Composite Dan Future IPR - 2010

  • Upload
    ekokus

  • View
    229

  • Download
    12

Embed Size (px)

Citation preview

LOGO INFLOW PERFORMANCE RELATIONSHIP COMPOSITE IPR LOGO Composite IPR (1) 2 Nearly all producing formations are stratified to some extent. This means that the vertical borehole in the production zone has different layers having different reservoir pressures, permeabilities, and producing fluids. If it is assumed that there are no other communication between these formations (other than the wellbore), the production will come mainly from the higher permeability layers. Pr1, k1,.. Pr2, k2,.. Pr3, k3,.. q1 q2 q3 q1+q2+q3 LOGO Composite IPR (2) 3 As the wells rate of production is gradually increased, the less consolidated layers will begin to produce one by one (at progressively lower GOR), and so the overall ratio of production (q1 : q2 : q3) will fall as the rate is increased. q1 q2 q3 (q1+q2+q3)>>> Pwf > GOR total >> LOGO Composite IPR (4) 5 Thus, it is to be expected that a well producing from a stratified formation will exhibit a minimum GOR as the rate of production is increased. q1q2q3q1+q2+q3>>GORtotal >>LOGO Composite IPR (5)6 One of the major concerns in a multiplayer system is that interlayer cross-flow may occur if reservoir fluids are produced from commingled layers that have unequal initial pressures. This cross-flow greatly affects the composite IPR of the well, which may result in an optimistic estimate of production rate from the commingled layers. q 1 q 2 q 3 q 1 +q 2 +q 3 >> GORtotal >> LOGO Composite IPR (6) 7 El-Banbi and Wattenbarger (1996, 1997) investigated productivity of commingled gas reservoirs based on history matching to production data. However, no information was given in the papers regarding generation of IPR curves. LOGO CompositeIPR (7) Pseudosteady-state flow prevails in all the reservoir layers. Fluids from/into all the layers have similar properties. Pressure losses in the wellbore sections between layers are negligible (these pressure losses are considered in Chapter 6 where multilateral wells are addressed). The IPR of individual layers is known. 8 q1q2q3q1+q2+q3>>GORtotal >>LOGO 9 On the basis of Assumption 1, under steady-flow conditions, the principle of material balance dictates net mass flow rate from layers to the well =mass flow rate at well head or PENGEMBANGANPERSAMAAN COMPOSITE IPR LOGO 10 Fluid flow from wellbore to reservoir is indicated by negative qi UsingAssumption 2 and ignoring density change from bottom hole to well head, Eq. (3.36) degenerates to PENGEMBANGANPERSAMAAN COMPOSITE IPR LOGO Single-Phase Liquid Flow 11 The reservoir Pressure is above the Bubble Point Pressure The flowing bottom hole pressure also above the Bubble Point pressure J*i is the productivity index of layer I IPR Equation for composite reservoirs and single phase LOGO Maximum Production Rate 12 For a single layer formation, Qmax is determine at Pwf = 0 It is different for composite formations Each formation has different values of Qmax, but should have the same bottom hole pressure It should be borne in mind that Pwfo is a dynamic bottomhole pressure because of cross-flow between layers. LOGO Two-Phase Flow Composite IPR 13 Developed based on Vogels IPR Curve Composite Two-Phase IPR Curve Wells Maximum Flow Rate The flowing bottom hole pressure at Qmax

