Composition Clay Minerals

Embed Size (px)

Citation preview

  • 7/27/2019 Composition Clay Minerals

    1/16

    doi:10.1144/GSL.ENG.2006.021.01.022006; v. 21; p. 13-27Geological Society, London, Engineering Geology Special Publications

    2. The composition of clay materials

    Geological Society, London, Engineering Geology Special Publications

    serviceEmail alerting to receive free email alerts when new articles cite this articleclick here

    requestPermission to seek permission to re-use all or part of this articleclick here

    SubscribeSpecial Publications or the Lyell Collection

    to subscribe to Geological Society, London, Engineering Geologyclick here

    Notes

    Downloaded by Schlumberger on 18 November 2007

    2006 Geological Society of London

    http://egsp.lyellcollection.org/cgi/alertshttp://egsp.lyellcollection.org/cgi/alertshttp://egsp.lyellcollection.org/cgi/reprintpermission?citation=+21+%281%29%3A+13http://egsp.lyellcollection.org/cgi/reprintpermission?citation=+21+%281%29%3A+13http://egsp.lyellcollection.org/subscriptionshttp://egsp.lyellcollection.org/subscriptionshttp://egsp.lyellcollection.org/cgi/reprintpermission?citation=+21+%281%29%3A+13http://egsp.lyellcollection.org/cgi/alerts
  • 7/27/2019 Composition Clay Minerals

    2/16

    2 . I h e c o m p o s i t i o n o f c l a y m a t e r i a l s

    Clay mater ia l s are composed of so l id , l iqu id and vapourphases . The so l id phases are of minera l and organicp h as es t h a t m ak e u p t h e f r am ewo rk o f t h e c l ay m a t e ri a ls .The minera logy can be broadly subdiv ided in to the c layand non-clay minera l s , inc luding poor ly crys ta l l ine ,so-cal l ed 'amorphous ' inorganic phases . By def in i t ion ,minera l s are crys ta l l ine so l ids wi th wel l -ordered crys ta ls t ructures bu t c lay minera l s and o ther inorganic phases inclay mater ia l s are of ten poor ly crys ta l l ine compared tominera l s such as quar tz and fe ldspar .So m e c l ay m a t e r ia l s m a y b e d o m i n a t ed b y o n e m i n e ra lphase , e .g . smect i t e in bentoni tes , opal in d ia tomaceousear ths . However , mos t c lay mater ia l s are composedof heterogeneo us m inera l mix tures . Based on the bu lkm i n e ra l an a l y si s o f o ve r 4 0 0 s am p les , Sh aw & W eav er(1965) repor ted the modal minera logical compos i t ion ofs i li c ic las t i c mud rocks to be:

    6 0 % c l ay m i n e ra l s3 0 % q u a r tz an d ch e r t5 % fe l d sp a r4 % ca rb o n a te s1% organic mat ter1% i ron oxidesThere i s a genera l increase in the predominance of c layminera l s in sed imen tary rocks wi th decreas ing gra in s ize

    1 0 0 -

    8 0 -

    ~gz.'cot . k l r ~r ~ - - -

    (Fig. 2.1) (Blat t e t a l . 1972) . However , i t needs to bes t ressed that , whi l s t c lay m inera l s are usu al ly s ign i f i can t,i f no t p redominant , phases in c lay mater ia l s , o ther minera lphases are usual ly presen t in vary ing amounts and cans igni f i can t ly af fec t the proper t i es and behaviour of themater ia l s .In so i l s , minera l and organic compos i t ional var ia t ionsref lec t the weathered paren t rocks and the phys ica l , chem-ical and b io logical fac tors cont ro l l ing the so i l fo rmingprocesses (see Ch apter 3 ) .The l iqu id and vapour phases , o f which w ater i s usual lythe mos t impor tan t , occur e i ther as 'bound phases ' ,adsorbed onto the surfaces o f the so l id par ti c les , o r as' f ree phases ' wi th in pore spaces .In th is chapter the nature of the minera logical , o rganicand aqueou s phases prese n t in c lay mater ia l s aredescr ibed p lus the nature of swel l ing and ion ic exchangeproper t i es in so l id phases .2 . 1 . C l a y m i n e r a l s

    The c la y minera l s are a group of hydrous a lum inos i l ica test h a t a r e ch a rac t e r i s t i ca l l y fo u n d i n t h e c l ay (< 2 g m )fract ions of sed iments and so i l s . The major i ty of c layminera l s have sheet s i l i ca te s t ructures (see Text Box onp. 14).

    S a n d I S ilt I C l a yFIG. 2.1. Detrital mineralogy of sedimentary rocks as a function of ~rain size (after Blatt et a l . 1972).

  • 7/27/2019 Composition Clay Minerals

    3/16

    14 THE COMPOSITION OF CLAY MATERIALS

    T h ~ , : s h e ~ i N r i i!i ::if:i.!i !, i :i :i ii ~if: i~i i i::~ii i ii i ii i if i!~ ii ii i il i, ~il i ~iil, !~:: ,:~,::~,::~,:: : iir :;!:i~ili!ii!!i!ii!:?iif: ?i:i :?,:i:;i!:%i!i::~~i! :::liiii::!ii:!!iii: i} i :~i::ii:i::)i:! !i:,:ii!~,:ii : i/:i:i ~:!!i;::i:::i::~::iii ~::i::::i~::!,ii:,!i~i:: ilii ii::ii,,iiii!!::i

    FIG. 2.2. Com posite layers in clay mineral s tructures.

  • 7/27/2019 Composition Clay Minerals

    4/16

    THE CO MPOSITIONOF CLAYMATERIALS |

    T e t r a h e d r a l l a y e r

    O c t r e h e d r a l l a y e r

    2 l a y e r ( I : I y p e

    KAOLINITE

    3 l a y e r ( 2 : 1) y p e

    Interlayer sites X X

    ILLITESSMECTITESVERMICULITESCHLORITESFIG. 2.3. Gen eral structures of c lay minerals.TABI~E 2.1. Classification o f clay mineralsSheet silicate type Property1:1 ~p___~Kao lin and serpentine Non -swelling2:1 typeIllites Non-swellingChlorites Non-swellingSm ectites (Montm orillonites) SwellingVermiculites SwellingMixed layer clays with smectite/ SwellingvermiculiteMixed layer clays without Non-swellingsmecfite/vermiculitePalygorskite and sepiolite Non -swelling

    The r e a r e two type s o f c om pos i t e l a ye r s t r uctu r es in thec l a y m i n e r a ls :9 t he two l a y e r o r 1 : 1 t ype r e p r e se n te d by the ka o l in a ndse r pe n t ine g r oups ;9 t he th r e e l a ye r o r 2 :1 type r e p r e se n te d by the i l l i t e -m ic a , sm e c t i t e , ve r m ic u l i t e a nd c h lo r i t e g r oups

    (Fig . 2 .3 and Tab le 2 .1) .2 . 1 .1 . T h e k a o l i n a n d s e r p e n t i n e g r o u p sT h e k a o l i n g r o u p o f m i n e r a l s is t h e m o s t c o m m o n o f th ec l a y m ine r a l s w i th the two l a ye r 1 : 1 type o f s t r uctu r e. Thete r m k a n d i t e ha s a l so be e n use d to de sc r ibe ka o l in g roupm in e r a l s bu t i s no t t he p r e fe r r e d na m e .Ka o l ins ha ve d ioc ta he d r a l s t ruc tu r es w i th , i de a l ly , none t ne ga t ive c ha r ge on the c om pos i t e l a ye r s a nd c onse -que n t ly no c om pe nsa t ing in t e r l a ye r c a t ions ( F ig . 2 . 4 )o r wa te r l a ye r s . The r e a r e th r e e p r inc ipa l po lym o r phs( o r po ly type s ) , ka o l in i t e , d i c k i t e a nd na c r i t e o f ge ne r a lform ula A14Si4Oa0(OH)8. Spec if ic nam es h ave a lso be en

