28
General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from orbit.dtu.dk on: Mar 25, 2019 Combined Biogas and Bioethanol Production in Organic Farming Schmidt, Jens Ejbye; Thomsen, Anne Belinda; Bangsø Nielsen, Henrik; Østergård, Hanne; Kádár, Zsófia; Oleskowicz-Popiel, Piotr; Markussen, Mads Ville Publication date: 2009 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Schmidt, J. E. (Author), Thomsen, A. B. (Author), Bangsø Nielsen, H. (Author), Østergård, H. (Author), Kádár, Z. (Author), Oleskowicz-Popiel, P. (Author), & Markussen, M. V. (Author). (2009). Combined Biogas and Bioethanol Production in Organic Farming. Sound/Visual production (digital)

Combined Biogas and Bioethanol Production in Organic Farmingorbit.dtu.dk/files/9989866/Session4_3_1_.pdf · 4 Bioethanol 10% 67 3080 22 140 123 65 0 (1,9)c 0 4,59 0 5 20% energy crops

Embed Size (px)

Citation preview

Page 1: Combined Biogas and Bioethanol Production in Organic Farmingorbit.dtu.dk/files/9989866/Session4_3_1_.pdf · 4 Bioethanol 10% 67 3080 22 140 123 65 0 (1,9)c 0 4,59 0 5 20% energy crops

General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

You may not further distribute the material or use it for any profit-making activity or commercial gain

You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from orbit.dtu.dk on: Mar 25, 2019

Combined Biogas and Bioethanol Production in Organic Farming

Schmidt, Jens Ejbye; Thomsen, Anne Belinda; Bangsø Nielsen, Henrik; Østergård, Hanne; Kádár, Zsófia;Oleskowicz-Popiel, Piotr; Markussen, Mads Ville

Publication date:2009

Document VersionPublisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):Schmidt, J. E. (Author), Thomsen, A. B. (Author), Bangsø Nielsen, H. (Author), Østergård, H. (Author), Kádár, Z.(Author), Oleskowicz-Popiel, P. (Author), & Markussen, M. V. (Author). (2009). Combined Biogas and BioethanolProduction in Organic Farming. Sound/Visual production (digital)

Page 2: Combined Biogas and Bioethanol Production in Organic Farmingorbit.dtu.dk/files/9989866/Session4_3_1_.pdf · 4 Bioethanol 10% 67 3080 22 140 123 65 0 (1,9)c 0 4,59 0 5 20% energy crops

C bi d Bi d Bi h l P d i i O i F iCombined Biogas and Bioethanol Production in Organic Farming

Jens Ejbye SchmidtAct. Head of program

NRG - Biosystems DivisionRisø – National Laboratory for Sustainable Energyy gy

Technical University of Denmark

Anne Belinda ThomsenAnne Belinda ThomsenHenrik Bangsø Nielsen

Hanne ØstergårdZ ófi KádáZsófia Kádár

Piotr Oleskowics-PopielMads Markussen

Page 3: Combined Biogas and Bioethanol Production in Organic Farmingorbit.dtu.dk/files/9989866/Session4_3_1_.pdf · 4 Bioethanol 10% 67 3080 22 140 123 65 0 (1,9)c 0 4,59 0 5 20% energy crops

Introduction - BioConcensIntroduction - BioConcens

http://www.bioconcens.elr.dk/uk/

Page 4: Combined Biogas and Bioethanol Production in Organic Farmingorbit.dtu.dk/files/9989866/Session4_3_1_.pdf · 4 Bioethanol 10% 67 3080 22 140 123 65 0 (1,9)c 0 4,59 0 5 20% energy crops

Production of bioenergy and animal feedProduction of bioenergy and animal feed

Aim: Convert animal manure, energy crops and agricultural residuals and agro-industrial by-products to biogas, bioethanolresiduals and agro industrial by products to biogas, bioethanol

and fodder protein

Hypothesis: It is possible to use the organic residuals in organic agricultural (OA) for energy production without diminish theagricultural (OA) for energy production without diminish the

necessary amount of carbon and nutrients that should be recycled to the soil in OA.

