.29966-0010

4490.002

00

0.170.009

02.243

00

0.1050

0.0240.335

32.7060

0.0260

66.222101.842

66-0010450

00

0.040.184

0.0320.002

2.1780

00

00.042

0.21932.798

0.0040

066.773

102.27266-0010

Table 7. Continued

Page 103: Compositional Systematics of Sphalerites from Western Bergslagen…uu.diva-portal.org/smash/get/diva2:953522/FULLTEXT01.pdf · The Bergslagen ore province in central Sweden has a

95

No

Ag

As

Bi

Cd

Co

Cu

Fe G

a G

e H

g In

Mn

Pb S

Sb Se

Sn Zn

Total Sam

ple ID451

00

0.10.157

0.0130.006

2.3150

00.03

00

0.29632.908

00.001

066.783

102.60966-0010

4520

00.196

0.2050

0.0062.46

00

0.0320

0.0370.257

33.0220.002

00

66.206102.423

66-0010453

00

0.0260.201

0.0060

2.4380

00.026

00

0.27632.743

0.0510

066.305

102.07266-0010

4540

00.105

0.1610

0.0132.397

00

0.0930

0.0120.28

32.6950

00

66.325102.081

66-0010455

0.010

0.1470.304

0.0281.137

9.3750

00

00.079

0.33132.919

00.017

056.051

100.398Gås IIb

4560

00.147

0.2780.028

0.5349.447

00

00.003

0.0670.283

33.5070

00

56.361100.655

Gås IIb 457

0.010

0.010.279

0.0510.409

7.5880

00.096

0.0110.116

0.25332.734

0.0160

056.919

98.492Gås IIb

4580

00.199

0.460

0.0056.514

00

0.0840.016

0.0990.212

33.0520.003

0.0150

59.681100.34

HÄL-01-1459

0.0180

0.1360.436

0.0110.021

5.9220

00

0.0320.044

0.2933.038

0.0070.055

060.578

100.588HÄL-01-1

4600.007

00.075

0.4540

0.026.669

00

0.1020.034

0.0890.335

33.1420

00

59.319100.246

HÄL-01-1461

0.0050

0.20.488

0.0040.016

6.2490

00

0.0230.078

0.31133.051

00.024

059.988

100.437HÄL-01-1

4620.035

00.029

0.4630

0.1265.805

00

0.0140.033

0.0930.365

33.0890.014

0.0280.021

60.493100.608

HÄL-01-1463

0.0270

0.2690.476

0.0020.015

5.9130

00

0.020.035

0.39632.32

0.0020.04

0.01360.102

99.63HÄL-01-1

4640.003

00

0.4560

0.026.217

00

0.1030.021

0.0780.289

33.1730

0.0370.039

59.777100.213

HÄL-01-1465

0.030

0.0460.464

0.0110.044

6.7520

00

0.0160.122

0.23733.296

00.05

059.783

100.851HÄL-01-1

4660.003

00.069

0.4790

06.55

00

0.0560.026

0.1980.301

32.6230

00

58.29198.596

HÄL-01-1467

00

0.1060.459

0.0070.026

6.3530

00

0.0470.133

0.28233.036

00

059.993

100.442HÄL-01-1

4680.023

00.016

0.4310.003

0.0455.855

00

0.020.036

0.0950.355

32.90

0.0060

60.11499.899

HÄL-01-1469

0.0350

0.0510.49

00.043

6.5660

00

0.0250.077

0.31433.028

00.021

0.01859.883

100.551HÄL-01-1

4700

00.109

0.4720

0.0086.56

00

00.005

0.0710.277

32.9350

0.0150

59.721100.173

HÄL-01-1471

00

0.1750.473

00.026

6.0840

00.038

0.0230.062

0.34833.086

00

059.831

100.146HÄL-01-1

4720.007

00.221

0.5140.025

0.0216.407

00

00.035

0.0850.272

32.9020

00

60.488100.977

HÄL-01-1473

0.020

0.0690.475

00.048

6.3040

00

0.0260.099

0.30133.015

00

0.0360.629

101.016HÄL-01-1

4740.055

00.188

0.4760

0.0346.266

00

00.023

0.0880.262

32.9630

00.005

59.693100.053

HÄL-01-1475

0.0160

0.0840.448

0.0110.006

6.2090

00

0.040.063

0.37333.033

00.008

060.42

100.711HÄL-01-1

4760.02

00.007

0.5030

0.0136.213

00

00.032

0.0310.292

33.0180

0.0030

60.68100.812

HÄL-01-1477

00

0.0290.478

0.0020

6.8070

00.025

0.0190.098

0.32632.905

00

0.02960.004

100.722HÄL-01-1

4780.009

00

0.4670.006

0.0226.182

00

0.0260.032

0.0040.3

33.0350

0.0640

61.198101.345

HÄL-01-1479

0.0210

0.0260.462

00

5.7450

00

0.0270.003

0.32233

00.07

061.321

100.997HÄL-01-1

4800

00.025

0.4640

0.0066.848

00

0.0780.039

0.3350.24

33.1050

0.0170.012

59.874101.043

HÄL-01-1481

00

0.1780.475

0.0080.023

6.8020

00.134

0.0290.063

0.26633.188

00

060.038

101.204HÄL-01-1

4820.005

00.019

0.4870

0.0286.118

00

0.090.005

0.0830.339

33.1070.011

0.0140

60.767101.073

HÄL-01-1483

00

0.1350.478

00.002

6.4830

00.039

0.0340.039

0.36433.11

00.049

060.386

101.119HÄL-01-1

4840.007

00.187

0.4690

0.026.458

00

0.0040.027

0.1040.326

33.140

00.017

60.608101.367

HÄL-01-1485

00

0.0720.457

0.0170.034

6.1090

00.108

0.0290.093

0.35333.135

0.0090

061.248

101.664HÄL-01-1

4860

00.162

0.4290

0.0316.309

00

00.027

0.1020.176

32.9340

00

60.988101.158

HÄL-01-1487

00

0.0770.45

0.0080.028

5.840

00

0.0230.073

0.2633.136

00.018

0.00761.781

101.701HÄL-01-1

4880

00.035

0.2660

08.761

00

00

1.0020.427

33.2530

00.024

56.455100.223

LAH-001-1489

00

0.0890.245

0.0180

9.210

00.022

00.984

0.24833.119

00.048

055.682

99.665LAH-001-1

4900.016

00.031

0.2650

09.191

00

00

1.0160.255

33.1950.025

00

57.121101.115

LAH-001-1491

0.0180

0.0590.273

0.0160

9.180

00

00.948

0.26433.108

00.06

0.0156.714

100.65LAH-001-1

4920.004

00.08

0.2770

09.187

00

00

0.9210.215

32.9540

0.0870

56.867100.592

LAH-001-1493

0.0190

0.1630.27

0.0130

9.7330

00.024

00.956

0.25833.012

00.001

055.834

100.283LAH-001-1

4940.025

00.104

0.2660.001

09.195

00

0.0620

0.8490.287

32.950

0.0560.017

56.93100.742

LAH-001-1495

00

0.1490.271

0.0220.017

9.2430

00.002

00.908

0.24932.632

00

056.912

100.405LAH-001-1

Table 7. Continued

Page 104: Compositional Systematics of Sphalerites from Western Bergslagen…uu.diva-portal.org/smash/get/diva2:953522/FULLTEXT01.pdf · The Bergslagen ore province in central Sweden has a

96

No

Ag

As

Bi

Cd

Co

Cu

Fe G

a G

e H

g In

Mn

Pb S

Sb Se

Sn Zn

Total Sam

ple ID496

00

0.1310.265

0.020.007

8.890

00

00.86

0.24632.857

00

057.07

100.346LAH-001-1

4970.015

00.043

0.2360.005

08.73

00

00

0.9320.353

33.1130

0.0120

57.302100.741

LAH-001-1498

0.0370

0.1110.259

0.0290.029

8.7240

00

00.928

0.3533.638

00.042

057.025

101.172LAH-001-1

4990

00.034

0.2440.001

08.86

00

0.0610

0.9250.348

33.0150

00.044

57.622101.154

LAH-001-1500

00

0.1020.237

0.0110.005

8.9910

00

00.862

0.27632.999

00

0.00557.583

101.071LAH-001-1

5010.01

00.079

0.2640

09.099

00

00

0.9020.249

33.0770

00

57.149100.829

LAH-001-1502

0.0110

0.0740.241

0.0020

9.1930

00.006

01.019

0.28333.275

00.041

057.126

101.271LAH-001-1

5030.006

00.098

0.2420.006

0.0198.642

00

00

0.9040.414

33.1890

00

56.837100.357

LAH-001-1504

00

0.1480.262

00

8.9610

00.085

00.94

0.32232.825

00.106

057.548

101.197LAH-001-1

5050

00.186

0.2570.006

0.028.752

00

00

0.920.316

33.2810.016

00

57.609101.363

LAH-001-1506

00

0.0750.257

0.0110

8.7520

00

00.895

0.38432.912

00

056.168

99.454LAH-001-1

5070.014

00.057

0.2540.027

0.0058.655

00

00

0.970.296

33.2720

0.0420

55.87999.471

LAH-001-1508

00

0.2280.249

0.0050

8.5940

00.047

00.867

0.3432.995

00.011

056.693

100.029LAH-001-1

5090

00.113

0.2440.008

08.71

00

0.0550

0.9330.322

33.0980

0.0030

56.659100.145

LAH-001-1510

00

0.1720.264

0.0070

8.4930

00

00.827

0.33932.925

00

0.0255.767

98.814LAH-001-1

5110

00.2

0.2530.015

08.753

00

00

0.8870.205

33.0880

0.0480

56.48399.932

LAH-001-1512

0.020

00.243

0.0130

8.6360

00

00.878

0.43432.952

0.0180.047

056.498

99.739LAH-001-1

5130.001

00.089

0.2350.004

08.769

00

00

0.9010.303

32.7240.004

00.017

56.37399.42

LAH-001-1514

00

0.1210.259

0.0070

8.7630

00

00.976

0.33133.218

00.039

056.496

100.21LAH-001-1

5150

00.094

0.250

08.788

00

0.0950

0.9510.365

33.1760

00

56.19899.917

LAH-001-1516

0.0150

0.1310.271

0.0080

9.0120

00

00.904

0.20933.18

0.0090.024

056.853

100.616LAH-001-1

5170

00.041

0.240.001

0.0178.816

00

0.0810

0.9560.309

33.140

0.0430

56.446100.09

LAH-001-1518

00

0.1160.277

0.0060

8.6520

00

00.867

0.27233.428

00

0.01156.776

100.405LAH-001-1

5190

00.145

0.2410

0.018.481

00

00

0.9210.384

33.0540.02

0.0510.004

56.39299.703

LAH-001-1520

00

0.1480.239

0.0070

8.6420

00.021

00.935

0.27633.219

00.008

0.03456.347

99.876LAH-001-1

5210.021

00.07

0.2680.011

08.804

00

00

0.9440.279

32.6810

00

56.37299.45

LAH-001-1522

00

0.2091.227

00.017

8.5650

00

0.0010.219

0.52232.534

00

0.00955.627

98.93LAH-001-4

5230.024

00.109

1.0070.007

08.67

00

00

0.2240.508

32.4720

0.0480

55.9499.009

LAH-001-4524

00

0.1850.954

0.0190

8.530

00

00.304

0.70232.236

00

055.459

98.389LAH-001-4

5250.01

00.102

1.4390.02

08.407

00

0.0680

0.2240.393

32.1890

00

56.02498.876

LAH-001-4526

0.0070

0.1560.911

0.0280.007

8.8520

00

00.264

0.51932.737

00

0.00655.971

99.458LAH-001-4

5270

00.06

0.9930

0.0138.62

00

00

0.2590.485

32.3120

00

55.8398.572

LAH-001-4528

00

0.0870.254

0.0170.015

9.4910

00.131

0.0010.622

0.26733.144

00.101

0.00857.901

102.039LAH-001-6

5290

00.055

0.2390.018

0.0019.382

00

0.0710

0.5970.26

32.7380

0.0420.01

57.956101.369

LAH-001-6530

0.0040

0.1040.255

0.0190

9.2360

00

00.583

0.22432.936

0.0010.04

0.02958.042

101.473LAH-001-6

5310

00.095

0.2520.018

09.434

00

0.0570

0.4880.294

32.9910.003

0.0260

57.946101.604

LAH-001-6532

00

0.1790.278

0.0250

9.2190

00.043

00.604

0.26533.05

00

057.818

101.481LAH-001-6

5330

00.052

0.290

09.446

00

00

0.6560.255

32.8540

0.0010.012

57.58101.146

LAH-001-6534

00

0.1750.263

0.0060

9.3880

00

00.558

0.29332.864

00.026

057.903

101.476LAH-001-6

5350

00.144

0.2580.001

09.502

00

00

0.5950.254

33.6450.005

00

57.772102.176

LAH-001-6536

00

0.1090.269

0.010.005

9.360

00

00.609

0.3233.108

00.053

0.00157.499

101.343LAH-001-6

5370.014

00.17

0.2610.013

09.335

00

0.0480

0.6250.222

32.7310.024

0.0230

57.414100.88

LAH-001-6538

00

0.0910.274

0.0090.016

8.8290

00.047

00.583

0.28332.853

00.008

0.0257.857

100.87LAH-001-6

5390

00.12

0.2640.02

0.0079.369

00

0.0270

0.5480.374

33.0050.019

0.0210

57.411101.185

LAH-001-6540

00

0.0860.284

0.020

9.2890

00.089

00.551

0.22833.682

00.03

057.383

101.642LAH-001-6

Table 7. Continued

Page 105: Compositional Systematics of Sphalerites from Western Bergslagen…uu.diva-portal.org/smash/get/diva2:953522/FULLTEXT01.pdf · The Bergslagen ore province in central Sweden has a

