21
Comparing Dynamic Traffic Assignment Approaches for Planning Ramachandran Balakrishna Daniel Morgan Qi Yang Caliper Corporation 12 th TRB National Transportation Planning Applications Conference, Houston, Texas 20 th May, 2009

Comparing Dynamic Traffic Assignment Approaches for Planning Ramachandran Balakrishna Daniel Morgan Qi Yang Caliper Corporation 12 th TRB National Transportation

Embed Size (px)

Citation preview

Page 1: Comparing Dynamic Traffic Assignment Approaches for Planning Ramachandran Balakrishna Daniel Morgan Qi Yang Caliper Corporation 12 th TRB National Transportation

Comparing Dynamic Traffic Assignment Approaches for

Planning

Ramachandran BalakrishnaDaniel Morgan

Qi Yang

Caliper Corporation

12th TRB National Transportation Planning Applications Conference, Houston, Texas

20th May, 2009

Page 2: Comparing Dynamic Traffic Assignment Approaches for Planning Ramachandran Balakrishna Daniel Morgan Qi Yang Caliper Corporation 12 th TRB National Transportation

Outline

• Introduction• Motivation• DTA comparison methodology• TransModeler 2.0 overview• DTA in TransModeler 2.0• Empirical tests• Conclusion

Page 3: Comparing Dynamic Traffic Assignment Approaches for Planning Ramachandran Balakrishna Daniel Morgan Qi Yang Caliper Corporation 12 th TRB National Transportation

Introduction• Within-day dynamics: I-405, Orange County, CA

0

2000

4000

6000

8000

10000

12000

14000

0 50 100 150 200 250 300 350

Time of Day

Flo

w (

veh

/ho

ur)

Hourly Flows

5-Min Flows

[Source: PeMS on-line database]

• Temporal variability– Complex interactions of network demand– Aggregation error

Page 4: Comparing Dynamic Traffic Assignment Approaches for Planning Ramachandran Balakrishna Daniel Morgan Qi Yang Caliper Corporation 12 th TRB National Transportation

Introduction (contd.)

• Static traffic assignment– Cannot capture detailed within-day dynamics– Does not handle capacity constraints, queues

• Produces unrealistic results (e.g. flow >> capacity)

• Dynamic traffic assignment (DTA)– Models temporal demand, supply variations

• Uses short time intervals, usually 5-30 minutes

– Captures capacity constraints, queues, spillbacks

– Superior to static for short-term planning• Evacuation & work zone planning, dynamic tolls,

etc.

Page 5: Comparing Dynamic Traffic Assignment Approaches for Planning Ramachandran Balakrishna Daniel Morgan Qi Yang Caliper Corporation 12 th TRB National Transportation

Motivation• Different types of DTA

− Analytical− Simulation-based (micro, macro, meso)

• Tradeoffs perceived between realism, running time

• Methods are often chosen based on available computing resources

• Objective comparison of different methods is lacking

Page 6: Comparing Dynamic Traffic Assignment Approaches for Planning Ramachandran Balakrishna Daniel Morgan Qi Yang Caliper Corporation 12 th TRB National Transportation

DTA Comparison Methodology

• Objective: User equilibrium (UE)− Dynamic extension of Wardrop’s principle− Same impedance (e.g. travel time) for all

used paths between each OD pair, for a given departure time interval

• Test DTAs on common platform and dataset

• Measure and compare convergence− Relative gap− Convergence rate

Page 7: Comparing Dynamic Traffic Assignment Approaches for Planning Ramachandran Balakrishna Daniel Morgan Qi Yang Caliper Corporation 12 th TRB National Transportation

TransModeler 2.0 Overview

• Simulates urban traffic at many fidelities− Microscopic (car following, lane changing)− Mesoscopic (speed-density relationships)− Macroscopic (volume-delay functions)− Hybrid (all of the above)

• Employs realistic route choice models• Handles variety of network

infrastructure− Signals, variable message signs, sensors,

etc.

• Simulates multi-modal, multiple user classes

Page 8: Comparing Dynamic Traffic Assignment Approaches for Planning Ramachandran Balakrishna Daniel Morgan Qi Yang Caliper Corporation 12 th TRB National Transportation

DTA in TransModeler 2.0

• Analytical (Planner’s DTA)− Based on Janson (1991), Janson & Robles

(1995)

• Simulation-based DTA− Feedback approach− Iterates on simulation output until

convergence

• All DTAs are run on same network

Page 9: Comparing Dynamic Traffic Assignment Approaches for Planning Ramachandran Balakrishna Daniel Morgan Qi Yang Caliper Corporation 12 th TRB National Transportation

DTA in TransModeler 2.0 (contd.)

