21
1 MatE 271, Unit 3–3 Materials Engineering Composites Instructor: Joshua U. Otaigbe Iowa State University 2 MatE 271, Unit 3–3 Materials Engineering Goals this Unit Survey composite materials – Fiber reinforced materials » Natural » Synthetic – Large aggregate composites – Several special types Understand properties of composites – Averaging schemes – Mechanical properties

Composites - Flaney · PDF fileMaterials Engineering MatE 271, Unit 3– 3 1 Composites Instructor: Joshua U.Otaigbe Iowa State University Materials Engineering MatE 271, Unit 3–

Embed Size (px)

Citation preview

Page 1: Composites - Flaney · PDF fileMaterials Engineering MatE 271, Unit 3– 3 1 Composites Instructor: Joshua U.Otaigbe Iowa State University Materials Engineering MatE 271, Unit 3–

1M a t E 2 7 1 , U n i t 3– 3M a t e r i a l s E n g i n e e r i n g

Composites

Instructor: Joshua U. OtaigbeIowa State University

2M a t E 2 7 1 , U n i t 3– 3M a t e r i a l s E n g i n e e r i n g

Goals this Unit

• Survey composite materials– Fiber reinforced materials

» Natural» Synthetic

– Large aggregate composites– Several special types

• Understand properties of composites– Averaging schemes– Mechanical properties

Page 2: Composites - Flaney · PDF fileMaterials Engineering MatE 271, Unit 3– 3 1 Composites Instructor: Joshua U.Otaigbe Iowa State University Materials Engineering MatE 271, Unit 3–

3M a t E 2 7 1 , U n i t 3– 3M a t e r i a l s E n g i n e e r i n g

Definition/Overview

• Materials which involve some combination of two or more components, often from different materials classes

• Usually combine attractive properties from each component to make a product superior to any single component

• We’ll discuss microscopic (not macroscopic) composites

4M a t E 2 7 1 , U n i t 3– 3M a t e r i a l s E n g i n e e r i n g

Classification of composites

(macro)

Page 3: Composites - Flaney · PDF fileMaterials Engineering MatE 271, Unit 3– 3 1 Composites Instructor: Joshua U.Otaigbe Iowa State University Materials Engineering MatE 271, Unit 3–

5M a t E 2 7 1 , U n i t 3– 3M a t e r i a l s E n g i n e e r i n g

Wood - Natural Fiber Composite

• Most composites are patterned after natural structures– (e.g. bone, wood, etc.)

• Wood is the most common structural material (weight used each year exceeds concrete and steel)

• Organic fibers reinforcing natural polymeric matrix

6M a t E 2 7 1 , U n i t 3– 3M a t e r i a l s E n g i n e e r i n g

Wood structure

S h a c k e l f o r d 1 0 -5

Page 4: Composites - Flaney · PDF fileMaterials Engineering MatE 271, Unit 3– 3 1 Composites Instructor: Joshua U.Otaigbe Iowa State University Materials Engineering MatE 271, Unit 3–

7M a t E 2 7 1 , U n i t 3– 3M a t e r i a l s E n g i n e e r i n g

Anisotropy of properties is common in composites

8M a t E 2 7 1 , U n i t 3– 3M a t e r i a l s E n g i n e e r i n g

Fiber configurations

• Continuous fibers– (not necessarily straight)

• Discrete (chopped)• Woven fabric

(Note that the properties will(Note that the properties willtend to be tend to be anisotropicanisotropic becausebecauseof fiber alignment)of fiber alignment)

Page 5: Composites - Flaney · PDF fileMaterials Engineering MatE 271, Unit 3– 3 1 Composites Instructor: Joshua U.Otaigbe Iowa State University Materials Engineering MatE 271, Unit 3–

9M a t E 2 7 1 , U n i t 3– 3M a t e r i a l s E n g i n e e r i n g

Synthetic Fiber-Reinforced Composites

• One of the most common composite types– Micron scale reinforcing fibers (stronger/stiffer)

» Glass fibers

» Higher moduli fibers (“advanced composites”)

– Matrix material is frequently a polymer (weaker/softer/less brittle/inexpensive)