Page 5: Combined Biogas and Bioethanol Production in Organic Farmingorbit.dtu.dk/files/9989866/Session4_3_1_.pdf · 4 Bioethanol 10% 67 3080 22 140 123 65 0 (1,9)c 0 4,59 0 5 20% energy crops

Tested biomassesTested biomasses

- Clover grass (fresh and il )silage)

- Maize straw (fresh and silage)

- Grass from meadows- Rye straw- Vetch strawVetch straw- Whey- Cattle manure

Page 6: Combined Biogas and Bioethanol Production in Organic Farmingorbit.dtu.dk/files/9989866/Session4_3_1_.pdf · 4 Bioethanol 10% 67 3080 22 140 123 65 0 (1,9)c 0 4,59 0 5 20% energy crops

Experimental setup - BiogasExperimental setup Biogas

• Batch fermentations trials:- each biomass was

fermented in triplicate infermented in triplicate in different concentrations (from 0.5% to 3.3%)

Reactor experiments –• 50oC and HRT of 19

days

SamplingFeeding inlet

Gas bag

SamplingFeeding inlet SamplingFeeding inlet

Gas bag

days • Manure and agricultural

residuals55 ºC55 ºC55 ºC

Page 7: Combined Biogas and Bioethanol Production in Organic Farmingorbit.dtu.dk/files/9989866/Session4_3_1_.pdf · 4 Bioethanol 10% 67 3080 22 140 123 65 0 (1,9)c 0 4,59 0 5 20% energy crops

Results – biogas potentialsResults – biogas potentials

Methane productionfrom fresh rye (FR),fresh clover (FC) andtwo types of whey (W)two types of whey (W)

Methane production from d t h (DV) d ddry vetch (DV) and dry rye (DR) at different substrate

concentrations:samples 1-3 4-6 and 7-9samples 1-3, 4-6 and 7-9

in concentrations 0.5, 1.0, and 2.0 gVS/100g,

respectively.

Page 8: Combined Biogas and Bioethanol Production in Organic Farmingorbit.dtu.dk/files/9989866/Session4_3_1_.pdf · 4 Bioethanol 10% 67 3080 22 140 123 65 0 (1,9)c 0 4,59 0 5 20% energy crops

Methane potentials of clover grass and clover grass silagep g g g

Fi ld 24 12 Sil tiFi ld H t d Field 24-12 Silage time days

Control 0

Field Harvested

24-5 10-10-08 Control 0

1 7

24 5 10 10 08

24-7 10-10-08

24-9 10-10-082 19

3 34

24 9 10 10 08

24-12 30-10-07

24-12 16-05-084 69

5 130

24-12 16-05-08

24-12 14-08-08

24 12 10 08 08 5 13024-12 10-08-08

Page 9: Combined Biogas and Bioethanol Production in Organic Farmingorbit.dtu.dk/files/9989866/Session4_3_1_.pdf · 4 Bioethanol 10% 67 3080 22 140 123 65 0 (1,9)c 0 4,59 0 5 20% energy crops

Cl M th t ti l b t h i tClover grass. Methane potentials – batch experiments

400

500

gVS)

Field 24‐12. Annual methane yield variability.

30‐10‐2007

16 05 2008

100

200

300

methane

 yield (ml/g 16‐05‐2008

14‐08‐2008

10‐10‐2008

0

0 5 10 15 20 25 30 35 40

time (days)

400

500

gVS)

Field methane yield variability. Harvest 10‐10‐08.

Field 24‐5

Field 24‐7

100

200

300

400

methane

 yield (ml/g

Field 24‐9

Field 24‐12

0

0 5 10 15 20 25 30 35

time (days)

Page 10: Combined Biogas and Bioethanol Production in Organic Farmingorbit.dtu.dk/files/9989866/Session4_3_1_.pdf · 4 Bioethanol 10% 67 3080 22 140 123 65 0 (1,9)c 0 4,59 0 5 20% energy crops

Cl il M th t ti l b t h i tClover grass silage. Methane potentials – batch experiments

Clovergrass silage.Specific methane potentials.

300

400

500

600

yield (m

l/gV

S)

Kontrol

day 7

day 19

day 34

day 69

0

100

200

0 5 10 15 20 25 30 35

methane

 y

time (da s)

y

day 130

time (days)

120 0

Clovergrass silageMass balance based on total methane potential.

