5
A. Design Data 1 Design roof Dead Load w d = kg/Cm 2 1 Design Live Load w v = kg/Cm 2 1 Thickness of roof t = mm ( inch ) 1 Radius Girder Rings from center of Tank 6 Ring -1 R1 = mm ( ft ) Quantity Number of Girder N1 = Nos 6 Ring - ( Shell ) Ri = mm ( ft ) Quantity Number of Girder (virtualy) Ns = Nos B. Rafter 1 Material of Rafter = A 36 6 Min. Yield Stress Fy = 2531 kg/Cm 2 ( psi ) 6 Allowable bending stress sb = 0.66 * Fy = * 2531 = kg/Cm 2 ( psi ) 1 Design Load w 1 = w d + w v = 0.007 + 0.012 = #### kg/Cm 2 1 Limit of rafter spacing Base on API 650 paragraf 3.10.4.4 a. Outer Spacing 6 Max. Outer spacing = = 1.9 m = mm b. Inner Spacing 6 Maximum inner spacing = 1 Rafter quantity number At Shell to Ring - 1 6 Quantity number of rafter n1 = 2 * p * Ri y l = 2 * p * y = Nos a Used = Nos 6 Outer Spacing = 2 * p * y 34 = mm 6 Inner Spacing = 2 * p * y 34 = mm At Ring - 1 to Center Column 6 Quantity number of rafter n2 = 2 * p * R2 y l = 2 * p * y = Nos a = Nos 6 Outer Spacing = 2 * p * y = mm 6 Inner Spacing = 2 * p * y = mm 1 Selection of Rafter Size At Center Column to Ring - 1 6 Span of Rafter l c-1 = mm = cm 6 Average plate width w p = ( + ) y 2 = mm = 103 cm 6 Load per unit length carried of rafter w 2 = w 1 * w p = * = kg/Cm 6 Max. Moment M1 = w 2 * l c-1 2 y 8 = * 2 y 8 = kg-Cm 6 Req. Section modulus Z = M1 y sb = y = Cm 3 6 Select. Rafter size for Profil Beam 3 UNP 150 75 6.5 10 b = 7.5 t = 0.65 h = d-2f = 13 d = 15 f = 1 bd 3 -h 3 (b-t) 3 Weight per unit length w r = kg/Cm 3 Section Modulus z = Cm 3 6 Check Rafter size including rafter weight 3 w 3 = w 2 + wr = + = kg/Cm 3 Max. Moment M2 = w 3 * l c-1 2 y 8 = * 2 y 8 = kg-Cm 3 Req. Section modulus Z = M2 y sb = y = Cm 3 < Cm 3 At Ring - 1 to Ring - Shell 6 Span of Rafter l 3-shell = mm = cm 6 0.012 ( Acc. To API 650 3.10.2.1 ) IV. DESIGN CALCULATION of RAFTER, GIRDER & COLUMN 0.007 ( include Roof Attachment & Roof Accessories. ) 5050 16.568 a 8 0.315 33.4 10100 33.136 a 24 35996.43 1670.3 23757.6 0.6 p m 1900 0.66 1.7 m 10100 1900 34 10100 1865.5 5050 932.8 500 17 185 5050.0 17 1865.5 5050.0 1900 16.7 Used 1.969 505.0 62763.0 185 1025.118 17 5050.0 505.0 1865.529 0.019 103 1.969 1.969 0.186 2.155 3 Z = = 0.186 114.034 68692 62763.0 1670.3 37.575 1670.3 41.125 114.0339 Satisfactory 6d 114.03 2.155 505.0 68692 5050.0 505.00

Coloum Calculation

Embed Size (px)

