17
© COPYRIGHT UPM UNIVERSITI PUTRA MALAYSIA HEPATITIS B CORE PARTICLE AS A DISPLAY PLATFORM FOR FOREIGN EPITOPES YAP WEI BOON FBSB 2011 18

compiled thesis 1psasir.upm.edu.my/id/eprint/20540/1/FBSB_2011_18_IR.pdf · 2013. 5. 27. · Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

  • © CO

    PYRI

    GHT U

    PM

    UNIVERSITI PUTRA MALAYSIA

    HEPATITIS B CORE PARTICLE AS A DISPLAY PLATFORM FOR FOREIGN EPITOPES

    YAP WEI BOON

    FBSB 2011 18

  • © CO

    PYRI

    GHT U

    PM

    HEPATITIS B CORE PARTICLE AS A DISPLAY PLATFORM FOR FOREIGN EPITOPES

    By

    YAP WEI BOON

    Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfillment of the Requirement for the Degree of Doctor of Philosophy

    December 2011

  • © CO

    PYRI

    GHT U

    PM

    ii

    Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of the requirement for the degree of Doctor of Philosophy

    HEPATITIS B CORE PARTICLE AS A DISPLAY PLATFORM FOR FOREIGN EPITOPES

    By

    YAP WEI BOON

    December 2011

    Chairman: Professor Tan Wen Siang, PhD

    Institute: Faculty of Biotechnology and Biomolecular Sciences

    Hepatitis B core (HBc) particle is a useful display platform for foreign epitopes due to

    its high immunogenicity and stability. HBc small and large particles are made up of 180

    and 240 subunits of hepatitis B core antigen (HBcAg) with triangulation numbers, T=3

    and T=4, respectively. The foreign epitopes are presented preferentially at the amino

    (N), carboxy (C) terminus or the immunodominant region of HBcAg without disturbing

    the formation of HBc particles. The effects of N-terminally inserted peptides with

    various lengths (14, 17, 22 and 25 amino acid residues) were first investigated in this

    study. A polyhistidine tag was inserted at the N-terminus of HBcAg with or without

    extraneous peptide linkers. The His-tagged HBc particles were purified with an IMAC-

    based column. The yield improved with an increase in the length of N-terminal

    extensions. His-�-L-HBcAg carrying 20 extraneous amino acids at the N-terminus of

  • © CO

    PYRI

    GHT U

    PM

    iii

    HBcAg, was bound by anti-His monoclonal antibody and showed the highest colour

    intensity in the ELISA. The antigenicity of HBc particles was barely affected by the N-

    terminal insertion and they were reactive against an anti-HBc monoclonal antibody and

    human anti-HBc antisera. In addition, they formed virus-like particles with an average

    diameter of about 30 nm when observed under a transmission electron microscope

    (TEM).

    In order to authenticate the application of His-tagged HBc VLPs as an alternative

    diagnostic reagent in HBV infections, His-�-L-HBcAg was purified in substantial

    amount with immobilized metal affinity-expanded bed adsorption chromatography

    (IMA-EBAC). IMA-EBAC allows a single-step purification of His-tagged HBc

    particles directly from the unclarified Escherichia coli lysate. The duration needed in

    the protein purification process using IMA-EBAC is shorter (from two to three hours)

    than sucrose density gradient ultracentrifugation which requires two to three days. The

    yield of purified His-tagged HBcAg was shown to be 100-fold higher than that obtained

    with sucrose density gradient ultracentrifugation. An optimal adsorption of His-tagged

    HBc VLPs to the Streamline Chelating adsorbent was achieved at pH 8.0. The majority

    of the host cell proteins were eliminated by using wash buffers A (pH 8.0) and B (pH

    6.0) supplemented with 10% (v/v) glycerol and 50 mM imidazole, respectively.

    Approximately 56% of the His-tagged HBc particles were recovered from the bacterial

    homogenate at pH 7.0 by using 500 mM imidazole and 1.5 M NaCl. The purified His-

    tagged HBc particles remained antigenic and intact throughout the entire protein

    purification and they also formed HBc particles (30 nm) as verified by TEM. This

  • © CO

    PYRI

    GHT U

    PM

    iv

    implies that the purified His-tagged HBc VLPs can be a potential reagent in the

    diagnosis of HBV infections.

