29
1 Comparison of experimental and Computational Fluid Dynamics (CFD) studies of severe slugging on an S-shaped vertical riser D.A. Corredor Chemical Engineering Department, Universidad de los Andes, Bogotá, Colombia General Objective Model in CFD an Sshaped riser with a twophase oilair flow. Specific Objectives To model a 3D Sshaped riser with a twophase oilair flow on STARCCM+ CFD software for six cases. To compare and validate experimental data from NTNU with the numerical CFD results. To present a comprehensive analysis of the data obtained through the CFD software and propose valid conclusions. .

Comparison of experimental and Computational Fluid

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

1    

Comparison of experimental and Computational Fluid Dynamics (CFD) studies of severe slugging on an S-shaped vertical riser

D.A. Corredor

Chemical Engineering Department, Universidad de los Andes, Bogotá, Colombia

General  Objective  

• Model  in  CFD  an  S-­‐shaped  riser  with  a  two-­‐phase  oil-­‐air  flow.    

 

 

Specific  Objectives  

• To  model   a   3D   S-­‐shaped   riser   with   a   two-­‐phase   oil-­‐air   flow   on   STAR-­‐CCM+   CFD  software  for  six  cases.  

 

• To   compare   and   validate   experimental   data   from  NTNU  with   the   numerical   CFD  results.        

• To   present   a   comprehensive   analysis   of   the   data   obtained   through   the   CFD  software  and  propose  valid  conclusions.    

.

2    

Comparison of experimental and Computational Fluid Dynamics (CFD) studies of severe slugging on S-shaped vertical riser

D.A. Corredor

Chemical Engineering Department, Universidad de los Andes, Bogotá, Colombia

Abstract  

This  article  presents  a  Computational  Fluid  Dynamics  (CFD)  simulation  of  a  two-­‐phase  oil-­‐air  flow  on  an  s-­‐shaped  riser  for  the  study  of  severe  slugging.  For  the  development  of  this  simulation,  the  CFD  program  used  was  STAR-­‐CCM+  with  the  Volume  Of  Fluid  model  (VOF)  on  an  s-­‐shaped  pipe  with  a  50  mm  internal  diameter  and  30.4  m  of  length.  The  simulations  were   ran   at   six   different   gas   and   liquid   superficial   velocities   to   validate   the   mean  maximum  and  mean  minimum  pressure  as  well  as  the  pressure  time  series  obtained  with  the   experimental   data   obtained   by   NTNU     (Norway).   For   each   of   the   simulations   an  orthogonal  butterfly  mesh  was  used  with  a   total  of  576.000  cells.  The   relative  error  was  calculated   for   each   of   the   six   cases   and   had   maximum   values   of   16.5   %   for   the   mean  maximum  pressure  and  an  8.2  %  for  the  mean  minimum  pressure  for   low  gas  superficial  velocities,  indicating  that  the  simulation  is  better  suited  for  predicting  the  mean  maximum  and  minimum  pressure  at  high  gas  superficial  velocity.      

Key  words:  CFD,  severe  slugging,  two-­‐phase,  s-­‐shaped  riser.  

1.  Introduction  

The  oil   industry   is  one  of   the  pillars  of   today’s  world  economy,   it  provides   the   fuel   that  powers  our   principal  ways  of   transportation,   our   industry   and   it   is   the   raw  material   for  hundreds  of  thousands  of  products  across  all  consumer  needs;  summing  up  it  is  the  most  important   resource   on   the   planet   on   present   times.   Due   to   its   high   demand   and   the  exhaustion  of  viable  oil  extraction  sites   in-­‐land,  the  oil   industry  has  begun  exploring  and  exploiting  off-­‐shore;  this  has  posed  many  design  and  operation  challenges  that  have  yet  to  be  fully  studied  and  understood.  

Offshore  oil  production  pipelines,  known  as  risers,  when  operating  on  normal  conditions  with  a   two-­‐phase   flow,  as   in  gas/oil,  develop  a  very  common   flow  pattern  called  severe  slugging.   Severe   slugging   is   a   transient  multiphase   flow  phenomenon   that   occurs   inside  the  riser  pipeline  where  fast  moving  liquid  slugs  form;  these  liquid  slugs  carry  high  kinetic  energy  and   introduce  strong  oscillating  pressure,  which  can  be  potentially  hazardous  for  the   riser   structure  and   for   the  processing   facilities  downstream.  There  are   four   steps   in  severe  slugging;  1)  slug  generation,  2)  slug  production,  3)  bubble  penetration  and  4)  gas  blowdown,  these  are   illustrated  on  Figure  1.  Severe  slugging  occurs  when  stratified  flow  

3    

occurs  in  the  flowline,  and  the  ratio  of  gas  to  liquid  flowrate  is  below  some  critical  value  such   that   the   rate   of   pressure   build-­‐up   upstream   of   the   blockage   at   the   riser   base   is  insufficient   to  overcome   the   increase   in  hydrostatic  head  as   the   slug  grows   in   the   riser.  (BP,  1994)  

There  are  two  recognizable  severe  slugging  modes  on  s-­‐shaped  risers   identified  by  (Park  and  Nydal,  2014)  which  are  as  follows:  

• Severe  Slugging-­‐I   (SS-­‐I):   Full  blockage  by   liquid  at   the  bottom  bend  of   the  first  riser,  with  liquid  penetrating  some  distance  into  the  upstream  flowline  during  the  slug-­‐generation  period.  

• Severe  Slugging-­‐II   (SS-­‐II):  Partial  blockage  by   liquid  at  the  bend  of  the  first  riser,   with   gas   passing   through   the   bend   also   during   the   slug-­‐generation  period.  

• Stable  Flow:  Nearly  constant   inlet  pressure  and  no  apparent  slug  buildup,  which  essentially  means  that  steady  hydrodynamic  slug  flow  is  in  the  riser.  Small   oscillating   flow   without   the   apparent   characteristics   of   severe  slugging  is  defined  here  as  the  stable  flow.  

                             

                                                                                 Figure  1.    Severe  slugging  phenomenon  steps.  (Park  and  Nydal,  2014)  

Due   to   the   substantially   higher   pressure   drop   that   accompanies   severe   slugging   in  comparison   with   other   flow   patterns   (Figure   2),   irregular   liquid   and   gas   flow   output  ensues,   this   poses   a   great   challenge   on   the   operation   of   the   system.   For   the   optimal  design,  safety  and  performance  of  two-­‐phase  flow  systems,  it  is  necessary  to  understand  the   behavior   and   properties   of   severe   slugging   to   expect   on   any   given   flow   system  conditions.    

Figure  2  shows  five  types  of  two-­‐phase  flow  regimes  present  on  vertical  pipes,  which  form  at   different   flow   conditions   and   pipe   inclinations.   These   flow   regimes   possess   distinct  volume  fraction  distributions  and  introduce  pressure  fluctuations  on  pipelines.  

