4
Design Calculation Job No: IA-PB-**** Design By : *** Checked By : *** Page # : 1 Reference Codes IRC-22 IRC-24 IRC-21 GIVEN DATA Span (L) = 18 m Concrete slab width (cbf) = 2000.00 mm Thickness of slab (cth) = 300.00 mm fck, Grade of concrete = 40 N/mm 2 Live Load (LL) = 700.00 kN Super imposed dead load = 20% slab wt Steel Beam I- Section dw, Web Depth = 1000 mm t w , Web Thickness = 10 mm b f , Flange Width = 500 mm t fo , Flange Thickness = 30 mm b f , Bottom Flange Width = 500 mm t fi , Bottom Flange Thickness = 30 mm D, Total Depth = 1060 mm Type of Construction : Unshored DATA ASSUMED Ec = 32500 N/mm 2 (IRC-21:2000, Table-9) Density of Concrete = 24 kN/m 3 Es, Modulus of Elasticity = 211000 N/mm 2 (IRC-24:2001, 505.1.1) Density of steel = 78.5 kN/m 3 Yield strength of steel 250 Mpa Y Concrete Flange = 2000 x 300 Z Z Web =1000x10 Top & Bottom Flange=500x30 Y Load Calculation Dead Loads Self weight of slab = 14.40 kN/m Self weight of beam = 3.14 kN/m Super imposed dead load ( 20% slab wt ) = 2.88 kN/m Total Dead Load (DL) = 20.42 kN/m DL moment ( wl^2/8) = 827.01 kN.m LL moment ( Wl / 8) = 1575.00 kN.m DL Shear 183.78 kN LL Shear 350.00 kN

Composite Beam Design

Embed Size (px)

DESCRIPTION

composite beam design as per IRC

Citation preview

  • Design Calculation Job No: IA-PB-****

    Design By : ***

    Checked By : ***

    Page # : 1

    Reference Codes

    IRC-22

    IRC-24

    IRC-21

    GIVEN DATA

    Span (L) = 18 m

    Concrete slab width (cbf) = 2000.00 mm

    Thickness of slab (cth) = 300.00 mm

    fck, Grade of concrete = 40 N/mm2

    Live Load (LL) = 700.00 kN

    Super imposed dead load = 20% slab wt

    Steel Beam I- Section

    dw, Web Depth = 1000 mm

    tw, Web Thickness = 10 mm

    bf, Flange Width = 500 mm

    tfo, Flange Thickness = 30 mm

    bf, Bottom Flange Width = 500 mm

    tfi, Bottom Flange Thickness = 30 mm

    D, Total Depth = 1060 mm

    Type of Construction : Unshored

    DATA ASSUMED

    Ec = 32500 N/mm2

    (IRC-21:2000, Table-9)

    Density of Concrete = 24 kN/m3

    Es, Modulus of Elasticity = 211000 N/mm2

    (IRC-24:2001, 505.1.1)

    Density of steel = 78.5 kN/m3

    Yield strength of steel 250 Mpa

    Y

    Concrete Flange = 2000 x 300

    Z Z

    Web =1000x10

    Top & Bottom Flange=500x30

    Y

    Load Calculation

    Dead Loads

    Self weight of slab = 14.40 kN/m

    Self weight of beam = 3.14 kN/m

    Super imposed dead load ( 20% slab wt ) = 2.88 kN/m

    Total Dead Load (DL) = 20.42 kN/m

    DL moment ( wl^2/8) = 827.01 kN.m

    LL moment ( Wl / 8) = 1575.00 kN.m

    DL Shear 183.78 kN

    LL Shear 350.00 kN

  • Design Calculation Job No: IA-PB-****

    Design By : ***

    Checked By : ***

    Page # : 2

    M, Moment = wL2/8 = 583.2 kN.m

    V, Shear Force = 129.6 kN

    Modular Ratio

    For Permenant Loads, m = Es / ( Kc x Ec ) = 12.98461538

    For Transient Loads, m = Es / ( Ec ) = 6.492307692

    Properties of I - Beam (STEEL)