97

No

Ag

As

Bi

Cd

Co

Cu

Fe G

a G

e H

g In

Mn

Pb S

Sb Se

Sn Zn

Total Sam

ple ID541

0.0010

00.259

0.030

9.2780

00.027

00.579

0.28233.133

00.081

057.512

101.182LAH-001-6

5420

00.051

0.2470.009

09.395

00

0.0510

0.6060.222

32.9220.021

00.033

57.299100.856

LAH-001-6543

0.0180

0.0880.237

00.003

9.3860

00

00.653

0.24332.929

00.064

0.00956.763

100.393LAH-001-6

5440

00.134

0.2650.005

09.095

00

00

0.5970.235

32.9510.005

0.0640.011

57.211100.573

LAH-001-6545

0.0040

0.110.26

0.0030.015

9.4460

00.049

00.57

0.2633.199

00

0.00457.426

101.346LAH-001-6

5460.011

00.168

0.2720.02

0.0079.214

00

00

0.6130.278

33.1130

0.050

56.992100.738

LAH-001-6547

0.0030

0.140.248

0.0130

9.2560

00.007

00.561

0.32333.168

00.001

056.987

100.707LAH-001-6

5480

00

0.2970

0.0039.261

00

0.1080

0.5720.289

32.9740

00.046

56.674100.224

LAH-001-6549

0.0010

0.0990.255

00.011

8.7760

00

00.588

0.23332.945

00

056.764

99.672LAH-001-6

5500.006

00.171

0.2570.025

09.233

00

0.0210

0.5160.262

33.1580

00

56.546100.195

LAH-001-6551

0.0010

0.1490.255

0.0190.03

9.0010.007

00.057

00.645

0.24832.945

00

056.735

100.092LAH-001-6

5520

00.029

0.2510.004

09.226

00

0.0530

0.5740.267

33.0820

0.0030.024

56.48199.994

LAH-001-6553

00

0.0972.272

0.0580.001

10.3970

00.023

00.269

0.49232.307

00.1

055.5

101.516M

yB-001-1554

00

0.0642.254

0.0530.005

10.4160

00

00.235

0.45432.673

00

055.228

101.382M

yB-001-1555

00

0.1132.239

0.0450.006

10.2810

00

00.248

0.60432.915

00.038

055.437

101.926M

yB-001-1556

00

0.0863.441

0.0560.026

9.6450

00.002

00.241

0.50932.472

00.027

054.461

100.966M

yB-001-1557

0.0490

0.0352.416

0.0560

10.190

00

00.139

0.3832.642

00

0.02155.135

101.063M

yB-001-1558

00

0.130

0.0040

8.8460

00

00.341

0.03733.515

00.002

056.302

99.1771919.1470.b

5590.007

00.14

0.0310.029

0.0118.944

00

00.02

0.3370.211

33.4670

00

56.41599.612

1919.1470.b560

00

0.1730

0.0280

8.9270

00.019

00.328

0.00533.591

00

056.395

99.4661919.1470.b

5610

00.145

00.027

09.097

00

00

0.3280.023

33.5640

00

56.0999.274

1919.1470.b562

00

0.140

0.0130.046

9.2310

0.0060

00.322

033.595

00.103

056.112

99.5681919.1470.b

5630

00.156

00

0.0239.145

00

00

0.3350

33.5670

0.0070

56.14299.375

1919.1470.b564

00

0.160

0.0110

9.1750

00

00.319

033.451

00.132

056.081

99.3291919.1470.b

5650

00.191

00.016

09.196

00

0.0040

0.3140.044

33.5050

00

55.94499.214

1919.1470.b566

0.0040

0.1460.012

0.0180.012

9.1630

00

0.0040.316

0.22433.505

00.007

056.134

99.5451919.1470.b

5670

00.119

0.0040.02

0.0219.146

00

00.003

0.3330.003

33.510

0.0810

55.88899.128

1919.1470.b568

00

0.0930

0.0070.021

9.2360

00

00.306

033.55

00.051

056.461

99.7251919.1470.b

5690

00.15

00.025

0.0299.098

00

00

0.3270

33.5290

0.060

55.6198.828

1919.1470.b570

00

0.1530

00

9.1630

00

00.317

0.00233.533

00

055.93

99.0981919.1470.b

5710

00.155

00.005

0.0259.16

0.0030

00

0.330

33.3980

00

55.81398.889

1919.1470.b572

00

0.1560

0.0250.019

9.2060

00.029

00.303

033.631

00.001

056.035

99.4051919.1470.b

5730

00.092

0.0010.004

0.0219.103

00

00.007

0.3370.008

33.5040

0.0240

56.19199.292

1919.1470.b574

0.0130

0.1050.028

0.0060

9.150

0.0030

0.0350.322

0.21933.518

00.046

055.985

99.431919.1470.b

5750

00.093

0.0340.027

0.0299.082

00

00.003

0.3090.249

33.5880

0.0660.011

55.96699.457

1919.1470.b576

00

0.1070.017

0.0010

9.1080

00

0.0380.326

0.31633.507

00.042

056.186

99.6481919.1470.b

5770

00.118

00.002

0.0059.154

00

0.0190

0.3390

33.4930

00

56.09199.221

1919.1470.b578

00

0.1370

0.0030.007

8.9450

00

00.333

033.453

00

056.096

98.9741919.1470.b

5790

00.121

00.011

0.0139.086

00

00

0.3540

33.5160

00

55.84498.945

1919.1470.b580

00

0.1140

00.001

9.1060

00

00.317

0.04433.484

00.002

055.979

99.0471919.1470.b

5810.009

00.18

0.0330

0.0329.051

00

00

0.3240.265

33.5040

0.0260.006

56.01199.441

1919.1470.b582

00

0.0990.046

0.0070.031

9.1320

00

0.0080.325

0.26633.577

00.014

056.089

99.5941919.1470.b

5830

00.168

00

0.0029.147

00

00

0.3280

33.6430

0.1040

56.31999.711

1919.1470.b584

0.0020

0.150

0.0220

9.2580

00

0.0020.313

0.01633.472

00

055.746

98.9811919.1470.b

5850

00.139

0.0310

09.137

00

0.0160

0.310.261

33.4860

0.0830.003

55.83699.302

1919.1470.b

Table 7. Continued

Page 106: Compositional Systematics of Sphalerites from Western Bergslagen…uu.diva-portal.org/smash/get/diva2:953522/FULLTEXT01.pdf · The Bergslagen ore province in central Sweden has a

98

No

Ag

As

Bi

Cd

Co

Cu

Fe G

a G

e H

g In

Mn

Pb S

Sb Se

Sn Zn

Total Sam

ple ID586

0.0160

0.1480

0.0230

9.1450

00

0.0030.321

0.01333.506

00.037

055.903

99.1151919.1470.b

5870

00.126

00.005

0.0079.249

00

00.002

0.320

33.4870

0.040

56.10199.337

1919.1470.b588

00

0.1390

0.0160.018

9.130.003

00

00.316

033.533

00

056.209

99.3641919.1470.b

5890

00.165

00.003

0.0329.176

00

00

0.3250

33.4340

00

56.01799.152

1919.1470.b590

00

0.1810

0.0190.004

9.1770

00

00.318

0.01433.615

00

056.036

99.3641919.1470.b

5910

00.124

00.018

0.0099.171

00

00

0.3070.002

33.5440

0.0350

56.14299.352

1919.1470.b592

00

0.1490

0.0090.013

9.1760

00

00.322

0.04233.677

00

056.179

99.5671919.1470.b

5930

00.112

00.008

0.0129.218

00

0.0250

0.3280.033

33.6270

00

56.07699.439

1919.1470.b594

00

0.1340

0.0090

9.1790

00

00.324

033.61

00

056.131

99.3871919.1470.b

5950

00.14

00.006

0.0169.203

00

0.0470

0.3140.015

33.5910

0.0980

56.15199.581

1919.1470.b596

00

0.1070

0.0010

9.2710

00.013

0.0140.323

0.0233.611

00

056.167

99.5271919.1470.b

5970

00.156

00.016

0.0169.223

00

00

0.3280.024

33.5610

00

56.10499.428

1919.1470.b598

00

0.1330

0.0040.022

9.1030

00

00.326

033.612

00.056

055.909

99.1651919.1470.b

5990

00.121

00

0.0279.203

00

00

0.3270

33.5420

0.0460.007

56.08199.354

1919.1470.b600

00

0.1650

0.0020

9.1330

00

00.338

033.476

00.018

056.094

99.2261919.1470.b

6010.002

00.103

0.0340.025

0.0279.208

00

00.001

0.3090.292

33.5260

0.040

56.12699.693

1919.1470.b602

0.0150

0.160.021

0.0220.029

9.2980

00

00.346

0.20633.555

00

0.01156.354

100.0171919.1470.b

6030.003

00.118

0.0290.028

0.0189.298

00

00.004

0.3050.272

33.4610

00

56.03899.574

1919.1470.b604

00

0.1280

0.0070

9.2290

00

00.335

033.592

00

055.928

99.2191919.1470.b

6050

00.129

0.0410.012

09.18

00

0.0270.002

0.320.226

33.4960

0.0360

55.69299.161

1919.1470.b606

00

0.1320.016

0.010.003

9.1770

00.007

0.0220.317

0.28633.584

00

056.204

99.7581919.1470.b

6070.006

00.097

0.0010.026

09.238

00

00.005

0.3240.033

33.5540

00

56.27299.556

1919.1470.b608

00

0.1190

00

9.2130

00

00.319

033.549

00.046

056.01

99.2561919.1470.b

6090

00.139

00.039

0.0049.143

00

0.0150

0.3270.029

33.4510

00

56.16499.311

1919.1470.b610

00

0.1690

0.0090.009

9.1620

00.034

00.343

033.62

00.004

056.098

99.4481919.1470.b

6110

00.119

00.023

0.0149.206

00

00

0.3250.013

33.5140

0.0970

56.05599.366

1919.1470.b612

00

0.170

0.0030

9.1580

00

00.32

033.563

00.095

055.891

99.21919.1470.b

6130

00.112

00

09.172

00

0.0060

0.320.079

33.4710

0.0850

55.90899.153

1919.1470.b614

00

0.1630

0.0290.035

9.30.011

00

00.327

0.03333.602

00.018

056.19

99.7081919.1470.b

6150

00.124

00

0.0029.168

00

00

0.3160.068

33.4890

0.0090

56.0199.186

1919.1470.b616

00

0.1110

0.0010.004

9.1270

00

00.311

033.533

00

056.122

99.2091919.1470.b

6170

00.087

00

0.0099.135

00

00

0.3330

33.5490

00

56.14699.259

1919.1470.b618

00

0.1310

0.0020

9.0620

00

00.321

033.343

00.041

055.926

98.8261919.1470.b

6190

00.121

00.01

0.0399.217

00

00

0.3270

33.5070

0.0370

55.97899.236

1919.1470.b620

00

0.1440

00.041

9.2080

00.002

00.301

033.515

00.08

055.718

99.0091919.1470.b

6210

00.117

00

0.0279.133

00

00

0.3490.001

33.4430

0.0180

56.05899.146

1919.1470.b622

00

0.1340

0.0030.027

9.1180

00.031

00.328

033.57

00

056.173

99.3841919.1470.b

6230.001

00.138

0.0490.02

0.0189.231

00

00

0.3160.244

33.4310

00

56.06699.514

1919.1470.b624

00

0.1280.053

00.004

9.1760

00

00.321

0.24233.445

00

056.239

99.6081919.1470.b

6250

00.126

0.0250

09.137

00

00.018

0.3220.218

33.4130

0.0230

56.13399.415

1919.1470.b626

00

0.150

00.023

9.0440

00

00.313

0.04333.592

00

056.078

99.2431919.1470.b

6270

00.194

00.03

09.247

00

00

0.3190

33.5010

00

55.86999.16

1919.1470.b628

00

0.1310.226

00

8.0810

0.010.017

00.418

0.89333.029

00.024

053.939

96.768Getberget-a

6290

00.136

0.2290.002

0.0319.592

00

00

0.4270.277

33.2450

00

54.05697.995

Getberget-a630

00

0.1180.225

00

9.7260

00

00.409

0.31733.223

00.02

053.748

97.786Getberget-a

Table 7. Continued

Page 107: Compositional Systematics of Sphalerites from Western Bergslagen…uu.diva-portal.org/smash/get/diva2:953522/FULLTEXT01.pdf · The Bergslagen ore province in central Sweden has a

99

No

Ag

As

Bi

Cd

Co

Cu

Fe G

a G

e H

g In

Mn

Pb S

Sb Se

Sn Zn

Total Sam

ple ID631

0.0090

0.1680.197

0.0080.013

9.7450

00

00.396

0.34133.284

00

053.914

98.075Getberget-a

6320

00.183

0.2320.017

0.0379.716

00

00

0.4120.307

33.2460

0.0120

53.91898.08

Getberget-a633

0.020

0.1820.206

0.0150

9.6110

00

0.0180.397

0.40733.278

00

054.099

98.233Getberget-a

6340

00.173

0.230.002

0.0079.721

00

0.0240

0.4170.352

33.3410

00

54.31698.583

Getberget-a635

00

0.0960.237

0.0170.003

9.8360

00

00.402

0.33733.299

00

053.939

98.166Getberget-a

6360

00.168

0.2280.017

0.0239.79

00

00

0.3870.222

33.2490

00

53.79197.875

Getberget-a637

0.0160

0.1560.207

0.010

9.8150

00

00.406

0.26133.225

00

053.737

97.833Getberget-a

6380.005

00.138

0.2050.006

09.915

00

00

0.4020.324

33.3370

0.0570

53.6698.049

Getberget-a639

0.0070

0.1220.189

0.0110.019

9.8670

00

00.406

0.34433.382

00.105

054.02

98.472Getberget-a

6400

00.122

0.190.004

09.842

00

00.003

0.4110.337

33.3550

0.0360

54.35998.659

Getberget-a641

0.0080

0.1430.199

0.0170.018

9.7020

00.012

00.392

0.30233.407

00.034

053.829

98.063Getberget-a

6420.013

00.108

0.2320

09.827

00

00

0.4130.319

33.1830

0.0340

53.97798.106

Getberget-a643

0.0060

0.1170.213

0.0120.009

9.8950

00

00.409

0.28233.401

00.058

0.00653.984

98.392Getberget-a

6440.01

00.157

0.170.013

0.0019.839

00

00

0.4020.297

33.4410

0.1080

54.37498.812

Getberget-a645

0.0080

0.1270.172

0.0140.002

9.7490

00

00.395

0.32233.449

00.078

054.061

98.377Getberget-a

6460

00.119

0.0010

0.0399.789

00

0.0060.005

0.4310

33.4210

0.0860

54.26398.16

Getberget-a647

0.0080

0.1310

00

9.8280

00.026

0.0020.406

0.02133.357

00

054.285

98.064Getberget-a

6480.012

00.158

0.2130

0.039.757

00

00

0.4220.225

33.4580

0.0510

54.09998.425

Getberget-a649

0.0030

0.0940.196

00

9.8430

00

00.409

0.32733.193

00.041

054.045

98.151Getberget-a

6500

00.05

0.1990

0.0129.891

00

00

0.410.252

33.3710

0.0480

54.0498.273

Getberget-a651

0.0040

0.1730

0.0160

9.9060

00

00.42

033.292

00.047

0.00953.926

97.793Getberget-a

6520.014

00.165

0.2020

09.779

00

00

0.4020.187

33.370

0.0660

53.77797.962

Getberget-a653

00

0.1140.212

0.0040.003

9.8010.016

00

00.412

0.22433.394

00.054

054.109

98.343Getberget-a

6540.012

00.147

00.004

09.717

00

00.005

0.3970

33.4520

0.0590

54.01797.81

Getberget-a655

00

0.1320

0.0190.007

9.7580

00

00.422

0.05633.392

00.011

053.792

97.589Getberget-a

6560

00.121

00.014

09.895

00

00

0.3980.017

33.3180

0.0040

53.83697.603

Getberget-a657

00

0.1730.203

00.01

9.8730

00

00.413

0.26433.444

00

054.135

98.515Getberget-a

6580

00.117

0.210

0.0039.847

00

00

0.4190.239

33.4510

0.0150

53.75598.056

Getberget-a659

00

0.1290

00.002

10.0010

00.013

00.419

0.02333.539

00

053.829

97.955Getberget-a

6600.001

00.114

0.2040

0.0059.926

0.0060

00

0.4410.287

33.4910

0.0390

53.80398.317

Getberget-a661

0.0170

0.1710.2

00

10.0920

00

00.422

0.28533.418

00.114

054.04

98.759Getberget-a

6620.023

00.129

0.1960.011

010.15

00

00.001

0.4220.288

33.380

00.01

54.26598.875

Getberget-a663

00

0.0990.199

00

9.8590

00.006

00.398

0.31733.396

00.059

053.876

98.209Getberget-a

6640

00.124

00

09.87

00

00

0.3890.011

33.3420

0.0640

53.98597.785

Getberget-a665

00

0.1040.001

0.0070.005

9.8350.016

00

00.404

033.528

00.024

054.262

98.186Getberget-a

6660.002

00.142

0.2020

09.79

00

00

0.4090.235

33.3680

00

53.79897.946

Getberget-a667

00

0.1370.202

0.0010

9.8610

00

0.0030.413

0.30333.361

00

053.594

97.875Getberget-a

6680

00.15

0.2090.002

010.055

00

0.0340

0.4030.19

33.3770

0.0670

54.0198.497

Getberget-a669

00

0.1270

0.0030.001

9.7990

00.013

00.421

0.00233.37

00

054.218

97.954Getberget-a

6700.004

00.077

0.2210.018

0.0239.956

0.0070

00

0.4180.322

33.3940

0.0080

54.47698.924

Getberget-a671

0.0140

0.1230.199

0.0110

9.9380

00

00.421

0.27633.447

00.064

053.95

98.443Getberget-a

6720.018

00.154

0.2220

09.857

00

0.0190.006

0.4170.18

33.4250

0.0580

54.08698.442

Getberget-a673

0.0030

0.1450

00

9.9780

00.003

0.0030.4

0.00533.382

00.023

054.41

98.352Getberget-a

6740

00.144

0.2130.014

0.029.972

00

0.0010

0.4150.311

33.40

00

54.03998.529

Getberget-a675

00

0.1770.224

00.005

9.8260

00.024

0.0090.43

0.22333.517

00

054.114

98.549Getberget-a

Table 7. Continued

Page 108: Compositional Systematics of Sphalerites from Western Bergslagen…uu.diva-portal.org/smash/get/diva2:953522/FULLTEXT01.pdf · The Bergslagen ore province in central Sweden has a