4    

                                       

                                                               Figure  2.  Different  types  of  flow  regimes  on  vertical  pipes.  (Kippax,  2011)  

 

There   are   two   different   approaches   in   the   study   of   the   slug   flow:   i)   the   experimental  approach,  which  involves  the  construction  of  scale  models  of  the  desired  riser  geometry.  This   is  equipped  with  flow  sensors  (i.e.  wire  mesh  sensors  (WMS))  to  obtain  data  on  the  flow   regimes   present   on   the   pipeline   and   the   subsequent   operation   of   the   system   on  different   conditions;   and   ii)   the   Computational   Fluid   Dynamics   (CFD)   approach  where   a  numerical   model   of   the   riser   system   is   constructed   and   tested   in   a   wide   range   of  conditions.  Since  the  experimental  approach  provides  solid  results  on  the  behavior  of  flow  regimes   but   lacks   the   multiplicity   of   conditions   in   which   a   CFD   can   operate,   both  approaches  are  ultimately  best  used  in  conjunction  (Abulkadir  et  al.,  2015).  

In   this   work,   severe   slugging   behavior   and   characterization   found   in   CFD   simulations   is  validated   using   experimental   data   provided   by   the   NTNU   (Norges   Teknisk-­‐naturvitenskapelige  Universitet,  the  Norwegian  University  of  Science  and  Technology).    

                                       

2.  Bibliographic  Review  

This   review   focused   on   both   areas   of   two-­‐phase   flow;   i)   S-­‐shaped   risers   and   ii)   severe  slugging;  this  was  performed  to  determine  the  variables  involved,  not  only  in  the  structure  of   the   oil   pipeline,   but   in   the   hydrodynamics   of   the   two-­‐phase   flow   and   the   severe  slugging   such   as   the   work   methodology,   approximations   and   considerations   involved  among  others.  

2.1  State  of  the  Art  

2.1.1  Experimental  Research  

5    

Table   1   shows   the   experimental   research   performed   on   recent   years   on   the  matter   of  experimental  studies  of  two-­‐phase  flow  in  pipes.  

 

Table  1.  Experimental  research  from  recent  years.  

Author   Objective   Results/Conclusions  López  Tinoco,  2006   Severe   slug   flow   characterization  

on   vertical   risers   of   hydrocarbon  producing  systems.  

Mass   balance,   momentum   balance.  Equations   were   used   to   characterize   the  conditions   of   a   severe   slugging  phenomenon  on  vertical  risers.    

Vallée  et  al.,  2008    

Experimental   investigation   and  CFD   simulation   of   horizontal  stratified   two-­‐phase   flow  phenomena.  

The   HAWAC   test   facility   provides   well  defined   analysis   as   well   as   variable  boundary  conditions,  which  allow  very  good  CFD-­‐code  validation  possibilities.    

Meglio  et  al.,2012   Stabilization   of   slugging   in   oil  production   facilities   with   or  without   upstream   pressure  sensors.  

Positive   results  of   the  model-­‐based  control  solutions   would   probably   be   attenuated  during  real-­‐scale  implementations.  In   particular   the   model   may   not   be  representative   for   a   large   range   of  operating   points   on   a   real   well,   where  inflows   depend   on   bottom   pressure,  whereas  they  are  assumed  constant  by  the  model.  

Li  N.    et  al.,  2013   Gas-­‐Liquid   two-­‐phase   flow  patterns  in  a  pipeline-­‐riser  system  with  an  S-­‐shaped  riser.  50  mm  i.d.  ,   horizontal   pipeline   with   114   m    in   length,   followed   by   a   16   m  downward   inclined   section   and  ended   at   an   S-­‐shaped   flexible  raiser.  

Four  types  of  flow  patterns,  severe  slugging  type   1   and   2,   transition   flow   and   stable  flow.   The   S-­‐shaped   riser   has   a   stabilizing  effect  on  severe  slugging  at  high   liquid  and  gas   velocities,   reducing   the   region   of  unstable  flow.    The  unstable   region  was  over  predicted  by  the   stability   criteria,   which   were   originally  developed   for   vertical   risers.   An   existing  model   was   modified   by   taking   into  consideration   the   gas   blocked   in   the  downcomer   riser,   which   tested   against  experimental   data   showed   a   good  performance.  

Castillo  et  al.,  2013    

Experimental   characterization   of  severe   slug   flow   on   inclined-­‐vertical   risers   with   5   pressure  transducers  and  2  conductive  ring  probes.  

When  operating  on  high  superficial  liquid  or  gas  velocities,  severe  slug  flow  frequency  is  bigger.  Superficial   gas   and   liquid   velocities   have  great  influence  on  the  shape  of  severe  slug  

6    

  flow.  The   inclination  of   the  angle  of   the  pipeline  has   also   influence   on   the   form   and  development  of  the  severe  slug  flow.  

Diaz  et  al.,  2014   Comparison   of   experimental   and  CFD   studies   of   slug   flow   with  viscous  liquids  in  s-­‐shaped  riser.  

The  air-­‐oil  flow  reached  the  stable  behavior  at   lower   air   superficial   velocities   than   the  air-­‐water  case.    Comparison   between   simulation   and  experimental   results   showed   better  agreement   for   low  viscosity   fluid,  while   for  high  viscosity  fluid,  the  simulation  predicted  the  pressure  amplitude  and  the  cycle  period  of  the  slugs.  

Park  and  Nydal,  2014   Study  on  severe  slugging   in  an  S-­‐Shaped   riser:   small   scale  experiments   compared   with  simulations  

Two   main   modes   of   severe   slugging   are  observed   visually,   full   blocking   in   the  bend  and  partially  blocking  in  the  bend.  OLGA   simulations   compare   quite  well  with  the  experimental  results.  The  differenes  are  within   a   5   and   9%   on   the   pressure  amplitudes.   The   deviations   on   the   slug  periods  are  largest  at  low  flow  rates.  

Abulkadir  et  al.,  2015   Comparison   of   experimental   and  CFD   studies   of   slug   flow   in   a  vertical   riser   (6   m   vertical   pipe  with   a   0.067   m   internal  diameter).    

At   steady-­‐state,   both   the   CFD   and  experiment  predict  similar  behaviors.  The   slug   behavior   can   be   considered   fully  developed  at  4.0  m.  A  reasonably  good  agreement  between  CFD  and   experiment   was   obtained,   CFD  simulation  can  be  used  to  characterize  slug  flow   parameters   with   a   good   level   of  confidence.  

Azevedo  et  al.,  2015   Linear  stability  analysis  for  severe  slugging   in   air-­‐water   systems  considering   different   choking  mechanisms.  

Continuity   equations   for   gas   and   liquid  phases,   simplified   mixture   momentum  equation,   inertia   neglecting   (NPW,   no  pressure  wave  model)  

 

 

2.1.2  CFD  Research  

Table  2  shows  the  experimental  research  performed  on  recent  years  on  the  matter  of  CFD  simulations  of  two-­‐phase  flow  in  pipes.  

 

7    

Table  2.  CFD  research  from  recent  years.  

Author   Objective   Comparison   Model  Used   Software  López,  2006   Sever   slug   flow  characterization  

on  vertical  risers  of  hydrocarbon  producing  systems.  

Analytical  Study   Implicit   scheme  solution.  

OLGA  2000  

Cruz  et  al.,  2007   Hydrodynamic   characterization  of   slug   flow   regime   on  hydrocarbon   production  systems.   Horizontal   pipe   and  vertical  riser.  

Analytical   study,  governing  equations  of  the  phenomena.  

Two   fluid  Model,  transient  state,   implicit  scheme  solution.  