    The C-terminal region of the nucleocapsid (N) protein of Nipah virus, namely NP401-532,

    is vulnerable to bacterial proteases. Since HBc particle is highly stable and antigenic,

    NP401-532 was displayed at the N-terminus (NP401-532HBc) and the immunodominant loop

    (HBc79-80NP401-532) of HBc protein. NP401-532HBc and HBc79-80NP401-532 showed

    improved stability compared to that of NP401-532 when subjected to proteinase K

    treatment. In responses to the anti-NiV antisera, the antigenicity of the N-terminally

    inserted NP401-532 was enhanced whereas NP401-532 presented at the immunodominant

    loop was only detectable in its denatured form. The N-terminus of HBc protein is

    therefore preferable to its immunodominant loop with regard to the enhanced stability

    of the C-terminal domain of NiV N protein.

  • © CO

    PYRI

    GHT U

    PM

    v

    Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

    PARTIKEL TERAS VIRUS HEPATITIS B SEBAGAI PLATFORM PEMAPARAN UNTUK EPITOP ASING

    Oleh

    YAP WEI BOON

    Disember 2011

    Pengerusi: Profesor Tan Wen Siang, PhD

    Fakulti: Bioteknologi dan Sains Biomolekul

    Partikel teras hepatitis B (HBc) merupakan sebuah platform pemaparan yang amat

    berguna kepada epitop asing kerana partikel sedemikian berkebolehan tinggi untuk

    merangsang penghasilan antibodi dalam perumahnya. Partikel teras HBV yang kecil

    dan besar diperbuat daripada 180 dan 240 salinan protein teras (HBcAg), dengan

    nombor triangulasi T = 3 dan T = 4. Kebanyakan epitop asing telah dipaparkan pada

    bahagian amino (N), karboksi (C) atau imunodominan HBcAg tanpa memusnahkan

    kebolehannya untuk membentuk partikel HBc. Pengaruh beberapa peptida dengan

    kepanjangan yang berlainan (14, 17, 22 dan 25 residu asid amino) telah dikaji dalam

    bahagian pertama kajian ini. Tag polihistidin telah dipamerkan tanpa atau bersama

    dengan sambungan peptida di bahagian amino HBcAg. Partikel HBc yang bertagkan

    polihistidin telah ditulenkan terus berlandaskan IMAC. Hasil penulenan partikel HBc

    didapati bertambah dengan kepanjangan peptida yang disambungkan di bahagian

  • © CO

    PYRI

    GHT U

    PM

    vi

    aminonya. His-�-LHBcAg yang mempunyai 20 asid amino berlebihan di bahagian

    amino HBcAg dikesan oleh antibodi monoklonal anti-His dan menunjukkan intensiti

    yang paling tinngi dalam ELISA. Keantigenan partikel HBc turut tidak terganggu oleh

    paparan peptida ketika diuji dengan antibodi monoklonal anti-HBc dan sampel serum

    pesakit hepatitis B. HBcAg yang ditagkan dengan polihistidin juga membentuk partikel-

    partikel teras yang seiras dengan virus sebenar (VLPs) dengan diameter kira-kira 30 nm

    semasa diperhatikan di bawah mikroskop elektron (TEM).

    Dalam usaha untuk mengesahkan penggunaan VLPs HBc sebagai reagen diagnostik

    yang berkesan, His-�-L-HBcAg telah ditulenkan dalam jumlah yang besar dengan

    mengaplikasikan sistem kromatografi penjerapan molekul melalui logam statik pada

    lapisan penjerap yang berkembang (IMA-EBAC). IMA-EBAC membolehkan

    penulenan partikel HBc secara langsung daripada pecahan sel Escherichia coli tanpa

    proses penjernihan. Jangka masa yang diperlukan dalam proses penulenan protein IMA-

    EBAC adalah lebih singkat (dari dua hingga tiga jam) berbanding dengan ultra-

    pengemparan ketumpatan sukrosa yang memerlukan dua hingga tiga hari. Hasil

    penulenan HBcAg yang bertagkan His ditunjukkan 100 kali ganda lebih tinggi daripada

    yang diperoleh melalui ultra-pengemparan ketumpatan sukrosa. Kadar penjerapan

    optimum partikel HBc yang bertagkan His pada penjerap Streamline Chelating tercapai

    pada pH 8.0. Hampir kesemua sisa protein bakteria E. coli telah diluruhkan dengan

    menggunakan larutan penimbal A (pH 8.0) dan B (pH 6.0) yang mengandungi 10% (v/v)

    gliserol serta 50 mM imidazol masing-masing. Kira-kira 56% partikel teras HBV telah

    ditulenkan pada pH 7.0 dengan menggunakan 500 mM imidazol dan 1.5 M NaCl.

