55
Signal Processing Collection of Formulas M. Dahl S. Johansson M. Winberg October 26, 2005 Version 1.01 Department of Telecommunications and Signal Processing Blekinge Institute of Technology SE-372 33 Ronneby Sweden

Collection of Formulas

  • Upload
    balakov

  • View
    212

  • Download
    0

Embed Size (px)

DESCRIPTION

formula collection

Citation preview

Page 1: Collection of Formulas

Signal Processing

Collection of Formulas

M. Dahl S. Johansson M. Winberg

October 26, 2005

Version 1.01

Department of Telecommunications and Signal Processing

Blekinge Institute of Technology

SE-372 33 Ronneby

Sweden

Page 2: Collection of Formulas

Contents

1 Basic Relationships and Concepts 31.1 Standard Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 Continuous Functions . . . . . . . . . . . . . . . . . . . . . . 31.1.2 Discrete Time Functions . . . . . . . . . . . . . . . . . . . . 3

1.2 SISO systems (Single input, single output)Discrete Time Systems . . . . . . . . . . . . . . . . . . . . . . . . . 41.2.1 FIR Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . 41.2.2 IIR Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51.2.3 IIR Canonical form - Direct Form I . . . . . . . . . . . . . . 51.2.4 IIR Canonical form - Direkt Form II . . . . . . . . . . . . . 6

1.3 Some Methods of Calculation . . . . . . . . . . . . . . . . . . . . . 61.3.1 Convolution . . . . . . . . . . . . . . . . . . . . . . . . . . . 61.3.2 State-Space Model of Difference Equation . . . . . . . . . . 61.3.3 State-Space Equation . . . . . . . . . . . . . . . . . . . . . . 71.3.4 System Function . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Analogue Sinusoidal Signalthrough Linear, Causal Filter . . . . . . . . . . . . . . . . . . . . . 81.4.1 Complex, Non-causal Input Signal . . . . . . . . . . . . . . . 81.4.2 Complex, Causal Input Signal . . . . . . . . . . . . . . . . . 81.4.3 Real, Non-causal Input Signal . . . . . . . . . . . . . . . . . 81.4.4 Real, Causal Input Signal . . . . . . . . . . . . . . . . . . . 8

1.5 Discrete Time Sinusoidal Signalthrough Linear, Causal Filter . . . . . . . . . . . . . . . . . . . . . 101.5.1 Complex, Non-Causal Input Signal . . . . . . . . . . . . . . 101.5.2 Complex, Causal Input Signal . . . . . . . . . . . . . . . . . 101.5.3 Real, Non-Causal Input Signal . . . . . . . . . . . . . . . . . 101.5.4 Real, Causal Input Signal . . . . . . . . . . . . . . . . . . . 10

1.6 Fourier Series Expansion . . . . . . . . . . . . . . . . . . . . . . . . 121.6.1 Continuous Time . . . . . . . . . . . . . . . . . . . . . . . . 121.6.2 Discrete Time . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.7 Fourier Transformer . . . . . . . . . . . . . . . . . . . . . . . . . . . 131.8 Discrete Fourier Transform (DFT) . . . . . . . . . . . . . . . . . . . 14

1.8.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141.8.2 Circular Convolution . . . . . . . . . . . . . . . . . . . . . . 141.8.3 Non-Circular Convolution using DFT . . . . . . . . . . . . . 141.8.4 Relation to the Fourier Transform X(f): . . . . . . . . . . . 141.8.5 Relation to Fourier Series . . . . . . . . . . . . . . . . . . . 151.8.6 Parseval’s Theorem . . . . . . . . . . . . . . . . . . . . . . . 15

1.9 Some Window Functions and their Fourier Transforms . . . . . . . 16

2 Sampling Analogue Signals 182.1 Sampling and Reconstruction . . . . . . . . . . . . . . . . . . . . . 182.2 Measures of Distortion . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.1 Folding distortion when sampling . . . . . . . . . . . . . . . 202.2.2 Periodic Distortion when Reconstructing . . . . . . . . . . . 20