100

No

Ag

As

Bi

Cd

Co

Cu

Fe G

a G

e H

g In

Mn

Pb S

Sb Se

Sn Zn

Total Sam

ple ID676

0.0150

0.0980.21

00.027

9.8470

00

00.406

0.38533.43

00

054.381

98.799Getberget-a

6770

00.166

0.2250

0.0119.886

00

00

0.4090.32

33.4730

0.0290

54.36898.887

Getberget-a678

0.0010

0.1350.223

0.0140.027

9.8050

00.002

00.417

0.23833.477

00.013

0.01154.456

98.819Getberget-a

6790.001

00.109

0.1950.004

0.0049.988

00

0.0360.002

0.4290.249

33.6460

0.0120

54.32599

Getberget-a680

00

0.1650.205

0.0070.024

9.8280

00

00.414

0.26333.674

00

054.525

99.105Getberget-a

6810

00.152

0.2020

0.0029.936

00

00

0.4160.296

33.5690

0.0310

54.7199.314

Getberget-a682

00

0.1050.193

00

9.9160

00

00.407

0.2933.488

00.045

054.298

98.742Getberget-a

6830.002

00.171

0.2060

0.0189.925

00

00

0.4120.302

33.3780

00

54.28198.695

Getberget-a684

00

0.1430.189

0.0030.026

9.8410

00

0.0030.404

0.25333.522

00

054.591

98.975Getberget-a

6850

00.139

00

0.0129.777

0.0090

00

0.4220

33.5710

0.090

54.35498.374

Getberget-a686

0.0130

0.140.214

0.0030.029

9.8950

00

00.42

0.40333.632

00

054.364

99.113Getberget-a

6870.007

00.118

0.2020.007

09.891

00

00

0.4110.393

33.4620

0.0320

54.67399.196

Getberget-a688

00

0.1330.208

0.0010.028

9.8620

00

00.409

0.28433.549

00.032

054.623

99.129Getberget-a

6890

00.172

0.2280

0.0019.947

00

0.0010

0.4370.266

33.5750

0.0510

54.40999.087

Getberget-a690

0.0140

0.140.225

0.0110

10.0560

00

00.415

0.19733.446

00

054.26

98.764Getberget-a

6910.013

00.109

0.2130.013

0.0059.9

00

00

0.4190.252

33.5160

0.0360

54.53399.009

Getberget-a692

0.0050

0.1550.234

00

9.9550

00

00.403

0.31433.535

00.012

054.035

98.648Getberget-a

6930

00.132

0.1940.005

0.0210.166

00

00.008

0.3820.287

33.6390

0.090

53.33798.26

Getberget-a694

0.0080

0.1350.187

00.013

10.260

00

00.398

0.31133.388

00.001

052.873

97.574Getberget-a

6950.003

00.129

0.2070.006

0.03710.154

00

00

0.5840.225

33.5460

0.0170

53.73698.644

Getberget-a696

00

0.1390.791

0.0270

8.6390

00

01.029

0.33633.352

00

054.647

98.96Getberget-b

6970

00.136

0.780.005

0.0138.733

00

00

1.0040.396

33.5590

0.0260

55.18999.841

Getberget-b698

0.0110

0.1370.832

0.0030.012

8.5750

00

01.049

0.31733.619

00

054.65

99.205Getberget-b

6990.009

00.128

0.8590.018

0.0288.946

00

00

0.90.3

33.6260

0.0070

55.772100.593

Getberget-b700

0.0110

0.140.758

00

9.1290

00

00.926

0.3633.487

00.008

055.151

99.97Getberget-b

7010

00.135

0.5910.014

0.0128.365

00

00.002

0.750.279

33.6270

00

56.422100.197

Getberget-b702

0.0020

0.1230.59

0.0040.03

8.340

00

0.0050.737

0.20333.613

00.042

056.603

100.292Getberget-b

7030.005

00.096

0.5640.026

0.0228.227

00

00.001

0.7050.247

33.5950

0.0440.002

56.35299.886

Getberget-b704

00

0.1240.563

0.0110.028

8.1880.009

00.064

0.0120.762

0.22533.432

00.056

056.27

99.744Getberget-b

7050

00.129

00.026

0.018.306

0.0010

00.007

0.8210

33.6370

0.0140

56.08999.04

Getberget-b706

00

0.1080.007

0.0270.025

8.0990

00.014

00.771

033.656

00.158

056.628

99.493Getberget-b

7070.003

00.169

00

0.0029.42

00

00

0.310

33.3050

0.050

54.05897.317

Getberget I 708

00

0.160.194

0.0160

8.9520

00

00.333

0.28132.997

00.015

054.779

97.727Getberget I

7090

00.147

0.220.01

0.0219.054

00

00.001

0.3390.293

33.0940

00

54.36597.544

Getberget I 710

00

0.1450.217

00

9.0150

00

00.343

0.2933.161

00

054.601

97.772Getberget I

7110

00.12

00

0.0239.926

00

00

0.3770

33.3580

0.1080

53.83297.744

Getberget I 712

00

0.1730

0.0020.056

10.1660

00.005

0.0040.359

0.01133.36

00.086

053.232

97.454Getberget I

7130

00.107

0.0020.002

0.028.797

00

00.001

0.3160

33.5950

00

55.24198.081

Getberget I 714

00

0.1340.217

0.0120.143

8.3550

0.0170

00.304

0.31433.37

00.074

055.954

98.894Getberget I

7150

00.107

0.2010.005

0.8158.321

00

00

0.2871.387

33.1830

0.1480

54.30798.761

Getberget I 716

0.0190

0.1570.206

0.0010.022

8.6510.001

00

00.287

0.29533.211

00.005

055.85

98.705Getberget I

7170.002

00.127

0.2030

0.0768.603

0.0080

00

0.2840.309

33.4490

00

55.46398.524

Getberget I 718

0.0020

0.1440.002

0.0220.467

8.2230

00.008

00.29

0.01533.386

00

055.661

98.22Getberget I

7190

00.128

0.1710.01

0.0385.842

00

00.015

0.2670.375

27.8430

0.0230

51.40886.12

Getberget I 720

00

0.0810.196

00.071

7.5690

00

00.265

0.63533.323

00.003

0.00256.45

98.595Getberget I

Table 7. Continued

Page 109: Compositional Systematics of Sphalerites from Western Bergslagen…uu.diva-portal.org/smash/get/diva2:953522/FULLTEXT01.pdf · The Bergslagen ore province in central Sweden has a

101

No

Ag

As

Bi

Cd

Co

Cu

Fe G

a G

e H

g In

Mn

Pb S

Sb Se

Sn Zn

Total Sam

ple ID721

0.0120

0.1180.211

00.277

7.5380

00

00.276

0.31833.336

00.032

056.834

98.952Getberget I

7220.005

00.131

0.2060.003

0.1078.523

00

0.0150.005

0.3210.245

33.2060

00.015

55.7698.542

Getberget I 723

00

0.1460.245

0.0130

9.8730.008

00.002

00.32

0.33833.522

00

054.061

98.528Getberget I

7240

00.128

0.240.006

0.9218.763

00

0.0430

0.2830.365

33.3110

0.0030

54.70898.771

Getberget I 725

0.0010

0.1150.005

0.0030.196

9.0050.003

00

0.0010.315

033.544

00

055.422

98.61Getberget I

7260.002

00.134

0.0010

0.2648.766

00

00

0.30.003

33.4640

0.0010

55.38798.322

Getberget I 727

00

0.1450.208

0.0140.169

8.1850

00

0.0080.295

0.30133.267

00.101

055.712

98.405Getberget I

7280

00.13

0.0030

0.1588.407

00

0.0040.004

0.3130.004

33.4840

0.0210

55.9998.518

Getberget I 729

00

0.1220

0.0070.021

8.7670

00

00.307

0.04133.511

00.035

0.00355.766

98.58Getberget I

7300

00.118

00

0.2338.743

00

0.0010

0.3090

33.650

0.0310

55.38798.472

Getberget I 731

00

0.1140

00.694

8.9120

00

00.311

0.01733.445

00.028

0.00954.966

98.496Getberget I

7320

00.157

00.007

0.0099.246

00

00

0.3240

33.5820

0.0380

55.28898.651

Getberget I 733

0.0060

0.1370.004

00.025

8.7620

00.027

00.315

0.00633.426

00.069

055.669

98.446Getberget I

7340.005

00.104

00.003

0.5057.515

00

00.002

0.310

30.0360

0.0050

49.44387.928

Getberget I 735

00

0.110.187

00.203

8.2020

00.016

00.302

0.3333.304

00

056.235

98.889Getberget I

7360

00.193

00

0.0168.738

00

00

0.3160.017

33.7060

0.0170.004

55.7198.717

Getberget I 737

00

0.0960

00

8.6620

00

00.314

0.02833.51

00

055.929

98.539Getberget I

7380

00.11

00.006

0.0218.618

00

00

0.3080.02

33.440

00

56.08198.604

Getberget I 739

00

0.1670

00.006

8.790

00

00.325

033.061

00.049

055.493

97.891Getberget I

7400.014

00.174

0.1690

0.4058.325

0.0160

00

0.2870.254

33.210

0.0510.015

55.85598.775

Getberget I 741

0.0190

0.1130

00.093

7.520

00

00.251

033.441

00.008

057.083

98.528Getberget I

7420

00.132

00.012

09.133

00

00

0.3240.013

33.8410

0.0960

55.9499.491

Getberget I 743

00

0.1690

0.0030.012

8.8630

00

00.336

033.386

00

0.00455.735

98.508Getberget I

7440

00.143

00

0.7528.531

00

0.0010

0.2970.016

33.4450

0.1490

54.99598.329

Getberget I 745

0.0190

0.1280.006

00.07

8.2270

00

0.0010.282

0.00433.429

00

056.713

98.879Getberget I

7460

00.13

0.2070

08.622

00

00

0.3310.278

33.4850

00

55.97599.028

Getberget I 747

00

0.1540

00.448

8.480

00

0.0030.318

033.495

00

055.909

98.807Getberget I

7480

00.147

00

0.0328.951

00

00

0.2780.013

33.330

00

55.31398.064

Getberget I 749

0.0080

0.1350.002

00.752

8.8260

00.007

0.010.272

033.712

00.028

055.075

98.827Getberget I

7500

00.135

0.150

0.5177.974

00

0.0610

0.260.248

33.3810

0.0910

55.98498.801

Getberget I 751

00

0.1560.159

00.017

8.9180

00

00.285

0.19833.444

00.156

055.145

98.478Getberget I

7520

00.122

0.1430

0.0188.497

00

00

0.2780.209

33.490

0.120

55.07497.951

Getberget I 753

00

0.110.161

0.0130.007

9.4440

00

00.279

0.2533.49

00.014

054.561

98.329Getberget I

7540

00.087

0.1960.005

0.2899.208

00

00.003

0.2820.3

33.5570

00

54.63798.564

Getberget I 755

00

0.1180.205

00

8.3870

00.007

00.309

0.2633.347

00.039

055.672

98.344Getberget I

7560

00.146

00

0.0128.248

00

00

0.3050.019

33.4120

00

56.04698.188

Getberget I 757

00

0.1520

0.0030.013

8.1840

00

00.302

0.00533.375

00.014

056.395

98.443Getberget I

7580.003

00.116

0.2070

0.0177.989

00

0.0380

0.2870.292

33.4910

0.1140

56.78599.339

Getberget I 759

00

0.1510.214

0.0090.005

8.4810

00

00.336

0.27133.487

00.081

055.867

98.902Getberget I

7600.02

00.123

0.2070.004

0.0078.561

00

0.0220.009

0.3220.314

33.4770

0.0270

55.93299.025

Getberget I 761

00

0.1770.168

0.0010.014

8.4890

00

00.319

0.28233.508

00

0.00556.091

99.054Getberget I

7620.004

00.118

0.1790.009

0.0058.56

00

00

0.3050.242

33.4130

0.0270

55.92898.79

Getberget I 763

00

0.1470.001

00.04

8.4420

00

00.322

0.00433.433

00

056.21

98.599Getberget I

7640

00.155

0.2030.003

0.0118.632

00

00

0.3410.313

33.3110

00

55.76598.734

Getberget I 765

00

0.1030.181

00

8.0010

00

0.0040.298

0.23733.74

00

056.481

99.045Getberget I

7660

00.111

0.2080.009

0.0198.247

00

00

0.310.274

33.420.003

00

56.11798.718

Getberget I

Table 7. Continued

Page 110: Compositional Systematics of Sphalerites from Western Bergslagen…uu.diva-portal.org/smash/get/diva2:953522/FULLTEXT01.pdf · The Bergslagen ore province in central Sweden has a

102

No

Ag

As

Bi

Cd

Co

Cu

Fe G

a G

e H

g In

Mn

Pb S

Sb Se

Sn Zn

Total Sam

ple ID767

00

0.1250

0.0430.038

11.380

00.015

00.253

033.714

00.098

053.581

99.247Gruvåsen

7680.006

00.14

00.024

0.01210.883

0.0180

0.0030

0.2390.009

33.5990

0.0160

54.39399.342

Gruvåsen769

0.0070

0.1740.571

0.020.02

11.0260

00.003

00.231

0.2733.732

00.001

053.843

99.898Gruvåsen

7700.005

00.145

0.5930.03

0.00210.422

00

00

0.2110.264

33.8250

0.1080

54.875100.48

Gruvåsen771

00

0.110

0.010.03

10.3910

00

0.0020.212

033.768

00

055.017

99.54Gruvåsen

7720

00.153

0.0020.013

0.00810.082

00

00

0.2220

33.6890

0.1320

55.10699.407

Gruvåsen773

00

0.1610.566

0.0120.025

11.0810

0.0380.002

00.228

0.29333.548

00.042

053.642

99.638Gruvåsen

7740

00.134

0.5730.02

010.496

00

00

0.2220.188

33.3190

0.0880

54.86799.907

Gruvåsen775

00

0.1060

0.0410.096

10.6720

00

0.0090.204

033.416

00.064

054.682

99.29Gruvåsen

7760

00.14

0.0030.017

0.0210.853

00

0.0370

0.2350.011

33.7510

0.0450

54.31499.426

Gruvåsen777

00

0.1120.002

0.0310.064

10.940

00

00.248

0.00933.815

00.025

053.863

99.109Gruvåsen

7780.009

00.126

0.5780.015

0.01310.515

00

00

0.2150.349

33.5080

0.0310

54.29599.654

Gruvåsen779

0.0130

0.0940.587

0.0350

10.5580

00

00.226

0.2633.473

00

054.175

99.421Gruvåsen

7800.005

00.122

0.6490.029

0.06711.554

00

0.0040

0.2570.272

33.5550

00

52.999.414

Gruvåsen781

00

0.1230.001

0.0140.063

11.5030

00.001

00.222

033.541

00.051

052.974

98.493Gruvåsen

7820.012

00.105

00.02

0.02111.084

00

0.0230.003

0.2430

33.620

0.0080

53.65298.791

Gruvåsen783

0.0050

0.120.001

0.0390

10.9170

00

00.238

033.653

00

053.968

98.941Gruvåsen

7840

00.164

00.028

0.02511.046

00

00

0.2190.019

33.4110

00

53.56898.48

Gruvåsen785

00

0.1060

0.0370.04

10.930

00

00.23

033.46

00

054.036

98.839Gruvåsen

7860

00.162

00.019

0.00910.511

00

0.0080

0.2240

33.580

0.0390.004

54.43898.994

Gruvåsen787

00

0.1520

0.0240

10.3320

0.0030

00.206

0.0633.511

00.038

054.424

98.75Gruvåsen

7880

00.157

00.011

0.02910.561

00

00

0.2060.018

33.5480

0.0130

54.38198.924

Gruvåsen789

00

0.1170

0.020.034

10.0480

00.018

00.212

033.457

00.07

054.908

98.884Gruvåsen

7900.013

00.146

0.5390.058

0.1629.568

00

00

0.2030.284

33.4460

0.1270

54.85799.403

Gruvåsen791

00

0.1080

0.0290.023

9.6350.002

00

00.203

033.384

00.071

055.53

98.985Gruvåsen

7920

00.131

00.042

09.321

00

00

0.1870

33.8270

00

55.80199.309

Gruvåsen793

0.0020

0.1310.542

0.0340

9.5710

00

0.0060.184

0.30533.394

00.047

055.191

99.407Gruvåsen

7940

00.103

0.5340.026

0.0059.298

00

00.01

0.1770.231

33.6770

0.0370

55.74299.84

Gruvåsen795

00

0.1180.519

0.0040

9.2250

00

0.0020.187

0.31933.582

00.014

055.721

99.691Gruvåsen

7960

00.091

0.0010.029

09.496

00

00

0.210

33.4330

0.0340

55.40698.7

Gruvåsen797

0.0080

0.1110.583

0.0340.151

9.550

00

0.0060.217

0.23933.544

00

055.073

99.516Gruvåsen

7980.011

00.13

0.5710.013

0.0439.869

00

0.010

0.2410.283

33.4190

0.0060

54.30598.901

Gruvåsen799

0.0040

0.1520.552

0.0220.11

10.6150

00

00.243

0.33233.51

00

054.186

99.726Gruvåsen

8000

00.122

0.5530.031

0.039.92

00

00

0.1990.252

33.7050

00

54.98499.796

Gruvåsen801

00

0.1590.545

0.0250.019

9.3850

00

00.201

0.30533.6

00.013

055.401

99.653Gruvåsen

8020

00.136

0.5110.043

09.311

00

00.01

0.1880.204

33.450

0.0990

55.6799.622

Gruvåsen803

00

0.1530

0.0320

9.1650

00

00.202

033.555

00

055.905

99.012Gruvåsen

8040

00.168

00.023

09.195

00

00

0.2030

33.5270

0.0690

55.85699.041

Gruvåsen805

00

0.1580

0.1180.094

8.0270

00

00.125

033.546

00.071

056.885

99.024Gruvåsen

8060

00.161

00.026

0.00910.603

00

00

0.2320.04

33.6430

00

54.17298.886

Gruvåsen807

00

0.1360.557

0.0280.012

9.8140

00

00.203

0.26133.586

00.03

055.001

99.628Gruvåsen

8080

00.148

00.002

09.521

00

00.002

0.1970.004

33.690

0.0540

55.40999.027

Gruvåsen809

00

0.120

0.0260.024

9.6050.002

00

00.183

0.01233.601

00

055.383

98.956Gruvåsen

8100

00.101

00.039

0.0079.489

00

00

0.2030.081

33.5760

0.0650

55.50899.069

Gruvåsen

Table 7. Continued

Page 111: Compositional Systematics of Sphalerites from Western Bergslagen…uu.diva-portal.org/smash/get/diva2:953522/FULLTEXT01.pdf · The Bergslagen ore province in central Sweden has a

