Components-L2 (1).ppt

Embed Size (px)

Citation preview

  • 8/10/2019 Components-L2 (1).ppt

    1/51

    Prof. Z Ghassemlooy 1

    EN554 Photonic Networks

    Professor Z Ghassemlooy

    Lecture 2 - Devices &Components

    Northumbria Communications Laboratory

    School of Informatics, Engineering andTechnology

    The University of Northumbria

    U.K.

    http://soe.unn.ac.uk/ocr

  • 8/10/2019 Components-L2 (1).ppt

    2/51

    Prof. Z Ghassemlooy 2

    Contents

    Connectors + Optical Splice Attenuators Coupler

    Splitter Filters Fibre Brag Grating Optical Isolator Circulators Optical Add/Drop Multiplexer & Demultiplexer

  • 8/10/2019 Components-L2 (1).ppt

    3/51

    Prof. Z Ghassemlooy 3

    Connectors

    A mechanical or optical device that provides a

    demountable connection between two fibers or a fiber and

    a source or detector.

  • 8/10/2019 Components-L2 (1).ppt

    4/51

    Prof. Z Ghassemlooy 4

    Connectors - contd .

    Type: SC, FC, ST, MU, SMAFavored with single-mode fibre

    Multimode fibre (50/125um) and (62.5/125um)

    Loss 0.15 - 0.3 dB

    Return loss 55 dB (SMF), 25 dB (MMF)

    Single fibre connector

  • 8/10/2019 Components-L2 (1).ppt

    5/51

  • 8/10/2019 Components-L2 (1).ppt

    6/51

    Prof. Z Ghassemlooy 6

    Optical Splices

    Mechanical Ends of two pieces of fiber are cleaned and stripped, then carefully butted

    together and aligned using a mechanical assembly. A gel is used at the

    point of contact to reduce light reflection and keep the splice loss at a

    minimum. The ends of the fiber are held together by friction or

    compression, and the splice assembly features a locking mechanism so

    that the fibers remained aligned.

    Fusion Involves actually melting (fusing) together the ends of two pieces of fiber.

    The result is a continuous fiber without a break.

    Both are capable of splice losses in the range of 0.15 dB (3%) to

    0.1 dB (2%).

  • 8/10/2019 Components-L2 (1).ppt

    7/51

  • 8/10/2019 Components-L2 (1).ppt

    8/51Prof. Z Ghassemlooy 8

    Attenuators - contd .

    Bandpass 1310/1550nm

    FC, SC, ST, and D4 styles

    Wavelength independent

    Polarization insensitive

    Low modal noise

    In line attenuatorDual window

  • 8/10/2019 Components-L2 (1).ppt

    9/51Prof. Z Ghassemlooy 9

    Optical Couplers

    Optic couplers either split optical signals into multiple paths orcombine multiple signals on one path.

    The number of input (N)/ output (M) ports, (i.e.s N x M size)

    characterizes a coupler.

    Fused couplers can be made in any configuration, but theycommonly use multiples of two (2 x 2, 4 x 4, 8 x 8, etc.).

  • 8/10/2019 Components-L2 (1).ppt

    10/51

  • 8/10/2019 Components-L2 (1).ppt

    11/51Prof. Z Ghassemlooy 11

    Coupler Configuration

    P1P2P3

    P1P2P3

    1

    2

    3

    1

    2

    n

    1 n

  • 8/10/2019 Components-L2 (1).ppt

    12/51Prof. Z Ghassemlooy 12

    Coupler - Integrated Waveguide

    Directional Coupler

    P2= P0sin2kz P1= P0- P2= P0cos

    2kz

    k = coupling coefficient = (m + 1)p/2

    P0

    P1

    P2

    P3

    zP4

  • 8/10/2019 Components-L2 (1).ppt

    13/51Prof. Z Ghassemlooy 13

    Coupler - Integrated WaveguideDirectional Coupler

    A directional coupler

    Different performance

    couplers can be made byvarying the length,

    size for specific

    wavelength.

    G Keiser

  • 8/10/2019 Components-L2 (1).ppt

    14/51

  • 8/10/2019 Components-L2 (1).ppt

    15/51Prof. Z Ghassemlooy 15

    Couplers - Fabrication

    It is wavelength dependent. Resonance occur when the two fibres are

    close to each other.

    Single Fibres

    100% coupling

    The coupling length for 1.55 m > the coupling length for1.3 m: 100 % of light coupling for 1.3 m to the core of fibre B, and to the core of

    fibre A.

