Composition of the Solar System, Planets, Meteorites, and Major Terrestraial Reservoirs

Embed Size (px)

Citation preview

  • 8/14/2019 Composition of the Solar System, Planets, Meteorites, and Major Terrestraial Reservoirs

    1/31

    Composition of the Solar System, Planets, Meteorites,and Major Terrestrial Reservoirs

    Horton E. Newsom

    1. INTRODUCTION

    The compositions of the Sun, meteorites a nd planetsprovide important clues to the origin and evolution of thesolar system, and the major fractionations involved in theformation of the planets. This article tabulates and discuss-es the current compilations of elemental abun dances for thesolar system, meteorites, and some of the terrestrial planets.Planetary compositions are only reported for bodies fromwhich actual samples were analyzed or chemical data havebeen obtained by other means. Estimates of several authorsare usually tabulated because the data sets used, and theapproach es taken, are often dramatically different. Thevariability among the estimates, therefore, provides someidea of the uncertainties in the estimates.

    2. SOLAR SYSTEM ABUNDANCES

    The composition of the solar system was established byastrophysical processes, starting with the light elements,such as H, He and Li, produ ced in th e Big B ang, approxi-mately 20 Ga ago. The heavier elements were produce dover time by processes involving the evolution and destruc-tion of massive stars (primarily stars greater than 9 solarmasses), and processes in novae, both of which enriched thegalactic annulus containing the sun by the time the solarsystem was formed [86,19]. The formation of the solarsvstem is best dated at 4.559 + 0.004 Ga ago, the Pb isotope

    H. E. Newsom, University of New Mexico, Department ofGeology. Albuquerque, NM 87 13 1

    Global Earth PhysicsA Handbook of Physic al Constants

    AGU Reference Shelf 1

    age of calcium aluminum rich inclusions from t he AllendeCV chondrite meteorite [73]. The formation of the solarsystem occurred by collapse of a dense molecular cloud corewhich contained the material that now makes up the planets,meteorites a nd the Sun. This relationship is indicated by thesimilarity between elemental abun dance ratios for non-gaseous elements in th e CI carbonace ous chondrites andabundan ce ratios in the sun [4, Figure 11. The CI ch ondritesare volatile-rich meteorites that consist largely of clay-likeminerals, w hich have the most solar-like chemical composi-tions of all the primitive meteorite types (Table 1). The suncontains more than 99.99% of the mass of the solar system,and abundance ratios for many non-gaseous elements havebeen measured in the sun by spectroscopic techniques, andby measurements of the composition of the solar wind andsolar energetic particles (Table 2). The composition of dustfrom comet P/Halley, as measured by the Vega and Giottospacecraft is similar to CI chon drites, bu t enriched in thevolatile elements H, C an d N, making this the most primi-tive meteoritic material [46]. Comets are thought to haveformed in the Uranus-Neptune zone or just beyond.

    Recent work on the abundan ces in CI meteorites byDreibus et al. [22] and Spettel et al. [64] have providedimprovements for some elements to the compilation byAnders and Grevesse [4], and Wasson and Kallemeyn [80].The average sulfur content of CI meteorites reported byAnders and Grevesse [4] of 6.25% is high be cause of theinclusion of data for Ivuna, Alais and Tonk. The S abun-dance for Orgeil of 5.41 wt% (Table I), howeve r, is consis-tent with the S/Se ratio for ail groups of carbonaceouschondrites [22]. Compared to the Anders and Grevesse [4]compilation, data from Mainz and UCLA for the elementsSe, Au, and Ir [ averaged in Table 1 as the Spettel et al.,199364compilation] show good agreement and are probably

    Copyright 1995 by the American Geophysical Union. 159

  • 8/14/2019 Composition of the Solar System, Planets, Meteorites, and Major Terrestraial Reservoirs

    2/31

  • 8/14/2019 Composition of the Solar System, Planets, Meteorites, and Major Terrestraial Reservoirs

    3/31

    NEWSOM 161

    condensation temperatures below FeS. Variations in theabundan ces of these different groups of elements are alsocharacteristic of the different meteorite groups.

    Meteorites can be divided into two m ajor types, chon-drites, which never experienced wholesale melting afteraccretion from the solar nebula, and achondrites, wh ich a re

    igneous rocks that are thought to be the result of meltingand crystallization on their parent asteroids. Classificationschemes from Wasson [79] are shown in Tables 4 and 5,and also discussed by Sears and Dodd [62]. Data for sometypes of chondritic meteorites other than CI are listed inTable 6. [80]. The CI, CM, CO, CK and CV ch ondrites arecalled carbo naceous chondrites, because of their darkappear ance and high C content. These meteorites are alsohighly oxidized, The CI chondrites contain essentially noiron metal. The H, L and LL chondrites are called theordinary chondrites because they are the most abundan ttypes of meteorites in the worlds collections; they are alsointermediate in oxidation state. The EH and EL chondrites

    are highly reduced enstatite chondrites, which con tainessentially no oxidized iron. Several new types of chond-ritic meteorites are in the process of being characterized.Data for a limited number o f elements for the CK (Karoon-da-type) ca rbonaceou s chondrites are listed in Table 6 [36].The CK meteorites have refractory enrichments interme diatebetween the CV and CO, CM classes. Their oxygen iso-topes are similar to CO chondrites, and the olivine composi-tions range from Fa 29-33 [36]. Other groups of chondritesare the CR (Renazzo-type) carbonaceous chondrites [83, 131,the R (Carlisle Lakes) chondrites, w hich have more affini-ties with ordinary and enstatite chondrites [61], the Kakan-gari-type chondrites [84] and the Bencubbin- Weatherfor d

    chondrites [85]. The CH chondrites (ALH85085, ACFER182, and paired samples ACFER 207 and ACFER 214) areenriched in Fe metal a nd siderophile elements [ 131.

    Chondritic meteorites provide information about thechemical fractionations and processes that occurred in thesolar nebula, and the nature of the building blocks for theplanets [37, part 71. Solar system material has been affectedby different fractionation processes during the formation ofthe solar system, and within the terrestrial planets [50].These fractionations were caused by variations in theabundan ce of refractory components, olivine, iron metal, andloss of volatile elements during co ndensation or heating.Refractory elements vary by a factor of two within chond-

    ritic meteorites du e to variations in high temperaturecondensates, such as Ca, Al-rich inclusions in carbonaceou schondrites. Variations of MglSi ratios by 30% in chondritesare ascribed to fractionation of olivine. The depletion ofvolatile elements relative to CI chondrite abun dances isobserved in chondritic meteorites, and in the compositions

    siderophile elements (elements with an affinity for ironmetal) are enriched or depleted by a factor of two betweenthe metal-depleted LL chondrites and the metal-enriched CHchondrites [ 131. S iderophile element abundan ces are oftendepleted in differentiated bodies because of core formation.Figure 3 illustrates the depletions of volatile elements in the

    CM chondrites and the Bulk Silicate Earth (BSE) composi-tion. The additional depletion of siderophile elements (bothrefractory and volatile) in the BSE due to core formation isevident in Figure 3.

    3. ASTEROIDS

    Meteorites are thought to come from parent bodies in theasteroid belt between Mars and Jupiter (exceptions includethe SNC meteorites, probably from Mars, se e below, andlunar meteorites). Spectrophotometry of asteroids hasresulted in the development of classification schemes whichreflect the chemical an d mineralogical nature of the aster-

    oids. The possible connection betwe en known meteoritetypes and asteroid spectral types is described in Table 7.An un answere d question is whether th ese meteoritesoriginally accreted in the asteroid belt, or whether theirparent asteroids were transported from other parts of thesolar system to the asteroid belt and stored in their presentlocation? The regular distribution of asteroid types in theasteroid belt (Figure 4) suggests that the asteroids have not

    CM chondritcs

    Cithophlles BulkS~lmte Earth

    Siderophiles BulkSIllcab Earlh

    0001 i : / : I

    400 900 1400 1900

    Condensation Temperature(K)

    Fig. 3 Plot of the log ratio of the abunda nce of all elementsin CM c hondrites (Table 2) and in the Bulk Silicate Earth

    [56, Table 71, normalized to CI chondrites [4, Table 11, andplotted versus the 50% condensation temperature of the ele-ments at 10e4 tm total pressure, a measure of the volatilityof the elements [80]. The figure illustrates the depletion ofvolatile elements in the CM chondrites and the Bulk SilicateEarth, a s well as the additional depletion of siderophile e le-

    of differentiated planets and asteroids. The abundan ces of ments in the Bulk Silicate Earth.

  • 8/14/2019 Composition of the Solar System, Planets, Meteorites, and Major Terrestraial Reservoirs

    4/31

    162 COMPOSITION OF THE SOLAR SYSTEM

    been widely transporte d, which implies that the meteoritesin our collections are probably originally derived from alimited portion of the solar system.

    The achondr ite meteorites are igneous rocks an d includeseveral varieties. The Howardite, Eucrite and Diogeniteclan, which are thought to come from the same parent body,

    called either the HED parent body, or the Eucrite ParentBody (EPB). The Eucrite meteorites are basalts containingplagioclase and pyroxene, the Diogenites are ultramaficrocks containing pyroxene and olivine, while the Howarditesare brecciated mixtures of material similar to Eucrites an dDiogenites. Thus the EPB meteorites represent portions ofthe parent bodies crust. The EPB meteorites recordevidence of core formation and igneous processes thatoccurred soon after the formation of the solar system [30].Lead isoto pe data suggest that the EPB samples crystallizedshortly a fter the formation of the most primitive meteorites.For exam ple, data for the Juvinas eucrite suggests a meltingage of 4.53 9 Z!Z .004 Ga, only 20 Ma after the formation of

    the Allende carbonac eous chondrite.The bulk composition of the Eucrite Parent Body hasbeen estimated (Table S ), although the lack of mantle rocksfrom the EPB is a great handicap. Dreibus and Wanke [23]estimated the bulk composition by using mixing diagramsfor EPB meteorites to obtain a composition with chondriticratios of the refractory elements, which was then added toan olivine com position. The Vizgirda and Anders [74] andHertogen et al. [29], and Morgan et al. [45] compositionswere obtained by using fractionation factors from the Moonand Earth, w hich relate the composition of basalts to thebulk composition by the processes of core and crust forma-tion. Consolmagno and Drake [21 ] calculated a metal free

    bulk composition based on trace element constraints fo r themode of the eucrite source regions and mineral compositionsfrom the work of Stolper [66]. Jones [33] modeled the bulkcomposition as a mixture of 25% eucrite and 75% olivine.Estimates of the amount of metal in the parent body, basedon the depletions of siderophile elements in eucrites,include: 8% Hertogen et al. [29], 12.9% Morgan et al. [45],and 20% - 40% Hewins and Newsom [30].