105,1108,6

113,4

100,0 97,8

60,0

80,0

100,0

120,0

ml/g = m3/t)

0,0

20,0

40,0

,

methane

 (m

0 20 40 60 80 100 120 140

time (days)

Page 11: Combined Biogas and Bioethanol Production in Organic Farmingorbit.dtu.dk/files/9989866/Session4_3_1_.pdf · 4 Bioethanol 10% 67 3080 22 140 123 65 0 (1,9)c 0 4,59 0 5 20% energy crops

Reactor experiments

40Only manurefull loading

Maize 18% of VSClover grass 22% of VS

Maize 26% of VSClover grass 29% of VS

Total VS: 7.63%C.grass 37% of VS

30

35

full‐loadingTotal VS 5.4%

Clover grass 22% of VSTotal VS: 6.45%

Clover grass 29% of VSTotal VS: 7.04%

C.grass 37% of VS

20

25

(m3 /t

feed

)

R1R2

10

15

Bio

gas

R3

0

5

06 8 10 12 14 16

week

R1: manure, R2: manure + maize, R3: manure + clovergrass

Page 12: Combined Biogas and Bioethanol Production in Organic Farmingorbit.dtu.dk/files/9989866/Session4_3_1_.pdf · 4 Bioethanol 10% 67 3080 22 140 123 65 0 (1,9)c 0 4,59 0 5 20% energy crops

Methane yieldsy

Reactor yield Batch potentialml/g VS ml/g VSml/g VS ml/g VS

Manure 208 235 Std. dev.

Maize 17 5% VS 327 427 26 0Maize 17.5% VS 327 427 26,0Maize 25.8% VS 335 427 26,0Maize 33.0% VS 380 427 26,0

Clover‐grass 22.4% of VS 294 406 9,9Clover‐grass 28.9% of VS 328 406 9,9Clover‐grass 36.8% of VS 367 406 9,9

Page 13: Combined Biogas and Bioethanol Production in Organic Farmingorbit.dtu.dk/files/9989866/Session4_3_1_.pdf · 4 Bioethanol 10% 67 3080 22 140 123 65 0 (1,9)c 0 4,59 0 5 20% energy crops

Summery - Biogasy g

Page 14: Combined Biogas and Bioethanol Production in Organic Farmingorbit.dtu.dk/files/9989866/Session4_3_1_.pdf · 4 Bioethanol 10% 67 3080 22 140 123 65 0 (1,9)c 0 4,59 0 5 20% energy crops

Results – ethanol potential was expressed as an amount of glucoseResults ethanol potential was expressed as an amount of glucose

Composition of the raw materials

Page 15: Combined Biogas and Bioethanol Production in Organic Farmingorbit.dtu.dk/files/9989866/Session4_3_1_.pdf · 4 Bioethanol 10% 67 3080 22 140 123 65 0 (1,9)c 0 4,59 0 5 20% energy crops

The sugars yield after enzymatic hydrolysisg y y y y

Page 16: Combined Biogas and Bioethanol Production in Organic Farmingorbit.dtu.dk/files/9989866/Session4_3_1_.pdf · 4 Bioethanol 10% 67 3080 22 140 123 65 0 (1,9)c 0 4,59 0 5 20% energy crops

Ethanol production from treated/non-treated maize silageEthanol production from treated/non-treated maize silage

I d t h k if it i t t t/ t ili / t i iIn order to check if it is necessary to pre-treat/sterilize/pasteurize maizesilage, SSF was performed with:

- raw maize silage- maize silage pasteurized for 4 hours at 70oC- hydro-thermo-treated for 10 minutes at 190oC

The experiments were carried out with two types C-6 fermenting

i imicroorganisms:

-Saccharomyces cerevisae at 32oC

and with thermotolerant yeast-and with thermotolerant yeast, Kluvyromyces marxianus, at 40oC

Page 17: Combined Biogas and Bioethanol Production in Organic Farmingorbit.dtu.dk/files/9989866/Session4_3_1_.pdf · 4 Bioethanol 10% 67 3080 22 140 123 65 0 (1,9)c 0 4,59 0 5 20% energy crops

Ethanol production from treated/non-treated maize silage

Ethanol production from non-treated maize silage

t a o p oduct o o t eated/ o t eated a e s age

g

(M – maize; E – ensilaged;S – S.cerevisae; K - K.marxianus;X – non-treated; amylase+cellulase, ; y ,‘ – only cellulase enzymes)

Production of ethanol during SSF of maize silage pretreated at differentmaize silage pretreated at different conditions(M – maize; E – ensilaged;S – S.cerevisae; K - K.marxianus;H hydrothermal treatment (190oCH – hydrothermal treatment (190oC, 10 min); P – pasteurized (70oC, 4h);

X – non-treated)

Page 18: Combined Biogas and Bioethanol Production in Organic Farmingorbit.dtu.dk/files/9989866/Session4_3_1_.pdf · 4 Bioethanol 10% 67 3080 22 140 123 65 0 (1,9)c 0 4,59 0 5 20% energy crops