  • © CO

    PYRI

    GHT U

    PM

    vii

    Partikel HBc bertag-His yang ditulenkan masih antigenik dan utuh selepas proses

    penulenan IMA-EBAC. Hal ini dapat dibuktikan melalui data yang diperoleh dalam

    ELISA dan pembentukan partikel HBc (30 nm) seperti yang ditunjukkan melalui TEM.

    Oleh sebab demikian, partikel teras HBV yang ditagkan dengan polihistidin

    sememangnya berpotensi tinggi untuk dijadikan reagen dalam diagnosis jangkitan HBV.

    Bahagian C nukleokapsid (N) Nipah virus (NiV), yakni NP401-532, amatlah sensitif

    terhadap tindakan protease bakteria. Justeru, NP401-532 telah dipamerkan di bahagian

    amino (NP401-532HBc) dan imunodominan (HBc79-80NP401-532) HBcAg kerana kestabilan

    dan keantigenannya yang tinggi. Pemaparan NP401-532 di atas partikel teras HBV telah

    berjaya memperbaiki kestabilannya dalam tindak balasnya dengan proteinase K. Selain

    itu, keantigenan NP401-532 terhadap sampel serum penyakit NiV telah banyak

    dipertingkatkan melalui pemaparannnya di bahagian amino HBcAg. Walau

    bagaimanapun, NP401-532 yang dipaparkan di bahagian imunodominan HBcAg hanya

    dapat dikesan apabila dinyahaslikan. Sesungguhnya, NP401-532 lebih sesuai dipaparkan di

    bahagian amino HBcAg berbanding dengan bahagian immunodominannya demi

    meningkatkan kestabilan dan keantigenannya.

  • © CO

    PYRI

    GHT U

    PM

    viii

    ACKNOWLEDGEMENTS

    Many people have endeavoured together with me to make me whom I am today.

    Although a brief acknowledgement may not suffice to remark the toils and hard work

    that we went through, I duly want to address my deepest gratitude to them. First and

    foremost, the supervisory committee members: Prof. Dr. Tan Wen Siang, Assoc. Prof.

    Dr. Tey Beng Ti and Assoc. Prof. Dr. Noorjahan Banu Mohamed Alitheen. Their

    willingness to leave every page of manuscripts had refined my work. Their seamless

    advice and encouragement have strengthened my confidence and enthusiasm towards

    research.

    Warmest thanks to my family. I may always count on their shoulders whenever I am

    tired and down. My parents, although barely understand my work, are always being

    supportive and understanding. Nonetheless, members from Laboratories 134 and 143,

    Faculty Biotechnology and Biomolecular Sciences, and Laboratory of Biochemical

    Engineering, Faculty Engineering, UPM. Special thanks to seniors who were my guides

    when I was in dilemmas and doubts: Michelle, Swee Tin, Kie Hie and Kah Fai.

    Last but not least, Graduate Research Fellowship (GRF), Universiti Putra Malaysia that

    has supported my three-years-study. Boundless thank you to all of them. Without them,

    I am only a plain ‘Yap Wei Boon’.

  • © CO

    PYRI

    GHT U

    PM

    ix

    I certify that a Thesis Examination Committee has met on 19 December 2011 to conduct the final examination of Yap Wei Boon on his Doctor of Philosophy thesis entitled “Hepatitis B Core Particle as a Display Platform For Foreign Epitopes” in accordance with the Universities and University College Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Doctor of Philosophy. Members of the Examination Committee were as follows: Wan Zuhainis Saad, PhD Lecturer Faculty of Biotechnology and Biomolecular Sciences Universiti Putra Malaysia (Chairperson) Chong Pei Pei, PhD Associate Professor Faculty of Medicine and Health Sciences Universiti Putra Malaysia (Internal Examiner) Cheah Yoke Kqueen, PhD Associate Professor Faculty of Medicine and Health Sciences Universiti Putra Malaysia (Internal Examiner) David Bhella, PhD Honorary Lecturer Centre for Virus Research University of Glasgow UK (External Examiner) _____________________________ SEOW HENG FONG, PhD Professor and Deputy Dean School of Graduate Studies Universiti Putra Malaysia Date: 25 January 2012

  • © CO

    PYRI

    GHT U

    PM

    x

    This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee were as follows:

    Tan Wen Siang, PhD Professor Faculty of Biotechnology and Biomolecular Sciences Universiti Putra Malaysia (Chairman)