    A, Area = 40000 mm2

    yg, centroid of section from bottom flange = 530 mm

    Iz, Inertia about major axis = 8,792,333,333 mm4

    Iy, Inertia about minor axis = 625,083,333 mm4

    ry Radius of gyration about yy 125

    Z, Section Modulus 16,589,308 mm3

    Composite proerties for Transient Loads

    transformed Effective width of flange ( cbf/m) = 308.06 mm

    transformed Area for concrete flange () = 92417 mm2

  • Design Calculation Job No: IA-PB-****

    Design By : ***

    Checked By : ***

    Page # : 3

    Combined Properties of I-beam + Concrete flange

    Total Depth = 1360 mm

    Total area = 132417 mm2

    C. G. of section from bottom flange = 1005 mm

    Iz, for combined section = 22,394,265,877 mm4

    Zzbottom flange, for combined section = 22,291,981 mm3

    Z top, for combined section = 63,009,384 mm3

    Calculation of elastic Critical stress fcb

    fcb = k1 ( X + k2 Y ) ( c2 / c1 ) 191.72

    X = Y sqrt ( 1 + 1/20 ( l T / ( ry D )^ 2 ) 127.814206

    Y = 26.5 x 10 ^ 5 / ( l / ry ) ^ 2 Mpa 127.81411

    c1, c2 = lesser & greater distance of of extreme

    fiber from N.A 530.0 Mpa

    k1 1

    k2 0.50

    sigma bc 87 Mpa

    1) Checking of the stress

    CONSTRUCTION STAGE

    During construction stage, since

    Due to Dead Loads ( Unshored condition )

    bending compressivestress @ top flange 49.85

    Allowable stress

    bending tensile stress @ bottom flange = 49.85 N/mm2

    Allowable bending stress = 0.62 * Fy = 155 N/mm2

    Unity Check = 0.32 < 1.0 Hence ok

    Shear stress (average) = 18.38 N/mm2

    Allowable shear stress = 0.38 * Fy = 95 N/mm2 ( Table 6.2, IRC-24-2001 )

    Unity Check = 0.19 < 1.0 Hence ok

    Deflection check

    Allowable deflection ( span / ) = 600

    Deflection ((5/384)*w*L4/(E*I) = 5.9070 mm

    span / deflection = 3047 O.K.

    Composite action for additional live load

    Additional tesile stress in steel 71 N/mm2

    Total tensile stress in steel 121 N/mm2

    Allowable bending stress = 0.62 * Fy = 155 N/mm2

    Unity Check = 0.78 < 1.0 Hence ok

    Compressive stress in concrete = 3.85 N/mm2

    Allowable stress 15.00 N/mm2 ( Table - 9 of IRC 21)

    Vertical Shear

    Total Vertical shear is assumed to be resisted by steel beam

    Total Vertical shear = 533.78 kN

    Shear stress (average) = 53.38 N/mm2

    Allowable shear stress = 0.38 * Fy = 95 N/mm2 ( Table 6.2, IRC-24-2001 )

    Unity Check = 0.56 < 1.0 Hence ok

    Design of shear connectors

    High tensile shear Connector from fatigue strength consideration

    IRC:22-2000: Cl 611.4.1.2

    VR = 350.00 kn

    Area of transformed concrete salb = Ac = 92417 mm2

    Y bar = 205

    I = 22,394,265,877 mm4

    Vr 0.2967 kN/mm

    P = Spacing of connectors required

  • Design Calculation Job No: IA-PB-****

    Design By : ***

    Checked By : ***

    Page # : 4

    dia of shear stud, d 25

    stud height , h 120

    h/d 5 > 4

    No of shear studs / cross section 2

    Qr = Alpha. A. 10^-2 27 kN

    P 182 mm

    High tesile shear Connector from the consideration of ultimate flexural strength

    Maximum horizontal force based on CL 611.4.1.2.1

    H1 = Ast . Fy . 10-3

    = 10000 kN

    H2 = 0.85 fc. bf. hf. 10-3

    20400 kN

    Maximum horizontal force in the slab =minimim of H1 & H2

    10000 kN

    The ultimate strength of shear connector Qu = 0.5A sqrt (fck.Ec) x 10^-3

    279.84

    number of shear connectors between the mid span and end support, n = H/ ( lamda Qu ), Lamda = 0.85

    42.04

    The number of shear connecters based on fatigue 98.91 Hence the fatigue strength requirement governs

    Design of transverse reinforcement

    VL = V . Ac . Y / I

    Since it is unshored construction, the V is the shear from Live load & super imposed dead load

    350.00

    VL 0.30 kN/mm

    0.4 Ls sqrt (fck)

    Ls, length of shear plane 1-1 as per Fig 5a of IRC 22

    600 mm

    Ls, for shear plane 2-2 as per Fig 5a of IRC 22 740 mm

    0.4 Ls sqrt (fck) 1517.89

    0.7 As sigma y + 0.08 Ls sqrt (fck) 486.01

    Reinforcement provided = 0.2% in each direction 600.00 mm^2 / m length

    Diameter of reinforcement 10.00 mm

    spacing of top & bottom bar 0.26 m

    Provide 10mm dia bars @ 250k=mm spacing at top & bottom in both directions