Summery- Bioethanol

Crop Practical  Practical methane  Theoretical  Theoretical Crop Practical methane yield[mLCH4/gTS]

Practical methane yield[kJ/100gTS]

Theoretical ethanol yield[gEtOH/100gTS]

Theoretical ethanol yield[kJ/100gTS]

Fresh maize (the whole crop) 407 ± 25 1619 ± 99 25.1 ± 0.5 744 ± 15Maize silage (the whole crop) 426 ± 22 1694 ± 88  22.8 ± 0.5 678 ± 16Fresh rye  (the whole crop) 316 ± 40 1258 ± 160 12.3 ± 0.1 365 ± 4 y ( p)Rye silage (the whole crop) 422 ± 9 1680 ± 36 12.3 ± 1.3 395 ± 40Dried rye (the whole crop) 402 ± 31 1601 ± 122 28.3 ± 1.2 839 ± 36Fresh clover (the whole crop) 375 ± ND 1493 ± ND 13.1 ± ND 390 ± NDClover silage (the whole crop) 400 ± ND 1592 ± ND 11.1 ± 0.4 330 ± 1Dried clover (the whole crop) 245 ± 12 977 ± 49 14.9 ± 0.1 442 ± 4Dried vetch (the whole crop) 279 ± 13 1111 ± 50 17.1 ± 0.2 507 ± 5Cattle manure 174 ± 6 51 ± 2 [kJ/100mL] ‐ ‐Whey

625 ± 48149 ± 12 

[kJ/100mL]~2.4  g/100mL ~138.8 kJ/100mL

HHVCH4=55.5 kJ/g=39.8 kJ/dm3

HHVEtOH=29.7 kJ/g

Page 19: Combined Biogas and Bioethanol Production in Organic Farmingorbit.dtu.dk/files/9989866/Session4_3_1_.pdf · 4 Bioethanol 10% 67 3080 22 140 123 65 0 (1,9)c 0 4,59 0 5 20% energy crops

Combined biogas and fodder/bioethanol production

Processing ProductsBiomasses

Combined biogas and fodder/bioethanol production

Processing Products

Ethanol

Biomasses

P-1 / V-101Protein feed/

P 1 / V 101

Stoich. Fermentation fertilizer

Biogas

P-15 / AD-101

Anaerobic Digestion

Biogas

Fertilizer

Page 20: Combined Biogas and Bioethanol Production in Organic Farmingorbit.dtu.dk/files/9989866/Session4_3_1_.pdf · 4 Bioethanol 10% 67 3080 22 140 123 65 0 (1,9)c 0 4,59 0 5 20% energy crops

Combined biogas, bioethanol and fodder production from rye grain, clover grass and whey

Page 21: Combined Biogas and Bioethanol Production in Organic Farmingorbit.dtu.dk/files/9989866/Session4_3_1_.pdf · 4 Bioethanol 10% 67 3080 22 140 123 65 0 (1,9)c 0 4,59 0 5 20% energy crops

Bioethanol and biogas productiong

2,0

2,5

3,0

The final ethanol concentrations were 29 g/l for i t d i d h i t d 22 /l f

0 5

1,0

1,5

Eth

anol

(g)germinated grain and whey mixture and 22 g/l for

germinated grain, whey and clover silage mixture, which corresponding to 61 and 56% of theoretical

yield, respectively.

0,0

0,5

0 24 48 72 96 120 144 168 192

Fermentation time (h)

grain + whey grain+whey+clover silage

SSF on germinated grain, clover silage and whey by in situ

6000

3000

4000

5000

/ 100

g e

fflue

nt

0

1000

2000

ml C

H4

/

0 6 13 18 26 31 34 48

Time (days)

grain+whey grain+whey+clover silage

Biogas production on the effluent from bioethanol fermentation.

Page 22: Combined Biogas and Bioethanol Production in Organic Farmingorbit.dtu.dk/files/9989866/Session4_3_1_.pdf · 4 Bioethanol 10% 67 3080 22 140 123 65 0 (1,9)c 0 4,59 0 5 20% energy crops

Evaluation of combined biogas and protein/bioethanol production in

CO2'Yeast

Evaluation of combined biogas and protein/bioethanol production in SuperPro Designer – 100 ha

Fermentation

CO2

Screw Conveyingtray drying G i diGerminationGrain soaking

Water''

Water'

Rye grains

Water''' Yeast

StoragePump

Whey

y gtray drying GrindingGerminationGrain soaking

hot air'

Membrane

EtOH (99.6%)

Silo

Clover silage

Screw_Conveying Shredding Screw-Conveying

DistillationMaize silage

Distillation.

