37
Combining low temperature apatite thermochronology and cosmogenic isotope analysis in quantitative landscape evolution studies Roderick Brown, Hermione Cockburn, Barry Kohn, David Belton, David Fink, Andrew Gleadow and Michael Summerfield The University of Melbourne Australian Nuclear Science & Technology Organisation The University of Edinburgh

Combining low temperature apatite thermochronology and cosmogenic isotope analysis in quantitative landscape evolution studies Roderick Brown, Hermione

Embed Size (px)

Citation preview

Page 1: Combining low temperature apatite thermochronology and cosmogenic isotope analysis in quantitative landscape evolution studies Roderick Brown, Hermione

Combining low temperature apatite thermochronology and

cosmogenic isotope analysis in quantitative landscape

evolution studies

Roderick Brown, Hermione Cockburn, Barry Kohn, David Belton, David Fink, Andrew Gleadow

and Michael Summerfield

The University of MelbourneAustralian Nuclear Science & Technology OrganisationThe University of Edinburgh

Page 2: Combining low temperature apatite thermochronology and cosmogenic isotope analysis in quantitative landscape evolution studies Roderick Brown, Hermione
Page 3: Combining low temperature apatite thermochronology and cosmogenic isotope analysis in quantitative landscape evolution studies Roderick Brown, Hermione

Conceptual landscapeevolution models

Page 4: Combining low temperature apatite thermochronology and cosmogenic isotope analysis in quantitative landscape evolution studies Roderick Brown, Hermione
Page 5: Combining low temperature apatite thermochronology and cosmogenic isotope analysis in quantitative landscape evolution studies Roderick Brown, Hermione

Numerical landscape evolution models

van der Beek et al. (2002)

Page 6: Combining low temperature apatite thermochronology and cosmogenic isotope analysis in quantitative landscape evolution studies Roderick Brown, Hermione

Numerical landscape evolution models

Page 7: Combining low temperature apatite thermochronology and cosmogenic isotope analysis in quantitative landscape evolution studies Roderick Brown, Hermione

Numerical landscape evolution models

Page 8: Combining low temperature apatite thermochronology and cosmogenic isotope analysis in quantitative landscape evolution studies Roderick Brown, Hermione

Southern Africa

Page 9: Combining low temperature apatite thermochronology and cosmogenic isotope analysis in quantitative landscape evolution studies Roderick Brown, Hermione

Drakensberg Escarpment

Page 10: Combining low temperature apatite thermochronology and cosmogenic isotope analysis in quantitative landscape evolution studies Roderick Brown, Hermione

Landsat ETM+ 321RGB Image

Page 11: Combining low temperature apatite thermochronology and cosmogenic isotope analysis in quantitative landscape evolution studies Roderick Brown, Hermione

Drakensberg Escarpment, Sani Pass

Page 12: Combining low temperature apatite thermochronology and cosmogenic isotope analysis in quantitative landscape evolution studies Roderick Brown, Hermione

Sani Top Photograph by Alastair Fleming

Page 13: Combining low temperature apatite thermochronology and cosmogenic isotope analysis in quantitative landscape evolution studies Roderick Brown, Hermione

Apatite Fission Track Age

Page 14: Combining low temperature apatite thermochronology and cosmogenic isotope analysis in quantitative landscape evolution studies Roderick Brown, Hermione

Estimated Palaeogeothermal Gradients

Page 15: Combining low temperature apatite thermochronology and cosmogenic isotope analysis in quantitative landscape evolution studies Roderick Brown, Hermione
Page 16: Combining low temperature apatite thermochronology and cosmogenic isotope analysis in quantitative landscape evolution studies Roderick Brown, Hermione

Atlantic Margin, Namibia

Page 17: Combining low temperature apatite thermochronology and cosmogenic isotope analysis in quantitative landscape evolution studies Roderick Brown, Hermione