• Simulation-based DTA

− Feedback methods• Path flow feedback• Link travel time feedback

− Fidelity• Microscopic• Mesoscopic• Macroscopic• Hybrid

Page 10: Comparing Dynamic Traffic Assignment Approaches for Planning Ramachandran Balakrishna Daniel Morgan Qi Yang Caliper Corporation 12 th TRB National Transportation

Simulation-Based DTA Framework

• Path flow averaging

Page 11: Comparing Dynamic Traffic Assignment Approaches for Planning Ramachandran Balakrishna Daniel Morgan Qi Yang Caliper Corporation 12 th TRB National Transportation

Simulation-Based DTA Framework (contd.)• Link travel time averaging

Page 12: Comparing Dynamic Traffic Assignment Approaches for Planning Ramachandran Balakrishna Daniel Morgan Qi Yang Caliper Corporation 12 th TRB National Transportation

• Averaging method

• Choice of averaging factor− Method of Successive Averages (MSA)− Polyak− Fixed-factor

Simulation-Based DTA Framework (contd.)

Page 13: Comparing Dynamic Traffic Assignment Approaches for Planning Ramachandran Balakrishna Daniel Morgan Qi Yang Caliper Corporation 12 th TRB National Transportation

Empirical Tests

• Columbus, Indiana− 6630 nodes− 8811 links− 85 zones

− AM peak period• 7:00-9:00• ~42,000 trips

Page 14: Comparing Dynamic Traffic Assignment Approaches for Planning Ramachandran Balakrishna Daniel Morgan Qi Yang Caliper Corporation 12 th TRB National Transportation

Empirical Tests (contd.)

• Static assignment

− Relative gap• 50 iters: ~0.008• 100 iters: ~0.006 • 2000 iters:

~0.0005

− Run time• 50 iters: ~36 sec• 100 iters: ~1 min• 2000 iters: ~24

min

Page 15: Comparing Dynamic Traffic Assignment Approaches for Planning Ramachandran Balakrishna Daniel Morgan Qi Yang Caliper Corporation 12 th TRB National Transportation

Empirical Tests (contd.)

• DTA− Feedback method: MSA

• Path flow averaging• Link travel time averaging

− Model fidelity• Microscopic• Mesoscopic

• Four experiments

Page 16: Comparing Dynamic Traffic Assignment Approaches for Planning Ramachandran Balakrishna Daniel Morgan Qi Yang Caliper Corporation 12 th TRB National Transportation

Empirical Tests (contd.)

• Microscopic DTA results

Page 17: Comparing Dynamic Traffic Assignment Approaches for Planning Ramachandran Balakrishna Daniel Morgan Qi Yang Caliper Corporation 12 th TRB National Transportation

Empirical Tests (contd.)

• Mesoscopic DTA results

Page 18: Comparing Dynamic Traffic Assignment Approaches for Planning Ramachandran Balakrishna Daniel Morgan Qi Yang Caliper Corporation 12 th TRB National Transportation

Empirical Tests (contd.)

• Feedback with path flows

Page 19: Comparing Dynamic Traffic Assignment Approaches for Planning Ramachandran Balakrishna Daniel Morgan Qi Yang Caliper Corporation 12 th TRB National Transportation

Empirical Tests (contd.)

• Feedback with link travel times

Page 20: Comparing Dynamic Traffic Assignment Approaches for Planning Ramachandran Balakrishna Daniel Morgan Qi Yang Caliper Corporation 12 th TRB National Transportation

Conclusion

• Static assignment is fast with known properties, but does not capture dynamics

• Simulation-based DTA is more realistic but slower and harder to analyze

• Travel time feedback appears to be faster than path flow averaging for simulation-based DTA

• Tests on more networks are required

Page 21: Comparing Dynamic Traffic Assignment Approaches for Planning Ramachandran Balakrishna Daniel Morgan Qi Yang Caliper Corporation 12 th TRB National Transportation

Analytical DTA Framework

• Planner’s DTA− Based on Janson (1991), Janson & Robles

(1995)

− Bi-level, constrained optimization • Outer: consistent node arrival times• Inner: User equilibrium for given node arrival

times

− Extended by Caliper:• Spillback calculations• Stochastic user equilibrium• Better travel times

− Reasonable results on large planning networks