OLGA  2000  

Vallée   et   al.,  2007  

Experimental   investigation   and  CFD   simulation   of   horizontal  stratified   two-­‐phase   flow  phenomena.  

Experimental  Study  

Euler-­‐Euler   two  fluid  model  with  three   surface  option.  

Ansys  CFX  

Peng  et  al.,  2013   CFD   Wall   shear   stress  benchmark   in   stratified   to  annular   transitional   flow  regime.  

Experimental  Data  

Implicit   scheme  solution.  

OLGA,  NORSOK  M506  

Diaz  et  al.,  2014   Comparison   of   experimental  and   CFD   studies   of   slug   flow  with   viscous   liquids   in   s-­‐shaped  riser.  

Experimental  Study  

Two   phase   fluid  model.  

OLGA  v.7.1.0  

Park   and   Nydal,  2014  

Study  on  severe  slugging  in  an  S-­‐Shaped   riser:   Small-­‐scale  experiments   compared   with  simulations.  

Experimental  Study  

Two   phase   fluid  model,   Peng  Robinson,  Equation   of  State  EOS.  

OLGA  v.6.3  

Abulkadir   et   al.,    2015  

Comparison   of   experimental  and  CFD  studies  of  slug  flow  in  a  vertical  riser.      

Experimental  Study  

Volume   of   fluid  method   (VOF)  with   a   high  resolution  interface  capturing  scheme  (HRIC).  

STAR   CD,  STAR-­‐CCM+  

 

 

 

8    

3.  Materials  and  methods  

This  work  uses  CFD  simulations  of   severe   slugging  pattern   to  validate   the  pressure   time  series   and   mean   maximum   and   minimum   pressure,   on   section   1   (Annex   A)   of   the  simulation   riser,   results  with   experimental   data  obtained  by   the  experimental   facility   at  NTNU;  the  models,  conditions  and  experimental  correlations  used  in  both  simulation  and  experiment  are  explained  below.  

3.1  Experimental  setup  (NTNU)  

The   experimental   data   used   to   compare   the   simulation   of   the   severe   slugging  phenomenon  was  obtained  by  the  Energy  and  Process  Technology  Department  at  NTNU,  which  has  an  experimental  facility  that   is  capable  of  generating  various  flow  patterns  on  the  desired  S-­‐shaped  riser  geometry.    

The  S-­‐shaped  riser  geometry  (Figure  3)  is  made  of  Plexiglas  pipes  with  50  mm  of  internal  diameter  and  14  m  of   length  with  a   first   step  of  4.3  m  and  a   second  one  of  3.5  m.  The  facility  is  capable  of  handling  air,  oil  and  water  mixtures;  a  buffer  tank  is  placed  at  the  inlet  of  the  air  single  phase  line  to  simulate  a  large  pipe  upstream  with  an  equivalent  of  0.225  𝑚!;  after  the  buffer  tank,  a  mix-­‐section  is  in  place  to  generate  the  two-­‐phase  mixture.  The  air   is   supplied   at   7   bar   from   the   main   line   of   the   laboratory   and   it   is   reduced   via   a  reduction  valve  before  the  buffer  tank  (Figure  4).    

The  mass  flow  rate  of  air  is  measured  by  a  Coriolis  meter;  the  liquid  is  stored  in  the  main  separator  and  supplied  through  a  centrifugal  pump,  the  mass  flow  rate  is  measured  with  a  Coriolis  meter   in  the  single-­‐phase   line.  Figure  3  shows  the  riser  geometry  present  at  the  facility.  A  complete  diagram  of   the  Experimental   setup   is   shown   in   figure  4.   (Diaz  et  al.,  2014)  

 

 

                                                                 Figure  3.  NTNU  Riser  geometry  (0.05-­‐m  inner  diameter)  (Park  and  Nydal,  2014)  

9    

Riser

 

P

MAIN  SEPARATOR

OIL  LINE

WATER  LINE

SMALL  SEPARATOR

OVERFLOW  TANK

LARGE  CENTRIFUGAL  PUMP

AIR  LINE

BUFFER  TANK

SMALL  CENTRIFUGAL  PUMP

LARGE  FLOW  METER

SMALL  FLOW  METER

AIR  TANK  7  BAR

AIR  TANK  4  BAR

                                                                             Figure  4.  NTNU  Experimental  facility  setup.  (Diaz  et  al.,  2014)  

3.2  CFD  model  

For  the  CFD  model,  the  geometry  of  the  S-­‐shaped  riser  was  created  in  a  3D  environment  in  Autodesk   Inventor   Professional   2014   CAD   with   the   dimensions   specified   in   the   NTNU  paper;   the   governing   equations,  models   and  mesh   generation  were   all   generated   using  the  STAR-­‐CCM+  v  10.04.009  CFD  software  and  are  explained  here.  

Since   the  NTNU   experiment  was   carried   out  with   an   air-­‐oil  mixture,   standard   values   of  viscosity,  density  and  surface  tension  were  used  for  each  component  shown  in  Table  3,  at  298  K  and  1  atm  of  pressure.  All  cases  were  run  for  a  physical  time  of  105  s.  

 

                                                                                                                               

10    

                                                                                                                                   Table  3.    Fluid  properties  of  oil  and  air.  

Fluid   Oil   Air  Density  [kg/m3]   831   1.2  Viscosity  [cP]   60   0.02  

Surface  Tension  [kN/m]   30                                                                                                                              

3.3.1  Geometry  

For  the  simulation,  a  3D  model  of  the  S-­‐shaped  riser  was  constructed  in  Autodesk  Inventor  based   on   the  NTNU  experimental   facility   dimensions,  with   a   50  mm  diameter,   31.53  m  length  and  6.5  m  height.  The  plan  for  the  S-­‐shaped  riser  is  attached  on  Annex  A.  

An   additional   pipe   was   added   before   the   riser   in   order   to   represent   the   buffer   tank  present  in  the  experimental  facility.  

3.3.2  Superficial  velocity  

When  working  with   two-­‐phase   flows  and  average  velocity   cannot  be  defined  using  only  volumetric   flow   (𝑄)   and   cross   sectional   area   (𝐴).   This   is   due   to   the   fact   that   the   area  occupied  by  a  phase  depends  on  time  and  location,  which  results  in  the  volume  flow  not  being  proportional   to   speed.   (Bratland,  2010)  This   velocity   is   a  mathematical  parameter  used  for  analyzing  two-­‐phase  flow.  Gas  superficial  velocity  is  defined  as  shown  in  equation  (2)  and  liquid  superficial  velocity  in  equation  (3).  

𝛼! =𝑉!𝑉                                                          (1)  

𝑣!" =𝑄(𝛼!)𝐴                                                      (2)  

𝑣!" =𝑄 1− 𝛼!

𝐴                                                  (3)  

Where  𝑣!"   is  the  gas  superficial  velocity  [m/s]  ,  𝑣!"   is  the  liquid  superficial  velocity  [m/s]  and  𝛼!    (equation  (1))  is  the  void  fraction;  when  𝛼! = 0  the  pipe  is  filled  exclusively  with  liquid  and  when  𝛼! = 1  it  is  exclusively  filled  with  gas.  