    100% of light coupling for 1.55 m to the core of fibre BSource: Australian Photonics CRC

  • 8/10/2019 Components-L2 (1).ppt

    16/51

  • 8/10/2019 Components-L2 (1).ppt

    17/51Prof. Z Ghassemlooy 17

    Coupler - Performance Parameters

    Coupling ratio or splitting ratio

    outT

    t

    P

    PCR

    portsalltooutpowerTotal

    outputsingleanyfromPower

    Excess LossoutT

    ieP

    PL

    routputpoweTotal

    powerInput

    21

    01010

    PP

    PLe log

    21

    21010

    PP

    PCR logIn dB For 2 x 2 coupler

  • 8/10/2019 Components-L2 (1).ppt

    18/51Prof. Z Ghassemlooy 18

    Coupler - Performance Parameters

    Isolation Loss or Crosstalk

    Insertion Loss

    i

    ti

    P

    PL

    inputPower

    outputsingleanyfromPower

    3

    01010

    P

    PLiso log

    portinputotherintobackpowerReflected

    portoneatpowerInputisoL

    In dB

  • 8/10/2019 Components-L2 (1).ppt

    19/51Prof. Z Ghassemlooy 19

    Generic 2X2 Guided-WaveCoupler

    Sab

    ,b

    2

    1

    b

    b andaa ,a

    2

    1

    2221

    1211

    ssssSwhere

    There are altogether eight possible ways(two ways) for the light

    to travel.

    a1

    a2

    b1

    b2

    Input

    field

    strengths

    Output

    field

    strengths

    s22

    s21 s12

    s11

  • 8/10/2019 Components-L2 (1).ppt

    20/51Prof. Z Ghassemlooy 20

    Generic 2X2 Guided-Wave Coupler

    Assume: Fraction (1-) of power in the input port 1 appears at

    output port 1,and the remaining power at the output port 2

    1

    1

    j

    jS

    If = 0.5, an d input signal defined

    in terms of filed intensityEi, then

    2

    1

    2

    1

    1

    1

    2

    1

    ,

    ,

    ,

    ,

    i

    i

    o

    o

    E

    E

    j

    j

    E

    E

    LetEo,2= 0, thus in term of optical power

    021

    12

    21

    111 PEEEP iooo ,,*

    ,,

    021

    12

    21

    222 PEEEP iooo ,,*

    ,,

    Half the input

    power appears at

    each output

  • 8/10/2019 Components-L2 (1).ppt

    21/51

  • 8/10/2019 Components-L2 (1).ppt

    22/51

    Prof. Z Ghassemlooy 22

    Star Couplers

    Optical couplers with more than four ports.

    Types of star couplers:

    transmission star coupler

    the light at any of the input port is split equally through all output ports.

    reflection star coupler

  • 8/10/2019 Components-L2 (1).ppt

    23/51

  • 8/10/2019 Components-L2 (1).ppt

    24/51

    Prof. Z Ghassemlooy 24

    Star Coupler - 8 X 8

    1

    2

    3

    4

    5

    6

    7

    8

    1, 2, ... 8

    1, 2, ... 8

    No of 3 dB coupler NN

    N dBc 23

    2

    log

    N/2

    N2log

    Star couplers are optical couplers with more than four ports

  • 8/10/2019 Components-L2 (1).ppt

    25/51

    Prof. Z Ghassemlooy 25

    Star Coupler - 8 X 8 - contd .

    If a fraction of power traversing each 3 dB coupler =Fp,

    where0< Fp< 1.

    Then, power lost within the coupler = 1-Fp.

    Excess loss )(log log N

    pe FL 21010

    NN

    CR 1010 101

    10 loglog

    Coupling ratio

    (splitting loss)

    Total loss = splitting loss + excess loss

    NFLT 10103223110 log)log.(

  • 8/10/2019 Components-L2 (1).ppt

    26/51

    Prof. Z Ghassemlooy 26

    Reflection Star Couplers

    The light arriving at port A

    and is reflected back to all

    ports.A directional coupler

    separates the transmitted

    and received signals.

    Source: Australian Photonics CRC

  • 8/10/2019 Components-L2 (1).ppt

    27/51

    Prof. Z Ghassemlooy 27

    Y- Couplers

    1 X 8 coupler

    Y-junctions are 1 x 2 couplers and are a key element in networking.