    g ive n to ka o l in - r i c h de pos i t s t ha t oc c ur in d i f f e r e n tf o r m a t ion e nv i r on m e n t s ( se e Te x t B ox on p . 16 )Ka o l in i t e c a n r a nge f r om w e l l c r ys t a l l i z e d va r i e t i e sto poor ly c r y s t a l l i ne f o r m s tha t c a n be d i f f e r e n t i a t e dby X - r a y pow de r d i f f r a c t ion a na lys i s ( se e S e c t ion 8 . 2 . 2) .Ha l loy s i t e is a ka o l in g r oup m in e r a l tha t c on ta ins onewa te r l a ye r i n the in t e r l a ye r s i te s , p r odu c ing a 10 ) ~ in t e r -l a ye r spa c ing r a the r t ha n the 7A spa c ing o f t he ka o l in i t estructure.I t s genera l form ula is A14Si4010(OH)8"H20. Re m ov al o fthe wa te r l a ye r c a use s the ha l loy s i t e s t ruc tu re to c o l l a pseto a 7A in t e r l a y e r spa c ing . The c o l l a pse d f o r m i s r e f e r r e dto a s 7A ha l loys i t e ( o r m e ta ha l loys i t e ) a s oppose d tot h e h y d r a t e d 1 0 A h a l l o y s it e . H a l l o y s it e s u s u a l l y h a v e ac ha r a c t e r i s t i c t ubu la r m or pho logy though o the r sphe r o i -da l ha b i t s ha ve be e n r e por t e d ( F ig . 2 . 5 ). T he tub u la rm o r p h o l o g y a r is e s f r o m t h e d i s t o rt i on a n d c u r v i n g o f th e1 : 1 l a ye r s t r uc tu r e f r om w hic h the tubu la r ha b i t de ve lops .The se r pe n t ine g r oup o f m in e r a l s i s t he t r i oc t a he dr a le qu iva le n t o f t he ka o l in g r oup . B e r th i e r ine ( F e 2+, M g)6_x(Fe 3+, A1)xSi4_xAlx)O10(OH)8) s the m os t im po rtan t m em -be r o f t he se r pe n t ine g r oup in s tud ie s o f s e d im e n ta r yr oc ks . I t c om m only oc c ur s in oo l i t i c i r ons tone s a nd inp e d o g e n i c e n v i r o n m e n t s b u t h a s o f t e n b e e n m i s n a m e dc ha m os i t e . C h a m o s i t e i s no t a 7A se r pe n t ine m in e r a l bu t a14A c h lo r i t e m ine r a l ( s e e S e c t ion 2 . 1 .5 ) .2 . 1 .2 . T h e i ll l it e - m i c a g r o u pI l l i t e i s t he t e r m ge ne r a l ly use d f o r a l l c l a y g r a de m ic a sa n d m o s t c o m m o n l y h a s a d i o ct a h e d ra l 2 : 1 o r th r e e - la y e rcomposi te layer s t ruc ture (F ig . 2 .6) .In the i l l i te s t ruc ture sub st i tu t ion of [S i4+ ]iv by [A13 + ] ivand [R3+]w by [ W+ ] v I p r oduc e s a ne t ne ga t ive c ha r ge o fa bou t 0 . 7 - 1 . 0 pe r O10 ( OH)2 f o r m ula un i t . P o ta s s ium i sthe p r inc ipa l i n t e r l a ye r c a t ion a nd l e nse s o f wa te r m a yalso be p resent in the in te r lay er s i tes (FIR. 2 .6) .

  • 7/27/2019 Composition Clay Minerals

    5/16

    16 THE COMPOSITION OF CLAY MATERIALS

    FIG. 2.4. C rystal structure of kaolinite (A14Sc40l0 (OH)8).

    Illite Ko.s(R 3+,.65R2+0.35) (Si3.55A1045)O,0(OH)2Muscovite KA12(Si3A1)Olo(OH)2Serici te is a lso used to general ly signify fine-grainedmicacaeous mate r ia l of an inde te rmina te na ture thatma y inclu de i l l i te but a lso other c lay and sheet si l icateminera l s .Glauconi te (sensu stricto) is a dioctahedral Fe-richi l l it e of genera l form ula

    K (R 2+067R3+,.33) (Si3.67Alo.33)Olo(OH)2 w it hFe 3+ >> A1, M g > Fe 2+ and Fe 3+ > Fe z +However , ' g lauconi te ' i s a l so used to desc r ibe any green(pe l le ta l ) c lay mate r ia l i r re spec t ive of composi t ion(see Text Box on p . 18) . The te rm 'g laucony ' has beenproposed as a genera l t e rm when the spec i f ic minera lcomposi t ion i s not known (Mi l lo t 1970) .

    Ce ladoni te i s the more Mg-r ich equiva lent of g lauco-nite o f ideal f orm ula K (Mg , Fe 2+, Fe 3+)Si40~o(OH)2.Unl ike g lauconi tes tha t a re most of ten found in modernand anc ient sediments , ce ladoni tes a re most commonlyform ed in assoc ia tion w i th the a l te ra tion of volcanic ,usually basal t ic , rocks.2.1.3. SmectitesSmecti tes are three-layer or 2:1 c lay minerals (Fig. 2.7)tha t a re most commonly d ioc tahedra l but t r ioc tahedra lva r ie t ie s do exis t . They hav e a laye r charge o f 0 .2-0 .6 pe rO10(OH)2 uni t of s t ruc ture , which i s offse t by hydra tedinte r layer ca tions , pr inc ipa l ly Ca and Na .The hydra t ion of the in te r layer ca tions causesthe interlayer crystal l ine swell ing that characterizesthe smecti tes. Water is sorbed into the interlayer si tes

  • 7/27/2019 Composition Clay Minerals

    6/16

    THE COMPOSITION OF CLAY MATERIALS 1/composed predominant ly of montmori l loni te and/or toindicate genes is of montmori l loni tes f rom al terat ion ofvolcanic ash. In the UK Fullers Ear th is used in a s imilarway to bentoni te though in Nor th A meric a Ful lers Ear thcan be composed of palygorski te ra ther than smect i te(montmorillonite).Dioctahedral smectites:M ont mo rillo nite s R+y(A12_y R2+y)Si4Olo(OH)z'nH20Beidellite R+yAlz(Si4_yAly)O10(OH)2"nH20Nontronite R+yFe3+2(Si4_yAly)Olo(OH)z'nH20Trioctahedral smectites:Saponite R+x_y(Mg3_y(A1,Fe 3+)y)(Si4_x Alx)Olo(OH)2"nH20Hectorite R+x_y(Mg3_yLiy)Si4Olo'(OH)z'nH202.1.4. Vermiculite

    FIG. 2.5. Photomicrograph of tubu lar hab it of halloysite (fromKohyamaet al., 1978, reproduced by permissionof the authors andpublishers).in m onom olecula r sheets (F ig . 2 .8) . N a and Ca-montmori l loni tes can absorb up to three layers a t 90%relat ive humid i ty but in some ins tances a t 100% hum idi ty ,Na-mon tmori l loni tes can absorb more and the 2:1 layersdisperse.Bentoni te is often used syno nymo usly with montmo ri l -loni te but is a rock term rather than a mine ral name. As arock term, i t used to s ignify a comme rcial c lay depos i t

    Ver micu lites are similar in structure to the smectites(Fig. 2.9) but have a larger net ne gative charge o n thecomp osite la yer of 0.6-0.8 per O10(OH)2. The p rincip alin ter layer cat ions are hydrated magnes ium. V ermicul i tesexhibi t swel l ing proper ties s imilar to the smect i tesbut to a lesser extent due to the higher layer charge.Vermicu l i tes are t r ioctahedral with the g eneral formula:M g (x-y~/2(Mg, Fe 2+)3_y(A1, Fe 3 +)y

    (Si4_x Alx)O10(OH)2"nH202.1.5. Chlorite

    The chlorites have a 2:1 type structure with a secondoctahedral layer in the in ter layer s i tes having a net pos i-tive charge to offset the net negative charge on the 2:1layers (Fig. 2.10).

    FIG. 2.6. Crys tal structure of muscovite.