1

Page 3: Collection of Formulas

2.3 Quantizing Distortion . . . . . . . . . . . . . . . . . . . . . . . . . . 212.4 Decimation and Interpolation . . . . . . . . . . . . . . . . . . . . . 21

3 Analogue Filters 223.1 Filter Approximations if ideal LP filters . . . . . . . . . . . . . . . . 22

3.1.1 Butterworth Filters . . . . . . . . . . . . . . . . . . . . . . . 223.1.2 Chebyshev Filters . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2 Frequency Transformations of Analogue Filter . . . . . . . . . . . . 29

4 Discrete Time Filters 304.1 FIR Filters and IIR Filters . . . . . . . . . . . . . . . . . . . . . . . 304.2 Construction of FIR Filter . . . . . . . . . . . . . . . . . . . . . . . 30

4.2.1 FIR Filter using the window method . . . . . . . . . . . . . 304.2.2 Equiripple FIR Filter . . . . . . . . . . . . . . . . . . . . . . 344.2.3 FIR Filters using Least-Squares . . . . . . . . . . . . . . . . 34

4.3 Constructing IIR Filters starting fromAnalogue Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 354.3.1 The Impulse-Invariant Method . . . . . . . . . . . . . . . . . 354.3.2 Bilinear Transformation . . . . . . . . . . . . . . . . . . . . 354.3.3 Quantizing of Coefficients . . . . . . . . . . . . . . . . . . . 36

4.4 Lattice Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5 Correlation 38

6 Spectrum Estimation 39

A Basic Relationships 43A.1 Trigonometrical formulas . . . . . . . . . . . . . . . . . . . . . . . . 43A.2 Some Common Relationships . . . . . . . . . . . . . . . . . . . . . 44A.3 Matrix Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

B Transforms 46B.1 The Laplace Transform . . . . . . . . . . . . . . . . . . . . . . . . . 46

B.1.1 The Laplace transform of causal signals . . . . . . . . . . . . 46B.1.2 One-sided Laplace transform of non-causal signals . . . . . . 47

B.2 The Fourier Transform of a Continuous Time Signal . . . . . . . . . 48B.3 The Z-transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

B.3.1 The Z-transform of causal signals . . . . . . . . . . . . . . . 50B.3.2 Single-Sided Z-transform of non-causal signals . . . . . . . . 51

B.4 Fourier Transform for Discrete Time Signal . . . . . . . . . . . . . . 52B.5 Some DFT Properties . . . . . . . . . . . . . . . . . . . . . . . . . 54

2

Page 4: Collection of Formulas

1 Basic Relationships and Concepts

1.1 Standard Signals

1.1.1 Continuous Functions

T is the period time for a perodic function f(t), where t [s] is the time variableAngular frequency Ω = 2π

T= 2πF [rad/s], F [Hz] is the frequency.

a) Impulse Function δ(t) =

+∞ t = 0

0 t = 0

∫∞−∞ δ(t)dt = 1

x(t)δ(t − a) = x(t − a)δ(t)

δ( 1a) = aδ(t)

∫∞−∞ x(t)δ(t − a)dt = x(a)

b) Step Function u(t) =

1 t ≥ 00 t < 0

c) Ramp Function r(t) =

t t ≥ 00 t < 0

d) Rectangular Pulse p(t) =

1 |t| < 12

0 |t| > 12

e) Sinc Function sinc t = sin πtπt

f) Periodic Function f(t) = f(t + T ) where T = 0

g) Periodic Sinc Function diric(t, T ) =sin

(Tt2

)T sin

(t2

)

h) Complex Periodic Signal est = eσtejΩt

i) Complex undamped per. signal ejΩt = cos Ωt + j sin Ωt

1.1.2 Discrete Time Functions

N is the period time (integer) for a periodic function f(n), where n is a discretetime index (integer). Normalized angular frequency ω = 2π

N= 2πf [rad], f is

normalized frequency.

