2
50 -50 -100 100 150 200 250 300 350 s vf f m c vc c Sobral Formation López de Bertodano Fm. 0 50 100 Cross Valley Fm. 150 200 Height (m) Formation P A L E O C E N E C R E T A C E O U S 0 Lithology 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 Late Late Middle Early Maastrichtian ThanetIian Danian Selandian Age is uncertain. Early Late Paleocene age for at least part of the formation is based on dinocyst flora, chiefly co-occurence of Cerodinium [as Deflandrea] speciosa, Eisenackia [as Alisocysta] circumtabulata and Palaeoperidinium pyrophorum (Wrenn and Hart, 1988). Carbon isotope data (Fig. 2 of main paper) does not support recovery of the PETM. Cretaceous-Paleogene boundary well defined on the basis of Ir-anomaly (Elliot et al., 1994). Age of oldest sediments in section is late Maastrich- tian based on palynological evidence (Bowman et al., 2012, 2013) Magneto- stratigraphic constraints (Tobin et al., 2012) indicate that the lowest sample analysed (133.5 m below K-Pg boundary) is in the upper part of chron C30N, and thus likely to be no older than ~67 Ma (Gradstein et al., 2012). Base of Sobral Formation approximately coeval with the highest abundance of Trithyrodinium evittii and is early Danian in age (Bowman et al., 2012). Palyno- logical work by Askin (1988) indicates that the formation is predominantly Danian, though putative evidence for a hiatus near the top of the succession may mean that the uppermost strata is Late Paleocene, and hence younger than Danian. Figure DR1. Summary diagram highlighting available age control through the studied Seymour Island succession. References cited: Askin, R. A., 1988, Campanian to Paleocene palynological succession of Seymour and adjacent islands, northeastern Antarctic Peninsula, in Feldmann, R. M. and Woodburne, M. O., eds., Geology and Paleontology of Seymour Island, Antarctic Peninsula: Boulder, Colorado, Memoir, Geological Society of America 169, p. 131–153. Bowman, V. C., Francis, J. E., Riding, J. B., Hunter, S. J., and Haywood, A. M., 2012, A latest Cretaceous to earliest Paleogene dinoflagellate cyst zonation from Antarctica, and implications for phytoprovincialism in the high southern latitudes, Review of Paleobotany and Palynology, v. 171, p. 40-56. Bowman, V. C., Francis, J. E., Riding, J. B., 2013, Late Cretaceous winter sea ice in Antarctica?: Geology, v. 41, p. 1227-1230. Elliot, D. H., Askin, R. A., Kyte, F. T., and Zinsmeister, W. J., 1994, Iridium and dinocysts at the Cretaceous-Tertiary boundary on Seymour Island, Antarctica: Implications for the K-T event: Geology, v. 22, p. 675-678. Gradstein, F.M., Ogg., Schmitz, M.D., and Ogg, G.M., 2012, The Geologic Time scale 2012: Amsterdam, Elsevier, 1143 pp. Tobin, T. S., Ward, P. D., Steig, E. J., Olivero, E. B., Hilburn, I. A., Mitchell, R. N., Diamond, M. R., Raub, T. D., and Kirschvink, J. L., 2012, Extinction patterns, δ18O trends, and magnetostratigraphy from a southern high-latitude Cretaceous-Paleogene section: Links with Deccan volcanism: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 350-352, p.180-188. Wrenn, J. H., and Hart, G. F., 1988, Paleogene dinoflagellate cyst biostratigraphy of Seymour Island, Antarctica, in Feldmann, R. M. and Woodburne, M. O., eds., Geology and Paleontology of Seymour Island, Antarctic Peninsula: Boulder, Colorado, Memoir, Geological Society of America 169, p. 321–447. Timescale (Gradstein et al. 2012) (Ma) Grainsize GSA DATA REPOSITORY 2014205 Data repository item for Kemp et al. (2014): A cool temperate climate on the Antarctic Peninsula through the latest Cretaceous to early Paleogene

Columna Estratigrafica

Embed Size (px)

DESCRIPTION

Criterio de semejanzas estratigráficas: Criterio litológico, fósil y temporal.

Citation preview

Page 1: Columna Estratigrafica

50

-50

-100

100

150

200

250

300

350

s vf fm c vcc

Sobr

al Fo

rmat

ion

Lópe

z de B

erto

dano

Fm.

0

50

100

Cros

s Vall

ey Fm

.