    Ii

    I1

    I2

  • 8/10/2019 Components-L2 (1).ppt

    28/51

    Prof. Z Ghassemlooy 28

    Coupler - Characteristics

    Design class No. of CR Le Isolationport (dB) directivity

    (-dB)

    2 x 2 2 0.1-0.5 0.07-1.0 40 to 55

    Single mode

    2 x 2 2 0.5 1-2 35 to 40

    Multimode

    Nx N 3-32 0.33-0.03 0.5-8.0

    Star

  • 8/10/2019 Components-L2 (1).ppt

    29/51

  • 8/10/2019 Components-L2 (1).ppt

    30/51

  • 8/10/2019 Components-L2 (1).ppt

    31/51

    Prof. Z Ghassemlooy 31

    Optical Filters

    i-1

    i

    i+1

    PassbandCrosstalk Crosstalk

    Passband- Insertion loss

    - Ripple

    - Wavelengths

    (peak, center, edges)

    - Bandwidths(0.5 dB, 3 dB, ..)

    - Polarization dependence

    Stopband

    - Crosstalk rejection- Bandwidths

    - (20 dB, 40 dB, ..)

    Agilent Tech. LW Div.

  • 8/10/2019 Components-L2 (1).ppt

    32/51

  • 8/10/2019 Components-L2 (1).ppt

    33/51

    Prof. Z Ghassemlooy 33

    Fiber Bragg Gratings (FBG)

    FBG is a periodic refractive index variation (Period )writtenalong the fibre (single-mode) core using high power UV radiation.

    All the wavelengths statisfying the condition 0= 2 neffare

    reflected

    If the optical period is 0 / 2, the grating reflects wavelength 0selectively. Useful in filtering communication channels in or out.

  • 8/10/2019 Components-L2 (1).ppt

    34/51

    Prof. Z Ghassemlooy 34

    wavelength

    For a given grating period a particular wavelength(frequency) of light is reflected. In this case yellow light will

    be reflected

    If the grating spacing is changed (e.g. reduced due to

    compression of the fibre or a drop in temperature} the

    wavelength of the reflected light changes. In this case it

    becomes higher and reflects blue light

    In practice the colour shifts will be much finer than those illustated

    Optical fibre

    Grating pattern etchedinto body of fibre

    Detector

    http://www.co2sink.org/ppt/fbganimation.ppt

    Fiber Bragg Gratings (FBG)

  • 8/10/2019 Components-L2 (1).ppt

    35/51

    Prof. Z Ghassemlooy 35

    Fiber Brag Gratings (FBG) - contd .

    Increasing intervals: chirped FBG compensation for

    chromatic dispersion

    Regular interval pattern:reflective at onewavelength

    Notch filter, add / drop multiplexer (see later)

    Optical FibreBragg Gratings

    Dz Dz

    1 2 3 N

  • 8/10/2019 Components-L2 (1).ppt

    36/51

    Prof. Z Ghassemlooy 36

    Optical Isolators

    Only allows transmission in one direction through it Mainapplication: To protect lasers and optical amplifiers fromreturning reflected light, which can cause instabilities

    Insertion loss: Low loss (0.2 to 2 dB) in forward direction

    High loss in reverse direction:20 to 40 dB single stage, 40 to 80 dB dual stage)

    Return loss: More than 60 dB without connectors

  • 8/10/2019 Components-L2 (1).ppt

    37/51

    Prof. Z Ghassemlooy 37

    Principle of operation

    Horizontal

    polarisation

    Vertical

    polarisation

    Linear

    polarisation

  • 8/10/2019 Components-L2 (1).ppt

    38/51

    Prof. Z Ghassemlooy 38

    Optical Circulators

    Based on optical crystal technology similar to isolators Insertion loss 0.3 to 1.5 dB, isolation 20 to 40 dB

    Typical configuration: 3 port device Port 1 -> Port 2

    Port 2 -> Port 3

    Port 3 -> Port 1

    Agilent Tech. LW Div.

  • 8/10/2019 Components-L2 (1).ppt

    39/51

  • 8/10/2019 Components-L2 (1).ppt

    40/51

    Prof. Z Ghassemlooy 40

    Add - Drop Multiplexers

    Circulator with FBG

    Add iDrop i

    1, 2, 3, ... i

    1, 2, 3, ... i

    FBG

    C1 C2

    Dielectric thin-film filter design

    Filter reflects

    iAdd / Drop

    CommonPassband

    Agilent Tech. LW Div.