  • 7/27/2019 Composition Clay Minerals

    7/16

    18 THE COMPOSITION OF CLAY MATERIALS

    FI6. 2.7. Crystal s tructure o f dioctahedral smecite.

    FIG. 2.8. One layer and tw o layer water s tructures in smectite ( from Velde 1992).

  • 7/27/2019 Composition Clay Minerals

    8/16

    THE COMPOSITION OF CLAY M ATERIALS 19

    FI6. 2.9. Crystal structure of vermiculite.

    FIG. 2.10. C rystal structu re o f chlorite.

    The general form ula of the chlorites is( M g , F e 2+)6_x(A1, Fe 3+)xSi4_xAl~Olo(OH)8

    The majori ty of chlori tes are trioctahedral but somedioctahedral and mixed dioctahedral (2:1 layers) -trioctahedral (interlayers) forms are known and can beidentified by X-ray diffraction analysis (see Chapter 8).

    2.1.6. Mixed layer clay mineralsMixed layer clay minerals describe those mineral phasesin which differe nt sheet silicate units occu r in the stackin gsequence. G eneral ly the 2:1 clay minerals are most com -monly involved in forming mixed layer clay minerals,though kaolini te-smecti tes and serpentine-chlori tes havebeen reported. The most comm only reported mixed layer

  • 7/27/2019 Composition Clay Minerals

    9/16

    2 0 THE COM POSITION OF CLAY MA TERIALSI n t e r s t r a t i f i e d

    M o d e l

    m

    S m S m

    S m S m

    I

    l qS m

    II

    II

    E x c h a n g e a t i on s , 2 0 , r g a n i c s) (Exchange ations,H O, organics

    K + K+

    E x c h a n g e a t i o n s , 2 0 , r g a n i c s

    K + K+

    K + K+

    I n t e r p a r t i c l eM o d e l

    1 0 A " S m e c t i te "

    1 0 A " S m e c t i te "

    2OA " l l l i t e "

    3OA " l l l i t e "

    / T e t r a h e d r a l l a y e r sJ L O c t a h e d r a l la y e rs/ "N T e t r a h e d r a l l a y e r s

    Fro. 2.11. The nature of i l l ite-smecti te as d efined b y theinterstrat if ied and interpart icle models (af ter Nadeau & Bain 1986).

    clays are the i l l i t e-smect i t es and to a much lesser ex ten tthe ch lor i t e-smect i t es . The in ters t ra t i f i ca t ion may berandom, wi th no d i scern ib le pat t ern in the s tack ings eq u en ce , o r o rd e red , e . g . AB AB AB , AAB AAB AA o rAAAB AAB . S p ec i f i c n am es a re a l s o g i v en t o ce r t a i nt y p es o f o rd e red m i x ed l ay e r c l ay m i n e ral s.

    The mixed layer phases may a l so show segregat ionsin to AB sequences w i th separate dom ains o f A or B ra therthan cont inuous ly a l t ernat ing sequences .Gen era l l y m i x ed l ay e r i l l i t e - s m ec t i t e s w i t h m o rethan 45% smect i t e are rando mly in ters t ra ti f ied , those wi th3 0 -4 5 % s m ec t i t e can b e r an d o m o r o rd e red an d w i t hless than 30% smect i t e are ordered (Bethke & Al taner1986).2 . 1 . 7 . S e p i o l i t e a n d p a l y g o r s k i t eAlthough sep io l i t e and palygorsk i te are of ten descr ibedas 2:1 sheet s i l icates , the sheets are not cont inuous butform al t ernate r ibbons of 2 :1 sheet s il i ca te s t ructures(F ig . 2 .12) . Consequent ly they have f ib rous ra ther thanthe typ ica l ly p la ty habi ts o f the t rue sheet s i li ca tes . Co m-pos i t ional ly they are Mg-r ich , Mg being the pr incipalcat ion in the octahedral s i t es bu t in some palygorsk i tesa luminium can be the more common octahedral ca t ion ,i . e . [ A P + ] v , > [ M g 2 + ] v i.

    The name at t apulg i t e i s o f ten used for commercia ldepos i t s o f palygorsk i te , bu t pa lygork i te i s the prefer redm i n e ra l n am e .2 . 1 . 8 . S w e l l i n g p r o p e r t i e s o f c l a y m i n e r a l sThe c lay mineral s can be c lass i f ied in to swel l ing and non-swel l ing var ie t i es (Table 2 .1).Water and organic molecules may be sorbed onto thesurface of and in to the in ter layer s i t es of c lay mineral s .The sorp t ion of water and organic molecules in to theinterlayer s i tes is responsible for the characteris t icin t rapar t i c le swel l ing proper t i es of smect i t es and vermi-cul i tes (Table 2.1). A ' dr y ' smec t i te absorbs w ater into thein ter layer s i t es in d i scre te l ayers wi th the w ater forminghydrat ion sheaths around the in ter layer ca t ions . At veryhigh humidi t i es Na-smect i t es when immersed in waterexhib i t osmot ic sw el l ing and m ay com plete ly d i ssocia te .Com plete d i ssocia t ion of the c lay l ayers occurs whe n therepuls ive forces o f the negat ively charge d c lay surfacesexceed the forces of a t t rac t ion between the hydratedin ter layer ca t ions and the c lay par t ic les .Vermicul i t es , hav ing a h igher in ter layer charge thansmect i t es , show less swel l ing and wi l l no t complete lydissociate in water.

  • 7/27/2019 Composition Clay Minerals

    10/16

    P A L Y G O R S K I T E

    L j

    T H E C O M P O S I T I O N O F C L A Y M A T E R I A L S 21

    S E P I O L I T E

    2 7 ~ ,I I

    \ ( \ /\ \ f

    I o nc o n c n~ T e t ra h e d r a l a y e rO c t a h e d r a l a y e rT e t r a h e d r a l la y e rFro . 2 .12 . Cry s t a l s t ruc tures of pa lygorsk i t e and sep io l i t e .

    I l l it es ma y have l enses of water in the in ter layer s i tes ,ou t no t complete l ayers and do not show in t rapar t i c leswell ing.Chlor i t es are non-swel l ing c lay mineral s bu t there haveb een r ep o r ted i n s tan ces o f ' s w e l l i n g ch l o r i t e s '. M o o re &Reynolds (1997) commented that swel l ing ch lor i t es aresuch a poor ly descr ibed phase they were unab le to ca lcu-late their diffract ion characteris t ics . I t seems probab le that' swel l ing ch lor i t es ' a re mos t l ikely to be mixed layerch lor i t e / smect i t es or ch lor i t e /vermicul i t es ra ther than aswel l ing ch lor i te sensu s t r ic to .Hal loys i t es in the hydrated s ta te have a water l ayerbetw een the 7N ka ol in l ayers produc ing thei r character is -t i c 10 /~ in ter layer spacing . K aol in i te in cont ras t tohal loys i t e does no t swel l in the presence o f water thoughincreas ing ly d i sordered kaol in i tes conta in l enses o f water .Sepio l i t e and palygorsk i te have open channel s i t ess imi lar to zeo l i t es (see Sect ion 2 .2 .7) in to which waterand organic compounds can be absorbed or desorbedwi thout s ign i f i can t ly af fect ing the un i t ce l l d imens ionsand thus are no t regarded as swel l ing c lays .In addi t ion to in t rapar t i c le sw el l ing , a l l c lay m ineral scan show in terpar t i c le swel l ing which i s governed bysimilar factors that control intrapart icle swell ing, thati s the nature of the c lay mineral s a nd the nature o fand concent ra t ion o f ca t ions adsorbed onto the c laysurface in the d i f fuse double l ayer and hydrat ion of

    m0m

    m0m

    s o l u t i o n-I-- - I-+ + - + _++ - + + +

    -

    + + + +++ - + +

    + + + ++ +

    -I--- t-

    - I-

    n+

    d i s t a n c e f r o m c l a y s u r f a c eF I a . 2 . 1 3 . D i s t r i b u ti o n o f i o n s i n th e c l a y - w a t e r l a y e r o f t h ic k n e s s da n d f o r m a t i o n w a t e r .