10M a t E 2 7 1 , U n i t 3– 3M a t e r i a l s E n g i n e e r i n g

Fiberglass Fibers

» Glass fiber-reinforced polymer

» Different compositions of glass (consider electrical, thermal, chemical and mechanical properties)

S h a c k e l f o r d 1 0 -1 , 2

Page 6: Composites - Flaney · PDF fileMaterials Engineering MatE 271, Unit 3– 3 1 Composites Instructor: Joshua U.Otaigbe Iowa State University Materials Engineering MatE 271, Unit 3–

11M a t E 2 7 1 , U n i t 3– 3M a t e r i a l s E n g i n e e r i n g

“Fiberglass” Matrix Phase

• The phase surrounding the fibers• Thermosetting polymers

– Epoxies, polyesters, silicones

• Thermoplastic– Nylon, polystyrene, polycarbonate

• Vital that there be a strong interfacial bond between fibers and matrix to transfer loads effectively between phases

12M a t E 2 7 1 , U n i t 3– 3M a t e r i a l s E n g i n e e r i n g

Advanced composites

• Higher moduli fibers than glass• Matrix can be polymer, ceramic or metal

– PMCs, CMCs, MMCs• Many materials were developed for military

applications (e.g. “stealth” structures)• Conversion to other markets

– Marine, aviation, civil engineering structures, automotive components, sporting goods (costs still quite high)

Page 7: Composites - Flaney · PDF fileMaterials Engineering MatE 271, Unit 3– 3 1 Composites Instructor: Joshua U.Otaigbe Iowa State University Materials Engineering MatE 271, Unit 3–

13M a t E 2 7 1 , U n i t 3– 3M a t e r i a l s E n g i n e e r i n g

Property Averaging

• Properties of composite represent some average of the constituent properties

• The “average” is extremely sensitive to geometry– parallel to fibers– perpendicular to fibers– in a uniformly dispersed aggregate

14M a t E 2 7 1 , U n i t 3– 3M a t e r i a l s E n g i n e e r i n g

Composite properties are intermediate between two materials

continuous/aligned E glass in epoxy

Page 8: Composites - Flaney · PDF fileMaterials Engineering MatE 271, Unit 3– 3 1 Composites Instructor: Joshua U.Otaigbe Iowa State University Materials Engineering MatE 271, Unit 3–

15M a t E 2 7 1 , U n i t 3– 3M a t e r i a l s E n g i n e e r i n g

Fiber reinforcement sizes

16M a t E 2 7 1 , U n i t 3– 3M a t e r i a l s E n g i n e e r i n g

Loading/alignment nomenclature

continuous/aligned

discontinuous/

alignedrandom

Page 9: Composites - Flaney · PDF fileMaterials Engineering MatE 271, Unit 3– 3 1 Composites Instructor: Joshua U.Otaigbe Iowa State University Materials Engineering MatE 271, Unit 3–

17M a t E 2 7 1 , U n i t 3– 3M a t e r i a l s E n g i n e e r i n g

Isostrain condition

Subscripts:

0 = composite

m = matrix

f = fiber

18M a t E 2 7 1 , U n i t 3– 3M a t e r i a l s E n g i n e e r i n g

Isostrain Loading

• Continuous and aligned fiber reinforcement

• Young’s modulus (E)

• Ratio of loads supported

fffm0 VE)V(EE +−= 1

( )( )mm

ff

m

f

VEVE

PP

=

Page 10: Composites - Flaney · PDF fileMaterials Engineering MatE 271, Unit 3– 3 1 Composites Instructor: Joshua U.Otaigbe Iowa State University Materials Engineering MatE 271, Unit 3–

19M a t E 2 7 1 , U n i t 3– 3M a t e r i a l s E n g i n e e r i n g

Effect of fiber length

• There is a critical minimum length of fibers necessary to impart effective strengthening and stiffening to the composite in longitudinal (isostrain)loading

strength) bondmatrix -fiber as (takenmatrix of strengthshear

diameterfiber d

fiber of strength (fracture) tensile

dl

m

f

m

fc

=

τ

σ=

20M a t E 2 7 1 , U n i t 3– 3M a t e r i a l s E n g i n e e r i n g

Effect of fiber length

• If l (fiber length) < lc, fiber imparts little benefit• If lc < l < 15 lc, fiber is said to be “short” or

“discontinuous”, but benefit of fiber increases as l increases.

