67
Complete Pose Determination for Low Altitude Unmanned Aerial Vehicle Using Stereo Vision Luke K. Wang, Shan-Chih Hsieh, Eden C.-W. Hsueh 1 Fei-Bin Hsaio 2 , Kou-Yuan Huang 3 National Kaohsiung Univ. of Applied Sciences, Kaohsiung Taiwan, R.O.C. 1 National Space Program Office, Hinchu, Taiwan, R.O.C 2 National Cheng Kung University, Tainan, Taiwan, R.O.C. 3 National Chiao-Tung University, Hsinchu, Taiwan, R.O.C

Complete Pose Determination for Low Altitude Unmanned Aerial Vehicle Using Stereo Vision

Embed Size (px)

DESCRIPTION

Complete Pose Determination for Low Altitude Unmanned Aerial Vehicle Using Stereo Vision. Luke K. Wang, Shan-Chih Hsieh, Eden C.-W. Hsueh 1 Fei-Bin Hsaio 2 , Kou-Yuan Huang 3. National Kaohsiung Univ. of Applied Sciences, Kaohsiung Taiwan, R.O.C. - PowerPoint PPT Presentation

Citation preview

Page 1: Complete Pose Determination for Low Altitude Unmanned Aerial Vehicle Using Stereo Vision

Complete Pose Determination for Low Altitude Unmanned Aerial Vehicle Using Stereo Vision

Luke K. Wang, Shan-Chih Hsieh, Eden C.-W. Hsueh1

Fei-Bin Hsaio2, Kou-Yuan Huang3

National Kaohsiung Univ. of Applied Sciences, Kaohsiung

Taiwan, R.O.C.

1National Space Program Office, Hinchu, Taiwan, R.O.C

2National Cheng Kung University, Tainan, Taiwan, R.O.C.

3National Chiao-Tung University, Hsinchu, Taiwan, R.O.C

Page 2: Complete Pose Determination for Low Altitude Unmanned Aerial Vehicle Using Stereo Vision

Introduction

Fundamental Concepts

Simulation Results

Conclusion

Outline

Page 3: Complete Pose Determination for Low Altitude Unmanned Aerial Vehicle Using Stereo Vision

Outline

Introduction

Fundamental Concepts

Simulation Results

Conclusion

Page 4: Complete Pose Determination for Low Altitude Unmanned Aerial Vehicle Using Stereo Vision

Introduction

Pose Estimation

Visual Motion Estimation

Kalman Filtering Technique

Unscented Kalman Filter vs. Extended Kalman Filter

Page 5: Complete Pose Determination for Low Altitude Unmanned Aerial Vehicle Using Stereo Vision

The schematics illustration of image-based navigation system

Page 6: Complete Pose Determination for Low Altitude Unmanned Aerial Vehicle Using Stereo Vision

IMAGE

UKF

Estimated States

Feature Extraction

Initial State & Error Covariance

Measurement & Process Error

CAMER (Right)

CAMER (Left)

Page 7: Complete Pose Determination for Low Altitude Unmanned Aerial Vehicle Using Stereo Vision

Outline

Introduction

Fundamental Concepts

Simulation Results

Conclusion

?What is needed

Page 8: Complete Pose Determination for Low Altitude Unmanned Aerial Vehicle Using Stereo Vision

Fundamental Concepts

•Quaternion

•GPS Observation Equation

•Perspective Projection

•Coordinate Transformation

•Unscented Kalman Filter (UKF)

Page 9: Complete Pose Determination for Low Altitude Unmanned Aerial Vehicle Using Stereo Vision

0 0 1 2 3 1 2 3

1 1 0 3 2 0 3 2

2 2 3 0 1 3 0 1

3 3 2 1 0 2 1 0

1

20 0

01 1 1

02 2 2

0

x y z

x z y x

y z x y

z y x z

q q q

q q q q q q q q

q q q q q q q q

q q q q q q q q

q q q q q q q q

x

y

z

In matrix form the derivative of a quaternion may be written:

Quaternion

The unit quaternion is defined by

0

1

2

3

cos2

sin2

sin2

sin2

qiq

qq

jq

k

Page 10: Complete Pose Determination for Low Altitude Unmanned Aerial Vehicle Using Stereo Vision

If angular velocity is constant, equation is a system of first order linear time invariant differential equation with a closed-form solution