    surface cat ions (Guven 1993; Guven & Pal las t ro 1993;Low 1992) .In terpar t ic le associa t ions of c lays cont ro l thei r f loccu-la t ion and d i spers ion in natura l waters .2 . 1 . 9 . I o n e x c h a n g e p r o p e r t i e s o f c l a y m i n e r a l sThe 2 : 1 c lay mineral s h ave a net negat ive charge on thei rcom posi te layer s due to cat ion subst i tut ions (e.g. A13+ forSi4+; FEZ+; M g 2+ fo r A P +, Fe 3+). In m inerals such asi l l i t es and smect i t es the net negat ive charge i s o f fse t byin ter layer ca t ions and in the ch lor i t es by the in ter layeroctahedral sheet . Kaol ins ideal ly have neut ra l com pos i telayer s t ructures , bu t in rea l i ty l imi ted cat ion subs t i tu t ionm a y o ccu r p ro d u c i n g a v e ry s m a l l n e t n eg a t i v e ch a rg e o nt h e co m p o s i t e l ay e r o f f s e t b y a s m a l l n u m b er o f i n te r l ay e rcat ions . W hen suspended in water som e of the in ter layercat ions on the surface of the c lay par t i c les go in to so lu t ionp ro d u c i n g a n eg a t i v e l y ch a rg ed c l ay s u r f ace s u r ro u n d edb y a d i f fu s e ' d o u b l e l ay e r ' o f h y d ra t ed ca t io n s (F i g . 2 . 1 3 )(van Olphen 1977) .

  • 7/27/2019 Composition Clay Minerals

    11/16

    2 2 T H E C O M P O S I T I O N O F C L A Y M A ' I E R IA L SO H

    S iO. . . HA ( - O H +/ \O . . .H

    S i\ o .

    / O - . . . H O HS i

    \ o/A I - O - . .. N O N

    \o/S i

    O - . . . H O HIn ac id so lu t ionp o s i t i v e l y c h a r g e dAnion exchanger

    O _ A I ' I - 2/S i \?A I - O - A I + 2\/ oS i \

    O - A I + 2

    O HS i

    ) oS i \O H/ /

    In a lka l ine so lu t ionn e g a t i v e l y c h a r g e dCa tion exchanger

    / O A I 0 3 4S i

    \oA [ - O A I O ~ 4

    /S i

    \ O A I O ~ 4In ac id so lu t ion in thep r e s e n c e o f A I 3 + i o n sp o s i t i v e l y c h a r g e dAnion exchanger

    In a lka l ine so lu t ion in thep re s e n c e o f A I O 4 " io n sn e g a t i v e l y c h a r g e dCation exchanger

    Flc . 2 .14 . Edg e s i t e an ion exch ange as a func t ion of pH ( f r om Yar iv and Cros s , 1979) .

    O n t h e e d g e s o f th e c l a y p a r t i c l e s t h e d i s r u p t i o n o f t h ec l a y s t r u c t u r e p r o d u c e s b r o k e n b o n d e d g e s i t e s w h i c hm a y b e n e g a t i v e l y o r p o s i t i v e l y c h a r g e d . T h e n a t u r e o ft h e c h a r g e i s d e t e r m i n e d b y t h e p r e s e n c e o f c e r t a i n i o n s ,n o t a b l y H + , O H - , A 1 3+ a n d A 1 0 4 5 - , w h o s e p r e s e n c e i sp H d e p e n d e n t , b e i n g n e g a t i v e l y c h a r g e d i n a l k a l i n es o l u t i o n s a n d p o s i t i v e l y c h a r g e d i n a c i d i c s o l u t i o n s( F i g . 2 . 1 4 ) . T h i s p H d e p e n d e n t c h a r g e a c c o u n t s f o r o n l ya s m a l l p e r c e n t a g e o f t h e t o t a l c h a r g e i n i l l i te s a n ds m e c t i t e s , b u t i s m o r e s i g n i f i c a n t f o r k a o l i n s a n d c h l o r it e s .I n a d d i t i o n t o c a t i o n e x c h a n g e i t i s a ls o p o s s i b l e t o h a v e

    a n i o n e x c h a n g e b u t u s u a l l y t o a l e s s e r e x t e n t t h a n c a t i o ne x c h a n g e .T h e i o n s p r i n c i p a l l y a d s o r b e d o n t o t h e c l a y s u r f a c e sa n d , t o a l e s s e r e x t e n t , o n t h e e d g e s o f th e c l a y p a r t i c l e s,c a n b e e x c h a n g e d w i t h o t h e r a v a i l a b l e i o n s . T h i s g i v e sr i se t o th e p h e n o m e n o n o f c a t io n / a n i o n e x c h a n g e . T h ed e g r e e t o w h i c h e x c h a n g e r e a c t i o n s t a k e p l a c e d e p e n d s o nt h e n a t u r e o f t h e c l a y m i n e r a l s a n d t h e c o n c e n t r a ti o n s o ft h e c a t i o n s / a n i o n s i n v o l v e d a n d o f o t h e r i o n i c s p e c ie s .O x i d e s a n d o r g a n i c m a t t e r c o m m o n l y c o a t c l a y p a r t ic l e sa n d a l s o h a v e i o n e x c h a n g e p r o p e r ti e s , w h i c h a r e s t r o n g l y

  • 7/27/2019 Composition Clay Minerals

    12/16

    THE COMPOSITIONOF CLAY MATERIALS 23TABLE 2.2. Cation exchange capacities of some clay m inerals(meq/lOOg) at p H = 7 (af ter Dre ver 1982)Smectite 80-150Illite 10-40Kaolin 1-10Chlorite < 10dependen t on pH, and can a l t er the ca t ion /an ion ex changecapaci t i es of associa ted c lays in natura l sys tems .Ion exchange i s a dynam ic process govern ed by the lawof mass ac t ion . Ge nera l ly , the greater the concent ra t ionof a par t i cu lar ca t ion in so lu t ion , the more read i ly i t wi l lrep lace equivalen t ca t ions adsorbed onto the c lay surfacesand in ter layers . Cat ions of h igher valence w i l l usual lyrep lace those o f lower valenc e and , i f o f the same valence ,smal ler s i zed ca t ions wi l l rep lace l arger s i zed ca t ions .How ever , i t i s impor tan t to no te that in the d i f fuse l ayer ,the ca t ions wi l l be hy drated and i t i s the s ize o f thehydra ted ca t ion that needs to be cons idered .In swel l ing c lay minera l s , the in ter layer ca t ion s i t eswi l l a l so provide ex change s i tes , whe reas for o ther c laysonly the ou ter surface s i tes wi l l be involved . T his expla insthe h igher ca t ion exchang e cap aci t ies o f the smect i t escom pared to the i l l it es (Table 2 .2) .Because the edge s i t es are a l so involved in ion exch-ange a nd as the nature of the charge on the edg e s i t es is pHdependent the ca t ion exchange capaci ty of ind iv idual c layminera l s are a lso pH dependen t .

    2 . 2 . N o n - c l a y m in e ra lo g y2.2.1. Qua rtz and chertQuartz i s commonly presen t in c lay mater ia l s , p redomi-nant ly in the s i l t g rade mater ia l (Fig . 2 .1) . I t i s genera l lydet r it a l , bu t some m ay be b iogenic or au th igenic in or ig in .Si l i c i f i ca t ion may occur dur ing ear ly d iagenes i s wi ththe d i sso lu t ion o f b iogenic s i li ca , a poss ib le source forthe l a ter inorganic precip i t a t ion of quar tz (M i l lo t 1970).Diagenef ic modi f ica t ion of c lay minera l s may a l so causethe mobi l i za t ion o f SiO2 wh ich ma y reprecip i t a te as aquar tz cemen t in mud rocks o r ad jacent sands tone beds .Cher t i s a genera l descr ip t ion for f ine-gra ined s i li ceoussediments o f chemical , b iochem ical o r b iogenic or ig in .