    4. TERRESTRIAL PLANET COMPOSITIONS

    In-situ chemical measurements have been made for all ofthe terrestrial planets except Mercury. Several Soviet

    Venera and Vega landers made chemical analyses of thesurface of Venus. For the Moon, we have samples returnedby United States manned and Soviet u nmanned spacecraft,as well as lunar meteorites. For Mars we ha ve the UnitedStates Viking lander measurements, and the SNC meteorites,which are thought to come from Mars. The properties ofthe Moons of Mars: density, albedo, color and spectral

    reflectivity are similar to C-type astero ids, although theirorigin as captured asteroids is not completely certain [16].The relationship between the esitimated compositions of theplanets and the solar system composition, provide clues tothe formation of the planets. For example, the high me-tal/silicate ratio for Mercury and the low ratio for the Moon

    suggests the role of giant impacts.4.1. Mercury, Venus

    The compositions of Mercury and Venus are not wellknown (Table 9). For Mercury the available data includesdensity information and very limited spectroscopic informa-tion suggesting a low Fe0 content (< 5.5 wt%) [26]. Thehigh mean density of Mercury (5.43 g cmm3) ets this planetapart from the other terrestrial planets, and implies an ironrich core making up 65 wt% to 68 wt% of the planet [7].Based on this information and cosmochemical constraints,several authors have come to the conclusion that the highdensity probably cannothave been produce d by a simple

    b

    2.0 3.0 4.0 5.0A (AU)

    Fig. 4. Occurrence in the asteroid belt of asteroid spectraltypes from [12] with permission. (a) Distribution of the

    taxonomic types of Tholen [72], plus K class of Bell [ll].The actual heliocentric locations of the individual V, T, A,R and K asteroids are indicated by tick marks. (b) Distribu-tion in the asteroid be lt of th e asteroid superclasses of Bell[IO]. The assumption, h owever, that the S-type meteoritesare differentiated, and that T, B, G and F types are meta-morphic is still very speculative.

  • 8/14/2019 Composition of the Solar System, Planets, Meteorites, and Major Terrestraial Reservoirs

    5/31

  • 8/14/2019 Composition of the Solar System, Planets, Meteorites, and Major Terrestraial Reservoirs

    6/31

    164 COMPOSITION OF THE SOLAR SYSTEM

    concentrated in the continental crust. The continental crust,for example, may contain more than 80% of the highlymobile elements Cs, Cl, and Br [77]. This type of data haseven been extended by some authors to include estimates ofthe enrichment of some elements in ore deposits relative tothe continental crust [ 15,421.

    4.4.1. Core. The Earths core consists largely of Fe-metal, along with Ni and Co, in the same ratio to Fe asobserved in solar system material, such as the CI chondrites(approximately 5.8 wt% Ni, 0.3 wt% Co, Table 12). Thesecompositions are observed in iron meteorites, which arethought to be the cores of melted asteroids that formed atrelatively low pressures. However, geophysical evidenceindicates that the Earths metal co re is 10% less dense thanpure Fe-Ni-Co, indicating the presence of a significantamount of a light element which is not observed in ironmeteorites. The presence of the light element may be dueto processes that only occur at very high pressures withinthe Earth. The nature of this light element is currently

    controversial, with the main candidates being oxygen orsulfur. A recent estimate of Ahrens and Jeanloz [l] assum-ing sulfur is the light element, gives a sulfur content of 11+ 2%, based on experimental evidence. Experimental workat pressures approximating the core mantle bound ary hasshown that high pressure mantle minerals, such as (Mg,Fe)SiO, pero vskite, will re act chemically with iron to formalloys [38]. This experimental result may explain the lightelement component, and the existence of the D (D-double-prime) layer at the core mantle boundary observed inseismic studies. Such reactions could be changing thecomposition of the core over time.

    4.42 Bulk Silicate Earth (primitive mantle). Thecomposition of the silicate portion of the Earth (the mantleplus .crust) has been estimated based on measurements ofupper mantle and crustal rocks (Table 13). The compositionof the upper mantle is surprisingly homogeneous for manyelements. Elements that are compatible in mantle minerals,such as Co and Ni, have abundances in primitive mantlenodules that do not vary by more than plus or minus 10%[6.5]. The abundances of poorly known incompatibleelements can be determined relative to well known incom-patible elem ents. For example, MO is consta nt within plusor minus a factor of two relative to the light rare earthelement Ce in terrestrial basalts [47]. The composition ofAnders on [6] is a mixture of five components, ultramaficrocks, orthopyroxene, Mid-ocean Ridge Basalt (MORB), thecontinental crust, and kimberlite, combined to achievechondritic relative abun dances of refractory elements.Taylor and McLennan [70] used a mixture of cosmochemi-cal components for refractory elements, crustal data forvolatile elements and mantle no dule data for siderophile

    element data. The Ringwood [56] pyrolite primitivemantle composition is based on complementary composi-tions of melts and residual mantle material. A similarapproach was used by Sun [67]. Wanke et al. [77], updat-ing Jagoutz et al. [32] have used the composition of mantlenodules to represent the depleted upper mantle, combined

    with a continental crust composition. Zindler and Hart [89]used ratios of refractory elements in lherzolites together withcosmochemical constraints . The bulk Earth composition ofMorgan and Anders [44] used 7 cosmochemical componentsconstrained by the mass of the core, the U and Fe abun-dance , and the ratios K/U, Tl/U, FeO/MnO.

    4.4.3. Bulk Contine ntal Crust. Estimates of the compo-sition of the continental crust are listed in Table 14. Thebulk continental crustal composition of Taylor and McLen-nan [70] (their Table 3.5) is comprised of 75% of theirArchean crustal composition (Table 9) and 25% of theirAndesite model (Table 9), to represent the relative con tribu-tions of Archean and Post-Archean crustal growth processes.A similar approach was taken by Weaver and Tarney [81],who combined composition estimates for the upper crust,Archean middle crust, Archean lower crust and post-Arch-ean middle and lower crust in the proportions 8:3:9:4.

    Other estimates of the composition of the continental crustinclude those of Holland and Lambert [3 11,Poldevaart [53],Ronov and Yaroshevsky [59], Ronov and Migdisov [60],and Wedepohl [82]. For a summary of other major elementestimates of the composition of the bulk continental crustsee Table 3.4 in Taylor and McLennan [70].

    4.4.4 Other crustal abundances. The continental crustcan be broken down into other divisions that provide usefulconstraints in terms of the formation of the continental crust(Table 15). The composition of the upper continental crustestimated by Taylor and McLennan [70] is based onsampling programs in the Canadian shield for majorelements, and analyses of sedimentary rocks for traceelements. Rare-earth distributions of a composite of 40North American shales were compiled by Haskin et al. [27]to approximate the composition of the upper continentalcrust. The lower continental crust composition of Taylorand McLennan [70] is based on their bulk continentalcrustal composition, from which their upper continentalcrustal composition (Table 15) has been subtracted. Thecomposition of the bulk Archean continental crust estimatedby Taylor and McLennan 1701, is based on a mixture ofbasic and felsic rocks consistent with the observed heatflow. Taylor and McLennan [70] present a composition forthe post-Archean continental crust, the Andesite model,which is based on the average composition of eruptedmaterial at island arcs.

  • 8/14/2019 Composition of the Solar System, Planets, Meteorites, and Major Terrestraial Reservoirs

    7/31

    NEWSOM 165

    TABLE 1. Solar-System abundances of the Elements Based on Meteorites and Condensation Temperatures

    Element Solar System Uncertain ity CI Chondr. CI Chondr. CI Chondr. Calculated

    atoms/106Si s (%I Anders & Wasson & Spettel et al. Condensation

    Anders & Grevesse Kallemeyn [ 1993164 Temp at 10m4 atm

    Grevesse [ 1 98914 [198914 [19881go Wasson [ 1985]79

    1 H

    2 He3 Li4 Be5 B

    6 C

    7 N

    8 09 F

    10 Ne

    11 Na12 Mg

    13 Al

    14 si

    15 P

    16 S17 Cl

    18 Ar19 K

    20 Ca21 SC22 Ti23 V

    24 Cr25 Mn

    26 Fe27 Co

    28 Ni29 Cu30 Zn31 Ga32 Ge33 As34 Se35 Br36 Kr

    37 Rb38 Sr39 Y40 Zr41 Nb42 MO44 Ru

    2.79 x lOlo

    2.72 X lo957.10.7321.2

    1.01 x 107

    3.13 x 106

    2.38 x lo7843

    3.44 x 106

    5.74 x 1041.074 :

    8.49 x

    1.00 x

    1.04 x

    5.15 x5240

    106

    O4

    06

    ::

    1.01 x 1053770

    6.11 x lo434.22400293

    1.35 x 1049550

    9.00 x 1052250

    4.93 x 104522126037.81196.5662.111.845

    7.0923.54.6411.40.6982.551.86

    --_-

    ----9.29.510

    ____

    1015

    14

    7.13.8

    3.6

    4.4

    10

    1315

    67.7

    7.18.65.05.1

    7.69.6

    2.76.6

    5.1114.46.99.6126.41918

    6.68.16.06.41.45.55.4

    - _ --__ _ __1.5 mm24.9 mb870 ppb- - -- _ - _

    ____ ___

    _ - _ --

    60.7 mm_ _ - _ -

    5000 ppm9.89 %

    8680 ppm

    10.64 %

    1220 ppm

    6.25 %704 ppm__ _ ____

    558 wm9280 ppm5.82 mm436 mm56.5

    mm2660 ppm1990 ppm

    19.04 %502 pw1.10 %126 PPm312 wm10.0 mm32.7 ppm1.86 ppm18.6 mm3.57 ppm____ ____

    2.30 pw7.80 wm1.56 PPm3.94 pm246 wb928 wb712 wb

    2____

    1.57271200

    3.2

    1500

    46.064____

    49009.7

    8600

    10.5

    1020

    5.9680

    ____

    560

    92005.842055

    26501900

    18.2508

    1.071213129.8331.8419.63.6____

    2.227.91.443.8270920710

    ---- _---____________----

    ____1225 K--_---_-

    ---- ____---_ -_--____ -------- 736 K-___

    49829.6

    8650

    ____

    ----

    ____

    5.41____

    970 K1340 K

    1650 K

    1311 K

    1151 K

    648 K863 K

    ----544

    95105.9-_--

    54.3

    26461933

    18.23506

    1.077____

    3239.71----

    1.8121.33.5-__-----________________

    ----1000 K

    1518 K1644 K1549 K-1450 K

    1277 K1190K

    1336 K1351 K

    1354 K1037 K660 K918 K825 K1157K684 K-690 K----

    -1080 K

    ________

    ----1592 K-1780 K-1550 K1608 K1573 K

  • 8/14/2019 Composition of the Solar System, Planets, Meteorites, and Major Terrestraial Reservoirs

    8/31

    166 COMPOSITION OF THE SOLAR SYSTEM

    TABLE 1. (Continued)

    Element Solar System Uncertainity CI Chondr. CI Chondr. CI Chondr. Calculated

    atoms/l 06Si s (%) Anders & Wasson & Spettel et al. Condensation

    Anders & Grevesse Kallemeyn [ 199317 Temp at 10V4 atm

    Grevesse [ 198914 [1989]4 [ 198818 Wasson [1985]16

    45 Rh 0.344 846 Pd 1.39 6.647 Ag 0.486 2.948 Cd 1.61 6.549 In 0.184 6.450 Sn 3.82 9.451 Sb 0.309 1852 Te 4.81 1053 I 0.90 2154 Xe 4.7 205.5 cs 0.372 5.6

