31
1.0 DESIGN OF COMBINED FOUNDATION 1.0 Introduction Loads at the base of column are calculated based upon ultimate limit state and serviceability limit state. Foundation size is decided based upon loads worked out as per serviceability limit state. It means that base pressures are worked out at each corner of footing based upon loads derived by serviceability limit state. When the size of the base has been determinerd from serviceability loadings, the base will then be designed using ultimate loads 2.0 Design Data Foundation for = C8, LIFT Grade of concrete = Density of concrete = t/m 3 Grade of steel = Existing GL = m Depth of foundation below ground level = m Founding level = m Net SBC of strata = t/m 2 Density of soil above footing = t/m 3 Gross SBC of foundation strata Normal case = t/m 2 Seismic case = t/m 2 Wind case = t/m 2 Thickness of footing at tip = m Thickness of footing at the face of pier = m RL of top of footing = m C\s area of pier 1 In trans. Direction = m In Long. Direction = m C\s area of pier 2 In trans. Direction = m In Long. Direction = m C\s area of pier 1 = m2 C\s area of pier 2 = m2 In trans. Direction l = m In Long. Direction b = m In trans. Direction l = m In Long. Direction b = m Distance of column 1 centre from line 1-1 along x-x = m 2.900 3.700 Rectangle 0.400 0.700 0.280 0.600 229.345 Rectangle 2.900 3.700 10.730 M45 2.5 Fy460 3.000 231.745 0.600 20.0 1.8 20.000 25.000 25.000 228.745 Dimension of pier 1 at top of footing Dimension of pier 2 at top of footing 0.400 0.700 1.750

Combined Footing

Embed Size (px)

DESCRIPTION

Combined Footing

Citation preview

Page 1: Combined Footing

1.0 DESIGN OF COMBINED FOUNDATION

1.0 Introduction

Loads at the base of column are calculated based upon ultimate limit state and serviceability limit state.

Foundation size is decided based upon loads worked out as per serviceability limit state. It means that base

pressures are worked out at each corner of footing based upon loads derived by serviceability limit state. When

the size of the base has been determinerd from serviceability loadings, the base will then be designed using

ultimate loads

2.0 Design Data

Foundation for = C8, LIFT

Grade of concrete =

Density of concrete = t/m3

Grade of steel =

Existing GL = m

Depth of foundation below ground level = m

Founding level = m

Net SBC of strata = t/m2

Density of soil above footing = t/m3

Gross SBC of foundation strata Normal case = t/m2

Seismic case = t/m2

Wind case = t/m2

Thickness of footing at tip = m

Thickness of footing at the face of pier = m

RL of top of footing = m

C\s area of pier 1 In trans. Direction = m

In Long. Direction = m

C\s area of pier 2 In trans. Direction = m

In Long. Direction = m

C\s area of pier 1 = m2

C\s area of pier 2 = m2

In trans. Direction l = m

In Long. Direction b = m

In trans. Direction l = m

In Long. Direction b = m

Distance of column 1 centre from line 1-1 along x-x = m

2.900

3.700

Rectangle 0.400

0.700

0.280

0.600

229.345

Rectangle 2.900

3.700

10.730

M45

2.5

Fy460

3.000

231.745

0.600

20.0

1.8

20.000

25.000

25.000

228.745

Dimension of pier 1

at top of footing

Dimension of pier 2

at top of footing

0.400

0.700

1.750

Page 2: Combined Footing

centre to centre distance between columns in x-x direction = m

Distance of column 2 centre from line 1-1 along x-x = m

Distance of column 1 centre from line 2-2 along z-z = m

Distance of column 2 centre from line 2-2 along z-z = m

Offset beyond column face = m

Dimension of footing at top In trans. Direction = m

In Long. Direction = m

Dimension of footing at bottom In trans. Direction L = m

In Long. Direction B = m

3.0 Load Calculations at bottom of footing

Plan area Top = x = m2

Bottom = x = m2

Volume of footing

Uniform Portion = x ='m

3

Varying Portion = x( + ) x ='m

3

Total ='m

3

Weight of Footing = x = t

Volume of soil above footing upto ground level

= ( x ) - ( + x ) ='m

3

Weight of soil above footing upto ground level

= x 1.8 = t

Total weight of footing and soil = t

Footing and column details are as below

1 z-z (Longitudinal direction)

+ve

m col 2

m col 1 m +ve

x-x

(Transverse Direction)

2.900 m 0.400 m

2 2

1 5.800 m

66.12 119.02

176.44

3.7

00

6.6

00

0.7

00

22.968 2.5 57.42

3.00 22.968

38.280 0.6 22.968

6.6005.800

2.40 10.73 66.1238.280

5.800

5.800.000 6.600 6.60

2

6.600

5.800

6.600

2.378

6.600

2.300

0.000

22.968

38.280

38.280

4.050

4.263

0.000

5.800

Page 3: Combined Footing

col 1 col 2 Ground Level

m

0.60 m

4.0 SUMMARY OF FORCES AT COLUMN BOTTOM LEVEL UNDER SERVICEABILTY LIMIT

STATE COMBINATION & CALCULATION OF ECCENTRICITY OF LOADINGS)(Excluding foundation weight and soil above it)