3

Page 5: Collection of Formulas

a) Unit Pulse δ(n) =

1 n = 00 n = 0

b) Unit Step u(n) =

1 n ≥ 00 n < 0

c) Ramp r(n) =

n n ≥ 00 n < 0

d) Rectangular Pulse p(n) =

1 |n| < n1

0 |n| > −n1

e) Sinc Function sindN(n) =sin

(Nn2

)N sin

(n2

)

f) Periodic Signal f(n) = f(n + N) where N = 0

g) Complex periodic signal esn = eσnejωn

h) Complex undamped per. signal ejωn = cos ωn + j sin ωn

1.2 SISO systems (Single input, single output)Discrete Time Systems

1.2.1 FIR Filters

y(n) =M∑

k=0

bkx(n − k)

4

Page 6: Collection of Formulas

1.2.2 IIR Filters

y(n) = −N∑

k=1

aky(n − k)

1.2.3 IIR Canonical form - Direct Form I

y(n) = −N∑

k=1

aky(n − k) +M∑

k=0

bkx(n − k)

5

Page 7: Collection of Formulas

1.2.4 IIR Canonical form - Direkt Form II

+

z-1

v (n)N-1

z-1

+

+

+

+

1-a

-a 2

-a N-1

-a N

b1

b0

b2

bN-1

bN

z-1

vN (n)

v1(n)

+

+

x(n)

+

y(n)

y(n) = −N∑

k=1

aky(n − k) +M∑

k=0

bkx(n − k)

1.3 Some Methods of Calculation

1.3.1 Convolution

y(n) = h ∗ x =∞∑

k=−∞h(k)x(n − k) =

∞∑k=−∞

h(n − k)x(k)

1.3.2 State-Space Model of Difference Equation

If

y(n) = −N∑

k=1

aky(n − k) +M∑

k=0

bkx(n − k)

the State-Space Model is given byv(n + 1) = Fv(n) + q · x(n)

y(n) = gTv(n) + d · x(n)

where

F =

0 1 . . . 0 0...

......

...0 0 0 1

−ak −ak−1 . . . −a2 −a1

; q =

00...1

gT = (bk, . . . , b2, b1) − b0(ak, . . . , a2, a1) ; d = b0

6

Page 8: Collection of Formulas

1.3.3 State-Space Equation

a) Direct Solution

y(n) = gT · Fnv(0) +n−1∑k=0

gT · Fn−1−kqx(k)u(n − 1) + dx(n)

b) Impulse Function

h(n) = gT · Fn−1qu(n − 1) + dδ(n)

c) System FunctionH(z) = gT[zI − F]−1q + d

1.3.4 System Function

H(z) =Y(z)

X (z)=

b0 + b1z−1 + · · · + bMz−M

1 + a1z−1 + · · · + aNz−N

7

Page 9: Collection of Formulas

1.4 Analogue Sinusoidal Signalthrough Linear, Causal Filter

1.4.1 Complex, Non-causal Input Signal

x(t) = ejΩ0t = (cos(Ω0t) + j sin(Ω0t)) −∞ < t < ∞

y(t) =∫ ∞

τ=0h(τ)x(t − τ)dτ =

∫ ∞

τ=0h(τ)ejΩ0(t−τ)dτ = H(s)|s=jΩ0 ejΩ0t︸ ︷︷ ︸

stationary

1.4.2 Complex, Causal Input Signal

x(t) = ejΩ0tu(t) = (cos(Ω0t) + j sin(Ω0t)) u(t); X(s) =1

s − jΩ0

Y (s) = H(s)X(s) =T (s)

N(s)

1

s − jΩ0

=T1(s)