    56 Ba 4.49 6.357 La 0.4460 2.058 Ce 1.136 1.759 Pr 0.1669 2.460 Nd 0.8279 1.362 Sm 0.2582 1.363 Eu 0.0973 1.664 Gd 0.3300 1.465 Tb 0.0603 2.266 Dy 0.3942 1.467 Ho 0.0889 2.468 Er 0.2508 1.369 Tm 0.0378 2.370 Yb 0.2479 1.671 Lu 0.0367 1.3

    72 Hf 0.154 (1.9)73 Ta 0.0207 1.874 w 0.133 5.175 Re 0.0517 9.476 OS 0.675 6.377 Ir 0.661 6.178 Pt 1.34 7.479 Au 0.187 1580 Hg 0.34 1281 Tl 0.184 9.482 Pb 3.15 7.883 Bi 0.144 8.290 Th 0.0335 5.792 U 0.0090 8.4

    134 ppb560 ppb199 ppb686 wb80 ppb1720 ppb

    142 wb2320 ppb

    433 mb_ - _ _ - _

    187 ppb

    2340 ppb234.7 ppb603.2 ppb

    89.1 ppb452.4 ppb147.1 ppb

    56.0 wb196.6 ppb

    36.3 ppb242.7 ppb

    55.6 ppb158.9 ppb

    24.2 ppb162.5 ppb

    24.3 ppb104 mb14.2 wb92.6 ppb36.5 ppb486 wb481 ppb990 wb140 ppb258 ppb142 ppb2470 ppb

    114 mb29.4 ppb8.1 wb

    1345602086508017201532400500__-_

    183

    230023661692.945714956.019735.524554.716024.715924.5

    12016100374904609901443901422400110298.2

    ----

    ----247_---

    -_--14557________253

    ____

    16226

    ____

    ____----486459___-

    152

    ____

    1391 K1334 K952 K-_--__--

    720 K912K680 K________-----_--1520 K1500K1532K1510K1515 K1450 K1545 K1560 K1571 K1568 K1590 K1545 K1455 K1597 K

    1652 K-1550 K1802K1819 K1814K1610 K1411 K1225 K----____--_-____

    1545 K1420 K

  • 8/14/2019 Composition of the Solar System, Planets, Meteorites, and Major Terrestraial Reservoirs

    9/31

    NEWSOM 167

    TABL E 2. Abundances in the Solar Photosphere

    (10gNH=12)[~]

    Element Photosphere* Meteorites? Phot.-Met*

    123456789

    1011121314

    15161718192021222324252627282930313233343536373839404142444.546474849

    5051

    HHeLiBeBCN0FNeNa

    MgAlSi

    PSClArKCaSCTiVCrMnFecoNiCUZnGaGeASSeBrKrRbSrYZrNbMORURhPd

    AgCdIn

    SnSb

    12.00 -_--[ 10.99 +0.035]1.16 +O.l1.15 20.10(2.6 kO.3)8.56 kO.048.05 20.048.93 kO.0354.56 20.3[8.09 ro. 1016.33 kO.037.58 kO.056.47 kO.077.55 kO.05

    5.45 ~(0.04)7.21 kO.065.5 kO.3[6.56 &O.1 O]5.12 kO.136.36 kO.023.10 k(O.09)4.99 kO.024.00 kO.025.67 kO.035.39 kO.037.67 kO.034.92 kO.046.25 kO.044.21 rtO.044.60 kO.082.88 *(O. 10)3.41 +o. 14____ _-----__ -----_-_ ____-_-_ ____

    2.60 k(O.15)2.90 20.062.24 rto.032.60 kO.031.42 kO.061.92 kO.051.84 kO.071.12 kO.121.69 +0.04(0.94 kO.25)1.86 kO.15(1.66 kO.15)2.0 k(O.3)1.0 k(O.3)

    [ 12.001[ 10.9913.31 io.041.42 kO.042.88 _+0.04[8.56][8.05][8.93]4.48 kO.06[8.09 +O.lO]6.31 kO.037.58 kO.026.48 20.027.55 kO.02

    5.57 +0.047.27 kO.055.27 +0.06[6.56 +-0.1015.13 kO.036.34 kO.033.09 kO.044.93 kO.024.02 kO.025.68 kO.035.53 kO.047.51 rto.014.91 20.036.25 kO.02

    4.27 kO.054.65 kO.023.13 kO.033.63 20.042.37 kO.053.35 kO.032.63 kO.083.23 kO.072.40 ~0.032.93 kO.032.22 kO.022.61 +0.031.40 kO.011.96 kO.021.82 kO.021.09 kO.031.70 kO.031.24 kO.011.76 +0.030.82 kO.03

    2.14 +0.041.04 kO.07

    ____-----2.15-0.27(-0.28)---_____-_--

    +0.08----

    +0.020.00-0.010.00-0.12-0.06+0.23____

    -0.01+0.02+O.Ol+0.06-0.02-0.01-0.14+0.16+O.Ol0.00

    -0.06-0.05-0.25-0.22---_____________

    +0.20-0.03+0.02-0.01+0.02-0.04+0.02+0.03-0.01(-0.30)+O.lO

    (+0.84)

    -0.14-0.04

  • 8/14/2019 Composition of the Solar System, Planets, Meteorites, and Major Terrestraial Reservoirs

    10/31

    168 COMPOSITION OF THE SOLAR SYSTEM

    TABLE 2. (Continued)

    Element Photosphere* Meteorites? Phot.-Met*

    52535455565758596062636465666768697071727374757677787980818283

    9092

    TeIXeCSBaLaCePrNdSmEuGdTb

    DYHoErTmYbLuHfTaWReOSIrPtAu

    HgTlPbBi

    ThU

    ____

    --------2.131.221.550.711.501 oo0.511.12(-0.11.1(0.260.93(0.001.08(0.760.88____

    (1.11----

    1.451.351.8(1.01___-

    (0.91.85----

    0.12(

  • 8/14/2019 Composition of the Solar System, Planets, Meteorites, and Major Terrestraial Reservoirs

    11/31

    NEWSOM 169

    TABL E 3. Abundance of the Nuclide s (Atoms/lo6 Si)14]

    Element, A AtomPercent

    Process* Abund.? Element, A AtomPercent

    Process* Abund.t

    1H

    2He

    3 Li

    4 Be5B

    6C

    7N

    80

    9F

    10 Ne

    11 Na

    12 Mg

    13 Al

    14 Si

    15 P

    16 S

    17 Cl

    18 Ar

    19 K

    20 Ca

    1 99.9966 ____

    2 0.0034 U3 0.0142 U,h?

    4 99.9858 U,h6 7.5 X7 92.5 U,x,h9 100 X10 19.9 X11 80.1 X

    12 98.90 He

    13 1.10 W

    14 99.634 H

    15 0.366 RN

    16 99.762 He

    17 0.038 NJ

    18 0.200 He,N19 100 N

    20 92.99 C

    21 0.226 C,Ex

    22 6.79 He,N

    23 100 C,Ne,Ex

    24 78.99 N,Ex

    25 10.00 Ne,Ex,C

    26 11.01 Ne,Ex,C

    27 100 Ne,Ex

    28 92.23 0,Ex29 4.67 Ne,Ex

    30 3.10 Ne,Ex

    31 100 Ne,Ex

    32 95.02 0,Ex

    33 0.75 Ex

    34 4.21 0,Ex

    36 0.02 Ex,Ne,S35 75.77 Ex37 24.23 Ex,C,S

    36 84.2 Ex

    38 15.8 0,Ex

    40 ---- S,Ne40 _____ ---_

    39 93.2581 Ex40 0.01167 S,Ex,Ne40 ____ ____

    41 6.7302 Ex

    40 96.941 Ex

    2.79~10~~

    9.49x1053.86~10~

    2.72~10~4.2852.820.734.2216.98

    9.99x106

    1.11x105

    3.12~10~

    1.15x104

    2.37~10~

    9.04x103

    4.76~10~843

    3.20~10~

    7.77x103

    2.34~10~

    5.74x104

    8.48~10~

    1.07x105

    1.18~10~

    8.49~10~

    9.22~10~4.67~10~

    3.10x104

    1.04x104

    4.89~10~

    3.86~10~

    2.17~10~

    1.03x1022860913

    8.50~10~

    1.60~10~

    2625+1435160.4405.48253.7

    5.92~10~

    21 SC22 Ti

    23 V

    24 Cr

    25 Mn

    26 Fe

    27 Co

    28 Ni

    29 Cu

    30 Zn

    31 Ga

    32 Ge

    33 As

    34 Se

    42 0.647 Ex,O

    43 0.135 Ex,C,S44 2.086 Ex,S

    46 0.004 Ex,C,Ne48 0.187 E,Ex45 100 Ex,Ne,E46 8.0 Ex47 7.3 Ex48 73.8 Ex

    49 5.5 Ex

    50 5.4 E

    50 0.250 Ex,E

    51 99.750 Ex

    50 4.345 Ex

    52 83.789 Ex

    53 9.501 Ex54 2.365 E

    55 100 Ex,E

    54 5.8 Ex

    56 91.72 Ex,E

    57 2.2 E,Ex

    58 0.28 He,E,C

    59 100 EC

    58 68.27 E,Ex

    60 26.10 E

    61 1.13 E,Ex,C62 3.59 E,Ex,O

    64 0.91 Ex

    63 69.17 Ex,C

    65 30.83 Ex

    64 48.63 Ex,E

    66 27.90 E

    67 4.10 ES68 18.75 ES70 0.62 ES

    69 60.108 S,e,r

    71 39.892 S,e,r

    70 20.5 S,e72 27.4 S,e,r73 7.8 e,s,r74 36.5 e,s,r76 7.8 E75 100 Rs

    74 0.88 P

    395

    82.51275

    2.411434.21921751771

    132

    130

    0.732

    292

    587

    1.131x104

    1283319

    9550

    5.22~10~

    8.25~10~

    1 98x104

    2.52~10~

    2250

    3.37x104

    1.29~10~

    5571770

    449

    361

    161

    613

    352

    51.72367.8

    22.7

    15.1

    24.432.69.2843.49.286.56

    0.55

  • 8/14/2019 Composition of the Solar System, Planets, Meteorites, and Major Terrestraial Reservoirs

    12/31

  • 8/14/2019 Composition of the Solar System, Planets, Meteorites, and Major Terrestraial Reservoirs

    13/31

    NEWSOM 171

    TABLE 3. (Continued)