3.3.3  Governing  equations  

Since   the   focus   of   this   work   is   the   study   of   a   specific   flow   pattern   that   involves   two  different   phases,   the   Navier-­‐Stokes   general   transport   equations   are   the   main   tools   to  study   the   severe   slugging   behavior.   The   differential   form   of   this   equation   is   given   by  equation  (4).  

𝜕(𝜌𝜙)𝜕𝑡 + 𝑑𝑖𝑣 𝜌𝜙𝒖 = 𝑑𝑖𝑣 Γ𝑔𝑟𝑎𝑑𝜙 + 𝑆!                                    (4)  

11    

Which  can  be  described  as  the  rate  of  increase  of  𝜙  of  fluid  element  plus  the  net  rate  of  flow  of  𝜙  out  of  fluid  element  equal  to  the  rate  of  increase  of  𝜙  due  to  diffusion  plus  the  rate   of   increase   of   𝜙   due   to   sources   respectively,   where   𝜙   is   a   general   property.  (Malalasekera,   1995).   STAR   CCM+   solves   the   equation   from   its   integral   form   using   the  finite  volumes  method,  the  equation  is  given  by  equation  (5)  which  has  to  be  integrated  by  time  because  of  the  transient  nature  of  severe  slugging.  

𝜕𝜕𝑡

!!

( 𝜌𝜙𝑑𝑉)!"

𝑑𝑡 + 𝒏   𝜌𝜙𝒖 𝑑𝐴!

= 𝒏 Γ𝑔𝑟𝑎𝑑𝜙 𝑑𝐴 + 𝑆!𝑑𝑉!"!

         (5)  

The   mass   conservation   equation   (equation   (6))   also   needs   to   be   considered   when  modeling  two-­‐phase  flow.  

𝜕𝜕𝑡 𝛼!𝜌!𝑥𝑑𝑉

!

+ 𝛼!𝜌!𝑥(!

v! − v!)𝑑𝑎 = 𝑚!" −𝑚!" 𝑎!"𝑥𝑑𝑉!!!

!

+ 𝑆!𝛼𝑑𝑉!

             (6)  

Where  𝛼!   is   the   volume   fraction   of   phase   i,  𝜌!   is   the   density   of   phase   i,   𝑥   is   the   void  fraction,  v!  is  the  velocity  of  phase  i,  v!  is  the  grid  velocity,  𝑚!"  is  the  mass  transfer  rate  to  phase   i   from   phase   j   (𝑚!" ≥ 0),  𝑚!"   is   the   mass   transfer   rate   to   phase   j   from   phase   i  (𝑚!" ≥ 0),  𝑎!"  is  the  interaction  area  density  and  𝑆!!  is  the  phase  mass  source  term.    

3.3.4  Models  used  

A  general  overview  of   the  most   important  models  used  for   the  simulation  of   the  severe  slugging  phenomena  in  STAR-­‐CCM+.  

 

3.3.4.1  Volume  of  fluid  model  (VOF)  

The   volume   of   fluid   (VOF)  model   is   designed   to   capture   the   interface   between   two   (or  more)   immiscible   fluids.   In   this   method,   it   is   assumed   that   all   phases   share   velocity,  pressure   and   temperature   hence   the   inter-­‐phase   interactions   are   not   modeled.   This  model   is  suited  for  multiphase  flows  where  two  fluids  (in  this  case  liquid-­‐gas)  are  clearly  and  separated  (Soldan,  2013).  

The  VOF  model  description  assumes  that  all   immiscible   fluid  phases  present   in  a  control  volume  share  velocity,  pressure  and  temperature  fields.  Therefore,  the  same  set  of  basic  governing  equations  describing  momentum,  mass,  and  energy  transport  in  a  single-­‐phase  flow  is  solved.  

The  equations  are  solved  for  an  equivalent  fluid  whose  physical  properties  are  calculated  as  function  of  the  physical  properties  of  its  constituent  phases  and  their  volume  fractions.    

 

12    

𝜌 = 𝛼!𝜌!

!

!!!

                                 (7)  

𝜇 = 𝛼!𝜇!

!

!!!

                               (8)  

 𝛼! =𝑉!𝑉                              (9)    

Where  𝛼!   is   the  volume  fraction  and𝜌!,  𝜇!  and   𝑐! !  are  the  density,  molecular  viscosity  

and  specific  heat  of  the  i  th  phase.  

The  conservation  equation  that  describes  the  transport  of  volume  fractions  𝛼!  is:  

𝑑𝑑𝑡 𝛼!𝑑𝑉 + 𝛼!(

!!v− v!) ∙ 𝑑a = 𝑆!! −

𝛼!𝜌!𝐷𝜌!𝐷𝑡 𝑑𝑉  

!            (10)  

Where   𝑆!!   is   the   source   or   sink   of   the   ith   phase,   and   !!!

!"is   the   material   or   Lagrangian  

derivative  of  the  phase  densities  𝜌!  (CD  Adapco  User  Guide).  

3.3.4.2  SST  𝒌−  𝝎  turbulence  model  

The  SST  𝑘 − 𝜔  turbulence  model  solves  two  transport  equations,  these  are  solved  for  the  turbulent   kinetic   energy   𝑘   and   a   quantity   called   𝜔   which   is   defined   as   the   specific  dissipation  rate,  that  is,  the  dissipation  rate  per  unit  turbulent  kinetic  energy  (𝜔~𝜀/𝑘).    

It   is   similar   to   the   𝑘 − 𝜀   models   but   presents   a   better   performance   when   modeling  separated   flows,   low-­‐Reynolds   number   flows   (transitional),   near   wall   precision   and  sensible  inlet  boundary  conditions  (Yen,  2013).  

One   reported   advantage   of   the   𝑘 − 𝜔   model   over   the   𝑘 − 𝜀   model   is   its   improved  performance   for   boundary   layers   under   adverse   pressure   gradients,   yet   the   most  significant  advantage   is   that   it  may  be  applied   throughout   the  boundary   layer,   including  the  viscous-­‐dominated  region,  without  further  modification  (CD  Adapco  User  Guide).  

Severe  slugging  is  an  unsteady  phenomenon  that  occurs  at  low  gas  and  liquid  rates,  which  translates   into   low-­‐Reynolds   number   flow;   this   makes   the   election   of   the   SST   𝑘 − 𝜔  turbulence  model  ideal  for  this  simulation.  

3.3.4.3  Gravity  

For   the   gravity   model,   since   the   geometry   was   built   on   the   Autodesk   Inventor   CAD  software  and  a  sweep  function  was  used  to  create  the  pipe,  the  whole  structure  was  tilted  a  few  degrees;  the  solution  to  the  tilt  was  solved  by  calculating  the  different  components  of  gravity  on  the  axes  x  and  z.  

13    

3.3.4.4  Initial  and  boundary  conditions  

The  initial  conditions  for  the  simulation  replicate  the  conditions  of  the  experiment  carried  out  at  NTNU  where  the  riser  starts  completely  full  of   liquid;  the  inlet  was  described  as  a  velocity  inlet  and  assigned  a  field  function  that  divided  it   into  two  identical  sections  that  represent  the  liquid  and  gas  inlet.  The  outlet  was  described  as  a  pressure  outlet,  a  1  atm  pressure  was  assigned  as  a  constant  value  and  a  1  gas  volume  fraction  to  prevent  reversed  flow.  