2

4 4 1

4 4 1

2cos( ) sin( ) ( ) if 02 2

( ) if =0

( )

t t q t

q t

q t

I

I

1

2

0

0

0

0

x y z

x z y

y z x

z y x

where

q q

Page 11: Complete Pose Determination for Low Altitude Unmanned Aerial Vehicle Using Stereo Vision

Fundamental Concepts

•Quaternion

•Perspective Projection

•Coordinate Transformation

•Unscented Kalman Filter (UKF)

Page 12: Complete Pose Determination for Low Altitude Unmanned Aerial Vehicle Using Stereo Vision

C

C

C

C

Xu f

Z

Yv f

Z

3-D to 2-D Perspective Projection

: Image point associated with [ ]

: Focal length.

TC C Cu v X Y Z

f

Page 13: Complete Pose Determination for Low Altitude Unmanned Aerial Vehicle Using Stereo Vision

Fundamental Concepts

•Quaternion

•GPS Observation Equation

•Perspective Projection

•Coordinate Transformation

•Unscented Kalman Filter (UKF)

Page 14: Complete Pose Determination for Low Altitude Unmanned Aerial Vehicle Using Stereo Vision
Page 15: Complete Pose Determination for Low Altitude Unmanned Aerial Vehicle Using Stereo Vision
Page 16: Complete Pose Determination for Low Altitude Unmanned Aerial Vehicle Using Stereo Vision

ee bt br r R r

3 1 3 3

1 3 1 3

1 3

0

0 1 0 11 1

0 1 1

1

beb et

b bee e t

b ee

R rr r

R R r r

r

I

T

The Homogeneous Transformation

Page 17: Complete Pose Determination for Low Altitude Unmanned Aerial Vehicle Using Stereo Vision

The Homogeneous Transformation

1 1

C

e b Cb C

C

XX

YYT T

ZZ

(1)Earth-Centered-Earth-Fixed (ECEF), i.e., {e} (2)Camera coordinate ,i.e., {c}(3)Body frame ,i.e., {b} (4) [XC YC ZC]T : The target location expressed in {C}

(5) bTC : Transformation between {b} and {c}

(6) eTb : Transformation between {e} and {b}

Note

Page 18: Complete Pose Determination for Low Altitude Unmanned Aerial Vehicle Using Stereo Vision

Fundamental Concepts

•Quaternion

•GPS Observation Equation

•Perspective Projection

•Coordinate Transformation

•Unscented Kalman Filter (UKF)

Page 19: Complete Pose Determination for Low Altitude Unmanned Aerial Vehicle Using Stereo Vision

UKF

The UT is a method for calculating the statistics of a random variable which undergoes a nonlinear transformation [Julier et al., 1995].

A L dimensional random vector having mean and covariance , and propagates through an arbitrary nonlinear function.

The unscented transform creates 2L+1 sigma vectors and weights W.

Unscented Transformation (UT)

Page 20: Complete Pose Determination for Low Altitude Unmanned Aerial Vehicle Using Stereo Vision

2( )

0

2( )

0

( ) 0,..., 2

( )( )

i i

i Lm

i ii

i Lc T

i i ii

h i L

W

W

y

y

P y y

Nonlinear function h

0

( )0

( ) ( ) 20 0

( )( ) ( ) 0

2

( ) 1,...,

( ) 1,..., 2

( )

(1 )

1,..., 22

( 1)

( )

i i

i i L

m

c m

mm c

i i

i L

i L L

WL

W W

WW W i L

L

L

x

x

x

x P

x P

thx

: determines the spread of the sigma points around

: incorporate prior knowledge of the distribution of

( ) : row or column of the matrix square root of Pi i

x

x

x

P

1

1 1 1

State equation ( )

Measurement equation ( )k k k k

k k k

f G w

y h v

x x

x

The discrete time nonlinear transition equation

Page 21: Complete Pose Determination for Low Altitude Unmanned Aerial Vehicle Using Stereo Vision

UT

[Haykin, 2001]

Page 22: Complete Pose Determination for Low Altitude Unmanned Aerial Vehicle Using Stereo Vision

Unscented Kalman Filter (UKF)

UKF

The UKF is an extension of UT to the Kalman Filter frame, and it uses the UT to implement the transformations for both TU and MU [Julier et al., 1995].