    Element, A AtomPercent

    Process* Abund.? Element, A AtomPercent

    Process* Abund. t

    57 La

    58 Ce

    59 Pr60 Nd

    62 Sm

    63 Eu

    64 Gd

    76 OS

    77 Ir

    78 Pt

    135136137138138138139136138138140142141142143

    1431441451461481501441471471481491.50

    152154151153152154155156157158184186187187188189190

    192191193190192194195

    6.592 R,s7.854 S11.23 S,r71.70 S0.089 P_--- ____

    99.911 S,r0.19 P0.25 P--__

    88.4811.0810027.1312.18----

    23.808.3017.195.765.643.115.0_---

    11.313.87.4

    26.722.747.852.20.202.1814.8020.4715.6524.840.0181.581.6

    __--

    S,rRRSS

    RS_-_-

    S,RR,sRSRRP

    Rs-___

    SRSS

    RSR

    R,sR,spsS

    R,sRSRSRsPSS

    ---- -_-_

    13.3 b16.1 R26.4 R

    41.0 R37.3 R62.7 R0.0127 P0.78 S32.9 R33.8 R

    0.2960.3530.5043.220.0003970.0004090.4460.002160.002840.002831.0050.1260.1670.2250.101

    0.1000.1970.06870.1420.04770.04670.008000.03870.03990.02920.03560.0191

    0.06890.05860.04650.05080.000660.007190.04880.06760.05160.08200.0001220.01070.01080.008070.08980.1090.178

    0.2770.2470.4140.0001700.01050.4410.453

    67 Ho68 Er

    69 Tm70 Yb

    71 Lu

    72 Hf

    73 Ta

    74 w

    75 Re

    163164165162164166167168170169168170171172173

    174176175176176174176176177178179180

    180181180182183184186185187187

    24.90 R28.19 RS100 R0.14 P1.61 PS33.6 R,s22.95 R26.8 RS14.9 R100 R,s0.13 P3.05 S14.3 Rs21.9 RS16.12 Rs

    31.8 W12.7 R97.41 Rs2.59 S___- ---

    0.162 P5.206 S----

    18.60627.29713.62935.100

    0.01299.9880.1326.314.330.6728.637.4062.60

    ____

    R,sRSRsS,R

    p,s,rRSPRsKSRsRRsR

    __-- __--

    0.09820.01110.08890.00035 10.004040.08430.05760.06720.03740.03780.0003220.007560.03540.05430.0400

    0.07880.03150.03570.0009510.0010350.0002490.008020.007930.02870.04200.02100.0541

    2.48~10-~0.02070.0001730.03500.01900.04080.03800.01930.03240.0351

  • 8/14/2019 Composition of the Solar System, Planets, Meteorites, and Major Terrestraial Reservoirs

    14/31

    172 COMPOSITION OF THE SOLAR SYSTEM

    TABL E 3. (Continued)

    Element, A AtomPercent

    Process* Abund.?

    79 Au80 Hg

    81 Tl

    82 Pb

    83 Bi90 Th

    92 U

    196

    198197196198199200201202204203205204206206

    207207208208209232232

    235235238238

    25.2 R

    7.19 R100 R0.1534 P

    9.968 S16.873 RS23.096 S,r13.181 S29.863 S,r6.865 R29.524 RS70.476 S,R1.94 S19.12 RS___- ____

    20.62 RS-___ __--58.31 RS___- ____100 Rs100 RA___- ____

    0.7200 RA----- ___-99.2745 RA____

    0.338

    0.09630.1870.000520.03390.05740.07850.04480.10150.02330.05430.12970.06110.6020.5930.6500.6441.8371.8280.1440.03350.0420

    6.48~10-~0.005730.008930.0181

    *Assignments to nucleosynthetic processes are from Cameron [1982]17, Schramm (private communication, 1982) Walter et al. [1986]75, Woosley

    Hoffman [1986, 1989]87p8s, and Beer and Penzhom [19871g. Processe s are listed in the order of importance, with minor processes (lo-30% for r-and

    processes) shown in lower case. See above references for details. U = cosmolog ical nucleosynthesis, H = hydrogen burning, N = hot or explosive hydroburning, He = helium burning, C = carbon burning, 0 = oxygen burning, Ne = neon burning, Ex = explosive nucleosynthesis, E = nuclear statiequilibrium, S = s-process, R = r-process, RA = r-process producing actinides, P = p-process, X = cosmic-ray spallation. thalicizcd values ref

    abundances 4.55 x 10 yr ago.

  • 8/14/2019 Composition of the Solar System, Planets, Meteorites, and Major Terrestraial Reservoirs

    15/31

    NEWSOM 173

    TABLE 4. Properties of Chondrite Groupsa

    Clan Group refrc kc MC metCe Mafic min. 6l 8O Al70 Chondrule Fall

    Si Si FeO+MgO Si Comp.h @d CM size d freqe freqf

    Carbon- CV 1.35 0.87 35 0.6-19 ---- 1.5 -3.6 0.9 46 0.72aceous CO 1.10 0.90 35 2.3-15 ---- -0.9 -4.5 0.3 18 0.60

    CKi ____ ____ ____ ____ Fa 29-33 -0.9 -4.5 ___- ---- ----

    CM 1.13 0.93 43 0.1-0.5 ---- 7 -3 0.3 12 2.17CI 1.00 1.00 45

  • 8/14/2019 Composition of the Solar System, Planets, Meteorites, and Major Terrestraial Reservoirs

    16/31

    174 COMPOSITION OF THE SOLAR SYSTEM

    TABL E 6. Compositions of Chondrite Meteorite Groups

    Element CM co CK cv H L LL EH EL

    1H %

    3 Li ppm4Be ppbSB wb6C %7N ppm80 %9F ppm

    11 Na PPm12Mg %13Al mm14Si %15 P pp*16s %17 Cl mm19K ppm20 Ca wm21 SC mm22 Ti ppm23 V mm24 Cr mm25 Mn ppm26 Fe %27 Co ppm28Ni %29 Cu mm30 Zn mm31 Ga ppm32Ge wm33 As mm34 Se

    mm35 Br ppm37 Rb ppm38 Sr wm39 Y ppm4oZr mm41 Nb ppb42Mo ppb44Ru ppb45 Rh ppb46 Pd ppb

    47 Ag ppb48 Cd ppb

    49 In ppb50 Sn ppb51 Sb ppb52Te wb53 I wb55 cs wb56 Ba ppb57La ppb

    1.4 .07

    1.36 1.2----

    6002.2152043.238410011.71180012.99003.3160400127008.2580753050170021.05751.201151857.8231.8012.72.61.710.12.0

    (8;070,1500883

    _-------

    .459037.030410014.51430015.910402.0240345158009.6780923550165024.86881.401251007.1211.957.61.31.4512.72.4

    go,19001090

    ---- ----

    640 703157 97368 850 251010 890115 1051910 900425 200125 803300 4290317 387

    ----

    ----------------------------319014.816100_---______--_---

    285

    1720011.0___-

    963660146023.66371.27--_-

    985.5__--

    1.486.90.4_---___-_---___-_--_----

    1110----_-------__--_-__----70---_____

    -_-_----

    462

    .28

    1.24_---

    300.568037.024330014.51750015.69902.22103101900011.4980963600145023.56551.341001166.0171.608.31.51.2515.32.4

    (8;340)2100113025070510737333900851020188954900486

    ____

    1.751500.ll4835.732640014.01130016.910802.080780125007.9600743660232027.58101.6082476.0132.057.70.52.910.02.2

    (6;360)170011002208704517118607026068

    1204200295

    __--

    1.843400.094337.741700014.91220018.59502.276825131008.6630773880257021.55901.2090505.7101.559.00.83.111.12.15.9(390)1300750

    -_--

    2.151__--

    .127040.063700015.31190018.98502.3130790130008.4620753740262018.54901.0280465.09.01.359.90.63.111.12.05.9(370)1100_---

    ---_ ____

    560 5306.5 7211 377.0 12710 --_-

    68 60480 49053 ____

    280 1803700 4800310 315

    ----

    2.1

    _-_-

    0.58---- __-__--_ ___-

    .40 .36----

    28.0238680010.6810016.720005.866080085005.7450543150220029.08401.7518525016423.4525.52.42.67.21.34.9(250)----

    915

    ----

    31.0180580014.11050018.611703.3210735101007.4580603050163022.06701.301101711282.2013.50.82.58.2____

    5.2___-

    ___-

    885236484588001962230150

    2002600235

    _---

    831_---

    69023272.3___-

    9080053

    100_-__

    190

  • 8/14/2019 Composition of the Solar System, Planets, Meteorites, and Major Terrestraial Reservoirs

    17/31

    NEWSOM 175

    TABLE 6. (Continued)

    Element CM co CK cv H L LL EH EL

    58 Ce wb59 Pr ppb

    60Nd ppb62Sm ppb

    63 Eu ppb64Gd ppb65Tb ppb

    66 DY ppb67 Ho ppb

    68 Er wb69 Tm ppb70 Yb ppb

    71 Lu mb72Hf ppb

    73 Ta mb74w ppb

    75 Re wb76 OS wb77 Ir ppb78 Pt ppb79 Au ppb80fk ppb81 Tl ppb82 Pb wb83 Bi mb90Th ppb

    92 U ppb

    838 1020129 157

    631 772200 24076 94276 33747 57330 40477 94218 26633 40222 27033 40186 178

    (22) (27)140 16046 55640 790595 7351100 1200165 184---- ---_

    92 421700 22007540 :435,11 13

    ----

    ----284108____-_--_---____-----_-_31144

    ____----813767-__-

    136---------_-____---_-_---

    1290 830200 123

    990 628295 185113 73415 29965 53475 343110 73315 22645 39322 20548 31194 180

    (32) 22190 16065 70825 820760 7601250 1400144 215

    46 3.71400 24048 1760 4217 12

    900 907 660132 122 94

    682 659 460195 200 14078 76 54310 303 21457 48 35366 351 24081 77 50248 234 16639 34 25220 220 16033 33 24170 150 14023 (22) (15)110 _-_- ____

    40 33 52515 400 654490 360 5651050 850 1200162 140 330----

    2.0370144313

    ----

    7.2__-_

    164313

    ----

    103110088309

    300---_

    23313554107-___

    139_---

    97----

    16524150--_--_--

    47589525----

    225-___

    5.0_-_-

    123510

    Data from Wasson and Kallemeyn [1988]80, & Kalleme yn et al. [1991]36 (CK). Values in parentheses for Nb and Ta are inferred by assuming theyare unfractionated relative to well-determined refractory lithop hiles.

    TABLE 7. Compositional Interpretations of Asteroid Taxonomic Types

    Bell [1986]l Tholen [ 1984]72Superclass Class Inferred Minerals Analogous Meteorities

    Primitive organics + ? (ice??) (none)organics + ? (ice??) (none)

    clays, C, organics Cl, CM chondrites01, pyx, carbon CV, CO chondritespyx, 01, gray NiFe H, L, LL chondrites ?Fe-free pyx, gray NiFe EH, EL chondrites

    Metamorphic T ? highly altered C Cs ??B+G+F clays, opaques high altered C Cs ?

  • 8/14/2019 Composition of the Solar System, Planets, Meteorites, and Major Terrestraial Reservoirs

    18/31

  • 8/14/2019 Composition of the Solar System, Planets, Meteorites, and Major Terrestraial Reservoirs

    19/31

    NEWSOM 177

    TABLE 8. (Contin ued)

    Dreibus and

    Wtinke[ 198O]23

    Jones Consolmagno Morgan et Vizgirda Hertogen

    [ 1984]33 & Drake al. [ 1978]45 and Anders et al.

