Complex Analysis 1998

Embed Size (px)

Citation preview

  • 8/3/2019 Complex Analysis 1998

    1/24

    This document contains text automatically extracted from a PDF or image file. Formatting may havebeen lost and not all text may have been recognized.

    To remove this note, right-click and select "Delete table".

  • 8/3/2019 Complex Analysis 1998

    2/24

  • 8/3/2019 Complex Analysis 1998

    3/24

    ComplexAnalysisSunderLalRetired Professor of MathematicsPanjab University

    ChandigarhFebruary20,2010Question1(a)Showthatthefunctionf(z)=

    x3(1+i)y3(1x2+y2i),z=00,z=0iscontinuousandC-Rconditionsaresatisfiedatz=0,butf(z)doesnotexistatz=0.Solution.Letf(z)=u+iv,thenu=x3x2+y2y3,v=x3+y3x2+y2forz=0,andu(0,0)=

    v(0,0)=0.ux(0,0)=h0limu(h,0)hu(0,0)=h0limh3

    h2h0=1uy(0,0)=k0

  • 8/3/2019 Complex Analysis 1998

    4/24

    limu(0,k)ku(0,0)=k0limk3k2

    k0=1xv(0,0)=h0limv(h,0)hv(0,0)=h0limh3h2

    h0=1v

    y(0,0)=k0limv(0,k)kv(0,0)=k0limk3k2

    k

    0=1Thusux=v

  • 8/3/2019 Complex Analysis 1998

    5/24

    y,uy=

    xvat(0,0),i.e.theCauchyRiemannequationsaresatisfiedat(0,0).f(z)isclearlycontinuousatz=0,because|u(x,y)u(0,0)|=

    |v(x,y)v(0,0)|2x3x2x2+y2y3+y2=r3(cos3r2sin3)

    2x2+y2

  • 8/3/2019 Complex Analysis 1998

    6/24

    1

  • 8/3/2019 Complex Analysis 1998

    7/24

    Thusu,varecontinuousat(0,0),sof(z)iscontinuousat(0,0).

  • 8/3/2019 Complex Analysis 1998

    8/24

    Iff(z)istobedifferentiableat0,thenz0

    limf(z)z0

    =x0,y0lim(x3y3)+i(x3(x2+y2)(x++iy)y3)=x0,y0lim(x3+iy3)(1+i)(xiy)(x2+y2)2shouldButexistifweandtakeittheshouldlimitbealongequaly=to

    x,uxthen(0,0)+ixv(0,0)=1+i.z0

    limf(z)z

    0=x0lim(x3+ix3)(1(2x2)2+i)(xix)=1+2i

    Thereforef(z)isnotdifferentiableatz=0.Question1(b)FindtheLaurentexpansionof

    (z+1)(zz+2)aboutthesingularityz=2.Specifytheregionofconvergenceandnatureofsingularityatz=2.Solution.Clearlyf(z)=

  • 8/3/2019 Complex Analysis 1998

    9/24

    z(z+1)(z+2)2z+21

    z+12z+211(z+2)===

    +z+22+n=0

    (z+2)nfor|z+2|

  • 8/3/2019 Complex Analysis 1998

    10/24

    n=0

    (xnn!

    )2

    =122

    e2xcosd0

    Solution.ItiseasilydeduciblefromCauchysIntegralformulathatiff(z)isanalytic

    withinandonasimpleclosedcontourCandz0isapointintheinteriorofC,thenf(n)(z0

    )=n!2i

    f(z)C

    (zz0

    ,dz2)n+1

  • 8/3/2019 Complex Analysis 1998

    11/24

    Letf(z)=exz(HerexisnotRexbutaparameter),thenf(z)isanentirefunctionand

  • 8/3/2019 Complex Analysis 1998

    12/24

    thereforef(n)(0)=xn=2in!

    C

    zn+1exz,dzwhereCisanyclosedcontourcontaining0initsinterior.Hence(xnn!)2

    =xn(n!)2n!

    2iC

    exzzn+1

    ,dz=2i1

    xnexzC

    n!zn+1dzasrequired.WetakeCtobetheunitcircleforconvenience.Then

    n=0

    (xnn!)2

  • 8/3/2019 Complex Analysis 1998

    13/24

    =12i

    n=0C

    xnexzn!zn+1dz=2i1

    xnexzCn=0

    n!zn+1dzInterchangeofsummationandintegralisjustified.Thusn=0

    (xnn!