4.07SERV15 1.0 D.L - 1.0 WINDx

17.0 -37.7

1154.3 4.8

-32.8

12 SERV12 1.0 D.L + 0.8 L.L + 0.8 WINDy 1708.5

1405.0

13 SERV13 1.0 D.L + 0.8 L.L - 0.8 WINDy

1273.414 SERV14 1.0 D.L + 1.0 WINDx

15

11 SERV11 1.0 D.L + 0.8 L.L - 0.8 WINDx 1326.2 -48.9-206.2

1457.7 7.5 -44.1

-56.8-148.6

-51.5

7 SERV7 1.0 D.L - 1.0 EQX 1708.9

8 SERV8 1.0 D.L + 1.0 EQy 1998.0 183.9

-41.9233.4

230.7

-35.0

4.10

1576.9

10

9 SERV9 1.0 D.L - 1.0 EQy 4.08 4.25

SERV10 1.0 D.L + 0.8 L.L + 0.8 WINDx

-46.819.7

4.08

6 SERV6 1.0 D.L + 1.0 EQX

4 SERV4 1.0 D.L + 0.8 L.L + 0.8 EQy

5 SERV5 1.0 D.L + 0.8 L.L - 0.8 EQy 1898.5

17.8 -52.8

-45.5

-51.016.6

13.4

1823.9

13.0 -53.1

1745.7

1822.4 17.6 -52.9

-55.122.3

1808.4

kN-m

P MX MZ

kN

2 SERV2 1.0 D.L + 0.8 L.L + 0.8 EQX 1515.8

1 SERV1 1.0 D.L + 1.0 L.L

LOAD COMBINATIONS

4.08 4.25

ez

4.26

4.08

3 SERV3 1.0 D.L + 0.8 L.L - 0.8 EQX

kN-m

4.08

SR. NO. ex

m

4.42

4.07 4.13

4.35

4.08 4.25

4.08 4.25

4.17

4.08

4.08

8.16

8.15

8.17

8.16

4.26

4.08 4.25

4.09

fx fz

m

4.26

4.08 4.25

4.08 4.25

m

8.51

8.50

8.16

8.51

8.51

3.0

00

8.51

8.16 8.51

8.16

8.16

m

8.52

8.84

8.15 8.25

8.70

8.34

8.16 8.50

8.17

8.16

8.52

8.16 8.50

8.15 8.20

8.16

Page 4: Combined Footing

(We require to decide the siz of footing based upon fx and fz we have for different load cases)

Footing Plan and elevation

1

2

SERV16 1.0 D.L + 1.0 WINDy16

4

4.47

#DIV/0!

1022.7 -208.9 -39.9

3

4.09 8.18 8.93

#DIV/0! #DIV/0! #DIV/0!17 SERV17 1.0 D.L - 1.0 WINDy 0.0 0.0 0.0

0.000

1.000

2.000

3.000

4.000

5.000

6.000

7.000

0.000 1.000 2.000 3.000 4.000 5.000 6.000 7.000

0.000

0.200

0.400

0.600

0.800

1.000

1.200

0.000 1.000 2.000 3.000 4.000 5.000 6.000 7.000

Page 5: Combined Footing

5.0 Check for base pressure under serviceability limit state combinations

Plan area of footing at base A = m2

ZX = x2

= m3

ZZ = x2

= m3

Base pressure at all four nodes of footing due to various load combinations is calculated.

Base pressure = P

A

SR. NO.

I+

ZL

6

6.600 5.800

6

MX

MT

2SERV2 1.0 D.L + 0.8 L.L +

0.8 EQX3280.20 -1432.88

SAFE

UNSAFE

9 SERV9 1.0 D.L - 1.0 EQy 3341.26 -1479.12 -1906.94 0.62 103.69173.9570.88

UNSAFE

8 SERV8 1.0 D.L + 1.0 EQy 3762.38 -1556.28 -2400.63 -3.55 126.20200.1270.37

UNSAFE

7 SERV7 1.0 D.L - 1.0 EQX 3473.23 -1942.76 -2078.75 -11.58 100.77193.0580.69

UNSAFE

6 SERV6 1.0 D.L + 1.0 EQX 3572.74 -1715.39 -2185.86 -6.48 111.66193.1475.00

UNSAFE

5SERV5 1.0 D.L + 0.8 L.L -

0.8 EQy3662.87 -1783.66 -2293.52 -8.65 115.31200.0376.06

UNSAFE

4SERV4 1.0 D.L + 0.8 L.L +

0.8 EQy3586.75 -1719.75 -2201.45 -6.64 112.35194.0375.05

SAFE

3SERV3 1.0 D.L + 0.8 L.L -

0.8 EQX3510.11 -1648.04 -2109.64 -4.45 109.57187.8573.82

kN-m kN-m

112.40194.1475.07

-1834.22 2.09 101.23169.2970.15

1 SERV1 1.0 D.L + 1.0 L.L 3588.23 -1720.86 -2203.00 -6.67

1 432

UNSAFE

kN/m2

kN/m2

kN/m2

kN/m2

REMARK

ZT

LOAD COMBINATIONS P

kN

I+

ML

37.004

38.280

5.800 6.600 42.108

MZ BASE PRESSURE AT

Page 6: Combined Footing

6.0 Calculation of eccentricity under loads under ultimate limit state

4.255 DCON5 1.2 D.L + 1.2 L.L + 1.2 WINDY 2659.5 34.0 -76.9 4.08

4.25

4 DCON4 1.2 D.L + 1.2 L.L - 1.2 WINDx 2186.9 21.1 -63.4 4.08 4.25

3 DCON3 1.2 D.L + 1.2 L.L + 1.2 WINDx 1519.3 13.9 -45.7 4.08

4.25

2 DCON2 1.5 D.L + 1.5 L.L 2126.3 19.3 -63.9 4.08 4.25

1 DCON1 1.5 D.L 2614.7 25.7 -75.4 4.08

ez

kN kN-m kN-m m m

MZ ex

SR. NO. LOAD COMBINATIONS

P MX

SAFE

16SERV16 1.0 D.L + 1.0

WINDy2787.06 -1402.70 -1255.82 5.56 73.4372.18 SAFE

107.06149.4158.53

140.06

15SERV15 1.0 D.L - 1.0

WINDx3169.37 -891.68 -1681.41 16.18

66.06 SAFE

-1397.44 12.31 87.84140.1864.6513SERV13 1.0 D.L + 0.8 L.L -

0.8 WINDy2918.63 -1102.06

SAFE

SAFE

14SERV14 1.0 D.L + 1.0

WINDx3037.80 -1192.33 -1539.79 9.43 92.65149.28

UNSAFE

12SERV12 1.0 D.L + 0.8 L.L +

0.8 WINDy3472.84 -1178.48 -2048.57 7.37 118.10174.0763.35

SAFE

11SERV11 1.0 D.L + 0.8 L.L -

0.8 WINDx3090.52 -1689.50 -1622.97 -3.25 84.47164.7277.00

10SERV10 1.0 D.L + 0.8 L.L +

0.8 WINDx3222.09 -1388.85 -1764.59 3.50 98.88164.8469.47

#DIV/0! #DIV/0!17SERV17 1.0 D.L - 1.0

WINDy1764.36 #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!