None of any linearization procedure is taken.

Drawback of UKF -- computational complexity, same order as the EKF.

Page 23: Complete Pose Determination for Low Altitude Unmanned Aerial Vehicle Using Stereo Vision

UKF

Time update equations(Prediction):

, 1, 1

2( )

, 10

2( )

, 1 , 10

, 1 , 1

2( )

, 10

( ) 0,1,..., 2

( )( )

i ki k k

Lm

k i i k ki

Lc T

k kk i ki k k i k ki

i k k i k k

Lm

ik i k ki

i L

W

W

W

F

x

P x x Q

H

y

0 0 0 0 0 0 0E ( )( )TE

x x P x x x x

Measurement update equations (Correction):

~ ~

~ ~

~ ~ ~ ~

~ ~

2( )

, 1 , 10

2( )

, 1 , 10

1

( )( )

( )( )

( )

k k

k k

k k k k

k k

Lc T

i kk ki k k i k ky y i

Lc T

ki ki k k i k kx y i

kx y y y

k k k k k

Tk k k k

y y

W

W

K

K y

K K

P y y R

P x y

P P

x x y

P P P

Page 24: Complete Pose Determination for Low Altitude Unmanned Aerial Vehicle Using Stereo Vision

UKF

Time update equations(Prediction):

, 1, 1

2( )

, 10

2( )

, 1 , 10

, 1 , 1

2( )

, 10

( ) 0,1,..., 2

( )( )

i ki k k

Lm

k i i k ki

Lc T

k kk i ki k k i k ki

i k k i k k

Lm

ik i k ki

i L

W

W

W

F

x

P x x Q

H

y

, 1

: process noise covariance matrix.

: the computed sigma point.

The prediction of the state variable (output)

at time instant based on the state variable (input)

at time instant 1 is denoted by

k

i k k

k

k

Q

subscript 1.k k

Page 25: Complete Pose Determination for Low Altitude Unmanned Aerial Vehicle Using Stereo Vision

UKF

Measurement update equations (Correction):

~ ~

~ ~

~ ~ ~ ~

~ ~

2( )

, 1 , 10

2( )

, 1 , 10

1

( )( )

( )( )

( )

k k

k k

k k k k

k k

Lc T

i kk ki k k i k ky y i

Lc T

ki ki k k i k kx y i

kx y y y

k k k k k

Tk k k k

y y

W

W

K

K y

K K

P y y R

P x y

P P

x x y

P P P

~ ~

~ ~

: measurement noise covariance matrix.

: measurement correlation matrix.

: cross-correlation matrix.

: Kalman gain.

: updated state.

: update state covariance matrix.

: current measurement

k k

k k

k

y y

x y

k

k

k

k

K

y

R

P

P

x

P

.

Page 26: Complete Pose Determination for Low Altitude Unmanned Aerial Vehicle Using Stereo Vision

State Assignment

Process (Dynamic) Model

Measurement (Sensor) Model

( )k k ky h v x

1 k k k k kwx A x G

T

k k k k kx q P v a

Page 27: Complete Pose Determination for Low Altitude Unmanned Aerial Vehicle Using Stereo Vision

State Assignment

0 1 2 3

[ ]

T

k k k k k

Tk k k k k k k xk yk zk xk yk zkq q q q X Y Z v v v a a a

x q P v a

Process (Dynamic) Model

1k k k k kw x A x G

4 3 4 3 4 3

2

3 4 3 3 3

3 4 3 3 3

3 4 3 3 3

0 0 0

02

0 0

0 0 0

k

k

tt

t

I I IA

I I

I

Page 28: Complete Pose Determination for Low Altitude Unmanned Aerial Vehicle Using Stereo Vision

Measurement (Sensor) Model

( )k k ky h v x,1 ,1 ,1 ,1 , , , ,[ v v ... v v ]T

k l l r r l i l i r i r iy u u u u

,1 ,1 ,1 ,1 , , , ,

,1 ,1 ,1 ,1 , , , ,

( ) [ ... ] cl cl cr cr cl i cl i cr i cr i Tk

cl cl cr cr cl i cl i cr i cr i

X Y X Y X Y X Yh f f f f f f f f

Z Z Z Z Z Z Z Zx

Page 29: Complete Pose Determination for Low Altitude Unmanned Aerial Vehicle Using Stereo Vision