Table  4  contains  the  six  pairs  of  gas  and  liquid  superficial  velocities  assigned  to  each  study  case  for  this  work.  

                                                                                                                           Table  4.  Study  cases  for  CFD  simulation  

Case   𝒗𝑺𝑳    [m/s]   𝒔𝑺𝑮  [m/s]  1   0.1   1.1  2   0.1   2.3  3   0.1   5.6  4   0.2   1.4  5   0.2   3.0  6   0.2   5.6  

                               

3.3.4.5  Mesh  generation  

The   CFD   simulation   software   STAR-­‐CCM+   uses   a   discretization   of   surfaces   and   volumes  approach   to   solve   the  many  models   and  physics  phenomena   that  may  apply,   called   the  finite  volume  method.   It  divides  a  region  of  space   into  a  discrete  number  of  parts  called  cells,   which   simplify   the   calculation   of   the   transport   equations.   The   discretization   as  described  before  is  called  mesh  generation  and  is  of  great  importance  when  modeling  any  kind  of  physic  phenomenon.   This  work   simulates   a   two-­‐phase   flow,  which   requires  of   a  special  mesh   design   in   order   to   obtain   the  most   accurate   results   as   evidenced   in   other  studies   (Abulkadir   et   al.,   2015)   called   orthogonal   meshing   (also   known   as   butterfly  meshing).  

Butterfly  mesh  has  a   characteristic  design  as   shown   in   figure  4.   It  has   two  sections:   i)   a  square  shaped  section  that   is   located   in  the  center  of  the  pipe,   it  has  a  grid  design;   ii)   it  starts  on  the  edge  of  the  square  grid  and  ends  at  the  pipes  cross  section  edge,  forming  a  grid  of  consecutively  rounded  squares  that  finally  reaches  a  completely  circular  shape  as  it  reaches  the  edge.  

The   generation   of   the   butterfly  mesh   in   STAR-­‐CCM+  was   achieved   by   using   the   built-­‐in  feature  called  directed  meshing.  

                                                                                                   

 

14    

 

 

 

 

 

 

                                                                                                                                                             Figure  4.  Butterfly  mesh.  

3.3.4.5.1  Grid  independence  

For   this   study,   three   meshes   where   generated,   a   coarse,   normal   and   fine   mesh.   The  normal  mesh  was  set  to  have  a  3  mm  wide  cell  on  the  grid  section  of  the  butterfly  design.  The   coarse   and   refined   where   set   to   have   a   30   %   wider   and   slimmer   cell   on   the   grid  section  respectively,  resulting  in  a  2  mm  wide  cell  for  the  refined  mesh  and  a  4  mm  wide  cell  for  the  coarse  mesh.  The  cell  depth  ∆𝑥  was  defined  with  equation  (11).  

∆𝑥 = 𝐷 ∗ 0.3                                    (11)  

Table   5   shows   the   number   of   cells   on   the   cross   section,   number   of   sections   and   total  number  of  cells.  

                                                                                                                                                       Table  5.    Mesh  properties  

  Fine  Mesh   Normal  Mesh   Coarse  Mesh  Number  of  cells  on  cross  section   605   320   180  Width  of  the  cell  [mm]   2.3   3.1   4  Number  of  sections   1800   1800   1800  Total  number  of  cells   1,089,000   576,000   324,000  

 

     

a)                                                                                b)                                                                                        c)  

                                                                                                             Figure  5.    a)  Coarse,  b)  Normal,  c)  Fine  meshes  

15    

The  number  of  sections  was  not  included  in  the  study.  The  physical  time  used  was  50  s  on  case  4.  

3.3.4.6  Implicit  unsteady  model  

The  implicit  transient  model  is  used  whenever  a  problem  is  time  dependent,  i.e.  unsteady;  it   performs   a   time   discretization   to   calculate   the   transport   equations.   Because   of   the  transient  nature  of  severe  slugging,  the  implicit  unsteady  model  was  chosen.  

In  the  Implicit  Unsteady  approach,  each  physical  time-­‐step  involves  some  number  of  inner  iterations   to   converge   the   solution   for   that  given   instant  of   time.  These   inner   iterations  can   be   accomplished   using   implicit   spatial   integration   or   explicit   spatial   integration  schemes.   A   physical   time-­‐step   size   is   specified   that   is   used   in   the   outer   loop.   The  integration   scheme   marches   inner   iterations   using   optimal   pseudo-­‐time   steps   that   are  determined  from  the  Courant  number  (CD  Adapco  User  Guide).  

The  time  step  ∆𝑇  in  which  the  physics  equations  are  going  to  be  calculated  has  to  be  small  enough   for   the  model   to   converge.   For   the   convergence  of   the   simulation   the  Courant-­‐Friederich-­‐Levy   stability   condition   must   be   satisfied;   the   Courant   number,   for   short,   is  defined  as  shown   in  equation   (12),  and  must  be   lower   than  1   to  ensure  convergence  of  the  simulation.    

𝐶 =𝑢!∆𝑇∆𝑥                (12)  

Where  𝑢!   is   the   Taylor   bubble   speed,  ∆𝑇   is   the   time   step   and  ∆𝑥   is   the   cell   depth.   To  ensure  that  the  convergence  criterion  is  being  satisfied,  the  time  step  is  calculated.  

A   time   step  of  0.001   s  was   set   for   the   simulation  by  monitoring   the   convective   courant  number   on   various   sections   of   the   riser   and   ensuring   it   satisfied   the   convergence  condition.  

4.  Results  and  discussion  

On   this   section,   the   results   of   the   simulation   cases   and   the   analysis   performed   with  simulation  and  NTNU  experimental  data  are  shown,  as  well  as  the  grid  sensibility  study.  

4.1  Grid  independency  study  

The  grid  independency  study  was  performed  for  case  4  (table  4)  with  a  physical  time  of  50  s  on  a  virtual  machine  running  with  10  cores  with  windows  7  with  an  Intel  ®  Xeon®  CPU  E5-­‐2695   v2  @   2.40GHz   processor   with   64   GB   of   RAM  memory.   The   targeted   variables  were   the   mean   maximum   and   mean   minimum   pressure.   The   simulation   error   was  calculated  with  equation  (13).  

𝑒𝑟𝑟𝑜𝑟 % =𝑎!"# − 𝑎!"#

𝑎!"#∗ 100                                  (13)  

16    

Table  6  shows  the  results  of  the  grid  sensibility  study.  

                                                                                                                               Table  6.    Grid  sensibility  study  results  

Mesh   Coarse   Normal   Refined  Total  cell  number   324000   576000   1089000  Time  [h]   105   144   292  meanMaxP  Simulation  [bar]   1.35   1.35   1.35  meanMaxP  Experimental  [bar]   1.62  meanMinP  Simulation  [bar]   1.26   1.23   1.25  meanMinP  Experimental  [bar]   1.18  meanMaxP  Simulation  Error  [%]   16.33   16.5   16.4  meanMinP  Simulation  Error  [%]   7.13   4.71   6.00    

For   the   mean   maximum   pressure,   all   errors   found   for   each   mesh   design   are   similar,  changing  only  in  the  order  of  10!!  which  indicates  there  is  no  meaningful  difference  and  consequently   a   mesh   design   can   not   be   chosen   based   on   mean   maximum   pressure  prediction  accuracy.  