    [ 1977121 [ 1976]74 [ 1977129

    YbHfTaWU

    wbwbppbwbwb

    430 ---- --_- ____ ____ ____290 ---- ---- ____ --__ --_-

    31 ___- ___- ____ ____ ____

    14 ____ ____ ____ ____ ____

    22 ---- ____ ____ __-_ ____

    TABLE 9. Mercury & Venus

    Element Fegley & Cameron Goettel

    [1987]25 [1988]26Mercury Mercury

    Morgan & Anders

    [1980]44 [1980]44Mercury Venus

    1 H3 Li4 Be5 B6 C7 N8 09 F11 Na12 Mg13 Al14 Si15 P16 S17 Cl19 K20 Ca21 SC22 Ti23 V24 Cr2.5 Mn26 Fe27 Co28 Ni29 Cu

    30 Zn31 Ga32 Ge33 As34 Se35 Br37 Rb38 Sr

    wmPPmwbppb%

    0.4 350.87 1.9434 470.11 10.00.0005 1 0.00.046 4.314.44 30.92.2 15200 13906.5 14.5410,800 14,8007.05 15.82390 18600.24 1.620.23 20.922 15011,800 16,6107.4 10.1630 85063 867180 4060150 46064.47 31.171690 8203.66 1.775.1 35

    12.1 820.50 3.41.24 8.46.4 3.10.79 5.40.0012 0.1110.075 0.5091.11 15.2

    wm%ppmwm%wm%

    0.1-0.719-231.9-3.718-22

    25.58.9912.1

    ppm%

    09.80____0.479

    wm ____2.4-5.0

    0.09-O. 18mppmPPmwm%

    mm%

    wm

    PPm

    ____

    ____-__-PPmppmmmwmwmwm ____

  • 8/14/2019 Composition of the Solar System, Planets, Meteorites, and Major Terrestraial Reservoirs

    20/31

    178 COMPOSITION OF THE SOLAR SYSTEM

    TABLE 9. (Continued)

    Element Fegley & Cameron Goettel Morgan & Anders

    Mercury Mercury Mercury Venus

    39 Y wm40 zr ppm41 Nb ppb42 MO ppb44 Ru ppb45 Rb ppb46 Pd ppb41 Ag ppb48 Cd ppb49 In ppb50 Sn ppb51 Sb wb52 Te ppb53 I ppb55 cs wb56 Ba ppb51 La ppb58 Ce ppb59 Pr wb60 Nd ppb62 Sm mb63 Eu wb64 Gd ppb65 Tb mb66 Dy mb67 Ho ppb68 Er wb69 Tm ppb70 Yb wb71 Lu ppb72 Hf ppb73 Ta wb74 w ppb75 Re wb76 OS wb77 Ir ppb78 Pt ppb79 Au ppb80 Hg wb81 Tl wb82 Pb ppb83 Bi ppb90 Th wb92 U ppb

    ___-____----____

    2.01 2.745.5 7.5610 8401.81 2.47910 1230194 2651790 8707.2 490.19 17.20.024 2.2464 4305.1 39122 8300.16 14.32.5 17.03.1 4.2291 397780 106099 135530 723160 21861 83220 30041 56280 38261 84177 24227 37176 240297 405117 24117.9 24.4

    139 18946 64670 920650 8901.29 1.76516 2500.09 8.30.044 4.050.018 1.660.034 3.0839.4 53.711.0 15.0

    ___-____ ----____ _---_--- ____

    -_--__--________-_--____----____________________

    ____ ________----__--__--________----_______-___-____

    ____ __--____ __________-- ____---- _______- ________ ____

    3770

  • 8/14/2019 Composition of the Solar System, Planets, Meteorites, and Major Terrestraial Reservoirs

    21/31

    NEWSOM 179

    TABLE 10. Compositions of the silicate portion of Mars

    Anderson

    [197216

    Morgan & Ringwood W&&e &

    Anders [ 19811s5 Dreibus

    [ 1979143 [ 1988]76

    Mantle + CrustMgOAl203SiO2

    CaOTiO2

    Fe0Na20

    p205

    Cr203MnOK

    RbCSFClBrIcoNiCUZnGaMOInTIWThUCoreFeNicoS0Core Mass

    % 27.4% 3.1% 40.0% 2.5% 0.1% 24.3% 0.8% -_-% 0.6% 0.2ppm 573

    mm _---ppm ----wm ____ppm ---_ppb -___wb ____mm ____% ____mm _-_-mm ____wm -___ppb ----wb -___ppb _---ppb ----ppb 77ppb 17

    29.8 29.96.4 3.1

    41.6 36.8

    5.2 2.40.3 0.2

    15.8 26.80.1 0.2___

    0.6

    0.1577

    0.2580.026240.884.70.59----____-___422.4_-_-

    0.0950.17----

    11333

    % 72 88.1% 9.3 8.0% ---_ ----% 18.6 3.5% ---- ____% 11.9 19.0

    -_-

    0.4

    0.1218

    ____---_------__-_-______-_-

    -___

    --_-6017

    63.78.2____

    9.318.718.2

    30.23.02

    44.4

    2.450.14

    17.90.50

    0.16

    0.76

    0.46305

    1.060.07323814532680.045.5626.6118143.61055616

    77.87.60.3614.24-_--

    21.7

  • 8/14/2019 Composition of the Solar System, Planets, Meteorites, and Major Terrestraial Reservoirs

    22/31

    180 COMPOSITION OF THE SOLAR SYSTEM

    TABLE 11. Compositions of the Silica te Portion of the Moon

    Element Anders

    [ 197712

    Jones &

    Delano

    [ 1989]34

    ONeill Taylor

    [1991]49 [1982]68

    Wlnke Ringwood Taylor

    et al. et al. [19821rj8

    [ 1977178 [ 1986]57 Highlands Crust

    1 H mm3 Li mm4 Be mb5 B ppb6 C mm7 N mm8 0 %9 F mm11 Na wm12 Mg %13 Al ppm14 Si %15 P mm

    16 S %17 Cl PPm18 Ar19 K wm20 Ca ppm21 SC ppm22 Ti ppm23 V mm24 Cr ppm25 Mn ppm26 Fe %27 Co ppm28 Ni %29 Cu ppm30 Zn ppm31 Ga mm32 Ge mm33 As ppm34 Se wm35 Br ppm36 Kr37 Rb ppm38 Sr mm39 Y mm40 Zr PPm41 Nb wb42 MO ppb

    44 Ru wb45 Rh ppb

    46 Pd ppb47 Ag wb48 Cd wb49 In ppb50 Sn ppb51 Sb ppb52 Te ppb

    2.34 ____9.27 _-_-198 ____13.9 ----10.5 --_-0.277 ----44.11 ---_32.0 ----960 ___-18.5 22.462100 1960019.83 19.9573 ----

    0.415 ----0.746 ___-

    39.4 _-_-

    102 ----

    67800 ____

    42.6 ____

    3600 1140362 ----

    1280 ----

    352 15003.09 10.6256 ____

    0.543 __--

    7.35 _-_-

    21.2 ____

    0.703 ----1.77 __-_

    0.959 __-_

    1.39 _--_

    0.00405 __--

    0.192 --_-

    0.352 --_-

    63.9 _---

    11.6 -_--

    69.2 -_-_

    3520 ----

    10400 ____

    5220 ____

    1120 ____

    266----

    10.2 ____

    0.618 ____

    0.0799 _---

    90.5 _-_-

    8.09 ____

    213 ____

    ____1.9______--_----_--____

    1.326020.82040020.543

    0.08____--__

    312310015.4122081314013109.92200.4723.31.90.240.520.082____________

    0.12________-_-_____

    68----_______-__--____

    0.4342.8____

    ---- ____0.850 _---184 ____553 --____-_ --_----_ ----____ 42.6_--- -_--

    614 152019.8 12.832500 8630020.8 18.7__-_ ---_

    _-_- 0.193---- ___-__-- _--_

    85.0 17833000 9140019.5 60.91840 4670154 3154300 20301230 9148.3 7.0--_- ________ 0.0914__-- _-_--__- ________ _-_-____ _____-_- ____---- ____---- ____-_-- ____

    0.287 0.40630.7 66.05.22 17.314.3 47.71130 3350-_-_ --_-____ _____--- ----____ __--____ ___-____ ________ ____-__- ________ ____-_-- ____

    ____ ____---- -_-_____ ____---- ----_-_- _-_-____ ______-_ ________ ---_450 330022.22 4.119700 13000020.19 ___----- ____

    ____ _____-_- _---____ ________ 60021700 11300014 101800 335079 242200 6801200 -_-_

    9.51 5.195 150.2487 .OlO____ ________ ____-_-- ___-____ ________ _-_-____ ________ ----____ ________ 1.7____ 120____ 13.4___- 63____ 4500_--- __--___. ________ -_--_--- _____--- ______-- ________ ________ ________ ----____ ____

  • 8/14/2019 Composition of the Solar System, Planets, Meteorites, and Major Terrestraial Reservoirs

    23/31

    NEWSOM 181

    TABLE 11. (Continued)

    Element Anders

    [ 197712

    Jones &

    Delano

    [ 1989]34

    ONeill Taylor

    [ 1991149 [ 1982]68

    Wanke Ringwood Taylor

    et al. et al. [ 198216*

    [ 1977178 [1986]57 Highlands Crust

    53 I ppb55 Cs ppb56 Ba ppb

    57 La mb58 Ce ppb

    59 Pr ppb60 Nd ppb62 Sm ppb

    63 Eu wb64 Gd ppb65 Tb ppb

    66 DY ppb67 Ho ppb

    68 Er ppb69 Tm ppb70 Yb ppb

    71 Lu ppb72 Hf ppb

    73 Ta mb74 w ppb75 Re wb76 OS ppb77 Ir wb78 Pt ppb79 Au ppb

    80 Hg ppb81 Tl wb82 Pb ppb

    83 Bi ppb90 Th ppb

    92 U wb

    0.51135.217900167004470565309091635212602341590352

    10201541010170101010279926638303730735076.70.2980.128_-_-

    0.11122462.8

    ____ -------- 4.8____ ________ _____-_- ---_____ ----____ -_------ -----_-- _--_____ _----_-- --_--_-_ _-_----- ----_--- _---_--- __-____- _______- ________ _----_-- _---____ 41____ 16____ ------_- 210_-_- -_-__--- -_--____ ----_--- ___-_--- ___-

    _--_ ___-____ ----__-- 19

    --_-12.3901092224003481780584215768143952215

    62590.162.595.2430_---

    758_-_------__----_

    20.3244002540

    ____-_---_--

    132

    -_--

    ---_22360.9

    ____

    _____-_-____

    7066000530012000160074002000100023004102600530

    151022014002101400___----------------_--------

    ____----

    ____900240

    Noble gasses lo- cm3 s.t.p./g.