Measurement (Sensor) Model

( )k k ky h v x,1 ,1 ,1 ,1 , , , ,[ v v ... v v ]T

k l l r r l i l i r i r iy u u u u

,1 ,1 ,1 ,1 , , , ,

,1 ,1 ,1 ,1 , , , ,

( ) [ ... ] cl cl cr cr cl i cl i cr i cr i Tk

cl cl cr cr cl i cl i cr i cr i

X Y X Y X Y X Yh f f f f f f f f

Z Z Z Z Z Z Z Zx

,

,

, 1 3 1 3

,

,

, 1 3

0 1 0 1

1 1 1

0 1

1 1

cl i i i

cl cl b bcl i i icl b b b l e e b

b ecl i i i

cr i i

cr cr b bcr i icr b b b r e

b ecr i i

X X X

Y Y YR R O R R OT T

Z Z Z

X X

Y Y R R O RT T

Z Z

1 30 1

1

i

ie b

i

X

YR O

Z

Page 30: Complete Pose Determination for Low Altitude Unmanned Aerial Vehicle Using Stereo Vision

Quaternion prediction block diagram

MU: Measurement Update

Standard UKF

4 4

4 4

2cos( ) sin( ) if 02 2

if =0

k

t t

I

I

Page 31: Complete Pose Determination for Low Altitude Unmanned Aerial Vehicle Using Stereo Vision

Quaternion prediction block diagram

?

Modified UKF

MU: Measurement Update

Page 32: Complete Pose Determination for Low Altitude Unmanned Aerial Vehicle Using Stereo Vision

When the instantaneous angular rate is assumed constant, the quaternion differential equation has a closed- form solution

4 41

0, 1 1, 1 2, 1 3, 1

1, 1 0, 1 3, 1 2, 1

2, 1 3, 1 0, 1 1, 1

3, 1 2, 1 1, 1 0, 1

2cos( ) sin( )

2 2

k k

k k k k k k k k

k k k k k k k k

k

k k k k k k k k

k k k k k k k k

q t t q

q q q q

q q q qq

q q q q

q q q q

I

0

0102

0

x y z

x z y

y z x

z y x

2 2 2x y z

Page 33: Complete Pose Determination for Low Altitude Unmanned Aerial Vehicle Using Stereo Vision

1, 1 10, 11

0, 1

2, 1 10, 11

0, 1

3, 1 10, 11

0, 1

2cos ( )

sin(cos ( ))

2cos ( )

sin(cos ( ))

2cos ( )

sin(cos ( ))

k k

x k kk k

k k

y k kk k

k k

z k kk k

qq

q t

qq

q t

qq

q t

0, 1

11, 1

1

2, 1

3, 1

cos( )

1sin( )

1sin( )

1sin(

2

2

2

2)

k kx

k k

k k

k ky

k k

z

t

t

t

t

q

qq q

q

q

10, 1

10, 1

cos ( )

2cos ( )

2 k k

k k

q

qt

t

Page 34: Complete Pose Determination for Low Altitude Unmanned Aerial Vehicle Using Stereo Vision

Quaternion prediction block diagram

ok

Modified UKF

MU: Measurement Update

Page 35: Complete Pose Determination for Low Altitude Unmanned Aerial Vehicle Using Stereo Vision

Outline

Introduction

Fundamental Concepts

Simulation Results

Conclusion

Page 36: Complete Pose Determination for Low Altitude Unmanned Aerial Vehicle Using Stereo Vision

Case 1: Four image marks are distributed evenly around the optical axis.

Landmark 1

Landmark 4

Landmark 3

Landmark 2

Page 37: Complete Pose Determination for Low Altitude Unmanned Aerial Vehicle Using Stereo Vision

Notice that a rotation of at sampling instant 32. 18

Page 38: Complete Pose Determination for Low Altitude Unmanned Aerial Vehicle Using Stereo Vision

Notice that a rotation of at sampling instant 32. 18

Page 39: Complete Pose Determination for Low Altitude Unmanned Aerial Vehicle Using Stereo Vision

Notice that a rotation of at sampling instant 32. 18

Page 40: Complete Pose Determination for Low Altitude Unmanned Aerial Vehicle Using Stereo Vision

Notice that a rotation of at sampling instant 32. 18

Page 41: Complete Pose Determination for Low Altitude Unmanned Aerial Vehicle Using Stereo Vision

Notice that a rotation of at sampling instant 32. 18

Page 42: Complete Pose Determination for Low Altitude Unmanned Aerial Vehicle Using Stereo Vision

Notice that a rotation of at sampling instant 32. 18

Page 43: Complete Pose Determination for Low Altitude Unmanned Aerial Vehicle Using Stereo Vision
Page 44: Complete Pose Determination for Low Altitude Unmanned Aerial Vehicle Using Stereo Vision

Case 2: Four image marks are initially distributed around the optical axis, but after 100 iterations, an image mark among them is gradually traveling away from the optical axis.