For  the  mean  minimum  pressure,   the   lowest  error   is   for  the  normal  mesh  design  with  a  value  of  4.71  %,  the  refined  mesh  is  next  with  a  6%  and  finally  the  coarse  mesh  with  a  7.13  %;  this  result  shows  the  expected  higher  error  for  the  coarse  mesh,  yet  the  normal  mesh  yields  a  lower  error  than  the  refined  mesh.    

These  error  values,  while  not  meaningfully  high  for  the  mean  minimum  pressure,  can  be  explained   by   the   VOF  model   used   to   simulate   the   flow   phenomena  which   requires   the  cells  on  the  mesh  design  to  have  a  certain  size  to  capture  the  interface  between  the  faces  of  the  mixture  as  seen  on  figure  6.  

                                                                                                                                         Figure  6.    a)  Unsuitable  grid  b)  Suitable  grid  for  VOF  model.  (CD  Adapco  User  Guide)  

The   normal   mesh   design   was   chosen   to   perform   the   simulations   as   it   shows   a   good  balance  between  error  and  computational  time.  

 

 

17    

4.2  CFD  simulation  results  

The  simulations  for  the  six  cases  proposed  were  run  for  a  physical  time  of  105  s  on  a  10  cores  machine.  Figure  7  shows  the  residuals  of  the  equations  solved  for  case  4  (table  1).  The  graph  shows  a  clear  stabilization  starting  from  iteration  4000  or  0.8  s  all   the  way  to  iteration  500000  or  100  s  which  evidences  the  correct  convergence  of  case  4  simulation.  

 

 

 

 

 

 

 

       

 

                                                                                                                                       

                                                                                                                                             

 

                                                                                                                                                   Figure7.  Residuals  plot  for  case  4  

 

All   other   cases   show   the   same   behavior   on   their   residuals   graphs,   indicating   all   cases  converged  correctly.  

Table   7   contains   the   results   obtained   for   the  mean  maximum  pressure   of   the   pressure  time   series   on   section   1   of   the   riser   (Annex   B)   after   stabilization.   The  mean  maximum  pressure  was  calculated  by  performing  an  average  of  the  ten  maximum  pressure  values  of  the  pressure  time  series.  The  maximum  error  percentage  values  are  found  on  cases  1  and  4  where   the   superficial   gas   and   liquid   velocities   are   at   its   lowest,   reaching   a   significant  peak  value  of  16%  on  case  4.  The  lowest  error  values  belong  to  cases  3  and  6,  indicating  the   simulation   best   predicts   the   mean   maximum   pressure   for   high   gas   superficial  velocities  and  under  predicts  for  low  gas  superficial  velocities  though  never  by  an  order  of  magnitude.  

 

 

18    

                                                                               Table  7.    Mean  maximum  pressure  results  

      Sim   Exp    Case   𝒗𝑺𝑳  [m/s]   𝒗𝑺𝑮  [m/s]   meanPmax  

[bar]  meanPmax  

[bar]  Error  %  

1   0.1   1.1   1.36   1.56   12.71  2   0.1   2.3   1.28   1.26   1.37  3   0.1   5.6   1.24   1.22   1.81  4   0.2   1.4   1.35   1.62   16.49  5   0.2   3.0   1.28   1.34   5.39  6   0.2   5.6   1.27   1.26   0.98  

 

Table   8   contains   the   results   obtained   for   the  mean  minimum   pressure   of   the   pressure  time   series   on   section   1   of   the   riser   (Annex   A)   after   stabilization.   The  mean  minimum  pressure   was   calculated   in   the   same   fashion   as   the   mean   maximum   pressure.   Mean  minimum  pressure  error  percentage  values  present  the  same  behavior  as  mean  maximum  pressure  values  for  cases  4  to  6  as  expected.  On  cases  1  to  4  the  lowest  error  is  found  at  low  gas  superficial  velocities.  As  well  as  for  the  mean  maximum  pressure,  the  results  never  under  or  overpredict  by  an  order  of  magnitude.    

                                                                                                                                         Table  8.    Mean  minimum  pressure  results  

      Sim   Exp    Case   𝒗𝑺𝑳  [m/s]   𝒗𝑺𝑮  [m/s]   meanPmin  

[bar]  meanPmin  

[bar]  Error  %  

1   0.1   1.1   1.13   1.14   0.74  2   0.1   2.3   1.12   1.18   4.97  3   0.1   5.6   1.10   1.20   8.21  4   0.2   1.4   1.23   1.18   4.71  5   0.2   3.0   1.21   1.22   0.61  6   0.2   5.6   1.24   1.25   0.63  

                                                                                                                                       

Table   9   contains   the   results   obtained   for   the   slug   period   and   the   severe   slugging   type  present.    For  every  case,  the  simulation  failed  to  predict  the  presence  of  severe  slugging  in  the  riser,  predicting  a  stable  flow  with  short  slug-­‐like  periods  for  cases  1  and  4  where  the  experimental  results  show  SS-­‐I  and  no  slug  period  at  all  for  cases  2  and  5  where  SS-­‐II  was  found  on   the  NTNU  experiments.  For  cases  3  and  6  stable   flow  was  correctly  predicted,  which   is   congruent   with   the   mean   maximum   and   minimum   pressure   error   percentage  values   and   the   tendency   for   high   gas   superficial   velocities   to   stabilize   flow   in   s-­‐shaped  risers  as  discussed  by   (Li  et  al.,  2013),  yet,   these  results  will  be   further  discussed  on  the  discussion  section.  

 

19    

 

                                                                                                             Table  9.  Slug  period  and  severe  slugging  type  results  

      Sim   Exp   Sim   Exp  Case   𝒗𝑺𝑳  [m/s]   𝒗𝑺𝑮  [m/s]   Period  [s]   Period  [s]   SS  Type   SS  Type  1   0.1   1.1   4   69.04   S   SI  2   0.1   2.3   0   24.63   S   SII  3   0.1   5.6   0   0.00   S   S  4   0.2   1.4   3.5   56.20   S   SI  5   0.2   3.0   0   24.59   S   SII  6   0.2   5.6   0   0.00   S   S  

Figure  8  presents   the  pressure   time  series   for  case  4  on  section  1   (Annex  B).  The  stable  flow  behavior  predicted  can  be  observed  by  the  stabilization  with  small  oscillations  of  the  pressure   and   no   apparent   slug   buildup.   The   experimental   data   shows   the   slug   build-­‐up  period  and  the  increase  in  pressure  as  the  liquid  phase  starts  to  fill  the  first  section  of  the  riser;  after,  the  gas  blowdown  is  present  where  there  is  a  sudden  drop  of  pressure  which  is  a  characteristic  inlet  (section  1,  Annex  A)  pressure  behavior  for  SS-­‐I.  

 

                                                                                             Figure  8.  Case  4  Pressure  time  series  comparison.  

Figures  9  and  10  show  the  mean  maximum  and  minimum  pressure  results  obtained  with  the  simulation  and  the  experimental  results  obtained  at  NTNU.  For  each  liquid  superficial  velocity,  the  mean  maximum  pressure  shows  a  descending  tendency  as  the  superficial  gas  velocity  increases,  overlapping  with  the  experimental  results.  Pressure  values  for  low  gas  superficial  velocity  are  underpredicted  by  the  simulation  due  to  the  fact  that  there  are  no  liquid   slugs   forming   and   raising   the   pressure   in   the   simulation.   The   mean   minimum  pressure   also   shows   a   similar   increasing   behavior   as   gas   superficial   velocity   increases,  overlapping  too  with  the  experimental  results.    