Page 7: Combined Footing

4.04

16 DCON16 1.2 D.L + 1.2 L.L - 1.2 EQx 980.0 -327.2 -43.6 4.09 4.60

15 DCON15 1.2 D.L + 1.2 L.L + 1.2 EQx 1569.1 350.0 -32.7 4.07

4.26

14 DCON14 0.9 D.L - 1.5 WINDy 1366.3 20.9 -40.2 4.08 4.25

13 DCON13 0.9 D.L + 1.5 WINDy 1182.8 2.0 -36.1 4.08

4.49

12 DCON12 0.9 D.L - 1.5 WINDx 2024.2 354.1 -46.4 4.07 4.09

11 DCON11 0.9 D.L + 1.5 WINDx 1435.2 -323.1 -57.2 4.09

4.25

10 DCON10 1.5 D.L - 1.5 WINDy 1637.9 6.1 -49.7 4.08 4.26

9 DCON9 1.5 D.L + 1.5 WINDy 1821.5 24.9 -53.8 4.08

4.40

8 DCON8 1.5 D.L - 1.5 WINDx 2862.2 363.2 -69.4 4.07 4.14

7 DCON7 1.5 D.L + 1.5 WINDx 2273.2 -314.1 -80.3 4.09

6 DCON6 1.2 D.L + 1.2 L.L - 1.2 WINDY 2475.9 15.1 -72.8 4.08 4.26

18 DCON18 1.2 D.L + 1.2 L.L - 1.2 EQy

#DIV/0!17 DCON17 1.2 D.L + 1.2 L.L + 1.2 EQy 0.0 0.0 0.0 #DIV/0!

0.0 0.0 0.0 #DIV/0! #DIV/0!

19 DCON19 1.5 D.L + 1.5 EQx 0.0 0.0 0.0

20 DCON20 1.5 D.L - 1.5 EQx 0.0 0.0 0.0 #DIV/0!

0.0 0.0 0.0 #DIV/0!

#DIV/0! #DIV/0!

#DIV/0!

#DIV/0!

22 DCON22 1.5 D.L - 1.5 EQy 0.0 0.0 0.0 #DIV/0! #DIV/0!

21 DCON21 1.5 D.L + 1.5 EQy

#DIV/0! #DIV/0!

23 DCON23 0.9 D.L + 1.5 EQx 0.0 0.0 0.0 #DIV/0! #DIV/0!

24 DCON24 0.9 D.L - 1.5 EQx 0.0 0.0 0.0

Page 8: Combined Footing

7.0 Base pressure under Ultimate limit state combinations for design of base

14DCON14 0.9 D.L - 1.5

WINDy2848.41 -1274.09 -1651.70 -0.48 60.03 149.30 88.79

13DCON13 0.9 D.L + 1.5

WINDy2664.81 -1135.02 -1432.39 3.95 57.86 135.28 81.37

12DCON12 0.9 D.L - 1.5

WINDx4035.62 -1241.10 -2420.61 10.53 69.48 200.31 141.36

11DCON11 0.9 D.L + 1.5

WINDx3446.61 -2028.39 -1764.94 -5.83 90.51 185.90 89.56

10DCON10 1.5 D.L - 1.5

WINDy3649.32 -1565.21 -1983.12 4.57 78.91 186.10

9DCON9 1.5 D.L + 1.5

WINDy3832.91 -1704.28

111.75

-2202.43 0.14 81.08 200.12 119.17

119.06 269.02

8DCON8 1.5 D.L - 1.5

WINDx5455.77 -2029.88 -3430.37 1.61 98.03 283.43

7DCON7 1.5 D.L + 1.5

WINDx4866.77 -2817.17 -2774.69 -14.75

237.32

-3157.64 -11.08 106.08 276.741 DCON1 1.5 D.L 5084.83 -2466.58

169.56

159.59

2 DCON2 1.5 D.L + 1.5 L.L 4596.38 -2009.00 -2573.03 2.83 98.25

232.84

141.90

3DCON3 1.2 D.L + 1.2 L.L +

1.2 WINDx3283.71 -1435.41 -1838.72 2.00 70.18

283.24

101.38

4DCON4 1.2 D.L + 1.2 L.L -

1.2 WINDx4304.09 -2063.70 -2641.74 -7.96 90.06

269.21

134.82

5DCON5 1.2 D.L + 1.2 L.L +

1.2 WINDY5253.07 -2493.06 -3212.18 -8.79 109.63 164.83

6DCON6 1.2 D.L + 1.2 L.L -

1.2 WINDY5069.47 -2353.99 -2992.88 -4.35 107.46 157.41

135.22

187.02

4

kN/m2

kN/m2

kN/m2

kN/m2

MX MZ BASE PRESSURE AT

kN kN-m kN-m

1 2 3

SR. NO. LOAD COMBINATIONS P

0.0 0.0 0.0 #DIV/0! #DIV/0!

26 DCON26 0.9 D.L - 1.5 EQy 0.0 0.0 0.0 #DIV/0! #DIV/0!

25 DCON25 0.9 D.L + 1.5 EQy

Page 9: Combined Footing

Maximum base pressure = 283.43 kN/m2

Minimum base pressure = -14.75 kN/m2

Assuming that this will be acting uniformly as upward pressure

Corresponding total down ward weight = 5455.77 kN

-6.45 69.46 135.09 59.18

9.92 48.43 149.49 110.98

16DCON16 1.2 D.L + 1.2 L.L -

1.2 EQx2462.11 -1598.20 -1214.21

15DCON15 1.2 D.L + 1.2 L.L

+ 1.2 EQx3051.11 -810.91 -1869.88

17DCON17 1.2 D.L + 1.2 L.L

+ 1.2 EQy1482.06 #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!