103

No

Ag

As

Bi

Cd

Co

Cu

Fe G

a G

e H

g In

Mn

Pb S

Sb Se

Sn Zn

Total Sam

ple ID811

00

0.1150

0.0120

9.7120.013

00.016

00.199

0.03233.675

00.018

055.412

99.204Gruvåsen

8120

00.071

00.022

0.0129.833

00

00

0.2060

33.8210

0.1660

54.82398.954

Gruvåsen813

0.0120

0.1270

0.0210.474

9.660

00.003

00.22

0.0133.561

00.121

054.819

99.028Gruvåsen

8140

00.128

0.5710.036

0.0179.83

00

00

0.2040.231

33.6050

00

54.74599.367

Gruvåsen815

00

0.1470

0.0140.019

9.6340

00.036

0.0020.21

033.561

00.04

055.284

98.947Gruvåsen

8160.007

00.129

00

09.944

00

00.006

0.2030.004

33.6850

00

55.16799.145

Gruvåsen817

00

0.1170.004

0.0190.004

9.9470

00.023

0.0070.211

0.01133.481

00

054.862

98.686Gruvåsen

8180

00.14

00.052

0.0110.091

00

00

0.2170.011

33.5630

00

54.88898.972

Gruvåsen819

00

0.0870

0.0350.003

9.7210

00

00.255

0.02133.435

00.02

054.439

98.016Gruvåsen

8200

00.12

00.025

0.0839.432

0.0130

0.0280

0.20.038

33.7460

0.0410

55.66499.39

Gruvåsen821

00

0.1080

0.020.019

9.5350

00.025

00.209

033.589

00.116

055.282

98.903Gruvåsen

8220.004

00.174

00.021

0.2059.358

00

0.0020.003

0.1980

33.5780

00

55.39298.935

Gruvåsen823

0.0010

0.1740.001

0.0280.013

9.7580

00.008

00.221

0.00133.523

00.021

054.785

98.534Gruvåsen

8240

00.164

00.011

0.0029.898

00

0.0120

0.2110.018

33.4580

0.0690

55.01498.857

Gruvåsen825

00

0.1260.563

0.0190.004

9.8740

00

00.212

0.24433.393

00.093

054.674

99.202Gruvåsen

8260.006

00.129

0.5350.034

0.0059.549

0.0050

00

0.2270.253

33.4440

00

55.08599.272

Gruvåsen827

00

0.1610.514

0.0430.001

9.2810

00

00.188

0.29533.619

00.002

055.468

99.572Gruvåsen

8280

00.135

00

0.0188.891

00

0.010

0.1760

33.5190

0.0050

55.89698.65

Gruvåsen829

00

0.150

0.0150.03

8.9280

00

00.189

033.561

00.007

056.115

98.995Gruvåsen

8300

00.153

00.019

0.0019.144

00

0.0130

0.1970

33.6270

0.1770

55.47598.806

Gruvåsen831

0.0030

0.1550

0.0130

9.2560

00

0.0040.205

0.00633.732

00.023

055.628

99.025Gruvåsen

8320

00.205

0.5720.02

0.0319.879

0.0070

00

0.2230.325

33.6280

00

54.98699.876

Gruvåsen833

0.0170

0.150.537

0.0410

10.1440

00

00.202

0.32933.671

00.02

055.131

100.242Gruvåsen

8340

00.206

00.024

0.0239.794

00

00

0.2120

33.7220

00

55.4499.421

Gruvåsen835

0.0050

0.1420.002

0.0180.033

9.7290

00

00.194

033.603

00

055.392

99.118Gruvåsen

8360.006

00.141

0.5530.008

0.019.792

00

00

0.2040.238

33.6110

00

55.27699.839

Gruvåsen837

0.0040

0.1050

0.010.007

9.1810

00

00.213

0.01733.561

00.055

055.821

98.974Gruvåsen

8380

00.194

0.0040.052

09.396

0.0120

0.0130.002

0.210

33.6350

00

55.61399.131

Gruvåsen839

0.0080

0.1350.001

0.0410.022

9.2390

00

0.0040.194

033.636

00.037

055.805

99.122Gruvåsen

8400

00.128

00.022

0.0349.046

00

00

0.1910

33.5130

0.0680

56.16199.163

Gruvåsen841

0.0050

0.1580.586

0.0170.031

9.5150

00.01

0.0030.208

0.24733.502

00.017

055.32

99.619Gruvåsen

8420.016

00.148

0.5920.031

09.382

00

00

0.1970.295

33.4310

0.0440

55.35199.487

Gruvåsen843

00

0.1030.004

0.0070.056

11.0140

00

00.222

033.804

00.009

053.841

99.06Gruvåsen

8440.005

00.151

0.0050.025

0.05510.781

00

00

0.2360

33.7330

00

54.18599.176

Gruvåsen845

00

0.1560

0.0390.033

11.220

00

00.234

0.07433.639

00.014

053.562

98.971Gruvåsen

8460

00.155

00.02

0.04710.842

00

0.0020

0.2360.006

33.620

00

54.21899.146

Gruvåsen847

0.0150

0.1570.209

0.0060

8.060

00

0.0020.245

0.31633.55

00.022

057.111

99.693M

ysst.B4.1848

00

0.1120.206

0.0030.022

8.2770

00.017

00.26

0.26233.568

00.066

057.097

99.89M

ysst.B4.1849

00

0.1540.227

0.0030

8.6170

00

00.293

0.25933.759

00

0.00756.817

100.136M

ysst.B4.1850

00

0.090.225

0.0070

8.8110

00.019

00.278

0.26833.509

00.055

0.00856.445

99.715M

ysst.B4.1851

00

0.1320

0.0050

8.6930

00

00.275

033.4

00.031

057.079

99.615M

ysst.B4.1852

0.0070

0.1170.229

00.01

8.8990

00

00.278

0.2833.455

00

056.489

99.764M

ysst.B4.1853

0.0020

0.0970.214

0.0030

8.2390

00

00.254

0.31833.28

00

057.342

99.749M

ysst.B4.1854

00

0.1650.235

0.0070.022

8.6960

00

00.275

0.17233.605

00

056.647

99.824M

ysst.B4.1855

00

0.1360.249

0.0020

8.5680

00

00.261

0.24933.48

00.028

056.808

99.781M

ysst.B4.1

Table 7. Continued

Page 112: Compositional Systematics of Sphalerites from Western Bergslagen…uu.diva-portal.org/smash/get/diva2:953522/FULLTEXT01.pdf · The Bergslagen ore province in central Sweden has a

104

No

Ag

As

Bi

Cd

Co

Cu

Fe G

a G

e H

g In

Mn

Pb S

Sb Se

Sn Zn

Total Sam

ple ID856

00

0.1420.223

0.0140.002

8.8010

00

0.0040.28

0.28533.657

00.057

056.471

99.936M

ysst.B4.1857

0.0040

0.1410.238

00

8.6650

00

00.286

0.27833.433

00

056.426

99.471M

ysst.B4.1858

0.0040

0.1060.001

00.005

8.6620

00

0.0010.274

0.00433.434

00.064

056.652

99.207M

ysst.B4.1859

0.0020

0.1620.218

0.0080.001

8.4710

00.015

00.265

0.27933.596

00.031

057.12

100.168M

ysst.B4.1860

00

0.1460.228

00.008

8.4460

00.016

0.0020.262

0.23633.473

00.004

056.832

99.653M

ysst.B4.1861

00

0.1270.232

00.02

8.60

00

0.0020.25

0.20533.331

00

056.758

99.525M

ysst.B4.1862

00

0.1260.224

00.011

8.4170

00

00.25

0.24633.584

00.002

056.97

99.83M

ysst.B4.1863

0.0050

0.1350

00.018

8.6630

00

00.26

033.59

00.05

056.536

99.257M

ysst.B4.1864

0.0130

0.1730.246

0.0090

8.4050

00

00.252

0.23633.348

00.018

056.826

99.526M

ysst.B4.1865

00

0.1680

0.0060.035

8.8510

00

00.279

033.536

00

056.24

99.115M

ysst.B4.1866

00

0.1260.226

00.03

8.9730

00

00.271

0.24633.513

00.015

056.365

99.765M

ysst.B4.1867

00

0.2130

0.0090.028

8.5770

00.022

00.266

033.626

00.034

056.762

99.537M

ysst.B4.1868

00

0.1160

0.0090

8.5430

00

00.269

033.569

00

056.838

99.344M

ysst.B4.1869

00

0.1280

00

8.4920

00

00.262

033.661

00

057.12

99.663M

ysst.B4.1870

0.0140

0.110.223

00.006

8.0640

00

0.0040.264

0.29733.786

00

057.613

100.381M

ysst.B4.1871

00

0.1340.23

0.0060

8.7160

00

00.281

0.27933.814

00.069

056.886

100.415M

ysst.B4.1872

0.0020

0.1380.244

0.0020

8.4310

0.0070

00.278

0.24333.476

00

0.00357.078

99.902M

ysst.B4.1873

00

0.1410

0.0050.005

8.4110

00

00.273

0.00233.54

00

057.098

99.475M

ysst.B4.1874

00

0.1570

0.0110.002

8.390

00

00.277

0.03533.71

00

057.636

100.218M

ysst.B4.1875

00

0.150.224

0.0010.003

8.2560

00

00.269

0.30333.466

00.002

057.261

99.935M

ysst.B4.1

Table 7. Continued

Page 113: Compositional Systematics of Sphalerites from Western Bergslagen…uu.diva-portal.org/smash/get/diva2:953522/FULLTEXT01.pdf · The Bergslagen ore province in central Sweden has a

105

Appendix B: LA-ICP-MS results

No.