  • 8/14/2019 Composition of the Solar System, Planets, Meteorites, and Major Terrestraial Reservoirs

    24/31

    182 COMPOSITION OF THE SOLAR SYSTEM

    TABLE 12. Composition of the Earths Core

    Ringwood

    [ 1977154,Ringwood8~ Kesson

    [1977]58

    Morgan&

    Anders

    [ 1980]44

    WPnkeet al.

    [ 1984]77

    Fe wt % of core 86.2 84.5 80.27Ni wt % of core 4.8 5.6 5.46Co wt % of core --- --- 0.27S wt % of core 1.0 9.0 ---0 wt % of core 8.0 --- --_

    Si, Mn, Cr _-_ --_ 14.00core wt % of Earth 31.2 32.4 33.5

    TABLE 13. Composition of Bulk Silica te Earth (Prim itive Mantle), Depleted Mantle and the Bulk Earth (Core + Mantle + Crust)

    Element Anderson

    [ 198317

    Ringwood Sun Taylor & W&r&e

    [1991J5 [1982]67 McLennan et al.

    [ 198517 [ 1984]77

    Zindler & Wanke Morgan

    et al. & Anders

    [ 1984]77 [ 1980]44Depleted Bulk Earthmantle

    1H mm3 Li ppm4 Be ppb5B ppb

    6C mm7N mm80 %9F ppm

    11 Na ppm12 Mg %13 Al ppm14 Si %15 P ppm16s %17 Cl ppm19 K ppm20 Ca ppm21 SC wm22 Ti mm23 V mm24 Cr mm25 Mn ppm26 Fe %27 Co ppm28 Ni %29 Cu ppm

    -_-- __--2.09 1.6---- 80____ 500

    ---- 2504.1 ----____ ____

    28 262040 254520.52 22.4520200 2360022.40 20.9357 950.0048 .0358 30151 24022000 2573015 17.341225 1280

    77 822342 29351016 10806.11 6.53101 1050.1961 0.189029 30

    ----1.4_----------_----____

    26289022.92280020.892.035-o. 121-3823025000_-__

    1300

    87300011006.51100.230

    _--_0.8360600_--_----________

    250021.21930023.3----____----

    1802070013960

    128300010006.221000.228

    _--_2.15____----

    46.2-_------

    19.4288922.232220021.4864.50.0013211.82312530017.01350

    82.1301110215.891050.210828.5

    _--- --_- 33---_ 2.07 1.85__-_ ____ 45---- ____ 9.6_---

    24 446---- ---- 4.1---- _--- 30.12____ 16.3 13.5-_-_ 2745 125022.8 22.22 13.9021500 21700 1410021.5 21.31 15.12____ 60 1920____ 0.0008 2.92--_- .50 19.9_--_ 127 13523400 25000 15400___- 16.9 9.6_-_- 1320 820

    ___- 81.3 82____ 3010 4120____ 1016 750-_-_ 5.86 32.07_-_- 105 840---- 0.2108 1.82____ 28.2 31

  • 8/14/2019 Composition of the Solar System, Planets, Meteorites, and Major Terrestraial Reservoirs

    25/31

    NEWSOM 183

    TABLE 13. (Continued)

    Element Anderson

    [ 198317

    Ringwood Sun Taylor & Wtike

    [1991]56 [1982]67 McLennan et al.

    [ 198517 [1984]77

    Zindler & W&e Morgan

    Hart et al. & Anders

    [ 1986]89 [ 1984177 [ 1980144Depleted Bulk Earthmantle

    30 Zn mm31 Ga ppm32 Ge ppm33 As ppm34 Se ppm35 Br ppm37 Rb ppm38 Sr ppm39 Y mm40 Zr mm41 Nb ppb

    42 Moppm44 Ru ppm45 Rh ppb46 Pd ppb

    47 Ag ppb48 Cd ppb

    49 In ppb50 Sn ppb51 Sb ppb

    52 Te ppb53 Ippb ----55 Cs ppb56 Ba ppb

    57 La ppb58 Ce ppb

    59 Pr ppb60 Nd ppb62 Smppb63 Eu ppb64 Gd ppb65 Tb ppb

    66 Y mb67 Ho ppb

    68 Er ppb69 Tmppb70 Yb ppb

    71 Lu ppb72 Hf ppb

    73 Ta ppb74 w ppb75 Re ppb76 OS wb77 Ir ppb78 Pt wb79 Au ppb

    80 Hg ppb

    3741.13----

    0.02--_-

    0.3916.23.2613970---_---_---_---_

    3206600------__

    112052205701400

    --_-1020320130----

    90--__--__--__--__

    3206033040--__

    0.212.902.97--__

    0.50--__

    563.91.10.130.050.0750.63521.054.5511.22713

    0.0650.00421584013175513____

    3369897081833

    27813664441685951087371634797448173.73094121

    0.283.43.36.80.7510

    564.5 - 5.0_____--_-_-_

    0.060-0.0900.66_-_-______---_------__--___-_-_-

    5-10--_-

    10-15_-_-

    3-6-_-___-_

    8-17____________

    -__-_____----__-___-_______-__--________________-_------

    (21)____----____-_--__--____

    5031.20.100.041----

    0.5517.83.48.3560

    0.0590.00431.73.9194018600252213.31851005511436

    20610673471314598757212837454372572704016

    0.253.83.28.71.3____

    48.53.81.320.1520.01350.04560.74227.7-__---------__-_____

    1.18___-

    2.9226.118.5----

    5.719.9____

    9.1456005201730

    ----1430520188740126766181460____

    4907428025.624.1

    0.2363.1062.81____

    0.524____

    ----------__------__---_----19.6--__--__---_--__------__------__-_---_----__--__-___

    4.2____-___-___-__-

    --_-1170380-___-_---___-_---__--___-__-

    420-___-___-___-___

    -_----_------___-__--__-

    483.71.310.140.01260.00460.27626.0______------____------------

    2.5125.518.1___-

    4.519.913.61.4424003501410

    ____1280490180690120730170440_-_-

    4707126012.616.4

    0.233.12.8__--

    0.50_---

    743.17.63.29.60.1060.45814.52.627.2800

    2.351.182528904416.42.14390351490

    15.340003791010

    1296902087928654364802313522938623023.3180

    6088084016702577.9

  • 8/14/2019 Composition of the Solar System, Planets, Meteorites, and Major Terrestraial Reservoirs

    26/31

    184 COMPOSITION OF THE SOLAR SYSTEM

    TABLE 13. (Continued)

    Element Anderson

    [198317

    Ringwood Sun Taylor & Wanke

    [1991]56 [1982]67 McLennan et al.

    [ 198517 [1984]77

    Zindler & Wanke Morgan

    Hart et al. & Anders

    [ 19861gg [1984]77 [1980]44Depleted Bulk Earthmantle

    81 Tl eeb 10 7 4-6 6 ___- ---- ____ 3.8682 Pb ppb 120 185 ---- 120 ---- --__ ___- __--

    83 Bi eeb 3.3 2.5 l-4 10 -_-- --__ ___- 2.9490 Th ppb 76.5 84.1 ---- 64 ____ --__ __-- 51.292 u eeb 19.6 21 ---- 18 29.3 20.8 22.2 14.3

    TABLE 14. Bulk Continental Crust

    Element Taylor & Wanke Weaver &McLennan et al. Tamey

    [ 1985170 [ 1984]77 [19841g1

    3 Li eem 13

    4 Be eeb 1500

    5 B eeb 100006 C %9 F mm11 Na eem12 Mg %13 Al mm14 Si %15 P eem16 S %17 Cl eem19 K eem20 Ca eem21 SC eem22 Ti mm23 V eem24 Cr eem25 Mn mm26 Fe %27 Co eem28 Ni %29 cu eem30 Zn eem31 Ga eem32 Ge eem33 As eem34 Se eem35 Br eem37 Rb eem

    _-_-____

    230003.208410026.77__--_______-

    91005290030540023018.514007.07290.01057580181.61.00.05____

    32

    13.7-_-_----

    0.376525244002.378305028.17630.08811900176004920021.452501341468474.9225.40.00695477618.61.322.030.1536.9579.0

    ___-_-_-______--_---310001.698520029.5830________

    1700034000----

    3600____

    5610003.8___-

    0.0035_---____

    ______--__--_-------

    61

  • 8/14/2019 Composition of the Solar System, Planets, Meteorites, and Major Terrestraial Reservoirs

    27/31

  • 8/14/2019 Composition of the Solar System, Planets, Meteorites, and Major Terrestraial Reservoirs

    28/31

    186 COMPOSITION OF THE SOLAR SYSTEM

    TABLE 15. Compositions of the Upper Continental Crust, Lower Continental Crust and Archean Continental Crusts

    Element Upper Continentalcrust

    (1) (2)

    North Lower Archean Continental Post-ArcheanAmerican Continental crust Continental

    Shale crust Upper Total crust(3) (1) (1) (1) (1)

    3 Li mm 20

    4 Be mb 3000

    5 B ppb 1500011 Na % 2.8912 Mg % 1.3313 Al mm 8040014 Si % 30.819 K pem 2800020 Ca ppm 3000021 SC mm 1122 Ti pem 300023 V mm 6024 Cr mm 3s25 Mn mm 600

    26 Fe % 3.5027 Co mm 1028 Ni % 0.00229 Cu pem 2s

    30 Zn mm 7131 Ga epm 1732 Ge pem 1.633 As mm 1.534 Se ppm 0.0537 Rb mm 11238 Sr ppm 35039 Y ppm 2240 Zr mm 190

    41 Nb eeb 25000

    42 MO epb1500

    46 Pd peb 0.547 Ag ppb 50

    48 Cd r@ 98

    49 In peb SOSO Sn ppb 5500

    51 Sb ppb 200

    55 cs ppb 3700

    56 Ba ppb 550000

    57 La wb 30000

    58 Ce mb 64000

    59 Pr epb 7100

    60 Nd epb 26000

    62 Sm wb 4500

    63 Eu epb 880

    64 Gd wb3800

    65 Tb eeb 640

    66 Dy eeb 3500

    67 Ho ppb 800

    68 Er ppb 2300

    69 Tm wb 330

    22--------

    2.571.357740030.4257002950073120533s527

    3.09120.0019145214__------__--

    1103162124026000___-_--_----

    ______---_--_-_-

    1070000320065000___-

    2600045009402800480____

    620-__-____

    _--- 11---- 1000-_-- 8300__-- 2.08____ 3.80___- 8.52_-_- 25.42____ 2800---- 60700___- 36_--- 6000__-_ 285_--- 235_--- 1670_--- 8.24---- 3s____ 0.0135____ 90____ 83____ 18___- 1.6--_- 0.8____ 0.05---_ 5.3--_- 2303s 19____ 70-_-- 6000_--- 800____ 1____ 90____ 98-_-- SO____ 1500__-- 200____ 100---_ 15000039000 1100076000 23000103000 280037000 1270070000 317020000 117061000 3130130000 590____ 3600140000 77040000 220058000 320