18DCON18 1.2 D.L + 1.2 L.L -

1.2 EQy1482.06 #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!

19 DCON19 1.5 D.L + 1.5 EQx 1482.06 #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!

20 DCON20 1.5 D.L - 1.5 EQx 1482.06 #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!

21 DCON21 1.5 D.L + 1.5 EQy 1482.06 #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!

22 DCON22 1.5 D.L - 1.5 EQy 1482.06 #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!

23 DCON23 0.9 D.L + 1.5 EQx 1482.06 #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!

24 DCON24 0.9 D.L - 1.5 EQx 1482.06 #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!

25 DCON25 0.9 D.L + 1.5 EQy 1482.06 #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!

26 DCON26 0.9 D.L - 1.5 EQy 1482.06 #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!

Page 10: Combined Footing

8.0 Average pressures to be applied in STAAD For force calculations

807.6 985.4

787.3 1037.0

520.9 785.4 986.7

536.0 738.7 892.8

574.0

1227.0

719.1 1061.5 1322.1

Mem 1 Mem 2 Mem 3

kN/m kN/m kN/m

772.2 1083.8 1320.8

734.3 1014.8 1228.2

1084.4 1476.9 1775.6

1016.2 1501.4 1870.7

1069.3 1523.7 1869.4

1031.3 1454.7 1776.8

661.1 921.2 1119.1

878.7 1252.4 1536.7

1040.0 1486.6 1826.5

925.4 1289.4 1566.3

396.21 985.40

319.64 986.67

597.38 1226.97

458.59 1322.06

381.87 892.83

646.98 1870.65

535.15 1320.80

520.82 1228.23

723.54 1869.38

709.20 1776.82

785.77 1775.55

648.45 1566.29

463.19 1119.09

594.37 1536.73

Max 1 &

2

Max 3 &

4

kN/m kN/m

700.11 1826.50

15DCON15 1.2 D.L + 1.2 L.L

+ 1.2 EQx48.43 149.49

13DCON13 0.9 D.L + 1.5

WINDy57.86 135.28

14DCON14 0.9 D.L - 1.5

WINDy60.03 149.30

11DCON11 0.9 D.L + 1.5

WINDx90.51 185.90

12DCON12 0.9 D.L - 1.5

WINDx69.48 200.31

9DCON9 1.5 D.L + 1.5

WINDy81.08 200.12

10DCON10 1.5 D.L - 1.5

WINDy78.91 186.10

7DCON7 1.5 D.L + 1.5

WINDx119.06 269.02

8DCON8 1.5 D.L - 1.5

WINDx98.03 283.43

5DCON5 1.2 D.L + 1.2 L.L +

1.2 WINDY109.63 283.24

6DCON6 1.2 D.L + 1.2 L.L -

1.2 WINDY107.46 269.21

3DCON3 1.2 D.L + 1.2 L.L +

1.2 WINDx70.18 169.56

4DCON4 1.2 D.L + 1.2 L.L -

1.2 WINDx90.06 232.84

1 DCON1 1.5 D.L 106.08 276.74

2 DCON2 1.5 D.L + 1.5 L.L 98.25 237.32

SR. NO. LOAD COMBINATIONS

Max 1 &

2

Max 3 &

4

kN/m2 kN/m2

Page 11: Combined Footing

589.1 760.9 891.6458.44 891.5716DCON16 1.2 D.L + 1.2 L.L -

1.2 EQx69.46 135.09

17DCON17 1.2 D.L + 1.2 L.L

+ 1.2 EQy#DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!

18DCON18 1.2 D.L + 1.2 L.L -

1.2 EQy#DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!

19 DCON19 1.5 D.L + 1.5 EQx #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!

20 DCON20 1.5 D.L - 1.5 EQx #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!

21 DCON21 1.5 D.L + 1.5 EQy #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!

22 DCON22 1.5 D.L - 1.5 EQy #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!

23 DCON23 0.9 D.L + 1.5 EQx #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!

24 DCON24 0.9 D.L - 1.5 EQx #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!

#DIV/0! #DIV/0!

25 DCON25 0.9 D.L + 1.5 EQy #DIV/0! #DIV/0! #DIV/0! #DIV/0!

#DIV/0! #DIV/0!

#DIV/0! #DIV/0! #DIV/0!

26 DCON26 0.9 D.L - 1.5 EQy #DIV/0! #DIV/0! #DIV/0!

Page 12: Combined Footing

9.0 Design of Footing Slab

1) Design Formulae

The following equations are used which are based upon following modified stress block

K' = 0.156 Assuming that the redstribution does not exceed 10%

K = M

b x d2

x fcu

If K is less than or equal to K', compression reinforcement is not required.

Then;

Page 13: Combined Footing

If K is greater than K', compression reinforcement is required.

Then;

Where;

Footing dimension in longitudinal direction i.e in z-z direction = 6.600 m

width of column in longitudinal direction i.e in z-z direction = 3.700 m

1.5 x width + 3 x effective depth = 7.095 m

Footing dimension in transverse direction i.e in x-x direction = 2.900 m

(Considering width for one column as total width is shared between the two)

width of column in longitudinal direction i.e in z-z direction = 2.900 m

1.5 x width + 3 x effective width = 5.895 m

2) Design of footing in longitudinal direction at top

If the width calculated as above is greater than dimension of footing in transverse direction, we will have to provide

reinforcement spanning in longitudinal direction for total width of footing in transverse direction. If the width calculated

as above is lesser than dimension of footing in transverse direction , we need to provide two third of reinforcement

spanning In longitudinal direction in central width equal to width of column in transverse direction + three times the

effective width

If the width calculated as above is greater than dimension of footing in longitudinal direction, we will have to provide

reinforcement spanning in transverse direction for total width of footing in longitudinal direction. If the width calculated

as above is lesser than dimension of footing in longitudinal direction , we need to provide two third of reinforcement

spanning In Transverse direction in central width equal to width of column in longitudinal direction + three times the

effective width

Page 14: Combined Footing

Critical load case for maximum bending moment at top =

Design bending moment at top = kN-m

Assuming bar dia. = mm 1 nd layer

D prov. = cm

d prov = - -

= cm

K' = 0.156 Assuming that the redstribution does not exceed 10%

K = M

b x d2

x fcu

= 2540.00

6.600 x 0.265 x 45000

= 0.0322

51.50

2540

1

20

60

60 7.50

Page 15: Combined Footing

K < K'