ZnS

FeM

nC

oC

dIn

SeA

gH

gC

uSn

Ga

PbB

iA

uSb

Ge

TlA

sN

iM

oTe

TotalSam

ple ID

1623845.8

309298.869957.99

339.45196.46

1600.795.97

<5.452.04

57.5826.29

0.444.12

4.97<0.0200

<0.000.129

0.78<0.0120

<0.36<0.89

<0.66<1.49

1012000.0189

2610643.8

318361.866848.76

335.65188.06

1543.225.94

<5.321.76

52.9122.81

0.3784.3

1.18<0.0196

<0.000.186

0.5<0.0129

<0.33<0.53

<0.62<1.42

1002000.0189

3605609.6

319742.569180.7

340.86197.6

1599.446

5.73.51

45.7926.19

0.3973.49

1.40.642

0.00370.418

0.67<0.0086

<0.35<0.60

<0.68<1.47

1002000.0189

4613430.3

312944.467626.07

339.05193.66

1618.875.89

<5.185.27

41.3844.05

0.3683.57

4.240.04

<0.01282.56

0.58<0.0128

<0.33<0.54

<0.63<1.43

1002000.0189

5607959.1

315088.669957.99

355.97199.82

1592.435.95

<5.642.22

40.3327.51

0.5173.42

1.770.0163

<0.00550.159

0.53<0.054

<0.340.74

<0.69<1.49

1002000.0189

6599505.2

307833.865294.13

297.43189.04

1729.046.07

<2.078.28

37.94161.93

0.3793.41

2.910.424

0.0051.85

0.6120.0142

<0.1320.25

<0.22<0.43

982000.0189

7601819.9

307614.462962.2

293.25177.97

1684.556

3.354.51

38.6671.56

0.3953.27

2.240.0088

<0.00421.912

0.588<0.0058

<0.133<0.19

<0.23<0.47

972000.0189

8603294.3

305271.464516.82

316.12179.17

1656.355.88

2.31.66

36.7350.99

0.2693.39

1.220.0072

0.00460.054

0.6410.0128

<0.1280.51

<0.23<0.46

982000.0189

9598458.4

308127.862184.88

308.88173.01

1648.075.86

<2.102.61

39.5652.11

0.3483.29

1.640.0108

<0.00580.909

0.637<0.0060

<0.132<0.20

<0.22<0.47

972000.0189

10604836.3

304342.962962.2

315.68174.72

1651.25.89

2.51.87

39.6358.66

0.3773.61

1.031<0.0057

<0.00270.096

0.644<0.0068

<0.1270.38

<0.23<0.49

972000.0189

11583386.7

309618.895609.27

6770.34135.46

2880.4282.22

<5.501.93

19.1969.33

0.3970.433

0.1541.525

0.0067<0.099

0.64<0.022

<0.34<0.70

<0.651.52

100LA

H 001.6

12580155.4

315007.497163.89

6788.42144.9

2882.0182.53

<5.512.26

16.8867.93

0.4160.477

0.1430.04

<0.0146<0.106

0.73<0.0189

<0.35<0.51

<0.63<1.46

100LA

H 001.6

13573633

317133.597941.2

6807.66154.24

2838.6182.62

<5.293.14

15.3774.62

0.4780.458

0.4820.074

<0.01030.126

0.52<0.0160

<0.32<0.51

<0.63<1.35

100LA

H 001.6

14579643.3

315677.497941.2

6703.29135.14

2868.5582.84

<5.202.92

16.379.43

0.5030.45

0.2880.419

<0.0113<0.097

0.750.0129

<0.33<0.49

<0.61<1.32

100LA

H 001.6

15581109.6

310602.398718.52

6927.04143.06

2847.2783.68

<5.091.91

14.1477.84

<0.1490.409

<0.051<0.0215

0.088<0.096

0.66<0.0143

<0.32<0.49

<0.65<1.32

100LA

H 001.6

16556894.9

310677.2122815.2

780.42234.97

6695.33424.83

28.1526.65

16.024513.04

3.520.63

20.045.55

0.0451.08

1.222.08

<0.44<0.69

<0.90<1.86

100G

ås NI A

nd17

533171.1330767.8

126701.7833.5

230.545171.15

306.2242.05

118.730.82

3560.0925.77

0.175.94

19.62<0.0106

0.750.44

0.1414.26

<0.56<0.74

<1.47100

Gås N

I And

18563102.1

312782.2117374

775.85227.05

6430.71294.77

30.1910.08

10.891280.5

1.020.212

3.362.05

<0.01150.273

0.730.246

<0.31<0.47

<0.60<1.31

100G

ås NI A

nd19

553813.6317184.2

118151.3680.56

238.146432.45

315.8422.66

22.628.83

3922.913.05

0.29816.43

9.21<0.0125

0.9340.49

1.148<0.33

<0.52<0.69

1.71100

Gås N

I And

20547478.9

301777.5117374

828.62201.29

5925.31268.76

24.6110.05

17.241158.37

0.5570.078

3.182.06

0.00640.085

0.7750.088

0.193<0.20

<0.190.84

98G

ås NI A

nd21

537205.9310191.3

119705.9936.24

178.275788.78

202.5228.99

2.0111.66

343.940.302

<0.0420.838

0.1310.0059

<0.0420.715

<0.00430.224

<0.21<0.20

<0.3897

Gås N

I And

22540892.1

306224.8121260.5

960.42169.7

6071.57186.1

27.431.58

7.17313.5

0.2590.228

0.1590.0149

<0.0040<0.034

0.9450.0062

<0.124<0.19

<0.19<0.40

98G

ås NI A

nd23

551974.8309238.8

108823.6865.8

151.335500.91

177.1325.51

1.888.38

381.280.261

0.2580.684

0.3210.0042

<0.0380.612

0.00980.135

<0.20<0.19

<0.3998

Gås N

I And

24546709.9

308230.8111932.8

863.53148.7

5470.91180.8

29.561.91

6.97342.4

0.2580.246

0.5040.236

0.0055<0.037

0.787<0.0073

<0.122<0.20

<0.200.93

97G

ås NI A

nd25

632713.2309035.3

1119.3312.58

955.848713.97

137.62183.62

5.2843.05

230.89<0.18

0.310.319

0.0370.018

<0.1500.42

<0.016<0.47

<0.69<0.88

<1.9795

EJ-BhZ-1b

26696968

341445.41173.74

151.071111.86

10779.5132.94

214.5114.89

26.09599.9

<0.43<0.152

3.392.39

0.021<0.129

0.940.277

<0.41<0.64

<0.79<1.82

105EJ-B

hZ-1b27

562523.5274039.1

979.4112.98

722.858643.16

134.96163.46

1.0421.58

134.75348.65

<0.1250.166

0.3980.029

<0.100<0.28

<0.0145<0.35

1.18<0.64

<1.3685

EJ-BhZ-1b

28663672.1

318518.21111.55

30.42877.92

10317.46154.57

175.933.56

26.46191.59

0.350.486

1.252.49

0.087<0.125

0.44<0.021

<0.400.94

<0.76<1.60

100EJ-B

hZ-1b29

615144.1305220.2

1165.9735.61

1051.219101.58

136.1176.59

3.9927.88

284.790.42

<0.213.54

0.103<0.0159

0.660.53

<0.0248<0.59

1.07<1.06

<2.4393

EJ-BhZ-1b

30658916.4

326950.81204.83

98.141132.99

9949.9133.09

192.943.46

27.5502.51

0.43<0.22

1.40.884

<0.026<0.171

0.760.149

<0.590.95

<1.10<2.33

100EJ-B

hZ-1b31

587800.6321771.9

84726.912896.27

435.235369.13

58.2150.41

30.2931.8

1281.0210.81

1.52841.23

6.570.0362

0.5760.611

250.319

<0.20<0.23

1.59100

57.415432

578297.4320674.5

88613.463055.67

417.565406.06

58.4155.59

25.7726.3

976.188.29

1.49335.81

3.160.0054

0.4370.612

4.09<0.142

<0.2010.25

1.05100

57.415433

579435.1324502.5

87058.843165.63

400.535597.81

58.457.96

17.5221.33

402.045.66

1.80416.38

1.2560.0044

0.2170.689

0.274<0.136

<0.204<0.23

<0.51100

57.415434

584830.4324181.3

85504.223085.54

381.795408.05

57.8460.07

10.7423.31

110.353.19

1.616.22

0.7430.0698

0.1110.724

0.1310.403

<0.196<0.23

<0.47100

57.415435

582042.9320884.2

86281.523066

394.85379.47

56.1856.33

1.41121.97

56.310.478

1.4250.75

0.172<0.0054

0.0410.742

0.224<0.129

<0.189<0.22

<0.45100

57.415436

585778.6320217

86281.523059.47

389.95538.69

58.2454.34

10.6619.59

220.013.82

1.4199.56

1.960.0077

0.1480.75

2.25<0.136

<0.20<0.23

0.57100

57.415437

585597.8321554.3

87836.153139.55

394.245650.25

5954.2

4.0417.77

74.470.917

0.5181.923

0.274<0.0051

0.0980.858

0.0546<0.140

<0.198<0.23

<0.49100

57.415438

581221.1318235.4

87058.843210.72

396.755722.34

58.3354.68

9.0616.03

1782.77

1.4315.25

0.663<0.0038

0.1410.628

0.207<0.130

<0.20<0.23

<0.49100

57.415439

577184.3316748.3

97941.23798.17

433.066878.2

80.9552.76

4.5128.22

369.3311.56

1.2664.1

0.4370.0049

0.2160.689

0.2040.131

<0.198<0.22

<0.45100

57.415440

577850.7314934.1

95609.263937.57

507.126883.83

79.6453.47

6.320.78

1037.336.03

1.0335.03

0.446<0.0049

0.3020.594

0.380.214

<0.198<0.22

<0.48100

57.415441

573946.5318107.5

95609.263517.71

427.266451.38

76.8153.62

4.7921.59

544.423.78

1.3153.38

0.4690.0572

0.3420.668

0.385<0.131

<0.194<0.22

0.63100

57.415442

575759.8314616.3

98718.513681.41

441.426640.53

79.2254.96

2.8516.6

120.630.565

1.5121.148

0.8390.0076

0.0440.695

0.1450.678

0.81<0.22

<0.47100

57.415443

585686.6316365.1

90168.093468.29

352.836210.19

58.355.98

10.0927.02

289.493.04

1.228.98

0.6770.0068

0.1470.839

0.129<0.132

<0.189<0.22

0.58100

57.415444

578166.9323997.9

90168.083546.14

390.526353.2

59.8957.36

10.1324.04

186.13.82

1.2915.96

0.927<0.0049

0.1250.651

0.919<0.125

<0.20<0.23

<0.49100

57.415445

579194.2316650.7

95609.264120.58

478.186842.85

137.2556.47

8.8315.2

417.384.61

0.8517.4

0.6610.0069

0.270.807

0.0166<0.129

<0.20<0.24

<0.52100

57.4154

Table 8. LA-IC

P-MS sphalerite raw

data. All elem

ents are shown in ppm

.

Page 114: Compositional Systematics of Sphalerites from Western Bergslagen…uu.diva-portal.org/smash/get/diva2:953522/FULLTEXT01.pdf · The Bergslagen ore province in central Sweden has a

106

No.

Ag

As

Au

Bi

Cd

Co

Cu

FeG

aG

eH

gIn

Mn

Mo

Ni

PbS

SbSe

SnTe

TlZn

TotalSam

ple ID46

14.1<0.120

0.01110.733

6841.74528.6

337.9396386.57

0.9940.834

13.02121.98

3919.33<0.23

<0.204.49

318944.30.186

59.869.52

<0.491.254

573934.2100.1

57.415447

12.88<0.124

0.00331.355

6727.04546.63

1077.5393277.33

0.7890.587

12128.22

3855.19<0.22

0.2311.37

3187200.525

59.2553.54

<0.489.02

569819.499.4

57.415448

12.33<0.120

<0.00352.49

7080.28570.87

971.0495609.26

0.9950.629

9.52143.77

3954.53<0.21

<0.19112.8

311306.10.29

50.2657.51

0.529.61

576340.799.6

57.415449

15.94<0.125

<0.00523.04

7286.17584.48

1500.9194831.95

0.7630.734

9.48144.78

3814.46<0.22

<0.19216.17

317881.80.311

57.2431.03

0.836.3

570165.699.6

57.415450

1.302<0.130

0.0080.287

619.16151.9

207.9587058.84

0.5340.782

55.6272.3

3358.290.34

<0.210.036

317938.80.078

10.210.521

1.2<0.0077

590311.1100.0

1919.1470.a51

1.0840.248

0.04040.007

610.03153.41

156.7687836.15

0.6610.556

79.29202.64

3339.9<0.26

<0.220.026

3145330.073

7.030.48

<0.550.0645

593226.9100.0

1919.1470.a52

1.115<0.118

<0.00540.033

615.03156.29

147.6188613.47

0.2410.668

47.11190.85

3383.48<0.22

<0.181<0.023

314988.20.041

7.350.294

0.5<0.0067

591728.4100.0

1919.1470.a53

1.223<0.124

0.03990.132

620.94152.94

158.8687058.84

0.4890.697

80.87206.78

3337.72<0.24

<0.200.14

314759.9<0.041

6.830.343

<0.510.202

590850.899.7

1919.1470.a54

1.021<0.135

0.01960.0899

599.35154.11

159.3887836.15

0.5450.622

65.27210.63

3319.99<0.24

<0.204<0.023

319213.2<0.040

10.440.267

<0.54<0.0037

589845.7100.1

1919.1470.a55

1.15<0.123

0.00720.0299

619.33156.47

158.2990168.09

0.6030.656

88.15202.22

3353.130.27

<0.1990.096

313291<0.041

7.362.173

<0.500.11

591767.3100.0

1919.1470.a56

1.135<0.126

0.02240.0219

640.99155.59

176.5188613.46

0.5330.721

64.11229.53

3358.61<0.24

0.3020.033

317385<0.040

8.770.412

<0.520.0268

593508.1100.4

1919.1470.a57

1.119<0.125

0.02560.013

600.36152.1

178.2288613.46

0.4170.896

46.38238.57

3328.53<0.24

<0.2010.034

315561.80.397

10.230.356

<0.52<0.0065

593799.9100.3

1919.1470.a58

1.0680.213

0.00580.0268

630.77153.6

157.3588613.46

0.4220.618

61.29207.1

3341.73<0.24

<0.1960.037

317249.2<0.041

6.880.507

<0.490.0063

588363.199.9

1919.1470.a59

1.433<0.129

<0.00470.335

612.56153.57

166.5187836.15

0.4320.658

134.66219.08

3320.61<0.24

<0.1900.357

313407.8<0.040

5.320.206

<0.51<0.0064

591117.899.7

1919.1470.a60

1.213<0.126

0.00820.199

637.49155.1

164.1888613.46

0.4460.7

38.57213.85

3346.67<0.23

<0.1950.185

315786.2<0.042

12.040.205

<0.50<0.0129

592774.7100.2

1919.1470.a61

1.079<0.132

<0.00280.0136

602.89156.15

164.3788613.46

0.5880.615

125.89214.8

33410.25

<0.1960.052

316879.1<0.042

7.80.229

<0.54<0.0049

590192.3100.0

1919.1470.a62

1.772<0.132

0.00880.73

630.52154.95

201.4887836.15

0.4210.67

36.45231.81

3333.17<0.24

<0.1980.854

313903.80.347

9.220.223

<0.49<0.0075

594456.4100.1

1919.1470.a63

1.231<0.126

0.040.164

607.17152.39

174.8588613.46

0.5740.806

67.57233.69

3252.750.35

<0.1960.231

312512.9<0.041

8.380.257

0.96<0.0066

591538.699.7

1919.1470.a64

1.146<0.134

0.00390.0293

624.05152.88

178.8188613.46

0.5560.622

32.75234.04

3347.5<0.23

<0.2040.037

315459.1<0.040

6.340.371

<0.490.0367

595715.9100.4

1919.1470.a65

1.07<0.123

0.00690.0251

621.46154.65

175.2387836.15

0.6590.612

50.13227.92

3313.95<0.23

<0.1980.034

316383.2<0.037

7.850.308

0.510.124

595115.2100.4

1919.1470.a66

1.1580.216

0.08150.0711

623.58151.88

152.8787058.84

0.5910.533

27.35200.4

3274.28<0.24

0.2440.029

315923.20.052

5.880.311

0.72<0.0082

590016.199.7

1919.1470.a67

1.1280.229

0.00540.0537

601.85153.23

152.7287836.15

0.5390.618

49.69200.61

3296.21<0.25

<0.1990.049

316811.3<0.042

9.140.345

<0.570.0046

587127.999.6

1919.1470.a68

1.142<0.137

0.00180.0467

603.01147.81

164.6185504.22

0.6470.608

58.18216.95

3196.56<0.26

<0.220.08

307184.10.052

7.450.377

<0.56<0.0068

56941696.7

1919.1470.a69

1.048<0.133

0.01140.0168

633.2154.21

162.2888613.47

0.5870.719

38.03212.25

3325.16<0.24

<0.2110.022

315902.9<0.042

5.480.179

<0.53<0.0038

594608.8100.4

1919.1470.a70

0.834<0.142

<0.00660.363

846.03304.18

15.953653.36

<0.0540.538

219.580.445

1732.63<0.27

<0.261.931

328216.9<0.045

3.182.2

<0.640.02

669346.3100.4

1831.103371

1.6910.281

0.05030.807

827.65297.93

10.933575.63

0.0770.351

105.220.392

1596.410.4

<0.2612.52

326443.20.24

6.150.214

<0.63<0.0085

662293.799.5

1831.103372

1.1040.29

<0.00500.225

866.96306.96

11.023731.09

<0.0630.445

72.220.23

1665.36<0.32

0.561.9

327336.70.063

<2.740.304

<0.66<0.0083

673164.8100.7

1831.103373

0.808<0.156

<0.00460.0612

810.7298.62

3.173575.63

0.1430.617

115.521.438

1687.65<0.28

0.460.823

3218340.053

3.140.174

<0.650.0104

661380.499.0

1831.103374

0.866<0.138

0.0270.138

815303.56

3.233653.36

0.0590.719

86.990.369

1747.93<0.25

0.492.09

329409<0.043

3.970.217

<0.56<0.0059

669097.6100.5

1831.103375

0.712<0.137

0.00330.148

834.07308.19

3.833653.36

0.0860.45

83.470.289

1737.11<0.25

0.452.51

328144.10.131

<2.190.25

<0.55<0.0068

674740101.0

1831.103376

0.732<0.146

<0.00610.0138

817.84303.76

1.963653.36

<0.0550.423

68.780.279

1754.47<0.27

0.470.114

328405.5<0.042

<2.430.327

<0.57<0.0077

667932.2100.3

1831.103377

0.797<0.132

<0.00390.106

834.72307.85

6.563731.09

0.1160.52

58.940.256

1773.75<0.25

0.31.127

317869.10.042

2.620.286

<0.500.066

668258.699.3

1831.103378

0.911<0.130

<0.00490.386

803.78293.42

8.223497.9

<0.0490.496

75.520.297

1675.060.31

0.627.46

322340.70.218

2.760.187

<0.520.0137

663684.799.2

1831.103379

0.792<0.143

<0.00510.092

823.77302.26

2.43653.36

<0.0510.357

72.950.332

1753.2<0.25

0.521.789

321784.9<0.038

<2.110.208

0.53<0.0061

663932.399.2

1831.103380

0.7760.289

0.00460.289

797.13287.19

2.213420.17

0.1290.542

71.640.249

1574.74<0.27

0.591.962

321605.6<0.048

<2.480.339

<0.59<0.0056

668870.299.7

1831.103381

0.811<0.171

<0.01070.0599

841.48313.28

2.023808.82

0.1160.513

46.920.341

1854.12<0.28

0.891.011

328699.2<0.049

3.050.199

<0.56<0.0072

671916100.7

1831.103382

5.94<0.127

<0.001910.709

6090.19289.47

368.6994831.95

2.120.579

6.17138.13

2227.9<0.24

<0.260.759

315642.4<0.036

75.861.786

<0.490.086

584392.7100.4

Gruvåsen

832.87

<0.125<0.0053

0.1985985.61

279.63117.94

93277.332.326

0.6638.34

141.222223.39

<0.23<0.198

0.743316022.1

<0.03774.17

1.828<0.50

<0.0076580743.3

99.9G

ruvåsen84

2.06<0.122

<0.00361.319

5743.26276.21

109.194054.64

2.3960.603

8.03122.69

2137.71<0.22

<0.240.285

315392.5<0.035

71.522.87

<0.460.0057

583271.4100.1

Gruvåsen

855.18

0.1490.0012

0.1546314.26

301.99226.48

104159.72.155

0.8095.84

107.252322

<0.23<0.20

0.946313444.6

0.1370.26

2.20.53

0.015576003.9

100.3G

ruvåsen86

3.91<0.150

<0.00730.308

5754.74305.72

271.1896386.57

1.8580.82

5.95109.57

2218.27<0.28

<0.242.77

319087.70.07

72.561.035

<0.640.29

575989.8100.0

Gruvåsen

872.39

<0.142<0.0043

0.1465720.02

283.64105.79

95609.262.152

0.7124.67

122.512154.73

<0.27<0.24

0.356315913.5

<0.04370.97

0.753<0.58

0.0059580158.3

100.0G

ruvåsen88

5.32<0.147

<0.00730.168

6172.8303.17

107.65102605.1

1.6170.584

7.25109.09

2320.20.3

<0.260.408

314021.9<0.043

70.660.872

<0.58<0.0077

574168.1100.0

Gruvåsen

896.79

<0.1330.0453

0.4366132.93

393.031065.12

101827.81.862

0.5687.02

97.322389.47

<0.24<0.209

4.94314670.2

0.04173.97

1.3310.6

0.286570650

99.7G

ruvåsen90

0.812<0.132

<0.00340.444

858.21316.5

3.23731.09

0.0890.424

51.470.286

1776.230.27

<0.281.201

325962.3<0.040

3.230.16

<0.520.0064

670024.9100.2731

940069

Table 8. Continued

Page 115: Compositional Systematics of Sphalerites from Western Bergslagen…uu.diva-portal.org/smash/get/diva2:953522/FULLTEXT01.pdf · The Bergslagen ore province in central Sweden has a

107

No.