Landmark 1

Landmark 2

Landmark 3

Landmark 4

Page 45: Complete Pose Determination for Low Altitude Unmanned Aerial Vehicle Using Stereo Vision

Case 2: Four image marks are initially distributed around the optical axis, but after 100 iterations, an image mark among them is gradually traveling far away from the optical axis.

Page 46: Complete Pose Determination for Low Altitude Unmanned Aerial Vehicle Using Stereo Vision
Page 47: Complete Pose Determination for Low Altitude Unmanned Aerial Vehicle Using Stereo Vision
Page 48: Complete Pose Determination for Low Altitude Unmanned Aerial Vehicle Using Stereo Vision
Page 49: Complete Pose Determination for Low Altitude Unmanned Aerial Vehicle Using Stereo Vision
Page 50: Complete Pose Determination for Low Altitude Unmanned Aerial Vehicle Using Stereo Vision
Page 51: Complete Pose Determination for Low Altitude Unmanned Aerial Vehicle Using Stereo Vision
Page 52: Complete Pose Determination for Low Altitude Unmanned Aerial Vehicle Using Stereo Vision

Case 3: UAV is moving.

282.843 m/s

Page 53: Complete Pose Determination for Low Altitude Unmanned Aerial Vehicle Using Stereo Vision

Case 3: UAV is moving.

282.843 m/s

At the beginning of the simulation, cluster-1 serves as landmarks.

Page 54: Complete Pose Determination for Low Altitude Unmanned Aerial Vehicle Using Stereo Vision

Case 3: UAV is moving.

282.843 m/s

Because the flight vehicle is gradually departing far away from the cluster-1, it will cause landmarks to displace out of the FOV, and even cause UKF to diverge;

Page 55: Complete Pose Determination for Low Altitude Unmanned Aerial Vehicle Using Stereo Vision

Case 3: UAV is moving.

282.843 m/s

so cluster-2 takes over after the 100th iteration.

Page 56: Complete Pose Determination for Low Altitude Unmanned Aerial Vehicle Using Stereo Vision
Page 57: Complete Pose Determination for Low Altitude Unmanned Aerial Vehicle Using Stereo Vision
Page 58: Complete Pose Determination for Low Altitude Unmanned Aerial Vehicle Using Stereo Vision
Page 59: Complete Pose Determination for Low Altitude Unmanned Aerial Vehicle Using Stereo Vision

150 m/s

20 m/s

0 m/s

200 m/s

Page 60: Complete Pose Determination for Low Altitude Unmanned Aerial Vehicle Using Stereo Vision

20 m/s

50 m/s

0 m/s

Page 61: Complete Pose Determination for Low Altitude Unmanned Aerial Vehicle Using Stereo Vision
Page 62: Complete Pose Determination for Low Altitude Unmanned Aerial Vehicle Using Stereo Vision
Page 63: Complete Pose Determination for Low Altitude Unmanned Aerial Vehicle Using Stereo Vision
Page 64: Complete Pose Determination for Low Altitude Unmanned Aerial Vehicle Using Stereo Vision
Page 65: Complete Pose Determination for Low Altitude Unmanned Aerial Vehicle Using Stereo Vision

Outline

Introduction

Fundamental Concepts

Simulation Results

Conclusion

Page 66: Complete Pose Determination for Low Altitude Unmanned Aerial Vehicle Using Stereo Vision

Conclusion

A compact, unified formulation is made

The use of UKF -- faster convergence rate, less dependent upon I.C., no linearization is ever needed

Successful identification of larger angle maneuveringTarget tracking can be implemented very easily

Page 67: Complete Pose Determination for Low Altitude Unmanned Aerial Vehicle Using Stereo Vision

Thank you!