• If l > 15 lc, fiber is said to be “continuous”• lc is typically around 1 mm for many glass and

carbon fiber-matrix combinations

Page 11: Composites - Flaney · PDF fileMaterials Engineering MatE 271, Unit 3– 3 1 Composites Instructor: Joshua U.Otaigbe Iowa State University Materials Engineering MatE 271, Unit 3–

21M a t E 2 7 1 , U n i t 3– 3M a t e r i a l s E n g i n e e r i n g

Fiber loading when l = lc

22M a t E 2 7 1 , U n i t 3– 3M a t e r i a l s E n g i n e e r i n g

Fiber loading when l > lc

Page 12: Composites - Flaney · PDF fileMaterials Engineering MatE 271, Unit 3– 3 1 Composites Instructor: Joshua U.Otaigbe Iowa State University Materials Engineering MatE 271, Unit 3–

23M a t E 2 7 1 , U n i t 3– 3M a t e r i a l s E n g i n e e r i n g

Fiber loading when l < lc

24M a t E 2 7 1 , U n i t 3– 3M a t e r i a l s E n g i n e e r i n g

Discontinuous fibers

• Discontinuous aligned fibers• Longitudinal tensile strength (parallel to fiber

direction)

• For l < lc, case is beyond our scope• For discontinuous random fibers and for

laminated composites, ditto

fails composite when stressmatrix )TS(

strength fracturefiber )TS(

lllfor )V()TS()l

l(V)TS()TS(

'm

f

ccf'm

cff0

=

=

<<−+−= 1512

1

Page 13: Composites - Flaney · PDF fileMaterials Engineering MatE 271, Unit 3– 3 1 Composites Instructor: Joshua U.Otaigbe Iowa State University Materials Engineering MatE 271, Unit 3–

25M a t E 2 7 1 , U n i t 3– 3M a t e r i a l s E n g i n e e r i n g

Anisotropy vs Isotropy

26M a t E 2 7 1 , U n i t 3– 3M a t e r i a l s E n g i n e e r i n g

Isostress Condition

Page 14: Composites - Flaney · PDF fileMaterials Engineering MatE 271, Unit 3– 3 1 Composites Instructor: Joshua U.Otaigbe Iowa State University Materials Engineering MatE 271, Unit 3–

27M a t E 2 7 1 , U n i t 3– 3M a t e r i a l s E n g i n e e r i n g

Isostress Loading

• Continuous and aligned fibers

• Young’s Modulus (E)

or f

f

m

m

EV

EV

E+=

0

1

mfff

fm

EVE)V(EE

E+−

=10

28M a t E 2 7 1 , U n i t 3– 3M a t e r i a l s E n g i n e e r i n g

Isostrain and Isostress Limits

Page 15: Composites - Flaney · PDF fileMaterials Engineering MatE 271, Unit 3– 3 1 Composites Instructor: Joshua U.Otaigbe Iowa State University Materials Engineering MatE 271, Unit 3–

29M a t E 2 7 1 , U n i t 3– 3M a t e r i a l s E n g i n e e r i n g

Interfacial Bond Strength

• In polymer matrix and metal matrix composites (PMCs and MMCs), it is important that interfacial bond strength be high, because fibers are the stronger phase

• In ceramic matrix composites (CMCs), the matrix is strong but brittle, so desirable for interfacial bond strength to be low (“fiber pullout” is desired to increase toughness or resistance to fracture.)