N(s)︸ ︷︷ ︸transient

+ H(s)|s=jΩ0

1

s − jΩ0︸ ︷︷ ︸stationary

y(t) = transient + H(s)|s=jΩ0 ejΩ0t︸ ︷︷ ︸stationary

1.4.3 Real, Non-causal Input Signal

x(t) = ReejΩ0t = cos(Ω0t) −∞ < t < ∞

y(t) =∫ ∞

τ=0h(τ)x(t − τ)dτ =

∫ ∞

τ=0h(τ)

1

2(ejΩ0(t−τ) + e−jΩ0(t−τ))dτ =

= |H(s)|s=jΩ0 cos(Ω0t + argH(s)|s=jΩ0)︸ ︷︷ ︸stationary

1.4.4 Real, Causal Input Signal

x(t) = ReejΩ0t u(t) = cos(Ω0t) u(t); X(s) =s

s2 + Ω20

Y (s) = H(s)X(s) =T (s)

N(s)

s

s2 + Ω20

=T1(s)

N(s)︸ ︷︷ ︸transient

+C1s + C0

s2 + Ω20︸ ︷︷ ︸

stationary

H(s)|s=jΩ0 = A ejθ; C1 = A cos(θ); C0 = −AΩ0 sin θ

8

Page 10: Collection of Formulas

y(t) = transient + C1 cos(Ω0t) +C0

Ω0

sin(Ω0t)︸ ︷︷ ︸stationary

=

= transient + |H(s)|s=jΩ0 cos(Ω0t + argH(s)|s=jΩ0)︸ ︷︷ ︸stationary

9

Page 11: Collection of Formulas

1.5 Discrete Time Sinusoidal Signalthrough Linear, Causal Filter

1.5.1 Complex, Non-Causal Input Signal

x(n) = ejω0n = (cos(ω0n) + j sin(ω0n)) −∞ < n < ∞

y(n) =∞∑

k=0

h(k)x(n − k) =∞∑

k=0

h(k)ejω0(n−k) = H(z)|z=ejω0 ejω0n︸ ︷︷ ︸stationary

1.5.2 Complex, Causal Input Signal

x(n) = ejω0nu(n) = (cos(ω0n) + j sin(ω0n)) u(n); X(z) =1

1 − ejω0z−1

Y (z) = H(z)X(z) =T (z)

N(z)

1

1 − ejω0z−1=

T1(z)

N(z)︸ ︷︷ ︸transient

+ H(z)|z=ejω0

1

1 − ejω0z−1︸ ︷︷ ︸stationary

y(n) = transient + H(z)|z=ejω0 ejω0n︸ ︷︷ ︸stationary

1.5.3 Real, Non-Causal Input Signal

x(n) = Reejω0n = cos(ω0n) −∞ < n < ∞

y(n) =∞∑

k=0

h(k)x(n − k) =∞∑

k=0

h(k)1

2(ejω0(n−k) + e−jω0(n−k)) =

= |H(z)|z=ejω0 cos(ω0n + argH(z)|z=ejω0)︸ ︷︷ ︸stationary

1.5.4 Real, Causal Input Signal

x(n) = Reejω0n u(n) = cos(ω0n) u(n); X(z) =1 − cos ω0z

−1

1 − 2 cos ω0z−1 + z−2

Y (z) = H(z)X(z) =T (z)

N(z)

1 − cos ω0z−1

1 − 2 cos ω0z−1 + z−2=

T1(z)

N(z)︸ ︷︷ ︸transient

+C0 + C1z

−1

1 − 2 cos ω0z−1 + z−2︸ ︷︷ ︸stationary

10

Page 12: Collection of Formulas

H(z)|z=ejω0 = A ejθ; C0 = A cos(θ); C1 = −A(sin ω0 sin θ + cos ω0 cos θ)

y(n) = transient + C0 cos(ω0n) +C1 + C0 cos(ω0)

sin(ω0)sin(ω0n)︸ ︷︷ ︸

stationary

=

= transient + |H(z)|z=ejω0 cos(ω0n + argH(z)|z=ejω0)︸ ︷︷ ︸stationary

11

Page 13: Collection of Formulas

1.6 Fourier Series Expansion

For table see Appendix

1.6.1 Continuous Time

A periodic function with period T0 , i.e. f(t) = f(t − T0), can be expressed in theform of a series expansion according to