    I t is a dense , re la t ively hard mater ia l com posed of f ine lycrys ta l l ine quar tz crys ta l s o r f ib rous chalcedonic quar tz ,usual ly der ived f rom the d iagenet ic a l t era t ion of vo lcan-ogenic or b iogenic op al ine s i l ica (see Text Box below).Cher t s usual ly occur as e i ther bedde d or nodular forms .T h e b ed d ed fo rm s a re co m m o n l y a s s o c i a ted w i t h v o lcan i csequences whereas nodular cher t s are main ly hos tedin chalks or mudrocks . The nodular forms hos ted inchalks and o ther carbonates are sp eci f i ca l ly refer red to asf l in t s . Jasper i s a red co loured cher t tha t conta ins hem at i t eimpuri t ies .2.2.2. FeldsparsAs wi th quar tz , fe ldspars in c lay mater ia l s are predomi-nant ly det r i ta l in or ig in , bu t there i s pe t ro logical ev idenceto sugges t they ma y a l so form d iagenet ic cem ents aroundexis t ing fe ldspar gra ins .2.2.3. CarbonatesAcco rd i n g t o S h aw & W eav er (1 9 6 5 ) t h e re i s an av e rag eo f ab o u t 4 % b y we i g h t o f ca rb o n a t e m i n e ra l s i ns i l i c ic las t i c mudrocks bu t th i s can be h ighly var iab le .Calc i t e (CaCO3) and dolomi te (CaMg(CO3)2 are the pre-dom inant carbonate m inera l s in c lay mater ia l s , thoughs ider i t e (FeCO3) may a l so be local ly impor tan t . Meta-s tab l e p o l y m o rp h s o f C aC O 3 , a r ag o n i t e (o r t h o rh o m b ic )and , l ess commonly , va ter i t e (hexagonal ) a l so occuri n R ecen t c l ay m a t e r ia l s . T h e ca rb o n a te m a y b e p re s en tas c las t s der ived f rom organic skele ta l remains andthe weather ing of pre-ex i s t ing carbonate roc ks or asd iagenet ic cements and nodules .The source of carbonate for the format ion o f d iagenet iccarbonate c ements or nodules m ay be f rom the recrys ta l l i-za t ion of pr imary (skele ta l ) carbonate mater ia l and/ord i rec t p recip i t a t ion f rom alkal ine b icarbonate- r i ch porewaters . These proc esses are co ns idered to be of ten re la tedto the matura t ion of organic mat ter dur ing d iagenes i s(Curt is 1983).Dolomi te and s ider i t e format ion are favoured insu lphate-deple ted envi ronments (Baker & Kas tner 1981;Berner 1981) . The presence of au th igenic s ider i te i sind icat ive of anoxic su lphate-deple ted condi t ions a t thet ime o f it s format ion (Table 2 .3).

  • 7/27/2019 Composition Clay Minerals

    13/16

    24 THE COMPOSITIONOF CLAY MATERIALSTABLE 2.3. Classification of oxic-anoxic environments usingauthigenic Fe-mineral indicators (Bern er 1981)Environment Authigenic Fe-m ineralsOxic Hem atite, goethite(no org anic ma tter preserved)

    Pyrite (organic matter preserved)noxic (sulphidic)Ano xic (non-sulphidic)(a) post-oxic(b) methanic

    Glauconite, Fe2+/Fe + silicatessiderite (no su lphides some organicma tter preserved)Siderite after pyrite(organic matte r preserved)

    2.2.4 . I ron su lph idesPyri t e (FeS2) is the mos t c om mo n o f the su lphides foundin c lay mater ia l s occurr ing as veins , nodular aggregates ,sca t t ered crys ta l s and inf i l l ing / rep lacing/pseudom orphingskele ta l f ragments . Sedimentary au th igenic pyr i t e formsin anoxic su lphid ic envi ronmen ts (Table 2 .3) . W eather ingof pyr i t e produces i ron hydroxide s /ox ides and m obi l i zessu lphate which m ay be incorporated in to su lphate miner-a l s such as gypsu m and jaros i te . M arcas i t e i s an or thor-homb ic d im orph o f pyr i t e tha t has occas ional ly beenrepor ted in c lay mater ia l s . There i s some ev idence tosugges t tha t marcas i t e form s under more ac id ic condi t ionsthan pyr i t e . Metas tab le monosulphide (e .g . mackinawi teand gr ieg i te) are found in modem muds as precursors tola ter format ion of pyr i t e . Pyrrhot i t e (Fel_xS) i s a s t ab lemonosulphide minera l phase that occcas ional ly has beenrepor ted in c lay mater ia l s bu t s to ich iomet r ic FeS, theminera l t ro i li t e , i s on ly found in meteor i tes .2 .2 .5 . Ox id es an d h yd r o x id es2.2 .5 .1 . I ron ox ides an d hydrox ides . I ron oxides andhydroxides are presen t in var ious minera l forms inclay ma terials , nota bly hem ati te (c~-Fe203), ma ghe m ite (7-Fe203) , goeth i t e (~ -FeO.OH), l ep idocros i t e (7-FeO'OH).Limo ni te i s a genera l t e rm for a mix ture o f iron oxidesand hydroxides of a poor ly crys ta l l ine nature . The pres -ence of these iron oxides and hydroxides produc es thecharacter i s ti c red /brow n/yel low colours of many c laymater ia l s depending on which minera l i s p resen t . Goet -h i t e i s ye l low-brown, l ep idocros i t e orange, maghemi tebrown-black and hemat i t e red .2 . 2. 5 .2 . A lum in ium ox ide s and hy drox ide s . Gibbs i te(AI(OH)3) , boehmi te (y-AIO'OH) and d iaspore (~ -A1 0 "OH) a re t he m o s t co m m o n o f t h e a l u m i n i u m o x i d esand hydroxides and are typ ical ly s ign i f i can t cons t i tuen t sof la ter i tes and bauxi tes . Boehm i te i s i somorph ous wi thlep idocros i te and d iaspore w i th goeth it e .In addi t ion there are a luminium - s i l i con oxyhy-droxides , imo gol i t e and a l lophane, tha t cha racter i s t ica l lyoccur in so i l s der ived f rom the we ather ing o f vo lcanic"ocks.

    Thei r no minal formu la i s SiA1203(OH)4 but bo th havepoor ly ordered crys ta l s t ructures and are of ten descr ibedas amorphous . Genera l ly a l lophane forms spheru les andappears to be l ess wel l o rdered than imogol i t e wi th i t stypic al ly cyl ind rical hab i t . The SiO2:A1203 rat io variesf rom 1-1 .2 for imogol i t e to 1 .3-2 .0 for a l lophane (Moore& Reyno lds 1997) .2 . 2 .5 . 3 . I on e x c hang e in ox ide s and hydrox ides . In theoxides and hydroxides the charge on the surfaces ar i seslargely f rom broken surface bonds producing unsharedsurface and edge O a nd O H ra ther than the ca t ion subs ti -tu t ions that are l argely respons ib le for impar t ing charge tothe c lay minera l s t ructures . A s descr ibed above, chargear i s ing f rom broken bonds i s pH dependent (Fig . 2 .14) .The pH at which the charge i s zero i s refer red to as thezero po in t o f charge or ZPC; w hen condi t ions are moreacid ic than the ZPC the ox ide/hydroxide wi l l be pos i -t ive ly charged and negat ively charged for condi t ionsmore a lkal ine than the ZPC. For example , the ZPC forboehm i te i s 8 .2 and 6 to 7 for goeth i te (Es l inger & Pevea r1988).2 .2 .6 . S u lp h atesSulphates may form nodules or veins in c lay mater ia l s ,wi th gypsum (CaSO4"2H20) , fo l lowed by anhydr i t e(CaSO4) being the mos t common, bu t ce les t i t e (SrSO4) ,bar i t e (BaSO4) and the more water-so luble sodium andmagnes ium su lphates may a l so occur . Thei r occurrencem ay sugges t hypersa l ine con di t ions o f format ion , thoughgypsu m and var ious i ron su lphates ma y a l so form dur ingweather ing of shales conta in ing pyr i t e , the ox idat ion ofthe su lphide being the source o f the su lphate .Jarosi te (KFe3(SO4)dOH)6) is a dis t inct ively yel lowminera l tha t character i s t i ca l ly forms as surface coat ingsand ag gregates f rom the ox idat ion of pyr i t e to i ronsu lphate , fo l low ed by fur ther react ion w i th i l li t e /mica orK-fe ldspars :