DESCRIPTION

l

Citation preview

Page 1: Coloum Calculation

A. Design Data

1 Design roof Dead Load wd = kg/Cm2

1 Design Live Load wv = kg/Cm2

1 Thickness of roof t = mm ( inch )

1 Radius Girder Rings from center of Tank

6 Ring -1 R1 = mm ( ft ) Quantity Number of Girder N1 = Nos

6 Ring - ( Shell ) Ri = mm ( ft ) Quantity Number of Girder (virtualy) Ns = Nos

B. Rafter

1 Material of Rafter = A 36

6 Min. Yield Stress Fy = 2531 kg/Cm2 ( psi )

6 Allowable bending stress sb = 0.66 * Fy = * 2531 = kg/Cm2 ( psi )

1 Design Load

w1 = wd + wv = 0.007 + 0.012 = #### kg/Cm2

1 Limit of rafter spacing

Base on API 650 paragraf 3.10.4.4

a. Outer Spacing

6 Max. Outer spacing = = 1.9 m = mm

b. Inner Spacing

6 Maximum inner spacing =

1 Rafter quantity number

At Shell to Ring - 1

6 Quantity number of rafter

n1 = 2 * p * Ri y l = 2 * p * y = Nos a Used = Nos

6 Outer Spacing = 2 * p * y 34 = mm

6 Inner Spacing = 2 * p * y 34 = mm

At Ring - 1 to Center Column

6 Quantity number of rafter

n2 = 2 * p * R2 y l = 2 * p * y = Nos a = Nos

6 Outer Spacing = 2 * p * y = mm

6 Inner Spacing = 2 * p * y = mm

1 Selection of Rafter Size

At Center Column to Ring - 1

6 Span of Rafter lc-1 = mm = cm

6 Average plate width wp = ( + ) y 2 = mm = 103 cm

6 Load per unit length carried of rafter w2 = w1 * wp = * = kg/Cm

6 Max. Moment M1 = w2 * lc-12 y 8 = * 2 y 8 = kg-Cm

6 Req. Section modulus Z = M1 y sb = y = Cm3

6 Select. Rafter size for Profil Beam 3 UNP 150 75 6.5 10

b = 7.5 t = 0.65 h = d-2f = 13

d = 15 f = 1

bd3-h

3(b-t)

3 Weight per unit length wr = kg/Cm

3 Section Modulus z = Cm3

6 Check Rafter size including rafter weight

3 w3 = w2 + wr = + = kg/Cm

3 Max. Moment M2 = w3 * lc-12 y 8 = * 2 y 8 = kg-Cm

3 Req. Section modulus Z = M2 y sb = y = Cm3 < Cm

3

At Ring - 1 to Ring - Shell

6 Span of Rafter l3-shell = mm = cm

6

0.012 ( Acc. To API 650 3.10.2.1 )

IV. DESIGN CALCULATION of RAFTER, GIRDER & COLUMN

0.007 ( include Roof Attachment & Roof Accessories. )

5050 16.568 a

8 0.315

33.4

10100 33.136 a 24

35996.43

1670.3 23757.6

0.6 p m 1900

0.66

1.7 m

10100 1900 34

10100 1865.5

5050 932.8

500 17 185

5050.0 17 1865.5

5050.0 1900 16.7 Used

1.969 505.0 62763.0

185 1025.118

17

5050.0 505.0

1865.529

0.019 103 1.969

1.969 0.186 2.155

3 Z = =

0.186

114.034

68692

62763.0 1670.3 37.575

1670.3 41.125

114.0339

Satisfactory

6d

114.03

2.155 505.0 68692

5050.0 505.00

Page 2: Coloum Calculation

6 Average plate width wp = ( + ) y 2 = mm = 139.9 cm

6 Load per unit length carried w8 = w1 * wp = * 140 = 2.69 kg/Cm

6 Max. Moment M7 = w8 * l2-shell2 y 8 = * 505 2 y 8 = kg-Cm

6 Req. Section modulus Z = M5 y sb = y = 51.3 Cm3

6 Select. Rafter size for Profil Beam 3 UNP 150 75 6.5 10

b = 7.5 t = 0.65 h = d-2f = 13

d = 15 f = 1

bd3-h

3(b-t)