Ag

As

Au

Bi

Cd

Co

Cu

FeG

aG

eH

gIn

Mn

Mo

Ni

PbS

SbSe

SnTe

TlZn

TotalSam

ple ID91

3.16<0.62

<0.0390.613

848.59309.29

16.813731.09

<0.2150.77

46.740.279

1769.99<0.92

<0.901.936

323184.30.146

<8.580.279

<2.640.0098

674408.7100.4

94006992

0.698<0.60

0.3120.636

875.69321.89

2.743808.82

<0.2240.71

34.750.275

1859.8<1.11

<0.980.732

324723.1<0.203

<9.120.213

<1.980.0061

678203.4101.0

94006993

0.813<0.55

0.00120.085

831.73297.48

1.793575.63

<0.209<0.49

36.310.284

1736.29<0.99

<0.970.154

318132.7<0.140

<8.35<0.209

<1.970.0041

668881.199.3

94006994

0.803<0.60

0.00490.0416

874.28311.43

1.913808.82

<0.210<0.49

33.090.267

1833.46<0.94

<0.890.166

322779<0.239

<9.290.267

<2.080.0041

673091.2100.3

94006995

1.354.1

0.01580.303

852.41326.04

2.033886.56

<0.2740.61

62.690.271

1746.88<1.48

<1.180.916

328708.2<0.198

<11.05<0.32

<3.680.0088

669608.9100.5

94006996

0.946<0.66

0.9211.279

879.22316.09

7.413731.09

<0.251<0.56

102.880.287

1655.23<1.07

<1.022.75

327608.7<0.194

<10.660.473

<3.31<0.072

674973.6100.9

94006997

0.949<0.55

<0.000.312

807.12296.07

14.023964.29

<0.1890.45

55.280.332

1974.93<0.98

<0.820.227

295813.8<0.165

10.35<0.229

<2.110.0036

620832.492.4

94006998

0.72<0.75

0.2820.113

893335.93

2.434586.13

<0.270<0.61

50.340.271

2281.24<1.42

<1.220.459

326921.5<0.181

<10.86<0.257

<2.750.0035

665752.5100.1

94006999

0.746<0.64

0.00450.268

859.39321.71

6.073808.82

<0.229<0.53

34.140.303

1732.21<1.34

<0.930.633

325041.5<0.182

<10.260.193

<2.43<0.048

676928.8100.9

940069100

0.87<0.78

0.00570.281

872.01314.09

1.623731.09

<0.280<0.63

31.050.255

1614.42<1.30

<1.360.208

328369.7<0.263

<12.460.449

<2.471.74

673782.9100.9

940069101

1.131<0.125

0.00850.132

878.2933.73

10.3980063.04

1.2330.858

9.270.827

1380.08<0.23

<0.210.112

309294.50.084

2.910.615

0.540.01

610730.1100.2

2007.0304102

1.103<0.121

<0.00410.0427

881.9334.67

8.2180840.35

1.0480.562

7.350.82

1410.51<0.21

<0.1820.025

309744.6<0.036

<1.940.272

0.71<0.0064

606111.899.9

2007.0304103

1.215<0.128

0.0520.549

877.1734.46

7.4980840.35

1.1020.562

7.130.845

1425.62<0.24

<0.211.2

3110140.1

<2.130.333

0.640.509

60249199.7

2007.0304104

1.197<0.142

0.02650.116

89535.05

7.4579285.73

1.0860.678

8.790.87

1395.06<0.26

0.430.062

311298.4<0.045

<2.330.433

<0.550.0078

607476.9100.0

2007.0304105

1.427<0.20

0.00990.317

840.5933.25

10.3280840.35

1.0740.814

9.40.764

1389.96<0.27

<0.230.195

319398.80.076

<2.300.277

<0.560.0288

596809.999.9

2007.0304106

1.163<0.134

0.02640.288

852.2733.29

10.5777731.11

1.0340.687

9.271.367

1350.54<0.25

<0.220.89

316832.4<0.043

<2.230.546

<0.51<0.0051

605127.1100.2

2007.0304107

1.059<0.138

0.01310.768

856.1332.7

8.3178508.41

1.050.486

11.210.912

1419.03<0.25

<0.220.831

315206.80.117

<2.110.456

<0.51<0.0053

602314.499.8

2007.0304108

1.122<0.118

<0.00410.0542

851.4432.49

6.4978508.41

1.1030.643

10.980.845

1368.77<0.21

<0.1850.035

314339<0.037

<1.930.338

<0.480.0039

600778.499.6

2007.0304109

1.214<0.127

<0.002770.184

848.0432.55

15.2676953.8

1.0450.64

11.370.864

1351.11<0.23

<0.200.164

315723.2<0.037

2.260.221

1.07<0.0038

608102.4100.3

2007.0304110

1.762<0.125

0.00533

872.8432.55

133.4777731.11

1.0590.68

9.240.858

1348.12<0.24

<0.1902.85

3150000.238

<1.970.445

<0.500.0366

606920.4100.2

2007.0304111

1.166<0.132

0.01231.366

872.1632.53

9.4377731.11

1.0830.631

10.460.859

1349.2<0.24

<0.2090.92

3184490.101

<2.130.307

0.710.0327

605596.2100.4

2007.0304112

132.65<0.174

0.0182<0.0128

4465.76<0.050

482.6968403.38

0.320.594

14.26489.71

937.97<0.21

<0.2310487.46

312884.343.16

<2.112.44

0.490.219

591427.999.0

L.01.1113

18.02<0.165

<0.00290.071

4378.580.064

364.7773067.24

<0.0480.722

15.36464.04

1038.56<0.22

<0.234.2

313308.13.5

<2.13213.12

<0.452.2

589562.998.2

L.01.1114

29.9<0.18

<0.00230.0162

4432.49<0.065

360.3269180.69

0.0580.819

17.48459.39

1085.63<0.24

<0.266.44

311719.44.21

<2.440.527

<0.51<0.0055

591865.197.9

L.01.1115

85.44<0.164

<0.00640.0164

4151.690.096

303.8873844.55

<0.0510.714

16.2392.12

1052.55<0.23

0.3903.88

319924.224.78

<2.200.73

<0.510.165

582569.498.3

L.01.1116

61.980.276

0.0053<0.0099

4092.08<0.067

324.5367626.06

0.060.694

16.34387.32

1545.3<0.23

0.3814.48

31609511.65

<2.200.965

<0.470.141

591326.298.2

L.01.1117

43.9<0.173

0.00993.95

4506.37<0.057

332.9774621.86

0.090.805

15.13402.59

1799.591.55

<0.257.41

311718.98.49

<2.371.493

<0.460.0217

58884798.2

L.01.1118

46.2<0.154

0.00620.0311

4430.38<0.050

248.0969180.69

0.0950.665

19.45315.28

1038.07<0.21

<0.236.51

313643.65.93

<2.240.47

0.49<0.0050

585711.197.5

L.01.1119

22.630.229

<0.00430.016

4038.29<0.052

234.4490168.09

0.2260.63

21.12307.27

16844.590.59

<0.2494.3

308985.811.78

<2.270.484

<0.510.0258

565569.798.6

L.01.1120

92.270.289

0.01030.0565

3907.080.767

421.1769957.99

0.1732.4

20.42408.25

5890.81<0.24

<0.2499.38

314359.628.15

<2.261.042

<0.500.27

586001.598.1

L.01.1121

14.50.18

0.0070.0232

4377.31<0.052

274.572289.93

0.2030.726

14.29350.77

1061.44<0.23

<0.241.667

314357.31.264

2.670.365

<0.49<0.0045

587929.998.1

L.01.1122

1.426<0.154

<0.00370.0458

2218.9124.29

55.8587058.84

0.7320.572

15.6960.11

2259.39<0.24

<0.250.726

317850.9<0.050

<2.230.386

<0.490.0084

572923.998.2

Mysst.B

1.1123

1.58<0.168

0.02580.0469

2312.3225.6

70.1487836.15

0.5410.638

12.5864.12

2332.20.38

<0.262.76

318418.2<0.052

<2.440.279

<0.540.2

574028.798.5

Mysst.B

1.1124

1.186<0.160

0.01950.53

2273.9724.34

51.8986281.52

0.620.787

12.3961.8

2274.36<0.25

<0.250.197

315680.50.068

<2.310.284

<0.520.03

575645.598.2

Mysst.B

1.1125

1.86<0.154

<0.00530.196

2296.6724.66

71.9588613.46

0.5950.822

14.0257.67

2353.82<0.24

<0.241.898

3138760.264

<2.300.303

<0.470.0197

574166.898.1

Mysst.B

1.1126

1.039<0.145

0.0057<0.0094

2354.9925.1

54.8988613.46

0.7620.623

11.7158.92

2379.60.3

<0.240.118

313000.8<0.050

<2.170.339

<0.490.0092

575890.498.2

Mysst.B

1.1127

1.339<0.149

0.03070.0426

2310.5524.88

56.9990168.09

0.5840.638

10.1558.57

2364.87<0.24

0.240.384

313072.3<0.046

<2.200.226

<0.500.0184

572699.898.1

Mysst.B

1.1128

1.880.207

0.01270.236

2240.324.19

59.7985504.22

0.8190.666

13.559.64

2275.34<0.27

<0.285.77

314946.20.281

<2.590.352

<0.600.0275

576713.698.2

Mysst.B

1.1129

1.390.295

0.00890.0318

2193.5924.32

54.3985504.22

0.8390.755

14.1757.96

2255.75<0.30

<0.300.653

318456.8<0.060

<2.750.434

<0.61<0.0105

574310.498.3

Mysst.B

1.1130

1.84<0.146

<0.00290.15

2319.1624.01

61.6788613.46

0.5240.6

11.2153.5

2375.18<0.24

<0.231.553

313914.30.17

<2.070.216

<0.47<0.0044

572347.198.0

Mysst.B

1.1131

0.964<0.143

<0.0041<0.0140

2315.1624.24

47.7289390.77

0.7160.635

10.2953.46

2379.01<0.24

<0.230.224

313245.6<0.043

<2.160.225

<0.470.0194

571153.197.9

Mysst.B

1.1132

20.82<0.135

0.1260.164

1101.96194.9

1692.1794054.64

0.1530.777

7.6816.45

12343.320.42

<0.224.94

308559.34.25

<2.172.96

<0.540.222

566611.498.5

LAH

.001.2133

11.55<0.138

0.02350.092

1031.47185

591.8390168.09

0.1850.661

7.0215.91

12016.750.36

<0.212.95

313568.23.47

<2.280.291

<0.520.0431

567930.898.6

LAH

.001.2134

1.369<0.136

<0.00520.0103

1066.95148.57

21.990945.39

0.2470.65

5.8814.61

11210.830.56

<0.22<0.025

306841.3<0.044

<2.150.287

<0.56<0.0046

573548.698.4

LAH

.001.2135

0.9370.219

0.00950.0095

1037.57143.95

17.6490945.39

0.3220.707

5.3417.69

10616.740.46

<0.230.054

308886.31.111

<2.340.244

<0.600.0056

572043.398.37

LAH

.001.2

Table 8. Continued

Page 116: Compositional Systematics of Sphalerites from Western Bergslagen…uu.diva-portal.org/smash/get/diva2:953522/FULLTEXT01.pdf · The Bergslagen ore province in central Sweden has a

108

No.