    12FeSO4 + 4KAlaSi3Os(OH)2 + 48H 20 + 0 2= 4KFe3(SO4)2(OU)6 + 8AI(OH)3 +12Si(OH)4 + 4H2SO4.2.2 .6 .1 . Et tr ing i te group . The e t t r ing i te group ofminerals , mixed calcium carbonate sulphate s i l icates , andespecial ly thaumasi te (Ca3(SO4)(CO3)(Si(OH)6) '12H20),has a t t rac ted a t t en t ion rec ent ly because of the observat ionof the growth o f such minera l s a t concre te-c lay bound-ar ies , which can cause s ign i f i can t damage to concre tes t ructures (Thaum as i te Exper t Group 1999) .2.2.7 . Zeo l i tesZeol i t es are hydrous f ramework s i l i ca tes and those thatoccur in c lay mater ia l s are pred om inant ly a lkal i var ie t i es(Table 2 .4) , They are commonly associa ted wi th a lumi-nous sm ect i tes forme d by the weather ing and a l t era tion of

  • 7/27/2019 Composition Clay Minerals

    14/16

    THE COMPOSITION OF CLAY MATERIALS 2 5TABLE 2.4 . Common zeo l i tes occurring in c lay materia lsNatroliteAnalcitePhillipsiteErioniteHeulanditeClinoptiloliteMordenite

    Na2A12Si3010"2H20NaA1Si2Or.H20(Ca ,Na ,K) 3A13SisOI6.6H20(Na2K2CaMg)4_sA19Si27072"27H20(Na,K)CaaAIgSi27072.24H20(K,Na)6 AI6Si30072-20H20(Na ,K, Ca)A12Si10024.7H20

    volcanics . A nalc i t e i s a lso character i s t i ca l ly found as anauth igenic minera l in hypersa l ine m udd y sed iments .Zeol i t es can be used as ind icators of d iagenes i s andlow grade metamo rphism of arg i l l aceous sed iments . Themixed a lkal i (K, Na and some Ca) zeo l i t es are progres -s ively rep laced by more sodic , l ess s i l i ceous var ie t i eswh ich wi th increas ing metam orphism are in tu rn rep lacedby a lb i t e and eventual ly K-fe ldspars . The ca lc ic formspers i s t to h igher t emperatures .Zeol i t es have open f ramework s i l i ca te s t ructures wi ththe capabi l i ty of ac t ing as 'molecular s i eves ' b y absorb ingcat ions , an ions and polar o rganic m olecules in to the openchannel s wi th in thei r s t ructures.2.2 .8 . PhosphatesT h e m o s t co m m o n p h o s p h a t e m i n e ra l s o ccu r r i n g i nclay mater ia l s are the carbonate apat i t e g roup(C as (PO4 , CO3)3(OH,F, C1) . Phospha tes m ay occur in acryptocrys ta l l ine form refer red to sensu la to as 'co l l -ophane ' . The i ron-r ich phosphate minera l , v iv ian i te ,which has a very d i s t inc t ive b lue co lour , may form inlacustrine environments and soi ls .Phosphates may be b ioclas t i c (e .g . accumulat ions ofver tebra te skele ta l f ragments ) , faecal o r d iagenet ic inor ig in . Auth igenic phosphates can precip i t a te in mud-rocks and sands tones as nodules , oo l i ths , p i so l i ths ,ceme nts or rep lacem ents o f ca lcareous skele ta l c las tsin envi ronments wi th low clas t i c sed imenta t ion and h ighorganic produc t iv i ty enr iched in phosphate .In addi t ion to being presen t in phosphate minera l s ,phosphorus i s sorbed onto c lay and o ther co l lo idalpar t i c les and th i s mechanism can be a major fac tor incont ro l l ing phophorus mobi l i ty in so i l and aqueousenvi ronments .2.2 .9 . Ha l idesHal i t e (NaC 1) and , to a m uch less ex ten t , o ther hal idessuch as sy lv i t e (KC1) and ca mal l i t e (KMgC13"6H20) arecharacter i s t i ca lly found in c lay mater ia l s associa ted w i thevapor i t i c sed imentary and so i l envi ronments . Evapora-t ion of sea water and ch lor ide-r i ch br ines can create asequence of evapor i t ic minera l s tha t are of ten cycl ic dueto rep len i shment o f the evapo rat ing br ines or in terbeddedwi th f ine-gra ined s i l ic ic las ti c or carbona te sed iments .

    2 .3 . O r g a n i c m a t t e rOrganic mat ter i s p resen t in a var ie ty of forms in c laymater ia l s inc luding d i scre te organic par t i c les , absorbedonto c lay an d o ther associa ted co l lo idal par ti c les (e .g . i ronoxides ) and micro-organisms . The nature , abundanceand d i s t r ibu t ion of organic mat ter can inf luence thep h y s i co -ch em i ca l b eh av i o u r o f c l ay m a t e r ia l s .Gen era l ly the organic mater ia l s can be subdiv ided in tolab i le and ref rac tory organic f rac t ions . Labi le organicmat ter genera l ly does no t surv ive bur ia l whereas ref rac-tory organics are non-metabol izab le , genera l ly surv ivebur ia l and can be preserve d in ancien t sed iments as kero-g en . Kero g en m ak es u p 9 5 % o r m o re o f th e o rg an i cm a t t e r p re s e rv ed i n s ed i m en t a ry ro ck s . Kero g en h as b eendef ined as the organic cons t i tuen t s tha t are inso luble inaqueous a lkal ine and com mo n organic so lvent s (Ti sso t &Wel te 1984) which i s the equivalen t o f 'humin ' in so i lsc ience (Tyso n 1995).

    The l ab i l e organic components degrade v ia l eachingand decomp os i t ion processes . The l eaching process invo-lves the breakdown of ce l lu lar mater ia l by in t racel lu laren zy m es p ro d u c i n g s o lu b l e co m p o u n d s. T h e d eco m p o s i -t ion process re la tes to the bacter ia l co lonizat ion and thefermen t ing ac t iv i ty of the bacter ia which i s g reates t underwarm , ox ic condi t ions .In addi t ion to bacter ia , o ther micro-organ isms m ay a l sobe presen t such as pro tozoa and smal l a lgae , fungi andviruses. In soi ls there are 107 to 108 bac teria per gra m o fdry mass, 105 to 106 fungi and 104 protozoa (Campbell1992) . These micro-organ isms show a wide range of s izesand morphologies and can a l so ex i s t in var ious dormants ta tes such as spores and cys t s tha t are res i s tan t todess ica t ion and temperature changes . Micro-organismscan f lour i sh even under apparen t ly very adverse condi -t ions such as hydro thermal vent s on mid-ocean r idgeswi th t emperatures above 200~ hypersa l ine soda l akeswi th a pH > 10 or in ac id mine dra inage w aters wi th a pHo f < 2 .Some micro-organisms are aerobic , acqui r ing thei ren e rg y f ro m reac t i o n s w i t h o x y g en , wh i ch i s co n s e -quent ly consumed, l ead ing to oxygen-def ic ien t condi -t ions. Others are anaerobic , gen era t ing thei r energy byreducing inorganic chemical species (su lphate , n i t ra te ,carbon d ioxide) or o rganic species ( fermenta t ion reac-t ions) and/or ox id iz ing o ther inorganic species (su lphide ,fer rous ions) in the absence of oxygen . The bacter iaThiobaci l lus denatr i f i cans uses su lphide , carbon d ioxideand n i t ra te as energy sources and produces su lphate ,s u g a r s an d r ed u ced n i t ro g en co m p o u n d s (C am p b e l l1992) . This i s one o f ma ny th iobaci l lus bacter ia tha t ex i s ti n c l ay m a t e r i a l s wh i ch d e r i v e en e rg y f ro m o x i d i z i n ginorganic su lphur usual ly under aerobic condi t ions . Onevar ie ty , Thiobaci l lus f errooxidans al so ox id izes fer rousions to fer r ic in ac id ic envi ronments and i s a key inf luencein the natura l degradat ion of pyr i t e (Hawkins & Pinches1992).T h e n a t u re an d ab u n d an ce o f m i c ro -o rg an i s m s i n c l aymater ia l s and the inorganic compounds avai lab le for