3 Weight per unit length wr = kg/Cm

3 Section Modulus z = Cm3

6 Check Rafter size including rafter weight

3 w9 = w8 + wr = + = kg/Cm

3 Max. Moment M8 = w9 * l2-shell2 y 8 = * 2 y 8 = kg-Cm

3 Req. Section modulus Z = M6 y sb = y = Cm3 < Cm

3

1 Weight of Total Rafter

Wrfi = (Quantity number of rafter*Span of rafter)* unit length of rafter = (n1*l1+n2*l2) * wr

= ( 34 * 505 + 17 * 505 ) * ####

= kg

C. Girder

1 Girder Length

Design calculation of girder length refer to Manual Design Hanbook " Lioyd E Bronell & Edwin H Young ", eq. 4.26

6 Length of girder at ring - 1 ( G-1 )

L-G1 = 2 * R1 * Sin ( 360 y 2 * N1 )

= 2 * * y 2 * ) = mm = cm

1 Selection Girder size

At Ring - 1 ( G-1 )

6 Material of Girder = A 36

6 Min. Yield Stress Fy = kg/Cm2

6 Allowable bending stress sb = 0.66 * Fy = * = kg/Cm2

6 Rafter Length : 3 Outside L1-2 = mm ( cm )

3 Inside Lc-1 = mm ( cm )

6 No. of rafter per one girder 3 Nr1 = 2.833 Nos ( Ring-1 to Center Column )

3 Nr2 = 8 Nos ( Ring-2 to Ring-1 )

6 Unit Load 3 wo-1 = w5 * L1-2 * Nr2 = 2.12 * * 8 = kg/Cm

3 wi-1 = w3 * Lc-1 * Nr1 = #### * * 2.83 = kg/Cm

6 Total Load wg-1a = 0.5 ( wo-1 + wi-1 )

= 0.5 ( 16.9 + ) = kg/Cm

6 Span of Girder L-G1 = cm

6 Max. Moment M-G1a = wg-1a * L-G12 y 8

= * 2 y 8 = kg-Cm

6 Req. Section modulus Z = M-G1a y sb = y = Cm3

6 Select. Girder size for Profil Beam 3 WF. 300 150 6.5 9

b = 15 t = 0.7 h = d-2f = 28.2

d = 30 f = 0.9

bd3-h

3(b-t)

3 Weight per unit length wg = kg/Cm

3 Section Modulus z = Cm3

6 Check Girder size including girder weight

3 wg-1 = wg-1a + wg = 11.5 + 0.296 = kg/Cm

3 Max. Moment M-G1 = wg-1 * L-G12 y 8 = * 2 y 8 = kg-Cm

3 Req. Section modulus Z = M3 y sb = y = Cm3 < 462.2 Cm

3

1865.529 932.765 1399.147

0.019

2.687 85663.0

85663.0 1670.3

3 Z = = 114.03396d

0.213

114.03

2.687 0.213 2.901

2.901 505.0 92464

92464 1670.3 55.357 114.03

Satisfactory

5494

5050.0 Sin ( 360 6 5050 505.000

2530.8

0.66 2530.8 1670.3

5050.0 505.0

5050.0 505.0

Outside 505.0 16.93

L-G1 505.000

Inside 505.0 6.11

L-G1 505.000

6.11 11.520

505.000

11.520 505.000 367228

367228 1670.3 219.9

3 Z = = 462.16796d

0.296

462.2

11.816

11.816 505.000 376659

376659 1670.3 225.50

Satisfactory

Page 3: Coloum Calculation

At Ring - 2 ( G - 2 )

6 Material = A 36

3 Min. Yield Stress Fy = kg/Cm2

3 Allowable bending stress sb = 0.66 * Fy = 0.7 * = kg/Cm2

6 Rafter Length : 3 Outside L2-3 = = mm ( cm )

3 Inside L1-2 = = mm ( cm )

6 No. of rafter per one girder 3 Nr2 = Nos ( Ring-2 to Ring-1 )

3 Nr3 = Nos ( Ring-3 to Ring-2 )

w7 * L2-s * Nr2 = * *

= w5 * L1-2 * NrS = * *

6 Total Load wg-2a = 0.5 ( wo-2 + wi-2 )

= 0.5 ( + ) = kg/Cm

6 Span of Girder L-G2 = Cm

6 Max. Moment M-G2a = wg-2a * L-G22 y 8

= * 2 y 8 = kg-Cm

6 Req. Section modulus Z = M-G2a y sb = y = Cm3

6 Select. Girder size for Profil Beam 3 WF. 300 150 6.5 9

b= 15 t= 0.7 h= d-2f = 28.2

d= 30 f= 0.9

bd3-h

3(b-t)