150

200

Height (m)

Formatio

n

P A

L E

O C

E N

EC

R E

T A

C E

O U

S0

Lithology

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70La

te

Late

M

iddl

eEa

rly

Maa

stric

htia

nTh

anet

Iian

Dan

ian

Sela

ndia

n

Age is uncertain. Early Late Paleocene age for at least part of the formation is based on dinocyst flora, chiefly co-occurence of Cerodinium [as Deflandrea] speciosa, Eisenackia [as Alisocysta] circumtabulata and Palaeoperidinium pyrophorum (Wrenn and Hart, 1988). Carbon isotope data (Fig. 2 of main paper) does not support recovery of the PETM.

Cretaceous-Paleogene boundary well defined on the basis of Ir-anomaly (Elliot et al., 1994). Age of oldest sediments in section is late Maastrich-tian based on palynological evidence (Bowman et al., 2012, 2013) Magneto-stratigraphic constraints (Tobin et al., 2012) indicate that the lowest sample analysed (133.5 m below K-Pg boundary) is in the upper part of chron C30N, and thus likely to be no older than ~67 Ma (Gradstein et al., 2012).

Base of Sobral Formation approximately coeval with the highest abundance of Trithyrodinium evittii and is early Danian in age (Bowman et al., 2012). Palyno-logical work by Askin (1988) indicates that the formation is predominantly Danian, though putative evidence for a hiatus near the top of the succession may mean that the uppermost strata is Late Paleocene, and hence younger than Danian.

Figure DR1. Summary diagram highlighting available age control through the studied Seymour Island succession. References cited:

Askin, R. A., 1988, Campanian to Paleocene palynological succession of Seymour and adjacent islands, northeastern Antarctic Peninsula, in Feldmann, R. M. and Woodburne, M. O., eds., Geology and Paleontology of Seymour Island, Antarctic Peninsula: Boulder, Colorado, Memoir, Geological Society of America 169, p. 131–153.Bowman, V. C., Francis, J. E., Riding, J. B., Hunter, S. J., and Haywood, A. M., 2012, A latest Cretaceous to earliest Paleogene dinoflagellate cyst zonation from Antarctica, and implications for phytoprovincialism in the high southern latitudes, Review of Paleobotany and Palynology, v. 171, p. 40-56.Bowman, V. C., Francis, J. E., Riding, J. B., 2013, Late Cretaceous winter sea ice in Antarctica?: Geology, v. 41, p. 1227-1230.Elliot, D. H., Askin, R. A., Kyte, F. T., and Zinsmeister, W. J., 1994, Iridium and dinocysts at the Cretaceous-Tertiary boundary on Seymour Island, Antarctica: Implications for the K-T event: Geology, v. 22, p. 675-678.Gradstein, F.M., Ogg., Schmitz, M.D., and Ogg, G.M., 2012, The Geologic Time scale 2012: Amsterdam, Elsevier, 1143 pp.Tobin, T. S., Ward, P. D., Steig, E. J., Olivero, E. B., Hilburn, I. A., Mitchell, R. N., Diamond, M. R., Raub, T. D., and Kirschvink, J. L., 2012, Extinction patterns, δ18O trends, and magnetostratigraphy from a southern high-latitude Cretaceous-Paleogene section: Links with Deccan volcanism: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 350-352, p.180-188.Wrenn, J. H., and Hart, G. F., 1988, Paleogene dinoflagellate cyst biostratigraphy of Seymour Island, Antarctica, in Feldmann, R. M. and Woodburne, M. O., eds., Geology and Paleontology of Seymour Island, Antarctic Peninsula: Boulder, Colorado, Memoir, Geological Society of America 169, p. 321–447.

Timescale (Gradstein et al. 2012)

(Ma)

Grainsize

GSA DATA REPOSITORY 2014205Data repository item for Kemp et al. (2014): A cool temperate climate on the Antarctic Peninsula through the latest Cretaceous to early Paleogene

Page 2: Columna Estratigrafica

 Table  DR1.  Geochemical  data  and  calculated  soil  pH  and  soil  paleotemperature  used  in  figure  2  of  main  paper.  Full  details  of  MBT’,  CBT,  pH  and  paleotemperature  calculations  can  be  found  in  the  references  listed  (Peterse,  F.  et  al.,  2012,  Geochimica  et  Cosmochimicha  Acta,  v.  96,  p.  215-­‐229;  Weijers,  J.  W.  H.,  et  al.,  2007,  Geochimica  et  Cosmochimica  Acta,  v.  71,  p.  703-­‐711.).  See  also  main  text.