Ag

As

Au

Bi

Cd

Co

Cu

FeG

aG

eH

gIn

Mn

Mo

Ni

PbS

SbSe

SnTe

TlZn

TotalSam

ple ID136

3.36<0.18

0.1660.176

1046.65165.15

36.4994054.64

0.3210.658

5.718.47

12212.35<0.35

<0.280.711

306695.1<0.055

<2.950.371

<0.78<0.0086

570908.698.5

LAH

.001.2137

3.69<0.185

0.00730.0071

1017.83153.44

<2.5092500.02

0.1860.712

6.917.77

11419.78<0.34

0.491.158

309625.90.266

<2.900.281

0.890.0155

571207.598.6

LAH

.001.2138

1.480.39

0.5630.0152

1035.16160.85

27.6592500.02

0.2560.731

7.3418.75

11813.27<0.36

<0.290.061

310042.3<0.054

<2.950.359

<0.72<0.0103

570479.698.6

LAH

.001.2139

1.561<0.141

0.01190.0156

1082.61163

23.4593277.33

0.2450.714

4.411.27

12038.880.33

<0.230.095

308634.80.064

<2.220.17

<0.55<0.0070

571252.898.6

LAH

.001.2140

2.27<0.147

0.00410.0219

1077.58160.67

65.2992500.01

0.2940.559

5.5911.82

11937.740.57

<0.240.318

309368.30.052

<2.330.274

<0.59<0.0088

564247.497.9

LAH

.001.2141

1.461<0.147

0.0037<0.0065

1096.88159.49

17.693277.33

0.330.581

5.049.22

11998.85<0.27

<0.230.048

312626.90.043

<2.300.295

0.71<0.0047

567251.798.6

LAH

.001.2142

2.630.45

0.03414.49

1476.337.26

4124252.1

1.0680.544

127.0330.72

93.44<0.31

<0.30131.81

319666.12.53

18.920.289

0.860.0066

634774.998.1

66.001143

1.4410.181

0.02530.856

1422.0230.11

32.6623630.26

1.9050.773

153.4529.71

91.93<0.26

<0.241.332

317304.82

14.470.312

<0.56<0.0079

637546.498.0

66.001144

1.5210.302

0.02511.988

1426.7729.39

34.5124018.91

1.2270.628

173.8430.4

83.84<0.30

<0.274.09

316979.82.84

14.050.406

0.82<0.0094

635490.897.8

66.001145

0.916<0.156

0.00510.113

1458.435.92

29.9524796.22

1.9220.528

239.1330.02

99.05<0.29

0.260.341

319610.80.307

15.020.291

<0.610.0071

633609.298.0

66.001146

1.204<0.153

0.01320.219

1465.3650.64

28.2724252.1

1.3920.521

69.9828.57

92.54<0.28

0.33<1.80

319932.90.625

13.010.389

<0.59<0.0060

632692.997.9

66.001147

1.4270.255

0.04270.862

1495.3253.61

33.525418.07

1.9130.633

67.0929.42

93.83<0.26

<0.241.669

316811.21.79

10.640.281

<0.600.0056

634569.397.9

66.001148

1.5590.39

0.02892.269

1473.1952.72

43.3925573.53

1.9720.601

11728.46

101.14<0.28

<0.242.47

313454.53.38

11.260.275

<0.59<0.0063

63710097.8

66.001149

5.15<0.170

0.0867.9

1485.4850.57

33.1225029.42

1.4680.591

255.6929.73

111.27<0.32

0.42284.23

319409.11.607

12.340.368

<0.72<0.0078

633861.898.1

66.001150

1.3870.176

0.02591.253

1480.6148.1

34.2925651.27

1.9320.472

260.1729.73

118.35<0.29

<0.252.004

318206.52.24

13.660.245

<0.62<0.0057

635031.598.1

66.001151

1.690.416

0.02661.776

1458.7549.97

36.8624873.95

2.0310.511

274.4129.63

103.55<0.32

0.273.05

320292.53.69

13.650.413

<0.680.0092

631058.397.8

66.001152

7.42<0.154

0.2540.18

28275.86571.9

56.71106491.6

0.0830.674

9.3532.6

3091.84<0.21

0.460.8

313224.22.74

<2.000.273

<0.420.0431

541791.199.4

MyB

001.1153

2.04<0.148

<0.00480.643

22356.43540.19

23.25106491.6

0.0860.736

8.4730.22

2727.38<0.21

0.85910.22

315942.40.473

<2.090.296

0.91<0.0077

546833.799.6

MyB

001.1154

1.1450.224

<0.00300.0151

22776.51596.18

24.05104937

0.1220.665

9.230.77

2678.61<0.22

1.280.73

316978.8<0.050

<2.170.214

<0.47<0.0085

544501.199.3

MyB

001.1155

4.28<0.173

0.0460.311

2027.112.77

17.93101.05

<0.0580.464

62.1118.97

<0.76<0.27

<0.3011.25

324474.90.081

10.280.223

<0.54<0.0089

636181.996.3

2002.0015156

2.7<0.178

0.0210.0575

2029.822.76

16.65124.37

0.5060.481

57.5818.81

<0.80<0.28

0.356.4

335892.1<0.061

11.545.19

<0.58<0.0109

653895.199.2

2002.0015157

3.251.63

0.00980.081

1901.62.94

19.784656.09

36.980.91

78.8321.69

2.27<0.32

0.616.38

340210.43.46

<3.1932.04

<0.57<0.0085

651601.999.9

2002.0015158

3.7<0.182

0.02320.0517

2075.542.97

18.14209.87

3.930.722

55.2119.84

<0.81<0.30

<0.307.45

342714.1<0.059

8.780.986

<0.59<0.0082

672642.1101.8

2002.0015159

7.430.95

0.0670.348

2067.492.91

19.1310.92

0.4430.512

42.5720.95

<0.73<0.27

<0.2724.67

328849.20.44

19.270.927

0.6<0.0071

659975.599.1

2002.0015160

2.260.305

0.0420.0413

2034.913.09

16.221064.92

7.120.638

37.5719.56

<0.72<0.26

0.295.27

331239.20.43

12.51.96

<0.53<0.0266

663471.399.8

2002.0015161

2.3<0.21

0.01820.0412

2136.242.78

16.83116.6

0.1690.81

54.8518.53

<0.93<0.34

<0.354.19

340044.10.341

24.570.484

<0.72<0.0098

669970.7101.2

2002.0015162

4.540.277

0.01340.14

2060.242.88

17.53691.81

3.340.571

43.4619.92

<0.74<0.27

<0.2915.4

330565.60.297

16.916.19

0.55<0.0068

661848.199.5

2002.0015163

3.36<0.161

0.03120.179

2008.513.42

15.6163.24

1.040.485

44.1515.49

<0.74<0.27

<0.283.6

3337960.096

12.230.71

<0.56<0.0101

657324.199.3

2002.0015164

3.16<0.186

0.0130.11

2072.155.85

15.06582.98

10.360.604

51.9717.08

<0.84<0.31

<0.318.27

337265.9<0.064

13.022.26

<0.590.0447

660362.7100.0

2002.0015165

3.540.179

0.00780.06

2040.733.25

13.8266.07

0.1430.613

53.6516.7

<0.74<0.28

<0.287.97

331599.80.206

5.540.327

<0.53<0.0089

660688.299.5

2002.0015166

2.52<0.155

0.0140.071

2005.943.13

14.2310.92

0.8810.575

54.3516.21

<0.72<0.26

<0.275

328524.70.066

<2.501.086

<0.56<0.0083

656604.698.8

2002.0015167

3.910.328

0.00630.113

1933.13.59

18.526031.93

9.070.618

46.5421.64

2.37<0.27

<0.2810.67

329253.30.869

4.858.39

<0.56<0.0075

661565.799.9

2002.0015168

1.74<0.154

0.01150.0494

2054.293.79

16.531064.92

10.890.63

38.819.13

<0.71<0.26

<0.272.36

332588.90.499

23.121.81

<0.54<0.0080

663793.3100.0

2002.0015169

5.350.57

0.01920.121

1896.363.88

23.278231.72

3.580.758

45.8321.45

5.44<0.27

<0.289.09

332749.41.362

4.755.42

<0.560.033

656179.999.9

2002.0015170

28.45<0.129

<0.00560.211

2839.29133.87

49.5391722.7

0.0930.68

17.0768.18

10266.56<0.24

<0.2277.75

316691.51.716

<2.220.448

<0.510.082

581228.3100.3

LAH

.001.1171

38.25<0.142

0.1420.0234

2707.84131.22

47.3187836.14

0.4130.674

15.3867.41

10123.29<0.26

0.276.76

314217.72.77

<2.2822.19

<0.570.487

582640.399.8

LAH

.001.1172

26.98<0.132

<0.00710.0082

2683.89127.38

46.4485504.2

0.1040.697

12.3264.89

9851.35<0.26

0.355.96

317145.60.952

<2.180.22

<0.540.238

584766.1100.0

LAH

.001.1173

48.490.16

<0.00520.0466

2760.81138.11

46.6787058.82

0.0960.611

11.8466.76

10014.350.36

<0.23137.15

320349.18.84

<2.330.648

<0.491.049

581533.6100.2

LAH

.001.1174

12.75<0.130

0.00550.0099

2691.28124.11

46.6289390.77

0.170.626

14.1266.78

10256.65<0.25

<0.230.49

319073.50.155

2.970.304

<0.530.0119

582271100.4

LAH

.001.1175

3.74<0.142

<0.0052<0.0065

2704.39127.11

50.2890945.38

0.2380.67

11.0366.92

10363.520.27

<0.231.08

317033.90.607

<2.290.282

0.520.0203

583593.9100.5

LAH

.001.1176

9.7<0.124

<0.00970.0177

2653.96135.98

49.7194054.63

1.0250.732

1066.25

10708.48<0.24

<0.210.51

314308.60.458

<2.0823.12

0.830.13

580266.7100.2

LAH

.001.1177

27.09<0.123

0.01070.0105

2687.41133.61

49.1890945.38

0.2060.69

7.5866.24

10402.9<0.25

<0.2210.88

317943.20.128

<2.050.394

<0.490.029

583310.8100.6

LAH

.001.1178

53.45<0.129

<0.00700.0187

2778.17134

48.5788613.45

0.1160.732

8.3966.74

9988.8<0.25

<0.2268.9

3139366.73

<2.230.614

<0.520.703

586093.4100.2

LAH

.001.1179

1.242<0.156

0.0370.0436

2391.6730.73

141.31103382.4

2.180.671

9.6108.48

4552.570.29

<0.2755.52

316332.30.323

<2.601.282

<0.57<0.0070

573330.6100.0

Getberget-a

1801.402

<0.130<0.0048

0.0842449.98

29.47146.79

98718.492.23

0.76610.45

107.524363.46

<0.26<0.24

146.37318830.8

0.648<2.22

7.85<0.52

<0.0056579185.5

100.4002G

etberget-a

Table 8. Continued

Page 117: Compositional Systematics of Sphalerites from Western Bergslagen…uu.diva-portal.org/smash/get/diva2:953522/FULLTEXT01.pdf · The Bergslagen ore province in central Sweden has a

109

Table 8. Continued

No.

Ag

As

Au

Bi

Cd

Co

Cu

FeG

aG

eH

gIn

Mn

Mo

Ni

PbS

SbSe

SnTe

TlZn

TotalSam

ple ID181

2.120.178

<0.00740.091

2392.0729.85

134.9897941.19

2.1170.822

8.86105.28

4360.310.33

<0.241.5

315393.10.441

<2.340.439

<0.54<0.0061

581894100.2

Getberget-a

1821.407

<0.1520.0057

0.0962502.83

28.69132.95

97941.182.31

0.64611.03

105.864405.79

<0.28<0.26

19.48313794.1

0.468<2.49

1.154<0.60

<0.0084582274.1

100.1G

etberget-a183

5.84<0.167

0.0380.244

2411.9229.63

165.85100273.1

2.140.718

11.3106.87

4441.89<0.31

<0.293.12

317567.21.141

<2.750.8

<0.66<0.0101

571907.399.7

Getberget-a

1841.041

<0.1710.0396

0.06162441.35

30.79145.67

101827.72.35

0.8310.52

109.484542.38

<0.33<0.30

53.89313262.8

0.346<2.97

0.988<0.66

0.0064581340.4

100.4G

etberget-a185

1.03<0.133

<0.00420.0542

2435.9629.1

155.0399495.8

2.220.609

9.55107.34

4407.31<0.28

0.2471.98

314831.20.701

<2.324.94

<0.540.0089

575330.899.7

Getberget-a

1861.062

0.2720.0279

0.03942445.47

29.19158.11

98718.492.24

0.73510.2

107.844426.72

<0.30<0.27

69.6313783.5

0.152<2.55

6.27<0.66

<0.0056580491.3

100.0G

etberget-a187

1.109<0.144

0.2170.0318

2409.1329.74

122.8798718.49

2.080.706

9.04106.48

4442.06<0.30

<0.263.38

315801.50.241

<2.571.525

<0.62<0.0110

579428.8100.1

Getberget-a

1884.88

<0.112<0.0045

0.00618806.81

710.31138.25

95609.250.083

0.5366.66

171.075596.43

<0.230.36

0.4308440.7

0.381<2.05

0.1960.6

0.0061583051.3

100.3N

äset II189

33.80.206

0.1220.0145

8975.1714.62

1139.9894831.94

0.1140.478

7.79169.95

5700.92<0.24

0.863.09

311406.41.45

<2.080.303

<0.520.0243

580922.8100.4

Näset II

1901.77

<0.1240.0133

0.01358921.67

707.79137.01

95609.240.184

0.7126.24

170.345667.53

<0.250.277

0.221307224.9

<0.0382.3

0.357<0.51

<0.0072581641.7

100.0N

äset II191

3.36<0.122

0.00540.0101

8802.39714.99

115.7796386.56

0.2070.869

4.54141.49

5513.84<0.25

0.90.192

311814.10.076

<2.010.349

<0.550.0145

574371.399.8

Näset II

1929.3

<0.1250.307

0.01218233.69

420.03301.34

90168.080.248

0.8018.69

201.095145.61

<0.250.61

0.55307764.7

<0.057<2.08

0.8021.04

0.0079584215.1

99.6N

äset II193

39.780.368

0.01240.079

7859.99409.79

1440.2287058.83

0.3270.72

10.72200.92

4939.160.47

1.8990.51

309419.88.01

<2.123.72

<0.520.0091

586470.999.8

Näset II

1947.76

<0.1250.0104

0.00818095.1

416.37194.15

87836.140.242

0.7238.28

200.345073.49

<0.250.86

0.31312800.9

0.065<2.01

0.599<0.53

<0.0065580631.1

99.5N

äset II195

6.47<0.119

0.02050.0065

8077.29412.5

169.9989390.77

0.2110.685

8.72201.89

5078.3<0.24

<0.2130.53

311905.8<0.043

<2.120.268

<0.53<0.0046

586796.3100.2

Näset II

1962.87

0.232<0.0084

0.0077022.2

532.1177.51

93277.310.223

0.5677.55

197.484566.56

<0.27<0.22

0.62311415.7

0.177<2.27

0.242<0.58

<0.0070580396.4

99.8N

äset II197

11.84<0.135

<0.00770.838

7901.36533.65

610.0989390.77

<0.0530.731

8.1196.82

5011.28<0.27

0.8423.99

312581.16.58

<2.299.43

<0.570.15

579679.199.6

Näset II

1981.045

<0.1330.0268

0.03522307.81

31.7436.74

84726.92.019

0.77114.86

29.861454.7

<0.26<0.23

<0.058313490.9

<0.044<2.21

0.693<0.57

0.0143595957.9

99.8M

ysst.B3.1

1991.74

<0.1360.0273

0.1542343.86

35.1126.51

88613.452.06

0.64111.81

30.071538.03

1.22<0.23

2.62314294

0.099<2.21

0.321<0.57

0.086592356.2

99.9M

ysst.B3.1

2003.73

<0.1510.0136

1.4472359.4

32.742037.42

87836.141.696

0.53912.85

29.881540.4

<0.31<0.26

19.47317305.1

3.08<2.57

1.078<0.66

0.0244588933.8

100.0M

ysst.B3.1

2011.02

<0.1440.198

0.0122402.71

32.9655.38

89390.772.011

0.76815.31

30.531561.81

<0.28<0.24

4.03319740.3

<0.048<2.34

0.505<0.60

0.199589478

100.3M

ysst.B3.1

2020.771

<0.1350.0103

0.0312459

32.6938.9

88613.451.859

0.75513.92

24.861599.16

<0.27<0.23

0.35314770.8

<0.046<2.32

0.636<0.58

0.0106588766.9

99.6M

ysst.B3.1

2031.47

0.1270.0313

0.1642324.81

31.7162.74

85504.212.096

0.68414.58

27.941486.85

<0.25<0.22

2.24312348.5

0.29<2.13

0.248<0.54

0.0246596776.3

99.9M

ysst.B3.1

2040.93

<0.1270.0248

0.04612312.63

31.5733.14

84726.92.41

0.77812.02

28.771502.85

<0.27<0.23

0.34314338.7

<0.043<2.22

0.543<0.52

0.0061595073.6

99.8M

ysst.B3.1

2051.71

<0.1330.0072

0.0852390.48

31.4748.78

86281.512.22

0.71310.91

28.11512.77

<0.27<0.23

1.68315886.9

0.107<2.29

0.345<0.55

0.0113590870.4

99.7M

ysst.B3.1

2061.047

<0.148<0.0265

0.2252448.78

31.434.44

85504.212.075

0.50922.39

27.011508.63

<0.30<0.25

0.26317092.9

<0.050<2.46

0.614<0.62

0.0144594473.9

100.1M

ysst.B3.1

2071.01

0.1410.0129

0.01662399.29

32.1334.91

87836.142.48

0.72219.39

27.231544.82

<0.28<0.24

0.121310753.8

0.074<2.38

0.675<0.58

0.0165594544.6

99.7M

ysst.B3.1

2085.74

<0.1470.0205

0.01441836.59

28.14742.79

86281.521.14

0.5628.42

71.122888.58

<0.270.26

144.29318943.6

4.89<2.14

0.705<0.59

0.177587990.3

100.3G

etberget I209

2.54<0.152

0.00590.0165

1806.0931.09

1889.1187058.83

1.2210.539

7.4170.01

2903.50.62

<0.2246.29

317871.32.02

<2.260.602

<0.540.0105

588508.6100.0

Getberget I

2102.82

0.230.0097

0.03071732.5

31.98125.66

87058.831.241

0.6449.08

69.822877.42

<0.27<0.23

7.6320025.7

0.317<2.35

0.578<0.56

<0.0101592296.1

100.4G

etberget I211

2.54<0.149

0.00730.0456

1929.3630.18

1531.8588613.45

1.2290.482

7.171.94

3064.1<0.26

<0.24446.48

316961.72.78

<2.250.394

<0.590.0309

589397.6100.2

Getberget I

2122.03

<0.141<0.0043

0.03081750.36

31.77117.19

88613.451.31

0.5338

75.672979.24

<0.27<0.23

119.02317005.8

0.296<2.22

0.367<0.59

<0.0043587733.1

99.8G

etberget I213

2.75<0.144

<0.00420.0188

2115.6134.95

96.1391722.69

1.1590.688

8.0576.85

3572.590.46

<0.230.92

318853.30.165

<2.220.547

<0.52<0.0060

582448.899.9

Getberget I

2145.4

0.247<0.0053

0.00972016.84

36.46633.18

87058.831.131

0.7178.23

74.73343.5

<0.26<0.23

11.71320183.2

11.45<2.26

0.509<0.55

0.0333585848.6

99.9G

etberget I215

5.310.368

0.062<0.0103

2037.5335.22

1719.1386281.51

1.0890.627

8.4175.51

3240.73<0.28

<0.24585.67

319963.131.47

<2.340.523

<0.610.174

591217.6100.5

Getberget I

2162.7

<0.140<0.0031

0.01982036.53

32.29609.99

84726.91.067

0.5777.88

75.693369.77

<0.28<0.24

20.07318732.5

1.883.58

0.364<0.58

<0.0045588660.8

99.8G

etberget I217

2.61<0.144

0.0950.0261

2020.9132.53

688.3685504.2

1.1580.6

8.6775.06

3384.920.28

<0.235.66

3162361.84

<2.320.427

<0.580.0148

588427.899.6

Getberget I

2182.8

<0.164<0.0048

0.253824.32

297.3966.55

4042.020.102

0.55969.12

0.2141670.58

<0.311.04

0.7334219.5

<0.0455.24

0.2140.69

<0.0040658328

100.057.4128

2193.36

<0.163<0.0075

0.114816.59

296.9580.14

4042.020.139

0.42351.58

0.2121648.24

<0.301.02

1.05332823.7

<0.0506.27

0.238<0.64

0.0141668108.9

100.857.4128

2201.079

<0.1630.038

0.299800.93

290.628.89

4042.020.17

0.58449.26

0.2141583.58

0.310.83

1.2328081.3

<0.0547.62

0.202<0.64

0.0156659358.1

99.457.4128

2211.229

<0.181<0.0121

0.22796.09

292.7312.59

4042.020.099

0.45448.68

0.2011599.58

0.41.28

1.28333684.7

<0.055<2.95

0.167<0.73

<0.0084655959.8

99.657.4128

2220.86

<0.1730.119

0.375793.14

284.944.64

3964.290.069

0.54539.81

0.1941548.09

<0.331.52

1.57330478.9

0.0745.04

0.196<0.73

<0.0074657240.5

99.457.4128

2234.51

<0.160<0.0047

0.252805.77

295.4655.59

4119.750.193

0.54743.94

0.191616.42

<0.290.73

1.7329929.4

<0.0457.07

0.2490.6

0.0047667650.1

100.557.4128

2241.073

<0.1510.004

0.113808.18

295.9231.56

4042.020.13

0.4733.01

0.1861631.74

<0.291.3

1.51329169.6

<0.0497.34

0.204<0.61

<0.0073663444.3

99.957.4128

2258.58

<0.1770.0237

0.831838.39

297.4176.95

4119.75<0.067

0.57834.18

0.1941638.38

<0.331.55

7.35331748.7

<0.0608.72

0.197<0.67

<0.0069668810.4

100.857.4128

Page 118: Compositional Systematics of Sphalerites from Western Bergslagen…uu.diva-portal.org/smash/get/diva2:953522/FULLTEXT01.pdf · The Bergslagen ore province in central Sweden has a

110

Table 8. Continued

No.