Gamsberg Escarpment, ASTER VNIR Image

Page 18: Combining low temperature apatite thermochronology and cosmogenic isotope analysis in quantitative landscape evolution studies Roderick Brown, Hermione
Page 19: Combining low temperature apatite thermochronology and cosmogenic isotope analysis in quantitative landscape evolution studies Roderick Brown, Hermione
Page 20: Combining low temperature apatite thermochronology and cosmogenic isotope analysis in quantitative landscape evolution studies Roderick Brown, Hermione
Page 21: Combining low temperature apatite thermochronology and cosmogenic isotope analysis in quantitative landscape evolution studies Roderick Brown, Hermione

Gamsberg Plateau, ASTER VNIR Image

Page 22: Combining low temperature apatite thermochronology and cosmogenic isotope analysis in quantitative landscape evolution studies Roderick Brown, Hermione

Gamsberg EscarpmentPhotograph by Hermione Cockburn

Page 23: Combining low temperature apatite thermochronology and cosmogenic isotope analysis in quantitative landscape evolution studies Roderick Brown, Hermione

Gamsberg EscarpmentPhotograph by Hermione Cockburn

Page 24: Combining low temperature apatite thermochronology and cosmogenic isotope analysis in quantitative landscape evolution studies Roderick Brown, Hermione

Gamsberg Plateau Transect

Page 25: Combining low temperature apatite thermochronology and cosmogenic isotope analysis in quantitative landscape evolution studies Roderick Brown, Hermione

Gamsberg Escarpment Transect

Page 26: Combining low temperature apatite thermochronology and cosmogenic isotope analysis in quantitative landscape evolution studies Roderick Brown, Hermione

South Eastern Australia

Page 27: Combining low temperature apatite thermochronology and cosmogenic isotope analysis in quantitative landscape evolution studies Roderick Brown, Hermione

South Eastern Australia, 300m DEM

Page 28: Combining low temperature apatite thermochronology and cosmogenic isotope analysis in quantitative landscape evolution studies Roderick Brown, Hermione

Brown Mountain Transect

50 km

Page 29: Combining low temperature apatite thermochronology and cosmogenic isotope analysis in quantitative landscape evolution studies Roderick Brown, Hermione

Denudation since 110 Ma

Page 30: Combining low temperature apatite thermochronology and cosmogenic isotope analysis in quantitative landscape evolution studies Roderick Brown, Hermione

Denudation since 65 Ma

Page 31: Combining low temperature apatite thermochronology and cosmogenic isotope analysis in quantitative landscape evolution studies Roderick Brown, Hermione

Apatite U-Th/He Ages

Page 32: Combining low temperature apatite thermochronology and cosmogenic isotope analysis in quantitative landscape evolution studies Roderick Brown, Hermione

Paired Apatite FT & He Ages

Page 33: Combining low temperature apatite thermochronology and cosmogenic isotope analysis in quantitative landscape evolution studies Roderick Brown, Hermione

Apatite FT & U-Th/He Ages

Page 34: Combining low temperature apatite thermochronology and cosmogenic isotope analysis in quantitative landscape evolution studies Roderick Brown, Hermione

Age of continental rifting

Page 35: Combining low temperature apatite thermochronology and cosmogenic isotope analysis in quantitative landscape evolution studies Roderick Brown, Hermione

ANTARES Detector Array, ANSTO, Australia

Page 36: Combining low temperature apatite thermochronology and cosmogenic isotope analysis in quantitative landscape evolution studies Roderick Brown, Hermione
Page 37: Combining low temperature apatite thermochronology and cosmogenic isotope analysis in quantitative landscape evolution studies Roderick Brown, Hermione

Conclusions

Measured denudation rates and chronologies for the Gamsberg, Drakensberg and Brown Mountain escarpments are incompatible with a steady, parallel retreat model

Combined thermochronologic and cosmogenic datasets are capable of quantifying passive margin escarpment retreat rates

A viable alternative model involves the establishment of an escarpment at a major inland drainage divide with moderate to low subsequent retreat rates