z = 0.496 m

x = 0.043 m

As = 11722.349 mm2 = 117.223 cm2

Min Ast reqd = x x Avg. Thickness

= cm2

= cm2

Provide TOR @ mm c\c in longitudinal direction at Top

Ast prov = cm2

OK

= cm2

3) Design of footing in longitudinal direction at bottom

Critical load case for maximum bending moment at bottom =

51.48

20 150

Hence, max required steel in 117.22

6.600 m

0.13 60

138.23

660

100

138.230

Provided steel in for width of

117.22

Page 16: Combined Footing

Design bending moment at top = kN-m

Assuming bar dia. = mm 1 nd layer

D prov. = cm

d prov = - -

= cm

K' = 0.156 Assuming that the redstribution does not exceed 10%

K = M

b x d2

x fcu

= 1050.00

6.600 x 0.265 x 45000

= 0.0133

K < K'

z = 0.507 m

x = 0.017 m

As = 4736.752 mm2 = 47.368 cm2

Min Ast reqd = x x Avg. Thickness

= cm2

= cm2

Provide TOR @ mm c\c in longitudinal direction at bottom

Ast prov = cm2

OK

= cm2

Hence, max required steel in 51.48

51.50

0.13

1050

20

100

51.48

60

60 660

60

7.50 1

Provided steel in for width of 6.600 m 165.88

51.48

20 125

165.876

Page 17: Combined Footing

4) Design of footing in transverse direction

width of column in longitudinal direction i.e in z-z direction = 2.900 m

Width to be considered is minimum of the following =

1.5 x width + 3 x effective width = 5.835 m

Half the length provided in transverse direction = 2.900 m

Width for the design = 2.900 m

Maximum upward base pressure = 283.43 kN/m2

Maximum downward pressure = 46.09 kN/m2

Critical load case for maximum bending moment at top =

Resultant pressure = 237.34 kN/m2

Resultant force = 237.34 x 2.900

= 688.29 kN/m

Projection beyond face of column = 3.913 m

Design bending moment for above width = kN-m

Assuming bar dia. = mm 1 nd layer

D prov. = cm

d prov = - - -

= cm

K' = 0.156 Assuming that the redstribution does not exceed 10%

K = M

b x d2

x fcu

= 1580.00

2.900 x 0.245 x 45000

= 0.0494

K < K'

z = 0.466 m

x = 0.064 m

21

49.50

1580

20

60

60 7.50

Page 18: Combined Footing

As = 7756.373 mm2 = 77.564 cm2

Min Ast reqd = x x Avg. Thickness

= cm2

= cm2

Provide TOR @ mm c\c in transverse direction at bottom

Ast prov = cm2

OK

= cm2

5) Check for Shear

We require to check shear for the following two cases.

1) Section acting at a distance of 2 times the effective depth from the column face, if shear span is more than

4 times the effective depth. If the shear span is less than 4d, critical section for shear shall be taken at a

distance of half the shear span from the face of the column.

m m

##

##

m 1.9

9

m m

2.900 m 0.400 m

column 1 column 2

m m

##

##

##

##

0.3 2.300 m 1.55

However maximum shear force from shear force diagram (governing load case) is considered for shear design

6.6

00

3.7

00

0.13 60 290

100

22.62

Hence, max required steel in 77.56 77.56

20 100

91.106

Provided steel in for width of 2.900 m 91.11

0.7

00

Page 19: Combined Footing

= 1530 kN

width of section = 6.600 m

effective depth = 0.495 m

Shear Stress v = V

= 1530000 = mPa

x

Permissible Max Shear Stress = mPa

Hence, thickness is adequate

Provided reinforcement at section

= = cm2

% Ast at section = x = %

x

0.468

bd

495.00

0.423

5.0

10013823.008

138.230138.230

6600

Ultimate shear force at face of column/

pedestal

6600 495.00

Page 20: Combined Footing

Permissible shear stress c = mPa Table 3.8 of BS 8110 Part 1

Hence, Shear reinf is not required

6) Punching shear consideration

Section for punching shear shall be checked at a distance of 1.5 times the effective depth from the face of the

column.

Average effective depth = 51.50 + 51.50

2

= 51.5 cm

1.5 times effective depth = 0.773 m

Perimeter for column 1 = 0.528 + 0.773 + 0.000 + 0.000 + 0.773 + 0.773

= + 0.300 + 0.300 + 13.200

= 16.646 m

Perimeter for column 2 = 0.7725 + 0.773 + 0.773 + 0.773 + 0.773 + 0.773

= + 0.773 + 0.773 + 2.200

= 8.380 m

Dimension of area for punching for col 1 = 5.001 x 3.973 = 19.864 m2

Dimension of area for punching for col 2 = 2.245 x 1.945 = 4.367 m2

Ultimate shear force = 2862.16 + ( 283.43 - 46.0909 ) x 19.864

= 7576.82 kN

Shear Stress v = V

= 7576818.6 = mPa

x

Permissible Max Shear Stress = mPa

Hence, thickness is adequate from punching shear consideration

1.756

bd

0.47

5.0

8380.0 515.00

Page 21: Combined Footing

7) Concrete dimension and reinforcement details

a. Concrete dimension detailsm m

##

##

m 1.9

9

m m

2.900 m 0.400 m

column 1 column 2

m m

##

##

##

##

0.3 2.300 m 1.55

0.60 m

b. Reinforcement details

20 TOR @ 150 mm c/c

20 TOR @ 100

mm c/c

20 TOR @ 100 mm c/c 20 TOR @ 125 mm c/c

6.6

00

3.7

00

0.7

00

Page 22: Combined Footing

STAAD SPACE

START JOB INFORMATION

ENGINEER DATE 04-Jan-14

END JOB INFORMATION

INPUT WIDTH 79

UNIT METER KN

JOINT COORDINATES

1 0 0 0; 2 1.75 0 0; 3 4.05 0 0; 4 5.8 0 0;

MEMBER INCIDENCES

1 1 2; 2 2 3; 3 3 4;