  • 7/27/2019 Composition Clay Minerals

    15/16

    2 6 THE COMPOSITION OF CLAY MATERIALSoxidat ion and/or reduct ion wi l l have a major in f luence indetermining thei r chemical behaviour .2.3.1. Organ ic-clay com plexes and interactionsOrg an i c -c l ay co m p l ex es r ep res en t p a r t o f t h e h u m i n o rkeroge n organic f rac t ion . Organ ic molecules are absorbedonto the charged c lay minera l surfaces and in ter layer s i t esb y:9 com pet ing wi th and rep lacing the water molecu les andforming com plexes w i th in ter layer ca t ions ;9 be ing bon ded to the ca t ions by br idg ing w atermolecules ;9 bonding of organic ca tions , molecules wi th a s trongt en d en cy t o fo rm h y d ro g en b o n d s an d p o l a r o rg an i cmolecu les on to the charged c lay surfaces .M os t organic compou nds o f in teres t as envi ronmen ta lpol lu tan t s are smal l non- ion ic molecules and thei r sorp-t ion onto c lay minera l s involves we ak in teract ions v ia vand e r Waa l fo rces an d h y d ro g en b o n d i n g (Sa wh n ey 1 9 96 ).Such complexes and organo-clay react ions can haves igni f i can t in f luences on chem ical mo bi l i ty and cata lys isof chemical react ions. These can af fec t , fo r example , thechem ical beha viour of po l lu tan ts , fer t il i zers, pes t i c idesin so i l s and the phys ica l p roper t i es of f loccula t ion anddispers ion in aqueous en vi ronments (Johns ton 1996) .The ca ta ly t i c behaviour i s re la ted to the l arge surfaceareas of c lays and o ther co l lo ids , which i s a funct ion ofminera logy , crys ta l s i ze and habi t . C lay surfaces a l sohave ac id ic proper t i es due to the presence of A1 subs t itu t -ing for Si in the tetrahedral s i tes . The resul tant netnegat ive charge can be offse t by the presence o f chargebalancing H3O corresponding to a pro ton-donat ingBrons ted ac id s i te . In addi t ion , AP + ions on the ed ges o fc lay par t i c le are capable o f being e lec t ron pa i r acceptorsand thus can ac t as Lewis ac id s i t es (Ruper t e t a l . 1987).The degree to which th i s surface ac id i ty i s p roduced i san essen t ia l fac tor in crea t ing the condi t ions for c layminera l s to ac t as ef fec t ive ca ta lys t s o f var ious organicreact ions.

    2 .4 . W a t e rIn c lay mater ia l s w ater i s p resen t in the in ter -par t i c le po respaces , adsorbed onto or absorbed in to c lay minera l s ,o ther minera l s and organic mat ter . Guven (1993) def inedthree forms of hydrat ion in c lay mater ia l s:9 in ter lamel lar hydrat ion involv ing adsorp t ion of wateronto the in ternal surfaces of c lay minera l par t i c les ;9 cont inuous osmot ic hyd rat ion involv ing unl imi tedadsorp t ion o f water on to the in ternal and ex ternalsurfaces of p r imary minera l and organic par t i c les;9 cap i l l ary condensat ion o f wa ter in to micro-pores .I t needs to be emphas ized that a l l minera l surfaces arecapable of adsorb ing water on to thei r surface . How ever ,

    th i s i s mos t s ign i f i can t for the c lay minera l s bec ause thei rf ine gra in s ize and p la ty habi t p roduce v ery l arge surfaceareas and thus g ive a re la t ively greater capaci ty for wateradsorp t ion .The presence of adsorbed w ater l ayers cover ing theclay par t i c les produces the character i s ti c c ohes ive p las t i cbehav iour o f c lay mater ia ls . The w ater adsorbed onto theclay minera l surfaces has proper t i es midway betweenbulk l iqu id water and i ce and forms a s t ructured waterlayer and a mo re d i f fuse l ess s t ructured water l ayer . Theth ickness o f the adsorbed surface water l ayer var iesdepending on the c lay surface charge , the exchangecat ions and cat ion hydrat ion and the sa l in i ty of the aque-ous solut ion. With increasing ionic s t rength there isa l esser t endency for ca t ions to d i f fuse away f rom thenegat ively charged c lay par t i c les and the absorbed waterlayer becomes com pressed an d less d i f fuse than a t lowerionic s t rengths.The nature and beh aviour o f the water absorbed in to thein ter layer s i t es of c lay minera l s i s a funct ion o f :9 the po lar nature of the water molecules ;9 the s ize and charge o f the in ter layer ca tions and thei rhydrat ion s ta te ;9 the locat ion and value of the charge on the s i l ica telayers o f the c lay minera l s t ructures.In the in ter layer s i tes of expandable c lay m inera ls thewater forms coord inated shel ls around in ter layer cat ions.In the smect i t es the water molecules form s ing le , doubleor t r ip le water l ayers , depending on the humidi ty o f thesurrounding envi ronment . The vermicul i t es can exhib i ts ing le or double water l ayers depending on the humidi tycondit ions.There are s ign i f i can t d i f ferences in the in ter layer waterpresen t in hal loys i t es compared wi th the smect i t es andvermicu l i t es tha t he lp expla in why rew et t ing of dehy-drated hal loysi tes does not cause the s t ructure torehydrate . In the hydrated s ta te there appears to be nopreferen t ia l o rder ing of the water molecules and onlyweak in teract ions wi th the hal loys i t e surfaces . Therei s a lso ev idence that deh ydrat ion o f the hal loys i t e isaccom panied by delaminat ion of the hal loys i te l ayers thusinhib i t ing hal loys i te rehydrat ion (New man 1987) .The absorp t ion of water in to sep io l i tes and paly-gorsk i tes involves adsorp t ion onto the ex ternal surfacesand absorpt ion into the channel s i tes within the crystals t ructure , w hich i s analogous to the absopt ion o f waterin to the channel s i tes of zeo l i t e s t ructures. The pack ing ofthe water molecules absorbed onto the ou ter surfaces ofthe sep io l i t es and palygorsk i tes i s much less dense thanthan that o f a surface water mono layer on o ther sheets i l i ca tes (Newman 1987) .The dens i ty of the water in the in ter layer s it es of swel l -ing c lay minera l s i s cons idered to be greater than thatof l iqu id water and to increase wi th increas ing pressure(Sk i p p e r e t a l . 1993) . However , Moore & Reynolds(1997) argu ed that wi th increas ing pressure the in ter layerwa ter should ha ve a s imi lar dens i ty to tha t o f l iqu id porewaters .

  • 7/27/2019 Composition Clay Minerals

    16/16

    THE COMPO SITION OF CLAY MATER IALS 2/2.5. Conclusions

    C l a y m a t e r i a l s a r e c o m p o s e d o f a v a r y i n g m i x o f s o l id ,l i q u i d a n d v a p o u r p h a s e s , w i t h t h e c l a y m i n e r a l s u s u a l l yt h e m o s t a b u n d a n t m i n e r a l p h a s e s . T h e v a r y i n g p r o p e r t i e so f th e i n d i v i d u a l c l a y m i n e r a l s a n d t h e i r o f te n c o m p l e xi n t e r ac t i o n s w i t h f l ui d p h a s e s u n d e r d i f f e r e n t p h y s i c a l a n dc h e m i c a l c o n d i t i o n s c a n p l a y a m a j o r r o l e i n c o n t r o ll i n gt h e b e h a v i o u r o f c l a y m a t e r i a ls . H o w e v e r , i t i s s im p l i s t ica n d m i s l e a d i n g t o e q u a t e c l a y m a t e r ia l s w i t h c l a y m i n e r -a ls . T h e n a t u r e a n d a b u n d a n c e o f o th e r m i n e r a l s a n d a l s oo r g a n i c m a t t e r , a n d t h e i r v a r y i n g i n t e r a c t i o n s w i t h f l u i dp h a s e s , c a n a l s o h a v e a s i g n i f i c a n t e f fe c t o n t h e b e h a v i o u ro f c l a y m a t e r i a ls .