    --_- ______-- ----_--_2.452.838.1028.0815000443001450001951801400

    6.222s0.0105_---___---------

    ____2.233.568.0426.637500522003060002452301500

    7.46300.013080______--__--

    ____ ----_--- __--

    SO 28240 21518 19125 100____ -_--____ _---______--

    --------

    ____ ----_.-- ________ --_-_--- ________ _---

    265000 22000020000 1500042000 310004900 370020000 160004000 34001200 11003400 3200570 5903400 3600740 7702100 2200300 320

    101500----

    2.62.119.527.11250053600304800175551100

    5.83250.003060--_-

    18--__--_-_-__

    424002210011000--__--__--__--__--_---__----

    1700350000190003800043001600037001100

    360064037008202300320

  • 8/14/2019 Composition of the Solar System, Planets, Meteorites, and Major Terrestraial Reservoirs

    29/31

    Element Upper ContinentalTABLE 15 (continued)

    North Lower Archean Continental

    NEWSOM

    Post-Archean

    187

    _-crust American Continental crust Continental

    Shale crust Upper Total crust

    (1) (2) (3) (1) (1) (1) (1)

    70 Yb wb 2200 1500 34000 2200 2000 2200 220071 Lu ppb 320 230 60000 290 310 330 30072 Hf ppb 5800 5800 ---- 2100 3000 3000 300073 Ta ppb 2200 ---- ---_ 600 _--_ --__ ----74 w ppb 2000 ---- ---- 700 -___ ---- ----75 Re ppb 0.5 ---- ____ 0.5 ---- ---- ----77 Ir wb 0.02 ---- -_-- 0.13 ---- ____ ----79 Au ppb 1.8 ---- --__ 3.4320 ---- ---- -___81 Tl ppb 750 520 --_- 230 ____ ____ _-_-

    82 Pb ppb 20000 17000 ---- 4000 ---_ ---- 1000083 Bi ppb 127 ---- -_-_ 38 ____ _-_- ----

    90 Th ppb 10700 10000 ---- 1060 5700 2900 480092 u ppb 2800 2500 ---- 280 1500 750 1250

    Refs: (1) Taylor and McLennan [19S517, (2) Shaw, D.M. [1976]63, (3) Haskin et al. [l966]27

    Acknowledgments. I wish to th,ank S. Maehr for assistance with the ments. This work was supported by NSF grants EAR 9005199, EARtables, and T.J. Ahrens, A.J. Brearley, and R.H. Jones for helpful com- 9209641, and the Institute of Meteoritics, Univ. of New Mexico.

    REFERENCES

    1.

    2.

    3.

    4.

    5.

    6.

    Ahrens, T.J., and R. Jeanloz, Pyrite: shockcompression, isentropic release, and compo-sition of the Earths core, J. Geophys. Rex,92, 10,363-10,375 , 1987.Anders, E., Chemical compositions of theMoon, Earth, and eucrite parent body, Phil.Trans. Roy. Sot. A285, 23-40, 1977.Anders, E., and M. Ebihara. Solar-systemabundances of the elements, Geochim. Cos-mochim. Acta, 46, 2.363-2.380, 1982.Anders, E., and N. Grevesse, Abundances ofthe elements: Mete oritic and solar, Geochim.Cosmochim. Acta, 53, 197-214, 1989.Anderson, D.L., Internal constitution ofMars, J. Geophys. Rex 77, 789-795, 1972.Anderson, D.L., Chemical composition of.the mantle, J. Geophys. Res., 88, B41-B52,1983.

    and an s-process analy sis from % to ?a,Astron Astrophysics, 174, 323-328, 1987.

    10. Bell, J.F., Mineralogica l evolution of meteor-ite parent bodies, Lunar and Planet. Sci.XVII, 985-986, 1986.

    Il. Bell, J.F., A probable asteroidal parent bodyfor the CV or CO chondrites, Me reoritics 23,256-257, 1988.

    Basaltic Volcanism Study Group, BasalticVolcanism on the Terrestrial Planets, Lunarand Planetary Institute, Houston, 1981.

    Basile vsky, A.T., O.V. Nikolae va, and C.M.Weitz, Geology of the Venera 8 Landing siteregion from Magellan Data: Morphologicaland geochemical considerations, J. Geophys.Rex 97, 16,315.16,335, 1992.

    12. Be ll, J.F., D.R. Davis, W.K. Hartmann, andM.J. Gaffey, Asteroids: the big picture, inAsteroids II, edited by R.P. Binzel, T. Gehr-els, and M.S. Matthews, pp. 921-945, U niv.of Arizona Press, Tucson, A.Z., 1989.

    13. Bi schoff, A., Palme, H., Schultz, L., Weber,D., and B. Spettel, Acfe r 182 and pairedsamples, an iron-rich carbonaceous chon-drite: Similaritie s with ALH85085 and rela-tionship to CR chondrites, Geochim. Cosmo-chim. Acta, 57, 2631-2648, 1993b.

    14. Bisch off, A., Palme, H., Ash, R.D., Clayton,R.N., Schul tz, L., Herpers, U., Stoffler, D.,

    Grady, M.M., Pillin ger, C.T., Spettel, B.,Weber, H., Grund, T., Endress, M., and D.Weber, Paired Renazzo-type (CR) carbona-ceous chondrites from the Sahara, Geochim.Cosmochim. Acta, 57, 1587-1603, 1993.

    Beere, H. and R.D. Penzhom, Measurement 15. Bri mhall, Jr., G.H., Preliminary fractionationof the neutron capture cross section of Ar patterns of ore metal through Earth history,

    Chem. Geol., 64, 1-16, 1987.16. Bums, J.A., C ontradictory clues as to the

    origin of the Martian Moons, in Mars, editedby H.H. Kieffer, B.M. Jakosky , C.W. Snyderand M.S. Matthews, pp. 1283-1301, Univ. ofArizona Press, Tucson, A.Z., 1992.

    17. Cameron, A.G.W., Elemental and nuclid icabundances in the s olar system, in E ssays inNuclearAst rophysics, edited by C.A. Barnes,D.D. Clayton, D.N. Schramm, pp. 23-43,Cambridge Univ. Press, Cambridge, 1982.

    18. Clark, Jr., S.P., Isotopic abundances andatomic weights, Handbook of Physi cal Con-stants, Revised Edition, Geol. Sot., Amer.Memoir, 97, 12-17, (Table 3-l). 1966.

    19. Clayton, D.D., Stellar nucleosynthesis andchemical e volution of the solar neighbor-hood, in Meteorites and the Eurly So larSystem, edited by J.F. Kerridge and MS.Matthews, pp. 1021-1062, Univ. of ArizonaPress, Tucson, A.Z., 1988.

    20. Clayton, R.N., Mayeda, T.K . and C.A. Mol-ini-Velsko, Isotopic variations in solar sys-tem material: Evaporation and condensationof silicates, in Protostars and Planets II,edited by D.C. Black, and M.S. Matthews,pp. 755-771, Univ. of Arizon a Press, Tuc-son, A.Z., 1985.

  • 8/14/2019 Composition of the Solar System, Planets, Meteorites, and Major Terrestraial Reservoirs

    30/31

    NEWSOM 188

    21.

    22.

    23.

    24.

    25.

    26.

    27.

    28.

    29.

    30.

    31.

    32.

    33.

    Consolmagno, G.J. and M.J. Drake, Compo-sition and evolution of the eucrite parentbody: evidence from rare earth elements,Geochim. Cosmochim. Acta, 41, 1,271-1,282,1977.Dreibus, G., Palme, H., Spettel, B. and H.Wanke, Sulfur and selenium in chondriticmeteorites, Meteoritics 28, 343, 1993.

    Dreibus, G ., and H. WInke, The bulk com-position of the eucrite parent asteroid and itsbearing on planetary e volution, Z. Naturfor-sch, 35a, 204-216, 1980.Fegley, B., Jr., Venus surface mineralogy:Observationa l and theoretical co nstraints,Proceedings of Lunar and Planetary Science22, Lunar and Planetary Institute, Houston,3-19, 1992.Fegley, B., Jr., and A.G.W. Cameron, Avaporization model for iron/sili cate fractio n-ation in the Mercury protoplanet, EarthPlanet. Sci. Left. 82, 207-222, 1987.Goettel, K.A., Present bounds on the bulkcomposition of Mercury: implica tions for

    planetary formation processes, in Mercury,edited by F. Vilas, CR. Chapman, and MS.Matthews, pp. 613-621, Un iv. of ArizonaPress, Tucson, A.Z., 1988.Haskin, L.A. Frey, F.A., Schmitt, R.A. andR.H. Smith, Meteoritic, solar and terrestrialrare-earth distributions, in Physics and Ch-emistry of the Earth, 7, edited by L.H. Ahr-ens, F. Press, S.K. Runcom, and H.C. Urey,pp. 167-321, Pergamon Press, Oxford, 1966.Heiken, G.H., Vaniman, D.T. and B.M.French, editors, Lunar Source Book, Cam-bridge, 736 pp., 1991.Hertogen, J., J. Vizgirda, and E. Anders,Composition of the parent body of the eu-trite meteorites (abstract), Bull. Amer. Ast-

    ron. Sot., 9, 4.58-459, 1977.Hewins, R.H., and H.E. Newsom, Igneousactivit y in the early sola r system, in Meteor-ites and the Early So lar System, edited byJ.F. Kerridge and M. Matthews, pp. 73-101,University of Arizona Press, Tucson, A.Z.,1988.Holland, J.G., and R.St.J. Lambert, Majorelement chemica l composition of shields andthe continental crust, Geochim. Cosmochim.Acta, 36, 673-683, 1972.Jagoutz, E., Palme, H., Baddenhausen, H.,Blum, K., Cendales, M., Dreibus, G., Spet-tel. B. Lorentz, V. and H. W%nke, Theabundances of major, minor and trace ele-ments in the Earths mantle as derived fromprimitiv e ultram alic nodules, Proc. 10thLunar Planet. Sci. Co& Geochim. Casmo-chim. Acta, St&., 11, 2031-2050, 1979.Jones, J., The composition of the mantle ofthe eucrite parent body and the origin ofeucrites, Geochim. Cosmochim. Acta, 48,641-648, 1984.

    34.

    35.

    36.

    37.

    38.

    39.

    40.

    41.

    42.

    43.

    44.

    45.

    46.

    47.

    Jones, J.H., and J.W. Delano, A three com-ponent model for the bulk composition ofthe Moon, Geochim Cosm ochim. Acta, 53,513-528, 1989.Jones, J.H. and L.L. Hood, Does the Moonhave the same chemical composition as theEarths upper mantle?, i n Origin of theEarth, edited by H.E. Newsom and J.H.

    Jones, pp. 85-98, Oxford Press, N.Y., 1990.Kallemeyn, G.W., Rubin, A.E., and J.T.Wasson, The compositional classification ofchondrites: V. The Karoonda (CK) group ofcarbonaceous chondrites, Geochim Cosmo-chim. Acta, 55, 881-892, 1991.Kerridge, J.F. and M.S. Matthews, editors,Meteorites and the Early Solar System,Univ. of Arizona Press, Tucson, A.Z., pp.1269, 1988.Knittle, E. and R. Jeanloz, Simulating thecore-mantle boundary: an experimental studyof high-pressure reactions between silicatesand liquid iron, Geoph ys. Res. Lett., I6,609-612, 1989.

