2
Complex Path Integrals & String Glasses Daniel Ferrante, Gerald Guralnik High Energy Theory, Brown University Z  [ J] =  C e S[φ] e J φ Dφ < : Integration Cycles δ φ S[φ →− δ  J ] Z  [ J] = 0 : Boundary Conditions Complexication of the Path Integral. Riemann Sphere: Modular symmetry dualities. φ, J: R-, C-, Matrix-, L ie Algebra-valued. Matrix models: integrability (Lax pairs), M-theory (BFSS). L ie Algebras: Group Field Theory (LQG, CDT, Spin Foams). Quantum Phases: structure cnts cycles ←−−→ Matrix Lie algebra. Integro-Differ ential Problem Wall-Crossing: Stokes Phenomena for SD Op. SD Op: meromorphic connection on C-plane. SD Eq: isomonodromic transfs of non-linear diff eq in C Stokes phenomena. Hodge Theory : phase factor s of mer omorphic connections. FPI integral discriminant (Lagrangian Quadrics). SUSY: ‘det’ as ‘exp’ of Grassmann variables. Wall-Crossing Linear Canonical Transformation (Modular Group SL(2, R)): F  b c d [ J] =   e π J 2 d/ b  F[φ] e π ϕ 2 / b e 2 πφ J/b Dφ F  0 c d [ J] =  d e π J 2 c d F[ J d] Special Cases: Fourier Transform (FPI): b c d = 0 1 1 0 ; Fractional FT: b c d = cos ω sin ω sin ω cos ω ; Fr esnel T ransform: b c d = 1 Λ 0 1 . Range of  b c d SL(2, R) selects quantum phase. Quantum Phase (integration cycle) : Stokes phase factor. Modular Transform: preserves Riemann Sphere. Integral Transform Schwinger -Dyson operator: SD = δ φ S[φ →− δ  J ]. Fredholm Kernel: K [ J, ˜  J] = [ J] [ ˜  J] δ[ J ˜  J]. F redholm Integral: G[ J] =  K [ J, ˜  J] F[ ˜  J] D ˜  J ; SD[G] = F. “Quantum Phase Coherent State quantization”. Fredholm Theory Stratication of (super-)Quadrics Lagrangian: parameter dependent quadratic forms (2-tensor). Strata: multiplicities of the eigenvalues. Curvature of SD-connection (Jacobi elds, Euler character) :  jumps at Wall-Crossings, Stokes phenomena. Quantum Phases : ltration of the spac e of SD- operators by multiplicity of vacuum state. Quantum Phases D0-brane with S[φ] = φ 3  / 3. Z  [ J] =  C e φ 3  / 3 e J φ Dφ < C:Arg(φ)={0, ±2 π/ 3} 2  J  J Z  [ J] = 0 Z  [ J ] = Ai [ J] + b Bi [ J] Quantum Phases: Ai and Bi . C: b c d = 0 2 π g 1 2π g 0 ; F[φ] = e φ 3  / 3 Example: Cubic Action D0-brane with S[φ] = φ 2  / 2 + g φ 4  / 4, g = λ/ 2 . Z  [ J] =  C e (φ 2  / 2+g φ 4  / 4) e J φ Dφ < C:Arg(φ)={0, ±π/ 2} g 3  J +  J  J Z  [ J] = 0 Z  [ J]= U[g, J]+b V [g, J]+c W [g, J] Quantum Phases (ground states wrt g): U, V and W . C: b c d = g 2 π 1g 2π 1 ; F[φ] = e φ 4  / 4 Example: Quartic Action

Complex Path Integrals and String Glasses

Embed Size (px)

Citation preview

8/4/2019 Complex Path Integrals and String Glasses

http://slidepdf.com/reader/full/complex-path-integrals-and-string-glasses 1/1

Complex Path Integrals &String Glasses

Daniel Ferrante, Gerald Guralnik

High Energy Theory, Brown University

Z [ J] =

C

e S[φ] e J φDφ < ∞ : Integration Cycles

δφS[φ → − δ J]

Z [ J] = 0 : Boundary Conditions

Complexification of the Path Integral.

Riemann Sphere: Modular symmetry ∼ dualities.

φ, J: R-, C-, Matrix-, L ie Algebra-valued.

Matrix models: integrability (Lax pairs), M-theory (BFSS).

L ie Algebras: Group Field Theory (LQG, CDT, Spin Foams).

Quantum Phases: structure cnts

cycles

←−−→ Matrix ↔ Lie algebra.

Integro-Differential Problem

Wall-Crossing: Stokes Phenomena for SD Op.

SD Op: meromorphic connection on C-plane.

SD Eq: isomonodromic transfs of non-linear d

eq in C⇒ Stokes phenomena.

Hodge Theory: phase factors of meromorph

connections.

FPI ⇔ integral discriminant (Lagrangian ∼ Quadrics).

SUSY: ‘det’ as ‘exp’ of Grassmann variables.

Wall-Crossing

Linear Canonical Transformation (Modular Group SL(2,R)):

F bc d

[ J] = − e π J2 d/ b

−∞

F[φ] e π ϕ2 / b e−2 π φ J / b

F 0

c d

[ J] =

d e π J2 c d F[ J d]

Special Cases:

• Fourier Transform (FPI):

bc d

=

0 1−1 0

;

• Fractional FT:

bc d

=

cos ω sin ω− sin ω cos ω

;

• Fresnel Transform:

bc d

=

1 Λ0 1

.

Range of

bc d

∈ SL(2,R) selects quantum phase.

Quantum Phase (integration cycle): Stokes phase factor.

Modular Transform: preserves Riemann Sphere.

Integral Transform

Schwinger-Dyson operator: SD = δφS[φ → − δ J].

Fredholm Kernel: K [ J, J] =

Ω[ J] Ω[ J] ∼ δ[ J− J].

Fredholm Integral: G[ J] =

K [ J, J] F[ J]D J ; SD[G] = F.

“Quantum Phase Coherent State quantization”.

Fredholm Theory Stratification of (super-)Quadrics ∼ Lagrangia

parameter dependent quadratic forms (2-tensor).

Strata: multiplicities of the eigenvalues.

Curvature of SD-connection (Jacobi fields, Euler charact

jumps at Wall-Crossings, Stokes phenomena.

Quantum Phases: filtration of the space of S

operators by multiplicity of vacuum state.

Quantum Phases

D0-brane with S[φ] = φ3 / 3.

Z [ J] =

C

e φ3 / 3 e J φDφ < ∞⇒ C:Arg(φ)=0,±2 π/ 3

∂2

J− J

Z [ J] = 0⇒ Z [ J] = Ai[ J] + b Bi[ J]

Quantum Phases: Ai and Bi.

C:

bc d

= 0 −2 π g

12π g

0

; F[φ] = e φ3 / 3

Example: Cubic Action

D0-brane with S[φ] = φ2 / 2 + g φ4 / 4, g = λ/ 2.

Z [ J] =

C

e (φ2 / 2+g φ4 / 4) e J φDφ < ∞⇒ C:Arg(φ)=0,±π/ 2

g ∂3

J+ ∂ J − J

Z [ J] = 0⇒ Z [ J]= U[g, J]+b V [g, J]+c W [g, J]

Quantum Phases (ground states wrt g): U, V and W .

C:

bc d

= −g −2 π

1−g2π

−1

; F[φ] = e φ4 / 4

Example: Quartic Action