DEFINE MATERIAL START

ISOTROPIC CONCRETE

E 3.3545e+007

POISSON 0.17

DENSITY 25

ALPHA 1e-005

DAMP 0.05

END DEFINE MATERIAL

MEMBER PROPERTY AMERICAN

1 TO 3 PRIS YD 0.6 ZD 6.6

CONSTANTS

MATERIAL CONCRETE ALL

SUPPORTS

2 PINNED

3 FIXED BUT FX FZ MX MY MZ

LOAD 1 SELF WEIGHT

*Weight of soil and foundation

MEMBER LOAD

1 TO 3 UNI GY 402.6

LOAD 2 200 1.4 D.L + 1.6 L.L

MEMBER LOAD

1 TRAP GY -867.5 -1118.3

2 TRAP GY -1118.3 -1448.0

3 TRAP GY -1448.0 -1698.8

LOAD 3 203 1.4 D.L + 1.4 W.L Z+VE

MEMBER LOAD

1 TRAP GY -813.19 -1002.4

2 TRAP GY -1002.4 -1251.1

3 TRAP GY -1251.1 -1440.3

LOAD 4 207 1.0 D.L + 1.4 W.L Z+VE

MEMBER LOAD

1 TRAP GY -580.52 -715.9

2 TRAP GY -715.9 -893.9

3 TRAP GY -893.9 -1029.3

LOAD 5 211 1.2 D.L + 1.2 L.L + 1.2 W.L Z+VE

MEMBER LOAD

1 TRAP GY -738.73 -946.4

2 TRAP GY -946.4 -1219.3

3 TRAP GY -1219.3 -1426.9

LOAD 6 217 1.47 D.L + 1.1 L.L + 1.1 E.Q X+VE

MEMBER LOAD

1 TRAP GY -878.21 -1139.6

Page 23: Combined Footing

2 TRAP GY -1139.6 -1483.2

3 TRAP GY -1483.2 -1744.6

LOAD 7 218 1.47 D.L + 1.1 L.L + 1.1 E.Q X-VE

MEMBER LOAD

1 TRAP GY -904.97 -1125.0

2 TRAP GY -1125.0 -1414.2

3 TRAP GY -1414.2 -1634.3

LOAD 8 219 1.47 D.L + 1.1 L.L + 1.1 E.Q Z+VE

MEMBER LOAD

1 TRAP GY -966.55 -1169.0

2 TRAP GY -1169.0 -1435.0

3 TRAP GY -1435.0 -1637.4

LOAD 9 220 1.47 D.L + 1.1 L.L + 1.1 E.Q Z-VE

MEMBER LOAD

1 TRAP GY -816.64 -1095.7

2 TRAP GY -1095.7 -1462.4

3 TRAP GY -1462.4 -1741.5

LOAD 10 221 1.14 D.L + 1.1 E.Q X+VE

MEMBER LOAD

1 TRAP GY -649.71 -823.8

2 TRAP GY -823.8 -1052.6

3 TRAP GY -1052.6 -1226.6

LOAD 11 222 1.14 D.L + 1.1 E.Q X-VE

MEMBER LOAD

1 TRAP GY -676.47 -809.2

2 TRAP GY -809.2 -983.6

3 TRAP GY -983.6 -1116.3

LOAD 12 223 1.14 D.L + 1.1E.Q Z+VE

MEMBER LOAD

1 TRAP GY -738.04 -853.1

2 TRAP GY -853.1 -1004.4

3 TRAP GY -1004.4 -1119.5

LOAD 13 224 1.14 D.L + 1.1 E.Q Z-VE

MEMBER LOAD

1 TRAP GY -588.14 -779.9

2 TRAP GY -779.9 -1031.8

3 TRAP GY -1031.8 -1223.5

LOAD 14 225 0.84 D.L - 1.1 E.Q X+VE

MEMBER LOAD

1 TRAP GY -501.97 -594.3

2 TRAP GY -594.3 -715.7

3 TRAP GY -715.7 -808.0

LOAD 15 226 0.84 D.L - 1.1 E.Q X-VE

MEMBER LOAD

1 TRAP GY -475.36 -609

2 TRAP GY -609.0 -784.6

3 TRAP GY -784.6 918.3

LOAD 16 227 0.84 D.L - 1.1E.Q Z+VE

MEMBER LOAD

1 TRAP GY -413.64 -565.0

2 TRAP GY -565.0 -763.9

3 TRAP GY -763.9 -915.2

Page 24: Combined Footing

LOAD 17 228 0.84 D.L - 1.1 E.Q Z-VE

MEMBER LOAD

1 TRAP GY -563.55 -638.3

2 TRAP GY -638.3 -736.5

3 TRAP GY -736.5 -811.2

LOAD COMB 18 SELF WEIGHT + 200 1.4 D.L + 1.6 L.L

1 1.4 2 1.0

LOAD COMB 19 SELF WEIGHT + 203 1.4 D.L + 1.4 W.L Z+VE

1 1.4 3 1.0

LOAD COMB 20 SELF WEIGHT + 207 1.0 D.L + 1.4 W.L Z+VE

1 1.0 4 1.0

LOAD COMB 21 SELF WEIGHT + 211 1.2 D.L + 1.2 L.L + 1.2 W.L Z+VE

1 1.2 5 1.0

LOAD COMB 22 SELF WEIGHT + 217 1.47 D.L + 1.1 L.L + 1.1 E.Q X+VE

1 1.47 6 1.0

LOAD COMB 23 SELF WEIGHT + 218 1.47 D.L + 1.1 L.L + 1.1 E.Q X-VE

1 1.47 7 1.0

LOAD COMB 24 SELF WEIGHT + 219 1.47 D.L + 1.1 L.L + 1.1 E.Q Z+VE

1 1.47 8 1.0

LOAD COMB 25 SELF WEIGHT + 220 1.47 D.L + 1.1 L.L + 1.1 E.Q Z-VE

1 1.47 9 1.0

LOAD COMB 26 SELF WEIGHT + 221 1.14 D.L + 1.1 E.Q X+VE

1 1.14 10 1.0

LOAD COMB 27 SELF WEIGHT + 222 1.14 D.L + 1.1 E.Q X-VE

1 1.14 11 1.0

LOAD COMB 28 SELF WEIGHT + 223 1.14 D.L + 1.1E.Q Z+VE

1 1.14 12 1.0

LOAD COMB 29 SELF WEIGHT + 224 1.14 D.L + 1.1 E.Q Z-VE

1 1.14 13 1.0

LOAD COMB 30 SELF WEIGHT + 225 0.84 D.L - 1.1 E.Q X+VE

1 0.84 14 1.0

LOAD COMB 31 SELF WEIGHT + 226 0.84 D.L - 1.1 E.Q X-VE

1 0.84 15 1.0