1  

2  

3  

0   20   40   60   80   100  

P  [bar]  

cme  [s]  

Simulanon  

Experimental  

20    

                                                                 Figure  9.  Pressure  time  series  for  cases  1,  2  and  3    mean  ax  and  min  pressure  comparison.  

               

                                                                 

                                             Figure  10.  Pressure  time  series  for  cases  4,  5  and  6    mean  ax  and  min  pressure  comparison.  

1  

1.1  

1.2  

1.3  

1.4  

1.5  

1.6  

1.7  

1   1.5   2   2.5   3   3.5   4   4.5   5   5.5   6  

P  [bar]  

vSG  [m/s]  

meanPmax  Simulanon  

meanPmax  Experimental  

meanPmin  Simulanon  

meanPmin  Experimental  

1  

1.1  

1.2  

1.3  

1.4  

1.5  

1.6  

1.7  

1   1.5   2   2.5   3   3.5   4   4.5   5   5.5   6  

P  [bar]  

vSG    [m/s]  

meanPmax  Simulanon  

meanPmax  Experimental  

meanPmin  Simulanon  

meanPmin  Experimental  

21    

4.2.1  Results  discussion  

As  evidenced  by  the  error  percentage  values  for  mean  maximum  and  minimum  pressure  and   the   type   of   severe   slugging   found,   the   simulation   is   only   suited   to   predict   most  accurately   both  maximum  and  minimum  pressure   for   high   gas   superficial   velocities   and  less  suited  for  low  values.  

The   s-­‐shaped   riser   geometry   used   for   the   simulation   was   designed   to   be   as   simple   as  possible   to   reduce   computational   time   as   much   as   possible   due   to   limited   time   and  computational   resources.  Due   to   this   simplistic  design,  various  characteristics  present   in  the  NTNU  experimental  facility  were  omitted  and  could  be  responsible  for  the  simulations  inability   to   predict   the   severe   slugging   types   and   periods.   The   buffer   tank   that   is  connected  at  the  inlet  of  the  riser  pipeline    (section  1,  Annex  B),  was  modeled  as  an  eight-­‐meter  long  pipe  with  a  negative  slope  and  same  diameter  as  the  riser.  Nevertheless,  it  was  not   set   to   be   filled   with   air   throughout   the   whole   simulation   as   it   happens   on   the  experimental  facility;  possibly  this  “buffer  tank”  pipe  exerted  a  stabilization  factor  on  the  two-­‐phase   flow.   Another   difference   between   the   simulation   setup   and   experimental  facility  is  the  location  of  the  liquid  and  gas  sources  on  the  riser;  the  air  source  was  set  at  the   top  of   the  buffer   tank  and  the  oil   section  was  set   right  after   the  buffer   tank   for   the  experimental   facility.  While   the   simulation   had   a   single  mass   source   at   the   inlet   of   the  “buffer  tank”  pipe  that  divided  the  inlets  cross  section  into  two  and  assigned  each  half  the  mass   source   for   oil   and   air.   This   difference   in   location   of   mass   inlets   could   have   also  accentuated   the   stabilization   tendency   introduced  by   the  buffer   tank  pipe,  by  providing  additional  inertia  due  to  gravity  to  the  liquid  as  it  flowed  down  the  pipe.  

                                           

a)                                                                                                                                                                                                                        b)                              

                                     Figure  11.  a)  Volume  Fraction  of  air  on  first  bend  on  riser,  b)  Volume  fraction  of  air  on  section  1  Case  4  

22    

Figure  11  a)  shows  a  longitudinal  section  of  the  first  bend  of  the  riser  where  liquid  should  be  filling  the  pipe  completely  while  building  a  slug;  on  the  contrary,  the   liquid   is   flowing  normally  upwards  with  an  annular/transition  flow  (Figure  11  b)).  

The   combined   effects   of   these   design   choices   are   what   most   certainly   affected   the  simulations   severe   slugging   type   and  period  prediction   capabilities   and   should  be   taken  into  account  in  future  studies  when  3-­‐D  modeling  on  a  CFD  software.  

5.  Conclusions  

The  error  percentage  values  for  both  mean  maximum  and  minimum  pressure  on  medium  to   high   gas   superficial   velocities   (2.3   to   5.6   m/s)   oscillate   from   0.61   %   to   8.27%.   This  demonstrates  the  simulations  capability  of  predicting  the  severe  slugging  pressure  values  at  the  inlet  of  the  riser  (section  1,  Annex  B)  and,  therefore,   it  can  be  concluded  that  the  objectives  of  this  work  were  fulfilled.    

For   low  gas  superficial  velocities   (1  to  2  m/s),   the  simulation  underpredicts  the  pressure  values   for   severe   slugging   at   the   inlet   of   the   riser   (section   1,   Annex   B).   The   error  percentage  values  range  from  4.7%  to  16.5%  and  it  predicts  stable  flow  on  all  cases,  where  the  experimental  NTNU  data  shows  SS-­‐I  and  SS-­‐II,  due  to  the  simplifications  performed  on  the  riser  geometry  and  mass  source  locations.    

The  butterfly  mesh  design  combined  with  the  grid  sensibility  study  proved  effective  since  the  error  percentages  obtained  were  relatively  low.  

Due   to   the   time  and  computational  power   restrictions   future  work   should   include  all  of  the  design  considerations  omitted  on  this  study.  For  the  aforementioned  causes,  such  as  the  inclusion  of  the  buffer  tank  on  the  geometry  with  the  specific  dimensions  used  in  the  experimental   setup   and   the   location   of   the   mass   sources   on   the   riser   used   in   the  experiments.  This   in  order   to  predict  mean  maximum  and  minimum  pressure  as  well  as  slug  period  and  severe  slugging  type  for  low  gas  superficial  velocities.    

 

References  

Abulkadir,  M.,  Hernandez-­‐Pérez,  V.,  Lo,  S.,  Lowmdes,  I.,  &  Azzopardi,  B.  (2015).  Comparison  of  experimental  and  Computational  Fluid  Dynamics  (CFD)  studies  of  slug  flow  in  a  vertical  riser.  Experimental  Thermal  and  Fluid  Science.  

Azevedo,  M.,  Baliño,  L.,  &  Burr,  K.  (2015).  Linear  stability  analysis  for  severe  slugging  in  air–water  systems.  International  Journal  of  Multiphase  Flow.  

23    

BP.  (1994).  Multiphase  design  manual.  British  Petroleum.  

Bratland,  O.  (2010).  Pipe  Flow  2  :  Multi-­‐phase  Flow  Assurance.  

Castillo,  M.,  Sánchez,  F.,  Libreros,  D.,  &  Saidani-­‐Scott,  H.  (2013).  Experimentos  para  caracterizar  el  slug  severo  en  combinaciones  de  tuberias  inclinada-­‐vertical.  Innovation  in  Engineering,  Technology  and  Education  for  Competitiveness  and  Prosperity.  Cancún.  