    C l a y m a t e r i a l s a r e u s e d i n a v a r i e t y o f a p p l i c a ti o n s a sc o n s t r u c t i o n m a t e r i a l s a n d a d e t a i l e d k n o w l e d g e o f th e i rc o m p o s i t i o n s i s o f f u n d a m e n t a l i m p o r t a n c e i f w e a r e t om a x i m i z e t h e e f f ic i e n t u s e o f s u c h m a t e r i a ls f o r a g i v e na p p l i c a t i o n .

    R e f e r e n c e sBAKER, P. A. & KASTNER,M. 1981. Constraints on the formation ofsedimentary dolomi te . Science, 213, 214-216.BERNER, R. A . 1981. A ne w ge oche mica l classif icat ion of sedimen-ta ry envi ronments . Journal of Sedimentary Petrology, 51 ,3 5 9 - 3 6 6 .BETHKE, C. M . & ALTANER,S. P . 1986. Layer -by- layer mecha ni smof smect i te i l l i tizat ion and appl icat ion to a new rate law. Claysand Clay Minerals, 34, 135-145.BLATT, H., MIDDLETON, G. & MURRAY , R. 19 72 . Origin of

    Sedimentary Rocks. Prent i ce-Hal l , Ne w York .BURST, J . F. 195 8. Glauco nite pellets: their minera l nature an dapplications to stratigraphic interpretations. AAPG Bulletin,42 (2) , 310-327.CAMPBELL, R. 199 2. Microb iology of soi ls . In: HAWKINS, A. B.(ed.) Proc. IGCC 92 Conference on The implications ofground chemistry and microbiology or construction, Bristol,1 - 1 7 .CURTIS, C. D. 1983. Geochem is t ry of poros i ty enhance ment andreduct ion in clast ic sediments. In: BROOKS, J. (ed .) PetroleumGeochemistry and Exploration of Europe. Geologica l Soc i -ety, London, 113-126.DREVER, J. I. 19 82 . The Geochemistry of Natural Waters.Prent ice-Ha l l, Ne w Yo r k .ESL1NGER, E. & PEVEAR, D. 19 88 . Clay Minerals for PetroleumGeologists and Engineers. SEPM Short Course , 22 .GUVEN, N. 1993 . Mo lecular aspects of clay-w ater interact ions. In:GUVEN, N. & PALLASTRO, R. M . (eds) Clay Water Interfaceand its Rheological Properties. CMS Workshop Lectures, 4,Clay M inera ls S oc ie ty , 2-79 .GUVEN, N . & PALLASTRO,R. M. (eds) 1993. Clay Water Interfaceand its Rheological Properties. CMS Workshop Lectures, 4.Clay M inera l s Soc ie ty .HAWKINS, A. B. & PINCHES, G. M. 1992 . Understand ing sulphategenera ted heave f rom pyr i t e degrada t ion . In: HAWKINS,A. B.(ed.) Proc. 1GCC 92 Conference on The Implications ofGround Chemistry and Microbiology for Construction.Bristol .

    JOHNSTON, C. T. 1996 . Sorpt ion of o rganic co mpo und s in cla y min-erals: a surface funct ional group approach. In: SAWNHEY,B. L.(ed.) Organic Pollutants in the Environment. CMS WorkshopLectures, 8. Clay Minerals Society, 2-44.KOHYAMA, N ., FUKUSHIMA,K. ~: FUKAMI, A. 1978 . Observat ionsof the hydra ted form of tubular ha l loys i t e by an e lec t ronmicroscope f i t ted w i th an envi ronmenta l ce l l. Clays and ClayMinerals, 26, 25-40.Low , P. F. 19 93. Interpart icle forces in clay suspensions: f loccula-t ion, viscous f low and swell ing. In: GUVEN,N . PALLASTRO,R. M. (eds) Clay Water Interface and its Rheological Proper-ties. CMS workshop l ec tures , 4 , Clay Minera l s Soc ie ty ,157-190.MCKINNON, I . D. R. 1987. The fundam ental nature ofi l l i te-sm ect i temix ed layer clay particles: a com me nt on the papers byP.H.Nadeau and coworkers . Clays & Clay Minerals, 35,7 4 - 7 6 .MILLOT, G. 197 0. Geology of Clay. Chapman-Hal l , London.MOORE, D. M. & REYNOLDS, R. C. 199 7. X-ra y d ifract ion andthe ident if icat ion and analysis of clay minerals . OxfordUniversi ty Press.NADEAU, P. H . & BA1N, D. C. 1986. Com posi t ion o f some smect i tesand diagenet ic i l l i t ic clays and implicat ions for their or igin.Clays and Clay Materials, 34, 455-464.NADEAU, P. H., WILSON, M. J., MCHA RDY, W . J. & TAIT, J. 1987.Interpart icle diffract ion: a new conc ept for interstrat if iedclays. Clay Minerals, 19, 757-769.NEWMAN, A. C . D. 1987. The interact ion of water with clay minera lsurfaces. In: NEWMAN, A. C. D. (ed.) Chemistry of Claysand Clay Minerals. Minera logica l Soc ie ty Monograph, 6 ,2 3 7 - 2 7 4 .RUPERT, J. P ., GRANQUIST,W. T. & PINNAVAIA,T. J . 19 87. Catalyt icproper t ies of c l ay minera l s . In: NEWMAN,A. C. D. (ed.) Chem-istry of Clays and Clay Minerals, Minera logica l Soc ie tyMonograph, 6 , 275-318.SAWNHEY, B. L . 199 6. Sorpt ion and desorpt ion of organ ic com -pounds by soi ls and clays. In: SAWNHEY,B. L. (ed.) OrganicPollutants in the Environment. CMS Workshop Lectures, 8.Clay M inera ls Soc ie ty , 45-68.SAWNHEY, B. L. & REYNOLDS, R. C. 19 85. Interstratifie d cla y asfimd am ental particles: a discussion. Clays & Clay Minerals,33, 559.SHAW, D. B . & WEAVER, C. E . 1965 . The mine ralogica l composi-t ion o f shale. Journal o f Sedimentary Petrology, 35, 213-222.SKIPPER, N. T., REFSON, K. & MCCONNELL, J. D . C. 199 3. M onteCar lo s imula t ions of M g-and Na-smect i t es . In: MANNING, D.A. C. H ALL, P. L. & HUGHES, C. R. (eds) Geochemistry ofClay-pore Fluid Interactions, Ch a p m a n & Ha l l , Lo n d o n ,4 0 - 6 1 .THAUMASITE EXPERT GROUP 1999. The Thaumasite Form ofSulphate Attack." Risks, Diagnosis, Remedial Works andGuidance on New Construction. Depar tment of Envi ronment ,Transpor t & Regions , HMSO, London.TISSOT, B. P . & WELTE, D. H. 19 84 . Petroleum Formation andOccurrence. Springer, Berlin.TUCKER, M. E. 19 81 . Sedimentary Petrology: an Introduction.Blackwell , Oxford.TYsoN, R. V. 1995. Sedimentary Organic Matter. Ch a p m a n &Hal l , London.

    VAN OLPHEN,H. 1977. An Introduction to Clay Colloid Chemistry.Wiley Chiches te r .VELDE, B. 199 2. Introduction to Clay Minerals. Ch a p m a n & Ha l l,Lo n d o n .YARIV, S. & CROSS, H. 19 79 . Geochemistry of Colloidal Systemsfor Earth Scientists. Sprin~er, Berlin.