LOGO Two Phase IPR Pr > Pb 14 LOGO Case Study (1) 15 LOGO Case Study (2) 16 LOGO Case Study (3) 17 The composite IPR for Group 1 (D3 and D4) is the same as shown in Fig. 3.15 because these two layers were the commingle-tested.Composite IPRs of Group 2 and Group 3 are plotted in Figs. 3.17 and 3.18. Table 3.2 compares production rates read from Figs. 3.16, 3.17, and 3.18 at some pressures. This comparison indicates that significant production from Group 1 can be achieved at bottom-hole pressures higher than 2658 psi, while Group 2 and Group 3 are shut-in.A significant production from Group 1 and Group 2 can be achieved at bottomhole pressures higher than 2,625 psi while Group 3 is shutin. The grouped-layer production will remain beneficial until bottom-hole pressure is dropped to below 2,335 psi where Group 3 can be open for production. LOGO FUTURE IPR CURVES PERAMALAN KURVA IPRNp meningkat, P-r turun, maka Productivity Index turun (?) 18 LOGO Persamaan Aliran Dua Fasa Dinyatakan sebagai Fungsi tekanan Kro sebagai fungsi saturasi minyak So = f(P) Berubah thd Waktu Dan Tekanan J dipengaruhi oleh kro/oBo 19 LOGO Persamaan Aliran Dua Fasa Perubahan Kurva IPR di waktu mendatang ditunjukkan oleh perubahan slope, yang ditunjukkan olehperubahan productivity index, J. Untuk kondisi aliran 2 fasa, untuk setiap kurva IPR harga productivity index dinyatakan sebagai dq/dPwf = J 20 LOGO Perubahan Productivity Index (1) 21 LOGO Perubahan Productivity Index (2) Muskat menyatakan bahwa perbandingan Productiviy Index pada dua waktu produksi yang berbeda dapat dinyatakan sebagai perbandingan: Productivity Index didefinisikan sebagai slope dari kurva IPR 2121||.|

\|||.|

\|=o oroo oroBkBkJJwfdPdqJ =22 LOGO Peramalan IPR rmax o*pPQ 8 . 1J =Productivity Index, (dq/dPwf) yang merupakan turunandari persamaan Vogel adalah sebagai berikut: Subscript p menyatakan kondisi saat ini (presentcondition) Berdasarkan persamaan aliran 2 fasa, perbandingan productivity index padakondisi saat ini dan yangakan datang, dinyatakan: 23 LOGO Peramalan IPR Berdasarkan hasil turunan productivity index, maka dapat ditentukan Laju Produksi Minyak Maksimum untuk waktu produksi mendatang : 24 LOGO Persamaan Fetkovich Asumsi bahwa hubungan antara kro/oBo terhadap tekanan adalah linier, sehingga perbandingan kro/oBo pada dua harga tekanan sama dengan perbandingan tekanannya Dengan demikian perbandingan productivity index dapat dinyatakan sebagai rirPo oroPo oroPPBkBkrir=||.|

\|||.|

\|2 r1 r21PPJJ=25 LOGO Persamaan Fetkovich rfriPrPrPPJJfi=n2wf2rf Pr oP P J qf =n2wf2rfrirfi Pr oP PPPJ q =rirfPr PrPPJ Ji f=Harga JPri dan n diperoleh dari data test isochronal pada Pri Dengan anggapan bahwa J dan n tidak berubah 26 LOGO Persamaan Fetkovich Jika harga n pada persamaan Fetkovich dianggap berharga 1.0, maka perbandingan antara laju produksi maksimum pada dua harga tekanan reservoir yang berbeda dapat dinyatakan sebagai:31 r2 r1 max o2 max oPPQQ||.|

\|=3rirfi max o f max oPPQ Q||.|

\|=27 LOGO Persamaan Peramalan IPR - PS ( ) ( ) { }wf rwe3oP m P mS 5 . 0rrlnkh 10 08 . 7q + ||.|

\|=( )rwe3max oP mS 5 . 0rrlnkh 10 08 . 7Q+ ||.|

\|=( )( )rirfi max of max oP mP mQQ=Pada Pwf = 0 maka Qo,max: Perbandingan Qomax awal terhadap Qomax yang akan datang: 28 LOGO Persamaan Peramalan IPR - PS ( )( )||.|

\|=rirfrirfPP429922 . 3 exp 033210 . 0P mP m( )( )||.|

\|=rirfrirfPP152343 . 4 exp 015215 . 0P mP mAPI > 40 API < 40 ( )( )rirfi max o f max oP mP mQ Q =Persamaan IPR PS 29 LOGO Persamaan IPR PS S c3S c1 n4 2e c e c a + =anc1c2c3c4 a10.1829220-0.36443800.8145410-0.0558730 a2-1.4769500-0.45663201.6462460-0.4423060 a3-2.1492740-0.19597602.2892420-0.2203330 a4-0.02178310.0882860-0.2603850-0.2108010 a5-0.5524470-0.0324490-0.5832420-0.3069620 rwfDPPP =30 LOGO 31