    Tey Beng Ti, PhD Associate Professor Faculty of Engineering Universiti Putra Malaysia (Member)

    Noorjahan Banu Mohamed Alitheen, PhD Associate Professor Faculty of Biotechnology and Biomolecular Sciences Universiti Putra Malaysia (Member)

    ________________________________ BUJANG BIN KIM HUAT, PhD

    Professor and Dean School of Graduate Studies Universiti Putra Malaysia Date:

  • © CO

    PYRI

    GHT U

    PM

    xi

    DECLARATION

    I declare that the thesis is my original work except for the quotations and citations, which have been duly acknowledged. I also declare that it has not been previously, and is not concurrently, submitted for any other degree at Universiti Putra Malaysia or at any other institution.

    __________________ YAP WEI BOON Date: 19 December 2011

  • © CO

    PYRI

    GHT U

    PM

    xii

    TABLE OF CONTENTS

    Page ABSTRACT ii ABSTRAK v ACKNOWLEDGEMENTS viii APPROVAL ix DECLARATION xi LIST OF TABLES xvii LIST OF FIGURES xviii LIST OF ABBREVIATIONS xxi CHAPTER 1 INTRODUCTION 1 2 LITERATURE REVIEW 2.1 Hepatitis B virus (HBV) 7 2.1.1 Genome organization 9 2.1.2 Virion structures 10

    2.1.3 Viral replication 15 2.1.4 Immunopathogenesis 18 2.2 Hepatitis B core antigen (HBcAg) 21 2.2.1 HBcAg as a carrier platform 26 2.3 Nipah virus (NiV) 30 2.3.1 Virion structures and their roles in viral 33 replication 2.3.2 Nucleocapsid (N) protein of NiV 37 2.4 Cell disruption 41 2.5 Protein purification 43 2.5.1 Conventional protein purification processes 43

    2.5.2 Expanded bed adsorption chromatography 45 (EBAC) 2.5.2.1 Principles of EBAC 46 2.5.2.2 Immobilized metal affinity-expanded 52 bed adsorption chromatography (IMA-EBAC)

    2.5.2.3 Applications of EBAC 55

  • © CO

    PYRI

    GHT U

    PM

    xiii

    3 GENERAL MATERIALS AND METHODS 3.1 Construction of recombinant plasmids 58 3.1.1 Plasmid extraction 58 3.1.2 Polymerase chain reaction (PCR) 59 3.1.3 Agarose gel electrophoresis 60 3.1.4 DNA quantification 61 3.1.5 Restriction enzyme (RE) digestion 62 3.1.6 Gel extraction of RE digested pRSETB and 62 PCR products 3.1.7 Cloning of insert into pRSETB 63 3.2 Transformation of E. coli strain BL21 (DE3) with 63 recombinant plasmids 3.2.1 Preparation of E. coli strain BL21 (DE3) 63 competent cells 3.2.2 Introduction of recombinant plasmids into 64 E. coli strain BL21 (DE3) competent cells 3.3 Screening of positive transformants 64 3.3.1 Cycle sequencing of the inserted genes in 64 pRSETB 3.4 Production of recombinant protein 65 3.4.1 Cultivation of E. coli harbouring the 65 recombinant plasmids 3.4.2 Disruption of E. coli using ultrasonication 66 3.4.3 Protein purification with HisTrap HP column 66 3.4.4 Protein purification with sucrose density 67 gradient ultracentrifugation 3.5 Protein analysis 68 3.5.1 Sodium dodecyl-sulphate polyacrylamide gel 68 electrophoresis (SDS-PAGE) 3.5.2 Western blotting 69 3.5.3 Enzyme-linked immunosorbent assay (ELISA) 70 3.5.4 Transmission electron microscopy (TEM) 71 3.6 Protein quantification 72 3.6.4 The Bradford assay 72