30M a t E 2 7 1 , U n i t 3– 3M a t e r i a l s E n g i n e e r i n g

Strong and weak interfacial bond

Page 16: Composites - Flaney · PDF fileMaterials Engineering MatE 271, Unit 3– 3 1 Composites Instructor: Joshua U.Otaigbe Iowa State University Materials Engineering MatE 271, Unit 3–

31M a t E 2 7 1 , U n i t 3– 3M a t e r i a l s E n g i n e e r i n g

Fiber Pullout Mechanism of Toughening in CMCs

32M a t E 2 7 1 , U n i t 3– 3M a t e r i a l s E n g i n e e r i n g

Toughening of CMCs

Page 17: Composites - Flaney · PDF fileMaterials Engineering MatE 271, Unit 3– 3 1 Composites Instructor: Joshua U.Otaigbe Iowa State University Materials Engineering MatE 271, Unit 3–

33M a t E 2 7 1 , U n i t 3– 3M a t e r i a l s E n g i n e e r i n g

Large Aggregate Composites

• Particles reinforce the matrix phase

• Most common example is concrete

– rock (coarse) and sand (fine) aggregates

» usually chosen from locally available deposits)

– aluminosilicate (cement) matrix

» Portland cement (Ca-aluminosilicates)

• Weight of concrete used each year exceeds that of all metals combined

34M a t E 2 7 1 , U n i t 3– 3M a t e r i a l s E n g i n e e r i n g

Graded Aggregates for Packing Efficiency

Page 18: Composites - Flaney · PDF fileMaterials Engineering MatE 271, Unit 3– 3 1 Composites Instructor: Joshua U.Otaigbe Iowa State University Materials Engineering MatE 271, Unit 3–

35M a t E 2 7 1 , U n i t 3– 3M a t e r i a l s E n g i n e e r i n g

“Large Aggregate” Composites

ppmm0 VEVEE +=

Upper Bound

mppm

pm

EVEVEE

E+

=0

Lower Bound

36M a t E 2 7 1 , U n i t 3– 3M a t e r i a l s E n g i n e e r i n g

Mixture performance boundaries

Tungsten particles in copper matrix

Page 19: Composites - Flaney · PDF fileMaterials Engineering MatE 271, Unit 3– 3 1 Composites Instructor: Joshua U.Otaigbe Iowa State University Materials Engineering MatE 271, Unit 3–

37M a t E 2 7 1 , U n i t 3– 3M a t e r i a l s E n g i n e e r i n g

Mixture relationship for aggregate composites

nhh

nll

n EVEVE +=0

Where the subscript l refers to the phase with lower modulus and h refers to the phase with higher modulus

38M a t E 2 7 1 , U n i t 3– 3M a t e r i a l s E n g i n e e r i n g

Mixture relationship

Page 20: Composites - Flaney · PDF fileMaterials Engineering MatE 271, Unit 3– 3 1 Composites Instructor: Joshua U.Otaigbe Iowa State University Materials Engineering MatE 271, Unit 3–

39M a t E 2 7 1 , U n i t 3– 3M a t e r i a l s E n g i n e e r i n g

Other particulate composites

• SiC in Aluminum

• Tungsten in Copper• Tungsten Carbide in Copper (cutting

tools)

• Dispersion strengthened materials– very fine particles - usually oxides (small

concentration - 15%) in a metal matrix

40M a t E 2 7 1 , U n i t 3– 3M a t e r i a l s E n g i n e e r i n g

Reinforced concrete(A macrocomposite)

• Concrete is very strong in compression• Reinforced with steel bars• Prestressing is also commonly used

– Added bars are held in tension until the concrete hardens and then the stress is released

– This leaves a residual compressive stress

– Most often used for bridges (large unsupported spans in flexure)

Page 21: Composites - Flaney · PDF fileMaterials Engineering MatE 271, Unit 3– 3 1 Composites Instructor: Joshua U.Otaigbe Iowa State University Materials Engineering MatE 271, Unit 3–

41M a t E 2 7 1 , U n i t 3– 3M a t e r i a l s E n g i n e e r i n g

Honeycomb sandwich composite(A macro composite)

42M a t E 2 7 1 , U n i t 3– 3M a t e r i a l s E n g i n e e r i n g

Composites Summary

• Reinforced composite materials include fiber (both natural and synthetic) and particulate (aggregate) reinforced composites

• Property averaging schemes depend on the quantities, shape and orientation of reinforcement phase

* Optional additional reading» http://www.iastate.edu/mse383/index.htm