Animal feed

Water for recy

ManureBiogas

AD

Storage.Pump.

Post-treatmentDigestate

The energy demand for a Danish organic farm (100 ha) was estimated for 180 GJ (60000 kWh)gy g ( ) ( )

Page 23: Combined Biogas and Bioethanol Production in Organic Farmingorbit.dtu.dk/files/9989866/Session4_3_1_.pdf · 4 Bioethanol 10% 67 3080 22 140 123 65 0 (1,9)c 0 4,59 0 5 20% energy crops

Specification SuperPro DesignerSpecification - SuperPro Designer

Roughly estimating:• for production of ethanol: 16.2 ha of

d 14 ilkiDescription Volume

Eth l d ti

Reactors specifications

rye and 14 milking cows• for production of biogas: 5.7 ha

clover grass silage, 2.5 ha maize silage and 13 cows

Ethanol productionReactor working volume 1 276 LReactor total volume 1 418 L

Anaerobic DigestionR ki l 30 429 Lsilage and 13 cows

In the presented scenario, the production of on-farm energy, in order to increase

Reactor working volume 30 429 LReactor total volume 40 572 L

gy,self-sufficiency of 100 ha Danish organic farm, requires around:• around 16 % of farm land for

bioethanol• around 8 % of farm land biogas

Page 24: Combined Biogas and Bioethanol Production in Organic Farmingorbit.dtu.dk/files/9989866/Session4_3_1_.pdf · 4 Bioethanol 10% 67 3080 22 140 123 65 0 (1,9)c 0 4,59 0 5 20% energy crops

HoweverHowever….

There is a question if it couldbe economical feasible toestablish such a small on-establish such a small on-farm bioenergy productionfacility or it rather would bebetter to build centralizedbetter to build centralizedbiorefinery to join around 10organic farms for the area of1000 h1000 ha.

Page 25: Combined Biogas and Bioethanol Production in Organic Farmingorbit.dtu.dk/files/9989866/Session4_3_1_.pdf · 4 Bioethanol 10% 67 3080 22 140 123 65 0 (1,9)c 0 4,59 0 5 20% energy crops

Material and energy flow in reference scenario – 10 x 100 ha.gy

Page 26: Combined Biogas and Bioethanol Production in Organic Farmingorbit.dtu.dk/files/9989866/Session4_3_1_.pdf · 4 Bioethanol 10% 67 3080 22 140 123 65 0 (1,9)c 0 4,59 0 5 20% energy crops

Input/output of energy products in all scenariosgy

Definition of scenarios Input/output evaluation (1000 ha-1)(1000 ha )

Food (Person year rations of

fooda)

Liquid fuels (1000 l diesel equivalents)

Electricity (TJ)

S i

Pct. of energy

Milk producing Pro-

d d U d

Self-suffici-

bPro-d d U d

Self-suffici-

bPro-d d U d

Self-suffici-

bScenarios crops cows duced Used encyb duced Used encyb duced Used encyb

1 Reference 0% 74 3420 20 171 0 59 0 0 4,88 0

2 Oilseed rape 10% 69 3172 20 159 63 62 1,01 0 4,55 0

3 Biogas 10% 67 3080 22 140 0 66 0 4,07 5,03 0,81

4 Bioethanol 10% 67 3080 22 140 123 65 0 (1,9)c 0 4,59 0

5 20% energy crops

20% 62 2850 22 129 63 65 0,96 4,07 4,70 0,87

 

a Based on a daily intake of 2500 kcal per personb Degree of self-sufficiency. A value of 1.0 means that the system is self-sufficient.c All ethanol is exported because ethanol cannot substitute diesel as a fuel. The ethanol still contains 90% water.The thermal energy content of the ethanol correspond to 1.9 times the diesel used in the system measured in J.

Page 27: Combined Biogas and Bioethanol Production in Organic Farmingorbit.dtu.dk/files/9989866/Session4_3_1_.pdf · 4 Bioethanol 10% 67 3080 22 140 123 65 0 (1,9)c 0 4,59 0 5 20% energy crops

ConclusionsAnaerobic digestion as ”waste eater”

Page 28: Combined Biogas and Bioethanol Production in Organic Farmingorbit.dtu.dk/files/9989866/Session4_3_1_.pdf · 4 Bioethanol 10% 67 3080 22 140 123 65 0 (1,9)c 0 4,59 0 5 20% energy crops

www.ratemyeverything.net

http://www.bioconcens.elr.dk/uk/