  • 8/10/2019 Components-L2 (1).ppt

    41/51

    Prof. Z Ghassemlooy 41

    Optical ADMux

    Error detection and correction

    Utilizes the full spectrum of the C and L band: 160 channels / single fibrepair

    Allows for the direct interface and transport of data rates from 100 Mbps

    to 10 Gbps

    Transports up to 160 OC-192 signals with a capacity of 1.6 Tb/s

    Transmit wavelength adapoter

    Receive wavelength adapoter

    Wavelength Add/Dropp

    Optical supervisory channel

    Optical amplifier:

    - Gain 25 dB

    - Noise figure 5 dB

    Network management

  • 8/10/2019 Components-L2 (1).ppt

    42/51

    Prof. Z Ghassemlooy 42

    ADMux System Performance

    Capacity: 80 channels on ITU 50 GHz spacing:

    Upgradeable to 160 Channels (C and L band)

    Bit Rate Compatibility:100 Mbps to 10 Gbps (OC-192)

    Span Performance:

    13 spans with 25 dB loss per span (OC-48)

    10 spans with 25 dB loss per span (OC-192)

    Bit Error Rate:Better than 10-16

    Dispersion Tolerance:

    600 to 900 ps/nm at 10 Gbps

    > 12,000 ps/nm at 2.5 Gbps

  • 8/10/2019 Components-L2 (1).ppt

    43/51

    Prof. Z Ghassemlooy 43

    Multiplexers (MUX) / Demultiplexers (DEMUX)

    Key component of wavelength-division multiplexing(WDM) technology

    Types of technologies Cascaded dielectric filters

    Cascaded FBGs

    Phased arrays (see later)

    Low crosstalk is essential for demultiplexing

  • 8/10/2019 Components-L2 (1).ppt

    44/51

    Prof. Z Ghassemlooy 44

    Array Waveguide Grating (AWG)

    1a

    3a

    2a

    4a

    1b

    3b

    2b

    4b

    1c

    3c

    2c

    4c

    1d

    3d

    2d

    4d

    1a

    3c

    2d

    4b

    1b

    3d

    2a

    4c

    1c

    3a

    2b

    4d

    1d

    3b

    2c

    4a

    Rows .. .. translate into .. .. columns

    N X N demultiplexer1 X N demultiplexer! Agilent Tech. LW Div.

    Objectplane

    ImageplaneFPR

    FPR

    Free PropagationRegion(normally a lens)

  • 8/10/2019 Components-L2 (1).ppt

    45/51

    Prof. Z Ghassemlooy 45

    AWG - contd .

    1990s - First developed

    1999 - Commercially available

    No. of channels: 250 to 1000 @ spacing of 10 GHz.

    Each experience a different phase shift because of

    different lengths of waveguide.

    Phase shifts wavelength are dependent.

    Thus, different channels focus to different output WG, onexit.

    N-input and N-output fibres

    Single input: wavelength demultiplexer!

  • 8/10/2019 Components-L2 (1).ppt

    46/51

    Prof. Z Ghassemlooy 46

    Multiplexers

    Alcatel 1640 Line Terminal block diagram

  • 8/10/2019 Components-L2 (1).ppt

    47/51

    Prof. Z Ghassemlooy 47

    Multiplexers Supervisory Channel

    This extra channel, at 1510 nm, carries all the management information.

    It also transports Electrical Order Wire (EOW) data channels, service

    channels, and control commands for house keeping contacts.

    Alcatel 1640 Line Terminal block diagram

  • 8/10/2019 Components-L2 (1).ppt

    48/51

    Prof. Z Ghassemlooy 48

    Multiplexers

    Transmission lengths of more than 900 km can beachieved on a 0.25 dB/km fibre.

    The 240 channels using 3 optical bands:

    C (15301570 nm)

    L (15701610 nm)

    S (14501490 nm)

    Error detection and correction

    Different synchronous bit rate

    Multi bit rae: 2.5 Gbps, 10 Gbps and 40 Gbps

    Judged by the insertion loss/channel

  • 8/10/2019 Components-L2 (1).ppt

    49/51

    Prof. Z Ghassemlooy 49

    MUX - DeMUX - Performance

    MUXJudged by the insertion loss/channel

    DeMUXSensitivity to polarisation

    Crosstalk (< -20 dB)

  • 8/10/2019 Components-L2 (1).ppt

    50/51

    Prof. Z Ghassemlooy 50

    References

    http://oldsite.vislab.usyd.edu.au/photonics/index.html

  • 8/10/2019 Components-L2 (1).ppt

    51/51