LOAD COMB 32 SELF WEIGHT + 227 0.84 D.L - 1.1E.Q Z+VE

1 0.84 16 1.0

LOAD COMB 33 SELF WEIGHT + 228 0.84 D.L - 1.1 E.Q Z-VE

1 0.84 17 1.0

PERFORM ANALYSIS

FINISH

Page 25: Combined Footing

P1 COLUMN P MX MZ

SERV1 1.0 D.L + 1.0 L.L

SERV2 1.0 D.L + 0.8 L.L + 0.8 EQX

SERV3 1.0 D.L + 0.8 L.L - 0.8 EQX

SERV4 1.0 D.L + 0.8 L.L + 0.8 EQy

SERV5 1.0 D.L + 0.8 L.L - 0.8 EQy

SERV6 1.0 D.L + 1.0 EQX

SERV7 1.0 D.L - 1.0 EQX

SERV8 1.0 D.L + 1.0 EQy

SERV9 1.0 D.L - 1.0 EQy

SERV10 1.0 D.L + 0.8 L.L + 0.8 WINDx

SERV11 1.0 D.L + 0.8 L.L - 0.8 WINDx

SERV12 1.0 D.L + 0.8 L.L + 0.8 WINDy

SERV13 1.0 D.L + 0.8 L.L - 0.8 WINDy

SERV14 1.0 D.L + 1.0 WINDx

SERV15 1.0 D.L - 1.0 WINDx

SERV16 1.0 D.L + 1.0 WINDy

SERV17 1.0 D.L - 1.0 WINDy

DCON1 1.5 D.L

DCON2 1.5 D.L + 1.5 L.L

DCON3 1.2 D.L + 1.2 L.L + 1.2 WINDx

DCON4 1.2 D.L + 1.2 L.L - 1.2 WINDx

DCON5 1.2 D.L + 1.2 L.L + 1.2 WINDY

DCON6 1.2 D.L + 1.2 L.L - 1.2 WINDY

DCON7 1.5 D.L + 1.5 WINDx

DCON8 1.5 D.L - 1.5 WINDx

DCON9 1.5 D.L + 1.5 WINDy

DCON10 1.5 D.L - 1.5 WINDy

DCON11 0.9 D.L + 1.5 WINDx

DCON12 0.9 D.L - 1.5 WINDx

DCON13 0.9 D.L + 1.5 WINDy

DCON14 0.9 D.L - 1.5 WINDy

DCON15 1.2 D.L + 1.2 L.L + 1.2 EQx

DCON16 1.2 D.L + 1.2 L.L - 1.2 EQx

DCON17 1.2 D.L + 1.2 L.L + 1.2 EQy

DCON18 1.2 D.L + 1.2 L.L - 1.2 EQy

DCON19 1.5 D.L + 1.5 EQx

DCON20 1.5 D.L - 1.5 EQx

DCON21 1.5 D.L + 1.5 EQy

DCON22 1.5 D.L - 1.5 EQy

DCON23 0.9 D.L + 1.5 EQx

DCON24 0.9 D.L - 1.5 EQx

DCON25 0.9 D.L + 1.5 EQy

DCON26 0.9 D.L - 1.5 EQy

P2 COLUMN P MX MZ

100 1.0 D.L + 1.0 L.L 1823.866 17.761 -52.775

102 1.0 D.L + 1.0 W.LZ +VE 1515.838 13.435 -45.504

106 1.0 D.L +0.75 L.L + 1.0 W.LZ +VE 1745.748 16.56 -51.015

110 1.0 D.L +1.0 L.L + 1.0 W.LZ +VE 1822.385 17.602 -52.852

117 1.07 D.L + 0.75 L.L + 0.54 E.Q X+VE 1898.505 22.301 -55.121

118 1.07 D.L + 0.75 L.L + 0.54 E.Q X-VE 1808.377 13.041 -53.114

119 1.07 D.L + 0.75 L.L + 0.54 E.Q Z+VE 1708.867 -148.563 -56.778

120 1.07 D.L + 0.75 L.L + 0.54 E.Q Z-VE 1998.015 183.905 -51.456

121 1.0 D.L + 0.714 E.QX +VE 1576.903 19.717 -46.753

Page 26: Combined Footing

122 1.0 D.L + 0.714 E.QX -VE 1457.734 7.472 -44.099

123 1.0 D.L + 0.714 E.QZ +VE 1326.159 -206.204 -48.944

124 1.0 D.L + 0.714 E.QZ -VE 1708.478 233.393 -41.908

125 0.8 D.L - 0.714 E.QX +VE 1154.27 4.753 -35.014

126 0.8 D.L - 0.714 E.QX -VE 1273.439 16.998 -37.667

127 0.8 D.L - 0.714 E.QZ +VE 1405.014 230.674 -32.823

128 0.8 D.L - 0.714 E.QZ -VE 1022.696 -208.923 -39.859

200 1.4 D.L + 1.6 L.L 2614.721 25.699 -75.354

201 1.4 D.L + 1.4 W.L Z+VE 2126.272 19.299 -63.908

205 1.0 D.L + 1.4 W.L Z+VE 1519.345 13.861 -45.738

210 1.2 D.L + 1.2 L.L + 1.2 W.L Z+VE 2186.862 21.122 -63.423

217 1.47 D.L + 1.1 L.L + 1.1 E.Q X+VE 2659.457 33.999 -76.904

218 1.47 D.L + 1.1 L.L + 1.1 E.Q X-VE 2475.864 15.135 -72.816

219 1.47 D.L + 1.1 L.L + 1.1 E.Q Z+VE 2273.157 -314.058 -80.28

220 1.47 D.L + 1.1 L.L + 1.1 E.Q Z-VE 2862.163 363.192 -69.439

221 1.14 D.L + 1.1 E.Q X+VE 1821.54 24.93 -53.829

222 1.14 D.L + 1.1 E.Q X-VE 1637.946 6.066 -49.742

223 1.14 D.L + 1.1E.Q Z+VE 1435.24 -323.128 -57.206

224 1.14 D.L + 1.1 E.Q Z-VE 2024.246 354.123 -46.365

225 0.84 D.L - 1.1 E.Q X+VE 1182.751 1.987 -36.114

226 0.84 D.L - 1.1 E.Q X-VE 1366.344 20.851 -40.202

227 0.84 D.L - 1.1E.Q Z+VE 1569.05 350.045 -32.738

228 0.84 D.L - 1.1 E.Q Z-VE 980.045 -327.206 -43.578

Page 27: Combined Footing
Page 28: Combined Footing

815.5 191.3 191.7

861.2 209.1 223.6

860.1 237.9 262.1

906.8 239.5 37.7 Node Horizontal

951.4 278.0 45.3 L/C Fx kN