Ag

As

Au

Bi

Cd

Co

Cu

FeG

aG

eH

gIn

Mn

Mo

Ni

PbS

SbSe

SnTe

TlZn

TotalSam

ple ID226

1.197<0.167

0.030.377

843.9280.24

47.553886.55

0.0780.349

41.540.209

1524.6<0.31

0.752.07

333975.90.071

5.880.24

<0.630.0092

662157.1100.3

57.4128227

8.07<0.163

0.010.416

799.28293.27

129.554042.02

0.1010.517

38.250.22

1581.35<0.32

1.312.71

333516.80.066

3.420.214

<0.68<0.0076

666475.2100.7

57.4128228

111.81

<0.0090269.46

6236.9138.59

276.1893277.32

0.3460.88

53.21224.47

11811.27<0.80

<0.6728465.28

356220.6129.35

<6.964.97

<1.830.384

532738.9103.0

Getberget-b

22977.8

1.04<0.0149

408.587992.64

119.24804.41

79285.720.164

0.5819.75

212.799161.61

2.5<0.57

2504.19309326.3

476.45<5.50

8.24<1.51

0.454593295.3

100.4G

etberget-b230

4.77<0.16

<0.006712.52

7925.1136.66

178.15101050.4

0.2460.86

8.28201.51

10979.72<0.32

<0.252324.96

301197.41.93

<2.510.541

<0.61<0.0048

575197.399.9

Getberget-b

231460.97

1.60.013

295.0311227.19

109.29336.82

83172.270.949

0.7750.41

254.212231.12

<0.970.75

13844.72327889.9

116.49<7.73

69.94<1.98

0.206557611.4

100.8G

etberget-b232

513.730.53

<0.0166176.71

11388.88109.59

235.5981617.66

0.240.71

30.09238.59

13671.381.07

<0.7010187.73

319289.152.9

<6.8023.79

<1.770.075

576404.9101.4

Getberget-b

2331.108

<0.1430.0096

0.0258599

141.87159.91

89390.760.239

0.66156.73

217.343714.16

<0.28<0.24

0.192312623.7

0.210.46

0.259<0.63

<0.0052590364.5

99.71919.1470.b

2340.987

0.168<0.0072

<0.0117607.97

142.88154.52

87836.130.251

0.8464.78

213.843443.2

<0.28<0.24

0.12317497.6

0.0567.98

0.415<0.63

<0.0060589058.5

99.91919.1470.b

2351.081

<0.1550.0081

0.0236631.58

146.19158.96

89390.770.423

0.62382.74

218.143386.34

<0.29<0.25

0.108315353.4

<0.0488.61

0.31<0.63

0.0087595075.4

100.41919.1470.b

2361.122

0.197<0.0057

0.0253623.85

147.98171.07

90945.380.455

0.69864.42

236.13447.06

0.41<0.24

0.077315891.2

0.0896.94

0.334<0.66

<0.0066590210.9

100.21919.1470.b

2371.053

<0.1560.0028

0.0125623.06

151.56168.43

94054.630.677

0.47951.05

228.493705.51

<0.280.26

<0.060314066.1

0.058.95

0.334<0.63

<0.0081584620.9

99.81919.1470.b

2381.113

<0.1420.0087

0.0238617.76

148.88148.79

91722.690.218

0.63551.15

199.493458.69

<0.26<0.24

0.068312782.6

0.0788.39

0.311<0.60

0.069587940.1

99.71919.1470.b

2391.093

<0.155<0.0066

0.0353618.94

151.92162.03

94054.630.585

0.62162.85

216.543503.1

<0.29<0.25

0.058316042.7

0.0646.12

0.333<0.62

0.07589293.8

100.41919.1470.b

2401.154

<0.164<0.0034

0.0253610.09

148.17161.94

89390.770.34

0.64786.77

220.383330.28

<0.30<0.26

<0.058315475.3

0.2295.48

0.529<0.64

<0.0063592775.5

100.21919.1470.b

2411.111

<0.146<0.00313

0.069622.53

146.52160.94

89390.760.414

0.65460.53

2163384.95

<0.28<0.25

0.081314518.3

<0.0447.28

0.287<0.59

0.178592041.8

100.11919.1470.b

2421.156

<0.144<0.0100

0.0348628.26

153.24161.87

93277.320.56

0.76468.96

212.353488.62

<0.28<0.24

<0.051311540.9

<0.0437.02

0.469<0.57

<0.0079587668.5

99.71919.1470.b

2431.073

<0.1500.0085

0.0098635.91

156.59173.86

93277.320.46

0.67191.64

230.573545.05

<0.28<0.24

<0.051312452.1

<0.0449.68

0.340.77

0.0049586138.6

99.71919.1470.b

2441.091

0.244<0.0069

0.0237631.61

152.13182.76

92500.010.704

0.594149.15

245.353464.68

<0.27<0.24

0.086315029.2

<0.0496.07

0.335<0.57

<0.0058591709.8

100.41919.1470.b

2451.169

<0.131<0.0059

0.0256619.51

152.42184.63

925000.71

0.557132.69

249.963463.64

<0.26<0.23

0.046309002.1

<0.0437.43

0.41<0.58

<0.0069594054.1

100.01919.1470.b

2461.118

<0.152<0.0069

0.0439626.85

150.86168

90945.380.59

0.74898.86

225.353410.66

<0.27<0.24

0.071312759.6

<0.0458.62

0.328<0.56

<0.0068595546.3

100.41919.1470.b

2472.22

0.74<0.0045

<0.01042823.57

150.11151.65

99495.811.236

0.8789.43

91.917090.43

<0.20<0.23

0.645313160.4

0.202<1.99

2.78<0.40

<0.0057556667.4

98.0LA

H.001.6

2481.62

<0.150<0.0037

0.02032852.75

125.81148.77

97941.20.409

0.5956.42

91.956849.66

0.2<0.21

0.087312249.4

<0.046<1.89

0.284<0.42

1.486558552.6

97.9LA

H.001.6

2492.13

0.271<0.00

0.122833.07

136.36142.94

96386.570.465

0.8287.72

90.656718.94

<0.18<0.20

0.114308323.8

<0.043<1.88

0.729<0.37

<0.0069563504.9

97.8LA

H.001.6

2501.745

<0.1370.0049

0.01742875.25

133.86147.55

97163.880.458

0.8297.19

90.566681.65

0.22<0.19

0.083312956.9

0.059<1.86

0.331<0.39

<0.0065558121.8

97.8LA

H.001.6

2512.66

<0.143<0.0042

0.01582801.74

139.08148.25

97163.880.449

0.8298.75

91.136750.23

0.24<0.21

0.229308969.1

<0.044<1.95

0.404<0.38

<0.0062563378.5

97.9LA

H.001.6

2522.88

<0.1430.139

<0.00802887.4

128.2166.96

96386.570.429

0.6137.21

91.366704.44

<0.19<0.21

0.129310153.4

<0.044<1.98

0.573<0.41

<0.0049561234.5

97.8LA

H.001.6

2532.93

<0.15<0.0033

<0.00797394.1

912.93244.34

112710.10.103

0.7168.5

144.986151.89

<0.200.29

0.862307261.5

<0.046<1.96

0.581<0.41

0.0054539881.8

97.5N

äset I254

5.97<0.151

<0.00430.0112

7235.15829.85

247.16111155.5

0.1150.748

7.81150.18

5992.380.26

0.871.76

312973.90.508

<2.061.77

<0.410.056

537469.697.6

Näset I

2556.93

<0.1410.0186

0.01616941.81

781.79909.94

108046.20.056

0.6646.64

144.545908.15

<0.200.43

12.84309237.8

0.766<1.97

0.458<0.40

0.0127548989.3

98.1N

äset I256

509.740.39

0.01460.067

6529.94765.47

1266.14112710.1

0.2020.966

8.37148.22

5770.780.36

669.89823.65

302030.119.94

2.48116.92

<0.473.83

541545.697.3

Näset I

2572.88

<0.141<0.0048

0.01856987.61

724.12232.41

101827.80.084

0.726.69

147.885483.74

0.260.59

0.966310448.4

0.193<2.07

0.336<0.44

<0.0046549554.1

97.5N

äset I258

13.24<0.34

1.0290.224

6983.67835.46

1883.7398718.52

0.2070.83

15.81152.78

5648.3<0.62

<1.059.39

317273.34.59

<5.252.87

<1.390.133

569452.6100.1

Näset I

2592.01

<0.320.089

<0.01776797.79

675132.2

98718.520.162

0.8415.74

148.415225.2

<0.65<0.55

0.269312895.2

0.134<5.28

0.195<1.41

0.151574791.1

99.9N

äset I260

5.13<0.41

0.0141<0.021

6722.08776.21

387.86108046.2

<0.1500.91

11.39151.91

5877.820.78

<0.701.45

311967.60.567

<6.550.478

<1.800.044

563292.699.7

Näset I

2612.32

<0.42<0.0152

<0.0306863.07

714.42131.7

105714.3<0.154

0.698.73

155.315515.89

<0.81<0.66

0.088307729.5

0.1777.54

0.45<1.78

<0.0150571392.1

99.8N

äset I262

10.6<0.32

<0.01270.14

7310.21673.09

1977.21103382.4

<0.1210.52

10.9146.71

5975.940.67

<0.4712.77

311504.42.71

<5.271.56

<1.330.192

568774.2100.0

Näset I

26321.67

<0.450.054

8.93473.88

588.3814030.65

100273.10.29

0.569.92

75.7948.55

<0.78<0.82

5.62307715.9

0.2837.14

0.69<1.60

0.052560702.5

98.8G

ås IIa264

9.910.44

0.0111.275

3079.51583.81

1929.891722.7

<0.1421.25

14.9879.81

770.46<0.70

<0.650.82

311545.2<0.109

42.860.28

<1.48<0.024

56597397.6

Gås IIa

26542.67

<0.380.148

23.523345.33

652.043063.81

84726.91<0.139

0.3511.61

83.051044.03

<0.73<0.58

11.7311993.8

0.2933.48

1.39<1.59

0.302565888.5

97.1G

ås IIa266

88.780.37

0.065.52

3518.75633.88

8058.6294831.95

0.4170.75

13.7978.49

870.03<0.70

<0.578.54

335378.6<0.116

41.770.618

<1.570.062

621301106.5

Gås IIa

267273.78

0.790.835

18.353101.25

627.6737965.3

78508.41<0.160

0.9611.44

79.93682.84

1.660.66

58.09328964.9

0.24239.38

2.04<1.75

0.728591917.4

104.2G

ås IIa268

3.16<0.56

0.0990.271

2924.24602.87

134.5398718.52

<0.21<0.46

11.3167.23

875.261.25

<0.860.096

303734.7<0.18

48.72<0.23

<2.49<0.019

531280.893.8

Gås IIa

2699.89

<0.550.029

3.523051.35

643.85597.08

94831.96<0.21

0.6513.86

69.98810.49

<1.071.26

1.11281149.3

<0.1721.57

3077.782.77

0.026528452.9

91.27G

ås IIa

Page 119: Compositional Systematics of Sphalerites from Western Bergslagen…uu.diva-portal.org/smash/get/diva2:953522/FULLTEXT01.pdf · The Bergslagen ore province in central Sweden has a

111

Table 9. LA-IC

P-MS analyses of the sphalerite sam

ple 1831.1815

Appendix C: LA-ICP-MS data of the 1831.1815 sample

No.

AgAu

BiCd

CoCu

FeGa

GeHg

InM

nN

iPb

SSe

SnZn

TotalSam

ple ID1

0.790.05

1024518

531308

0.260.82

95.4

13680.93

0.7321665.3

47.7642782

9987361831.1815

20.64

0.020.09

1016506

530497

0.200.86

115.4

13191.77

0.7317631.3

51.3646197

9972421831.1815

30.78

888459

421657

0.8111

4.7956

1.491.2

320493.347.5

5658611

10031411831.1815

40.71

998513

829838

0.619

5.11301

1.2318739.8

45.2641664

9931241831.1815

50.60

991517

429445

1.1510

5.51293

1.2318415.5

49.97

6500981000840

1831.18156

0.670.42

0.02966

5345

305190.18

0.8216

5.51317

1.121.1

321532.144.7

13643059

9980151831.1815

70.76

0.030.04

956525

529942

0.130.64

175.4

13081.08

0.9324231.5

46.710

6447791001829

1831.18158

0.670.03

1000510

429975

0.250.74

105.4

13071.09

0.5315363.3

47.011

650763998997

1831.18159

0.720.01

0.011013

5205

307920.24

0.9810

5.21337

0.970.7

317450.545.8

13647243

9984381831.1815

100.69

0.03896

4874

223190.15

0.6611

4.71030

1.050.9

324963.247.9

13649672

9994521831.1815

110.66

0.02907

4974

237630.16

0.9311

4.71068

0.880.7

32144547.1

9652436

10001951831.1815

120.60

0.020.04

990493

428007

0.190.80

85.1

12240.54

0.8318843.2

50.016

649467999110

1831.181513

0.670.03

997493

528581

0.190.68

85.2

12450.83

2.3320729

45.112

647122999248

1831.181514

0.880.16

1032473

827126

0.160.70

75.1

11810.60

1.9320046.1

51.68

649248999191

1831.181515

0.650.07

0.141048

4879

267920.25

0.868

5.11175

1.292.5

320558.551.6

11650443

10005931831.1815

160.70

0.031000

5246

303020.20

0.848

5.51331

1.246.9

320518.949.8

8645489

9992531831.1815

170.82

0.461091

503622

288800.28

0.7912

5.61264

1.055.9

320799.150.8

14647738

10009871831.1815

180.74

0.05990

5324

291700.24

0.609

5.11289

0.910.5

319769.543.2

8648001

9998241831.1815

190.64

0.01985

5094

301310.17

0.9110

5.21308

1.1320819

41.810

645628999452

1831.181520

0.630.01

0.05953

4934

267690.75

125.1

11720.77

0.4323490.4

51.67

6472491000209

1831.181521

0.660.04

0.03949

4904

268870.27

0.9112

5.11170

1.601.8

32221951.9

14648797

10006041831.1815

220.66

0.020.04

960543

629127

0.260.89

165.6

12891.05

2.4324839.2

46.69

6448141001661

1831.181523

0.650.05

967531

330299

0.270.98

145.6

13341.32

0.8326448.6

44.810

637350997010

1831.181524

0.640.01

0.081015

5036

313490.26

0.9013

5.61349

0.792.1

319614.847.0

12645366

9992841831.1815

250.68

0.041002

5142

320080.72

135.6

13601.35

0.7321227.7

45.08

643177999366

1831.181526

0.640.02

1034491

8330441

0.230.76

85.2

13291.4

318460.145.6

13647509

9994241831.1815

270.57

0.011006

5104

298430.11

0.888

5.31310

1.5314539

49.07

650830998114

1831.181528

0.710.05

0.011024

5145

295790.19

0.8510

5.71276

1.290.3

323542.449.3

12644829

10008511831.1815

290.63

0.051004

5215

291180.24

0.6911

5.71260

1.250.6

32383246.2

10645390

10012061831.1815

300.70

0.100.23

1006504

529087

0.180.91

105.4

12870.95

2.2323103.1

48.57

6451771000245

1831.181531

0.730.06

930484

14326768

0.170.59

115.4

121028.8

311643.247.0

16656424

9977131831.1815

320.71

0.070.01

975509

428456

0.180.75

104.7

12310.89

1.3319901.6

47.79

648267999420

1831.181533

0.690.05

0.01982

5294

287220.22

0.888

4.71269

0.882.9

32173946.2

8646735

10000531831.1815

Page 120: Compositional Systematics of Sphalerites from Western Bergslagen…uu.diva-portal.org/smash/get/diva2:953522/FULLTEXT01.pdf · The Bergslagen ore province in central Sweden has a
Page 121: Compositional Systematics of Sphalerites from Western Bergslagen…uu.diva-portal.org/smash/get/diva2:953522/FULLTEXT01.pdf · The Bergslagen ore province in central Sweden has a
Page 122: Compositional Systematics of Sphalerites from Western Bergslagen…uu.diva-portal.org/smash/get/diva2:953522/FULLTEXT01.pdf · The Bergslagen ore province in central Sweden has a

Examensarbete vid Institutionen för geovetenskaper ISSN 1650-6553