    Lee, T. Implications of isotopic anoma liesfor nucleosynth esis, in Meteorites and theEarly Solar System, edited by J.F. Kerridgeand M.S. Matthews, pp. 1063-1089, U niv. ofArizona Press, Tucson, A.Z., 1988.Lewis, J.S., Origin and composition ofMercury, in Mercury, edited by F. Vilas ,C.R. Chapman, and M.S. Matthews, pp. 651-669, Univ. of Arizona Press, Tucson, A.Z.,1988.Longhi, J., Knittle, E., Holloway, J.R., andH. Wanke, The bulk composition, mineralo-gy and internal structure of Mars, in Mars,edited by H.H. Kieffer, B.M. Jakosky, C.W.Snyder and M.S. Matthews, pp. 184-208,Univ. of Arizona Press, Tucson, A.Z., 1992.

    Mason, B., Concentration Clarkes for orebodies of the commoner metals, in Prin ci-ples of Geochemi stry, Wiley , 310 pp., 1982.Morgan, J.W. and E. Anders, C hemicalcomposition of Mars, Geochim CosmochimActa, 43, 1,601-1,610, 1979.Morgan, J., and W.E. And ers, Chemicalcomposition of Earth, Venus, and Mercury,Prac. Nat. Acad. Sci., 77,6,973-6,977, 1980.

    Morgan, J.W ., H. Higuchi, H. Takahashi,and J. Hertogen, A cho ndritic eucriteparent body: inference from trace elements,Geochim. Cosmochim. Acta, 42, 27-38,1978.Mumma, M.J., Weissman, P.R., and S.A.Stem, Comets and the origin of the solarsystem: Reading the Rosetta Stone, in Proto-stars and Planets III, edited by E.H. Levyand J.I. Lunine, pp. 1177-1252, Univ. ofArizona Press, Tucson, A.Z., 1993.Newsom, H.E., NOR, P.D. Jr., Slane, F.A.and T.B. Beserra, Siderophile element abun-

    48.

    49.

    50.

    51.

    52.

    53.

    54.

    55.

    56.

    57.

    58.

    59.

    60.

    61.

    dances and behavior. In Lunar Plunet. Sci .XXIII, 983-984, 1992.Newsom, H.E. and S.R. Taylor, The singleimpact o rigin of the Moon, Nature 338, 29-34, 1989.ONe ill, H.St.C., The origin of the Moonand the early history of the Earth - A chemi-cal model. Part 1: The Moon, Geochim.

    Cosmochim. Acta, 55, 1,135-1,157, 1991.Palme, H., and W.V. Bo ynton, MeteoriticConstraints on Conditions in the Solar Nebu-la, in Protostars and Planets III. edited byE.H. Levy and J.I. Lunine, pp. 979-1004,Univ. of Arizona Press, Tucson, A.Z., 1993.Palme, H., H.E. Suess, and H.D. Zeh, Abun-dances of the elements in the solar system,Landolt-Bornstein, VI, 2 pt. a, Springer-V er-lag, New York, 257-272, 1981.Pepin, R.O. and M.H. Cam, Major issues andoutstanding questions, in Mars, edited byH.H. Kieffer, B.M. J akosky, C.W. Snyderand MS. Matthews, pp. 120-143, Univ. ofArizona Press, Tucson, A.Z., 1992.

    Poldevaart, A., Chemistry of the EarthsCrust, Geol. Sot. Am., Spe c. Pap., 62, 119-154, 1955.Ringwood, A.E., Basalti c magmatism andthe composition of the Moon I: Major andheat producing elements, The Moon, 16,389-423, 1977.Ringwood, A.E., The Canberra model ofplanet formation, in Basalt ic Volcan ism onthe Terrestria l Planets, pp. 653-656, Lunarand Planetary Institute, Houston, T.X., 1981.Ringwood, A.E., Phase transformations andtheir be aring on the constitution and dynam-ics of the mantle, Geochim. Cosmochim.Acta, 55, 2,083-2,110, 1991.Ringwood, A.E., S. Seifert, and H. Wanke,

    A komatiite component in Apollo 16 high-land breccias: implicat ions for the nicke l--cobalt syste matics and bulk composition ofthe Moon, Earth and Planetary Scien ceLetters, 81, 105-117, 1986.Ringwood, A.E., and S.E. Kesson, Basalticmagmatism and the bulk compo sition of theMoon, II. Siderophil e and volatile elementsin Moon, E arth and chondrites: Implicationsfor lunar origin, The Moon, 16, 425-464,1977.Ronov, A.B., and A.A. Yaroshevsky, Chemi-cal composition of the Earth crust, in TheEurths Crust and Upper Muntle, Am. Geo-phys. Union, M ono., 13, 37-57, 1969.Ronov, A.B., and A.A. Migdisov, Geochem-ical history of the crystalline basement andthe sedimentary cover of the Russian andNorth American platforms, Sedimentolagy,16, 137-185, 1971.Rubin, A.E., and G.W. Kallemeyn, Carlis leLakes Chondrites: Relationship to otherchondrite groups, Meteoritics 28, 424-425,

  • 8/14/2019 Composition of the Solar System, Planets, Meteorites, and Major Terrestraial Reservoirs

    31/31

    189 COMPOSITION OF THE SOLAR SYSTEM

    62.

    63.

    64.

    65.

    66.

    67.

    68.

    69.

    70.

    71.

    1993.Sears, D.W.G., and R.T. Dodd, O verviewand classificat ion of meteorites, in Mefeor-ites and the Early Solar System, edited byJ.F. Kerridge and MS. Matthews, pp. 3-31,Univ. of Arizona Press, Tucson, A.Z., 1988.Shaw, D.M., Dostal, J., and R.R. Keays,Additional estimates of continental surfacePrecambrian shield composition in Canada,Geochim. Cosmochim. Acta, 40, 73-83,1976.Spettel, B., Palme, H., Dreibus, G. and H.WLnke, New analyses of Cl chondrites:refinement of solar system abundances,Meteoritics 28, 440-441, 1993.Spettel, B., Palme, H., lonov, D.A., and L.N.Kogarko, Varia tions in the iridium contentof the upper mantle of the Each, LunarPlanet. Sci. XXII, 1301-1302, 1991.Stolper, E., Experimental petrology of euc-ritic meteorites, Geochim. Cosmochim. Acta,41, 587-611, 1977.Sun, S-S, Chemical composition and origin

    of the Earths pri mitive mantle, Geochim.Cosmochim. Acta, 46, 179-192, 1982.Taylor, S.R., Planetary S cience: A LunarPerspective, 481 pp.. Lunar and PlanetaryInst., Houston, 1982.Taylor, S.R ., Planetary compositions, inMeteorites and the Early So lar System,edited by J.F. Kerridge and M.S. Matthews,pp. 512-534, Univ. of Arizona P ress, Tuc-son, A.Z., 1988.Taylor, S.R., and S.M. McLennan, Thecontinental crust: Its composition and evolu-tion, Blackwe ll Sci. Publ., Oxford, 330 pp.198.5.Thiemens, M.H. , Heterogeneity in thenebula: evidence from stable isotopes, in

    Meteorites and the Early So lar System,edited by J.F. Kerridge and M. Matthews,pp. 899-923, Uni versity of Arizona Press,Tucson, A.Z., 1988.

    72. Tholen, D.J., Asteroid taxonomyfrom clusteranalysis of photometry, Ph.D. Thesis, Uni-versity of Arizona, 1984.

    73. Tilton, G.R., Age of the solar system, inMeteorites and the Early So lar System,edited by J.F. Kerridge and M.S. Matthews,pp. 259-275, Univ. of Arizona Press, Tuc-son, A.Z., 1988.

    74. Vi zgirda, J., and E. Anders, Composition ofthe eucrite parent body, Lunar Science VII,898-900, 1976.

    75. Walter, G., Beer, H., KLppler, F., Reffo, G.and F. Fabbri, The s-pro cess branching atSe, Astran. Astrophys. 167, 186-199, 1986.

    76. Wiinke, H., and G. Dreibus, Chemical com-position and accretion histo ry of terrestrialplanets, Phil. Trans. Roy. Sot., A325, 545--557.1988.

    77. Wlnke, H., G. Dreibus, and E. Jagoutz,

    Mantle chemistry and accretion history ofthe Earth, in Archean Geochemistry, editedby A. Kriiner, G.N. Hanson, and A.M. G-oodwin, pp. l-24, Springer- Verlag, Berlin,1984.

    78. Wgnke, H., H. Palme, H. Baddenhausen, H.Kruse, and B. Spettel, Element correlationsand the bulk composition of the Moon, P hil.Trans. Roy. Sot., A285, 41-48, 1977.

    79. Wasson, J.T., Meteorites, Freeman, 267 pp.,1985.

    80. Wasson, J.T., and G.W. Kallemeyn, Compo-sition of chondrites, Phil. Trans. Ray. Sot.,A325, 535-544, 1988.

    81. Weaver, B.L., and J. Tamey, Major andtrace element composition of the continental

    lithosphere, in Phys ics and Chemistry of theEarth, 15, edited by H.N Polla ck and V.R.Murthy, pp. 39-68, Pergamon, Oxford, 1984.

    82. Wedepohl, K.H., Der Prim&e Erdmantel(Mp) und die durch die Krustenbildungverarmte Mantelzusammensetzung (Md),Fortschr. Miner., 59, 203-205, 1981.

    83. Weisberg, M.K., Prinz, M., Clayton, R.N.,and T.K. Mayeda, The CR (Renazzo-type)carbonaceous chondrite group and its impli-cations, Geochim. Cosmochim. Acta, 57,1567-1586, 1993.

    84. Weisberg, M.K., Prinz, M., Clayton, R.N.,Mayeda, Grady, M.M. and I.A. Franchi,Petrology and stable isotopes of LEW 8723-2, a new Kakangari-type chondrite, Meteor-itics 28, 458-459, 1993.

    85. Weisberg, M.K., Prinz, M., and C.E. Nehru,The Bencubbin chondrite breccia and itsrelationship to CR chondrites and the ALHd-5085 chondrite, Meteoritics 2.5, 269-280,1990.

    86. Woolum, D.S., Solar-System Abundances

    and Processes of Nucleosynthe sis, in Mete-orites and the Early Solar System , edited byJ.F. Kerridge and M.S. Matthews, pp. 995-1020, Univ. of Arizon a Press, Tucson, A.Z.,1988.

    87. Woosley, SE. and R.D. Hoffman, 16thadvanced course, in Nucleosynthesis andChemical Evolutio n, edited by B. Hauck, A.Maeder, and G. Meynet, &as-Fee, 1986.

    88. Woosley, S.E. and R.D. Hoffman, Param-eterized studies of nucleosynthesis, Astra-phys. J. Suppl., 1989.

    89. Zindler, A., and S. Hart, Chemical Geo-dynamics, Ann. Rev. Earth Planet. Sci., 14,493-571, 1986.