769.9 0.0 0.0 1 21.022

769.9 0.0 0.0 11.309

805.6 217.3 149.8 13.365

841.2 261.1 174.8 14.051

851.5 314.8 237.2 -2.715

876.9 317.4 74.9 45.947

887.2 371.1 87.6 -2.302

769.9 0.0 0.0 45.535

769.9 0.0 0.0 -13.891

802.0 446 1089.3 50.451

802.0 446.3 -1012.6 -13.346

802.0 -450.1 1089.3 49.905

802.0 -450.1 -1012.6 46.795

811.2 445.9 1112.2 -17.547

811.2 445.9 -1022.7 46.249

811.2 -453.7 1112.2 -17.002

811.2 -453.7 -1022.7

811.0 489.8 1119.5

811.0 489.8 -1014.6 Node Horizontal

811.0 -491.7 1119.5 L/C Fx kN

811.0 -491.7 -1014.6 1 29.98

820.3 458.1 1091.5 15.832

820.3 458.1 -1076.4 8.52

820.3 -469.8 1091.5 15.467

820.3 -469.8 -1076.4 -19.675

829.2 500.1 1092.6 79.451

829.2 500.1 -1074.5 -18.835

829.2 -509.7 1092.6 78.611

829.2 -509.7 -1074.5 -28.724

792.9 273.1 1034.5 70.402

792.9 273.1 -1034.5 -27.884

792.9 -273.1 1034.5 69.562

792.9 -273.1 -1034.5 64.918

792.9 273.1 1034.5 -34.208

792.9 273.1 -1034.5 64.078

792.9 -273.1 1034.5 -33.368

792.9 -273.1 -1034.5

802.0 928.4 353.6

802.0 928.4 -277.0

Page 29: Combined Footing

802.0 -932.3 353.6

802.0 -932.3 -277.0

811.2 926.4 365.0

811.2 926.4 -275.5

811.2 -934.2 365.0

811.2 -934.2 -275.5

811.0 945.5 372.5

811.0 945.5 -267.7

811.0 -947.4 372.5

811.0 -947.4 -267.7

820.3 929.5 332.7

820.3 929.5 -317.6

820.3 -941.2 332.7

820.3 -941.2 -317.6

829.2 946.6 334.1

829.2 946.6 -316.0

829.2 -956.3 334.1

829.2 -956.3 -316.0

792.9 910.3 310.3

792.9 910.3 -310.3

792.9 -910.3 310.3

792.9 -910.3 -310.3

792.9 910.3 310.3

792.9 910.3 -310.3

792.9 -910.3 310.3

792.9 -910.3 -310.3

800.0 455.3 1077.3

800.0 455.3 -1017.4

800.0 -375.3 947.3

800.0 -375.3 -887.4

807.2 464.1 1095.2

807.2 464.1 -1025.3

807.2 -435.5 1095.2

807.2 -435.5 -1025.3

809.2 507.1 1111.4

809.2 507.1 -1016.5

809.2 -474.4 1111.4

809.2 -474.4 -1016.5

814.3 485.4 1088.1

814.3 485.4 -1058.1

814.3 -442.6 1088.1

814.3 -442.6 -1058.1

816.4 528.4 1094.3

816.4 528.4 -1059.3

816.4 -481.4 1094.3

816.4 -481.4 -1059.3

792.9 273.1 1034.5

792.9 273.1 -1034.5

792.9 -273.1 1034.5

792.9 -273.1 -1034.5

792.9 273.1 1034.5

792.9 273.1 -1034.5

792.9 -273.1 1034.5

792.9 -273.1 -1034.5

800.0 937.5 344.2

800.0 937.5 -284.2

Page 30: Combined Footing

800.0 -923.2 344.2

800.0 -923.2 -284.2

807.2 944.6 353.0

807.2 944.6 -283.1

807.2 -916.1 353.0

807.2 -916.1 -283.1

809.2 962.8 366.6

809.2 962.8 -271.8

809.2 -930.1 366.6

809.2 -930.1 -271.8

814.3 956.7 336.9

814.3 956.7 -307.0

814.3 -913.9 336.9

814.3 -913.9 -307.0

816.4 974.9 340.6

816.4 974.9 -305.5

816.4 -928.0 340.6

816.4 -928.0 -305.5

792.9 910.3 310.3

792.9 910.3 -310.3

792.9 -910.3 310.3

792.9 -910.3 -310.3

792.9 910.3 310.3

792.9 910.3 -310.3

792.9 -910.3 310.3

792.9 -910.3 -310.3

991.7 259.3 321.3

769.1 212.8 467.7

533.6 419.7 216.6

544.4 455.6 584.0

515.9 452.7 201.0

515.6 308.2 141.1

462.6 273.5 463.0

508.8 382.5 138.9

Page 31: Combined Footing

Vertical Horizontal Moment

Fy kN Fz kN Mx kNm My kNm Mz kNm

5.036 -0.008

-7.138 0.094

-6.251 0.091

-5.956 0.09

9.754 -0.123

0.267 0.108

-19.907 0.328

29.928 -0.343

10.127 -0.157

-2.417 0.149

-29.092 0.439

36.801 -0.448

-3.188 0.15

9.356 -0.156

36.03 -0.447

-29.863 0.44

Vertical Horizontal Moment

Fy kN Fz kN Mx kNm My kNm Mz kNm

7.287 -0.012

-9.993 0.131

-11.534 0.133

-9.345 0.127

16.629 -0.246

-2.697 0.225

-43.792 0.673

57.724 -0.694

14.057 -0.24

-5.269 0.231

-46.364 0.679

55.152 -0.688

-6.425 0.232

12.901 -0.239

53.996 -0.687

-47.52 0.68