f(t) =∞∑

k=−∞ck ej2πkF0t

where

ck =1

T0

∫T0

f(t)e−j2πkF0tdt ; F0 =1

T0

If f(t) is real this can also be expressed as

f(t) = c0 + 2∞∑

k=1

|ck| cos(2πkF0t + θk) =

= a0 +∞∑

k=1

ak cos 2πkF0t − bk sin 2πkF0t

where

a0 = c0 =1

T0

∫T0

f(t)dt

ak = 2|ck| cos θk =2

T0

∫T0

f(t) cos(2πkF0t)dt

bk = 2|ck| sin θk =−2

T0

∫T0

f(t) sin(2πkF0t)dt

The power is given by (Parseval’s Relation)

P =1

T0

∫T0

|f(t)|2dt =∞∑

k=−∞|ck|2

In addition, for real signals

P = c20 + 2

∞∑k=1

|ck|2 = a20 +

1

2

∞∑k=1

(a2k + b2

k)

1.6.2 Discrete Time

A periodic function with the period N , i.e. f(n) = f(n − N), can be expressed asa series expansion according to

f(n) =N−1∑k=0

ck ej2πk n/N

12

Page 14: Collection of Formulas

where

ck =1

N

N−1∑n=0

f(n) e−j2πk n/N , k = 0, . . . , N − 1

The series expansion is often written using DTFS (Discrete-Time Fourier Series).If f(n) is real this can also be expressed as

f(n) = c0 + 2L∑

k=1

|ck| cos

(2π

kn

N+ θk

)=

= a0 +L∑

k=1

(ak cos

(2π

kn

N

)− bk sin

(2π

kn

N

))

where

a0 = c0

ak = 2|ck| cos(θk)

bk = 2|ck| sin(θk)

L =

N2

if N even

N−12

if N odd

The power is given by

P =1

N

N−1∑n=0

|f(n)|2 =N−1∑k=0

|ck|2

and the energy over one period is given by

EN =N−1∑n=0

|f(n)|2 = NN−1∑k=0

|ck|2

1.7 Fourier Transformer

Continuous time signal:

Xa(F ) =∫∞−∞ xa(t)e

−j2πFtdt

xa(t) =∫∞−∞ Xa(F )ej2πFtdF

Discrete time signal:

X(f) =∑∞

n=−∞ x(n)e−j2πfn

x(n) =∫ 1/2−1/2 X(f)ej2πfndf

13

Page 15: Collection of Formulas

1.8 Discrete Fourier Transform (DFT)

1.8.1 Definition

Xk = DFT (xn) =N−1∑n=0

xne−j2πnk/N k = 0, 1, . . . , N − 1 Transform

xn = IDFT (Xk) =1

N

N−1∑k=0

Xkej2πnk/N n = 0, 1, . . . , N − 1 Inversion

Note:N−1∑n=0

ej2π k − k0

N · n= N · δ(k − k0, (modulo N))

1.8.2 Circular Convolution

xn N yn =N−1∑=0

xyn−DFT←→ XkYk Circular convolution

where∑

denotes circular convolution. This means that the sequences xn and yn

should be repeated periodically before the summation. I.e. outside the intervaln = 0, 1, . . . , N − 1, xn−N = xn and yn−N = yn ( = integer) In other words, theindex is calculated modulo N . Circular convolution is also denoted x(n) ∗ y(n).