    )2

    =12i|z|=1

    exzz

    n=0(xz

    n!)ndz=1

  • 8/3/2019 Complex Analysis 1998

    14/24

    2i|z|=1

    exzz

    exz

    dzPutz=eisothatdz=ieidandn=0

    (xnn!

    )2=2i12

    ex(ei+ei)0

    eiieid=

    212

    e2xcosd0

    asrequired.Question2(a)Provethatallrootsofz75z3+12=0liebetweenthecircles|z|=1and|z|=2.Solution.See2006question2(b).

    Question2(b)Byintegratingaroundasuitablecontourshowthat0

    xsinmxx4+a44b2

  • 8/3/2019 Complex Analysis 1998

    15/24

    embsinmbwhereb=a2

    dx=.3

  • 8/3/2019 Complex Analysis 1998

    16/24

    Solution.

  • 8/3/2019 Complex Analysis 1998

    17/24

    Letf(z)=tegralz4zeimz+a4.sisting

    off(z)dztheWeconsiderthein-whereisthecontourcon-linejoining(R,0)and(R,0)and,thearcofthecircleofradiusRandcenter(0,0)lyingintheupperhalfplane.(R,0)(0,0)

    (R,0)

    =

    0

    ReieimR(cosz4+a4+isin)Rieid

    R4R2a4because|z4+a4||z|4|a4|=R4a4on,andemRsin1assin>0for0

  • 8/3/2019 Complex Analysis 1998

    18/24

    Thusf(z)dz

    f(z)dz0asRandR

    lim

    x4xeimx+a4dxButbyCauchysresiduetheoremf(z)dz=

    f(z)dz=2i(thesumoftheresiduesofpolesoff(z)inside).Thepolesoff(z)aresimplepolesatae3i4

    areinside.Residueatz=aei4

    ,ae3i4

    ,outofwhichaei

    4

    ,aei

    4

    isaei

    4

    eimae4a3e3i

  • 8/3/2019 Complex Analysis 1998

    19/24

    4i

    4

    .Residueatz=ae3i

    4isae3i4

    4a3eeimae9i43i4

    .]Sumofresidues==i4a2[eima(cos4+isin4

    )+eima(cos34+isin34)

    ]=i4a2

    [ema

    2(i1)

    +ema

  • 8/3/2019 Complex Analysis 1998

    20/24

    2(i1)

    4a2ma

    2

    (2isin)=ma

    2

    2a2ma

    2Thus

    iema2

    esinxeimxma

    2

    x4+a42a2ma

    2Takingimaginarypartsofbothsides,weget

    dx=2ie

  • 8/3/2019 Complex Analysis 1998

    21/24

    sinxsinmx

    xsinmx

    ema

    2

    x4+a40

    x4+a4a2ma

    2emb2b2sinmbwhereb=a2

    dx=2dx=sin

    =.Thus0

    xsinmxx4+a4dx=emb4b2sinmbasrequired.4

  • 8/3/2019 Complex Analysis 1998

    22/24

  • 8/3/2019 Complex Analysis 1998

    23/24

    20

    d32cos+sin.

    Solution.Weputz=ei,sothatd=dziz,cos=12

    (z+1z

    ),sin=2i1

    (z1z

    ).Thus

    I=20

    d32cos+sin=

    |z|=1

    dz

    iz[3(z+1z)+2i1

    (z1z

    )]=2

    |z|=1

    dz

    6iz2iz22i+z21=2Question2(c)Usingtheresiduetheoremevaluate

    dz|z|=1

    (12i)(z+i

  • 8/3/2019 Complex Analysis 1998

    24/24

    12i

    )(z+12i5i

    )Clearly(6iz2iz22i+z21)1hastwosimplepoles12i

    iliesinside|z|=1.Theresidueatthispoleislimandz+i12i5i

    ofwhichonly12ii12iz

    byCauchysresiduetheorem(12i)(z+i12i

    )(z+12i5i

    )=4i1.ThusI=i

    12i

    20

    d32cos+sin=22i14i=5