3 Weight per unit length wg = kg/Cm

3 Section Modulus z = Cm3

6 Check Girder size including girder weight

3 wg-2 = wg-2a + wg = 13.08 + 0.296 = kg/Cm

3 Max. Moment M-G2 = wg-2 * L-G22 y 8

= 13.38 * 2 y 8 = kg-Cm

3 Req. Section modulus Z = M-G2 y sb

= y = Cm3 < Cm

3

At Ring - 3 ( G-3 )

6 Material of Girder = A 36

6 Min. Yield Stress Fy = kg/Cm2

6 Allowable bending stress sb = 0.66 * Fy = * = kg/Cm2

6 Rafter Length : 3 Outside L3-shell = mm ( cm )

3 Inside L2-3 = mm ( cm )

6 No. of rafter per one girder 3 Nr3 = 4 Nos ( Ring-3 to 2 )

3 Nrs = 2.833 Nos ( Ring-Shell to Ring-3 )

6 Unit Load 3 wo-3 = w9 * L1-2 * Nr2 = 2.90 * * 2.83 = kg/Cm

3 wi-3 = w7 * Lc-1 * Nr1 = 2.33 * * 4 = kg/Cm

6 Total Load wg-3a = 0.5 ( wo-3 + wi-3 )

= 0.5 ( 7.9 + ) = kg/Cm

6 Span of Girder L-G3 = cm

6 Max. Moment M-G3a = wg-3a * L-G32 y 8

= * 2 y 8 = kg-Cm

6 Req. Section modulus Z = M-G3a y sb = y = Cm3

6 Select. Girder size for Profil Beam 3 WF. 350 175 7 11

b = 17.5 t = 0.7 h = d-2f = 32.8

d = 35 f = 1.1

bd3-h

3(b-t)

3 Weight per unit length wg = kg/Cm

3 Section Modulus z = Cm3

6 Check Girder size including girder weight

2530.8

2530.8 1670.3

5050.0 505.00

5050.0 505.00

4

8

6 Unit Load

3 Outside wo-2 =L-G2

3

2.328 505.00 8=

522.81

L-G2 522.81

4

17.99 kg/Cm

Inside wi-22.117 505.00

= 8.18 kg/Cm

17.991 8.179 13.08

522.814

13.08 522.814 447073

447073 1670.3 267.7

3 Z = = 462.16796d

0.296

462.2

13.381

522.814 457181

457181 1670.3 273.7 462.2

Satisfactory

2530.8

0.66 2530.8 1670.3

5050.0 505.000

5050.0 505.000

Outside 505.0 7.89

L-G3526.154

Inside 505.0 8.94

L-G3526.154

8.94 8.413

526.154

8.413 526.154 291136

291136 1670.3 174.3

3 Z = = 749.91256d

0.296

749.9

Page 4: Coloum Calculation

3 wg-3 = wg-3a + wg = 8.4 + 0.296 = kg/Cm

3 Max. Moment M-G3 = wg-3 * L-G32 y 8 = * 2 y 8 = kg-Cm

3 Req. Section modulus Z = M3 y sb = y = Cm3 < 749.9 Cm

3

D. Column

8 DESIGN DATA

6 Inside Diameter of Tank ID = mm

6 Height of Tank h = mm

6 Roof angle q = Deg

6 Total Number of Column N = 19 Nos

- Center Column N-0 = 1 Nos

- Column 1st N-1 = 6 Nos

6 Material of Column =

6 Radius of Column - P1 R1 = mm

6 Inside radius of tank Ri = mm

8 HEIGHT OF COLUMN CALCULATION

6 Height of Center Column

HP0 = h + ( Ri Tan q )