CD  Adapco  User  Guide.  (s.f.).  What  are  the  K-­‐Omega  turbulence  models.  

CD  Adapco  User  Guide.  (n.d.).  Basic  VOF  Model  Equations.  Star  CCM+.  

Cruz-­‐Maya,  J.,  López-­‐Tinoco,  G.,  Sánchez-­‐Silva,  F.,  Ramírez-­‐Antonio,  I.,  &  Ramírez-­‐Antonio,  A.  (2007).  Caracterización  hidrodinámica  del  flujo  intermitente  severo  en  sistemas  de  producción  de  hidrocarburos.  Científica,  63-­‐72.  

Diaz,  M.,  Khatibi,  M.,  &  Nydal,  O.  J.  (2014).  Severe  slugging  with  viscous  liquids:  experiments  and  simulations.  Department  of  Energy  and  Process  Technology,  Norwegian  University  of  Science  and  Technology.  

Kippax,  V.  (04  de  June  de  2011).  the  membrane  bioreactors  site.  Recuperado  el  27  de  October  de  2015,  de  http://www.thembrsite.com/features/mempulse-­‐mbr-­‐system-­‐vs-­‐traditional-­‐mbr-­‐systems-­‐june-­‐2011/  

Li,  N.,  Guo,  L.,  &  Wensheng,  L.  (2013).  Gas–liquid  two-­‐phase  flow  patterns  in  a  pipeline–riser  system  with  an  S-­‐shaped  riser.  International  Journal  of  multiphase  flow.  

López  Tinoco,  G.  (23  de  Enero  de  2006).  Caracterizacion  del  flujo  slug  severo  en  tuberías  verticales  de  produccion  de  hidrocarburos  (risers).  México  D.F.,  México:  Instituto  Politécnico  Nacional,  Escuela  de  Ingeniería  Mecánica  y  Eléctrica  seccion  de  estudios  de  posgrado  e  investigación.  

Malalasekera.  (1995).  An  Introduction  to  Computational  Fluid  Dynamics.  

Meglio,  F.  D.,  Petit,  N.,  Alstad,  V.,  &  Kaasa,  G.-­‐O.  (23  de  March  de  2012).  Stabilization  of  slugging  in  oil  production  facilities  with  or  without  upstream  pressure  sensors.  Journal  of  Process  Control.  Paris,  France.  

Park,  S.,  &  Nydal,  O.  J.  (2014).  Study  on  Severe  Slugging  in  an  S-­‐Shaped  Riser:  Small  Scale  Experiments  Compared  with  Simulations.  Hyunday  Heavy  Industries,  Norwegian  University  of  Science  and  Technology.  

Peng,  D.-­‐J.,  Vahedi,  S.,  &  Wood,  T.  (2013).  CFD  wall  shear  stress  benchmark  in  stratified-­‐to-­‐annular  transitional  flow  regime.  INTECSEA  (UK).  

Soldan,  P.  (2  de  9  de  2013).  How  do  I  decide  which  multiphase  model  to  use  in  my  simulation?  CD-­‐Adapco.  

24    

Vallée,  C.,  Höhne,  T.,  Prasser,  H.-­‐M.,  &  Sühnel,  T.  (s.f.).  Experimental  Investigation  and  CFD  Simulation  of  Horizontal  Stratified  Two-­‐Phase  Flow  Phenomena.  Helmholtz-­‐Zentrum  Dresden-­‐Rossendorf.  

Yen,  T.  (29  de  8  de  2013).  What  turbulence  model  should  be  used  for  my  simulation?  (C.  Adapco,  Ed.)  The  Steve  Portal.  

 

Nomenclature  

Symbol         Description,  Units  

  𝐷         Pipe  diameter,  𝑚     𝑔         Gravity,  9.81   !

!!  

  𝑃         Pressure,  𝑃𝑎     𝑛         Perpendicular  normal  vector     𝑆         Sink  term  on  transport  equations     𝑢!         Drift  velocity,  !

!  

  𝑢!         Mix  total  velocity,  !!  

  𝑢!"         Gas  superficial  velocity,  !!  

  𝑢!"         Liquid  superficial  velocity,  !!  

 Greek  letters         Description    

  𝛼         Void  Fraction  

  𝜌         Density,  !"!!  

  𝜇         Dynamic  viscosity,  𝐶𝑝     𝜙         Flow  property     𝜔         Specific  dissipation  rate,  𝑠!!     Γ         Diffusion  coefficient    

Dimensionless  numbers     Description  

  𝐶         Convective  courant  number     𝑅𝑒         Reynolds  number  Subindex         Description  

  𝑖         Component  coordinate     𝐺         Gas  phase     𝐿         Liquid  phase  

25    

  𝑚         Mix     𝑒𝑥𝑝         Experimental     𝑠𝑖𝑚         Simulation        

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

26    

Annex  A.  Riser  CFD  simulation  geometry.  [mm]  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

27    

Annex  B.  Pressure  time  series  for  all  cases  

 

 

 

 

 

 

 

 

 

 

 

                                                                                                                                           Graph  5.  Case  1  pressure  time  series.  

 

 

 

 

 

 

 

 

 

 

 

                                                                                                                                               Graph  6.  Case  2  pressure  time  series.  

0  

50000  

100000  

150000  

200000  

250000  

300000  

0   20   40   60   80   100  

P  [Pa]  

t  [s]  

Case  1  Pressure  Time  Series  Seccon  1  

Case  1  

0  

50000  

100000  

150000  

200000  

250000  

300000  

0   20   40   60   80   100  

P  [Pa]  

t  [s]  

Case  2  Presure  Time  Series  Seccon  1  

Case  2  

28    

0.00E+00  

5.00E+04  

1.00E+05  

1.50E+05  

2.00E+05  

2.50E+05  

3.00E+05  

0   20   40   60   80   100  

P  [Pa]  

T  [s]  

Case  4  Pressure  Time  Series  Seccon  1  

Case  4  

 

 

 

 

 

 

 

 

 

 

                                                                                                                                   

                                                                                                                           Graph  7.  Case  3  pressure  time  series.  

 

 

 

 

                                                                                                                                                                                                 

 

 

 

 

 

 

 

 

 

                                                                                                                           Graph  8.  Case  4  pressure  time  series.  

0.00E+00  

5.00E+04  

1.00E+05  

1.50E+05  

2.00E+05  

2.50E+05  

3.00E+05  

0   20   40   60   80   100  

P  [Pa]  

t  [s]  

Case  3  Pressure  Time  Series  Seccon  1  

Case  3  

29    

 

 

 

 

 

 

 

 

 

 

 

                                                                                                               Graph  9.  Case  5  pressure  time  series.  

 

 

 

 

 

 

 

 

 

 

                                                                                                                                             Graph  10.  Case  6  pressure  time  series.  

                                                                                                                                                             Graph  10.  Case  6  pressure  time  series.  

 

0  

50000  

100000  

150000  

200000  

250000  

300000  

0   20   40   60   80   100  

P  [Pa]  

t  [s]  

Case  5  Pressure  Time  Series  Seccon  1  

Case  5  

0  

50000  

100000  

150000  

200000  

250000  

300000  

0   20   40   60   80   100  

P  [Pa]  

t  [s]  

Case  6  Pressure  Time  Series  Seccon  1  

Case  6