  • © CO

    PYRI

    GHT U

    PM

    xiv

    4 N-TERMINALLY HIS-TAGGED HEPATITIS B CORE ANTIGENS: CONSTRUCTION, EXPRESSION, PURIFICATION AND ANTIGENICITY

    4.1 Introduction 73 4.2 Materials and Methods 76 4.2.1 Construction of recombinant plasmids encoding 76 the N-terminally His-tagged HBcAgs 4.2.2 Protein solubility analysis 79 4.2.3 Sodium dodecyl-sulphate polyacrylamide gel 79 electrophoresis (SDS-PAGE) 4.2.4 Western blotting 80 4.2.5 Purification of His-tagged HBcAgs 80 4.2.6 Enzyme-linked immunosorbent assay (ELISA) 81 4.2.7 Transmission electron microscopy (TEM) 82 4.3 Results 82 4.3.1 Construction of N-terminally His-tagged 82 HBcAgs 4.3.2 Expression of the recombinant protein in E. coli 83 strain BL21 (DE3) 4.3.3 Solubility analysis of His-tagged HBcAgs at 85 different temperatures 4.3.4 Purification of His-tagged HBcAgs with 86 immobilized metal affinity chromatography 4.3.5 Protrusion of His-tag on the surface of core 89 particles 4.3.6 Antigenicity of His-tagged HBcAgs 91 4.4 Discussion 93 4.5 Conclusion 97

    5 PURIFICATION OF HIS-TAGGED HEPATITIS B CORE ANTIGEN FROM UNCLARIFIED BACTERIAL HOMOGENATE USING IMMOBILIZED METAL AFFINITY-EXPANDED BED ADSORPTION CHROMATOGRAPHY

    5.1 Introduction 98 5.2 Materials and Methods 100 5.2.1 Materials 100 5.2.2 Cultivation of cells expressing His-tagged 100 HBcAg 5.2.3 Cell disruption 101 5.2.3.1 Ultrasonication 101

    5.2.3.2 Bead milling 101 5.2.4 Measurement of viscosity 101 5.2.5 Optimization of adsorption and elution of 102 His-tagged HBcAg

  • © CO

    PYRI

    GHT U

    PM

    xv

    5.2.5.1 Binding pH 102 5.2.5.2 Elution conditions 102 5.2.6 Equilibrium adsorption isotherm 103 5.2.7 Operation of EBA column 104 5.2.7.1 Bed expansion characteristics 104

    5.2.7.2 Dynamic binding capacity 104 5.2.7.3 Direct purification of His-tagged 105 HBcAg from unclarified feedstock 5.2.8 Ultracentrifugation 106 5.2.9 Protein analysis 106 5.2.10 Enzyme-linked immunosorbent assay (ELISA) 107 5.2.11 Calculations 107 5.3 Results 108 5.3.1 Homogenization 108 5.3.2 Optimization of the binding pH 109 5.3.3 Elution conditions 110 5.3.4 Equilibrium adsorption isotherm 113 5.3.5 Bed expansion characteristics 114 5.3.6 Dynamic binding capacity 116 5.3.7 Direct purification of His-tagged HBcAg from 117 unclarified feedstock 5.3.8 Antigenicity of His-tagged HBcAg 120 5.4 Discussion 123 5.5 Conclusion 129

    6 DISPLAY OF THE ANTIGENIC REGION OF NIPAH VIRUS NUCLEOCAPSID PROTEIN ON HEPATITIS B VIRUS CAPSID

    6.1 Introduction 130 6.2 Materials and Methods 131 6.2.1 Construction of the recombinant plasmids 131 6.2.2 Expression of NP401-532, NP401-532HBc, 134 HBc79-80NP401-532 in E. coli

    6.2.3 Purification of NP401-532, NP401-532HBc and 134 HBc79-80NP401-532 with a HisTrap HP column 6.2.4 Sucrose density gradient ultracentrifugation 134

    6.2.5 Proteolytic assay 135 6.2.6 SDS-PAGE and Western blotting 135 6.2.7 Enzyme-linked immunosorbent assay (ELISA) 135 6.2.8 Transmission electron microscopy (TEM) 136 6.3 Results 136

    6.3.1 Construction, expression and purification 136 of NP401-532, NP401-532HBc and HBc79-80NP401-532 6.3.2 The stability of NP401-532, NP401-532HBc, 139 HBc79-80NP401-532 6.3.3 Sucrose density gradient sedimentation and 140

  • © CO

    PYRI

    GHT U

    PM

    xvi

    transmission electron microscopy (TEM) 6.3.4 Antigenicity of NP401-532, NP401-532HBc, 142 HBc79-80NP401-532

    6.4 Discussion 145 6.5 Conclusion 148

    7 � GENERAL CONCLUSION AND FUTURE RECOMMENDATIONS 7.1 General conclusion 149

    7.2 Future recommendations 152

    REFERENCES 155 APPENDICES 170 BIODATA OF STUDENT 178 LIST OF PUBLICATIONS 179

    1.pdfHEPATITIS B CORE PARTICLE AS A DISPLAY PLATFORMFOR FOREIGN EPITOPESABSTRACTTABLE OF CONTENTSCHAPTERREFERENCES