= + ( * Tan ) = mm = 17.6 m

6 Height of Column - P1

HP1 = h + { ( Ri - R1 ) Tan q }

= + { ( - ) Tan } = mm = m

8 Design Load

6 Load Carried at Center Column - P0

WP0 = w3 * lc-1 * n0 y 2 = * * y = kg

6 Load Carried at Column - P1

WP1 = wg-1 * L-G1 = * = kg

8 Calculation for Column Beam

Base on API 650 3.10.3.3 and 3.10.34

For columns, the value L/rc shall not exceed 180.

Radius Gyration of Column rc = Sqrt (do2 + di

2) / 4 mm

Slenderness Ratios = L / rc

Critical Slenderness Ratios Cc = Sqrt ( 2 p2 E / Fy )

The column use material A 53 grade B with : 6 Yield Stress ( Fy ) = mpa

6 Modulus Elasticity ( E ) = mpa

8 Min. Req'd of Radius Gyration

6 Minimum req'd of radius gyration of center Column ( P0 )

rc-cent. = HP0 y 180 = y = mm ( inch )

6 Actual radius gyration of pipe ( P0 )

used pipe 12 inch Sch 40 with do = inch = mm

di = inch = mm

rc = Sqrt ( 324 2 + 303.2 2

) / 4 = 111 mm ( the rc is adequate for the requirement )

6 Minimum req'd of radii giration of Column ( P1 )

rc-P1 = HP1 y 180 = y = mm ( inch )

6 Actual radius gyration of pipe ( P1 )

used pipe 12 inch Sch 40 with do = inch = mm

di = inch = mm

rc = Sqrt ( 324 2 + 303.2 2

) / 4 = 111 mm ( the rc is adequate for the requirement )

8 Req'd for Allowable Compression Load

6 Critical Slenderness Ratios Cc = Sqrt( 2 * 3.14 2

* / 240 ) =

6 Slenderness Ratios L / rc = 180

6 When L / rc exceeds Cc , Therefore use the formula as follow :

8.709

8.709 526.154 301374

301374 1670.3 180.43

Satisfactory

20200

16800

4.76

A 53 Gr. B

5050

10100

16800 10100 4.76 17641

16800 10100 5050 4.76 17221 17.22

544

11.520 505.00 5817

2.155 505 1 2

240

210000

17641.0 180 98.01 3.858

12.75 323.9

11.94 303.2

17220.5 180 95.67 3.767

12.75 323.9

11.94 303.2

210000 131.36

Fa =

12 p2

E

23 (l/r)2

1.6 - l

200 r

Page 5: Coloum Calculation

6 Allowable Compression Load for P0

12 * 9.86 *

23 * ( 17641 / 111 )^2

200 * 111

= mpa=

kg/cm2

6 Allowable Compression Load for P1

12 * 9.86 *

23 * ( 17221 / 111 )^2

200 * 111

= mpa

= kg/cm2

1 Actual Stress

6 At Column ( P0 )

- Cross Section Area A = 0.7854 * (do2 - di

2 ) = * ( 324 2

- 303 2 ) =

- weight per unit length wp = kg/m

f'-PO = { WP0 + ( HP0 * wp ) } y A

= { + ( * ) } y = <

6 At Column ( P1 )

- Cross Section Area A = mm2 = cm

2

- weight per unit length wp = kg/m

f'-P1 = { WP1 + ( HP1 * wp ) } y A

= { + ( * ) } y = <

Fa =

12 p2

E 210000

23 (l/r)2

=

1.6 - l

1.6 -17641

200 r

53.06

210000

23 (l/r)2

=

1.6 - l

1.6 -17221

200 r

54.40

554.77

541.09

Fa =

12 p2

E

0.7854 10157.81

544 18 58.33 101.6

mm2

58.33

541.1 kg/cm215.49 kg/cm

2

Satisfactory

10157.8 101.6

58.33

5817 17.22 58.33 101.6 67.16 kg/cm2 554.8 kg/cm

2

Satisfactory