1.8.3 Non-Circular Convolution using DFT

If x(n) = 0 for n = [0, L − 1] and y(n) = 0 for n = [0,M − 1] then x ∗ y = 0 forn = [0, N − 1] where N ≥ L + M − 1.The convolution can be calculated as

x ∗ y =

x ©∗ y = IDFT(XkYk) n = 0, 1, . . . , N − 1

0 Else

whereXk = DFT(x(n))Yk = DFT(y(n))

1.8.4 Relation to the Fourier Transform X(f):

X(k/N) = Xk = DFT (x(n)) if x(n) = 0 for n = [0, N − 1]

X(k/N) = Xk = DFT (xp(n)) generally x(n) where xp(n) =∞∑

=−∞x(n − N)

14

Page 16: Collection of Formulas

1.8.5 Relation to Fourier Series

X

(k

N

)= Xk = DFT (x(n)) = N · ck

ifx(n) = xp(n), 0 ≤ n ≤ N − 1

where

xp(n) =N−1∑k=0

ckej2π nk

N −∞ < n < ∞

and

ck =1

N

N−1∑n=0

xp(n)e−j2π nkN k = 0, 1, . . . , N − 1

1.8.6 Parseval’s Theorem

N−1∑n=0

x(n)y∗(n) =1

N

N−1∑k=0

XkY∗(k)

15

Page 17: Collection of Formulas

1.9 Some Window Functions and their Fourier Transforms

i) The window functions are centered around the origin (odd filter length M),i.e. the functions are not equal to zero only for −(M −1)/2 ≤ n ≤ (M −1)/2

Rectangular window:

wrect(n) = 1

Wrect(f) = M · sin(πfM)

M sin(πf)

Bartlett window (Triangular window):

w(n) = 1 − |n|(M − 1)/2

W (f) =M

2

(sin πfM

2M2

sin(πf)

)2

≈ 2

MW 2

rect

(f

2

)if f is small

Hanning Window:

w(n) = 0.5 + 0.5 cos(

2πn

M − 1

)

W (f) = 0.5 Wrect(f) +

+0.25 Wrect

(f − 1

M − 1

)+

+0.25 Wrect

(f +

1

M − 1

)

Hamming Window:

w(n) = 0.54 + 0.46 cos(

2πn

M − 1

)

W (f) = 0.54 Wrect(f) +

+0.23 Wrect

(f − 1

M − 1

)+

+0.23 Wrect

(f +

1

M − 1

)

Blackman window:

w(n) = 0.42 + 0.5 cos2πn

M − 1+ 0.08 cos

4πn

M − 1

W (f) = 0.42 Wrect(f) +

+0.25 Wrect

(f − 1

M − 1

)+

16

Page 18: Collection of Formulas

+0.25 Wrect

(f +

1

M − 1

)+

+0.04 Wrect

(f − 2

M − 1

)+

+0.04 Wrect

(f +

2

M − 1

)

Kaiser window:

w(n) =I0

(β√

1 − [2n/(M − 1)]2)

I0(β)

I0(x) = 1 +L∑

k=1

[(x/2)k

k!

]2

17

Page 19: Collection of Formulas

2 Sampling Analogue Signals

2.1 Sampling and Reconstruction

Sampling Theorem

If xa(t) is bandlimited, i.e. Xa(F ) = 0 for |F | ≥ 1/2T then

xa(t) =∞∑

n=−∞x(n)

sin πT

(t − nT )πT

(t − nT )

Sampling Frequency Fs = 1/T .

Sampling

x(n) = xa(nT ) ; T =1

Fs

X(f) = X(

F

Fs

)= Fs

∞∑k=−∞

Xa(F − kFs)

Γ(f) = Γ(

F

Fs

)= Fs

∞∑k=−∞

Γa(F − kFs)

Reconstruction (ideal)

xa(t) =∞∑

n=−∞x(n)

sin πT

(t − nT )πT

(t − nT )

Xa(F ) =1

Fs

X(

F

Fs

)|F | ≤ Fs

2

Γa(F ) =1

Fs

Γ(

F

Fs

)|F | ≤ Fs

2

Reconstruction using Sample-and-Hold

Xa(F ) =1

Fs

X(

F

Fs

)· sin(πFT )

πFTe−j2πF T

2 · HLP (F )

Γa(F ) =1

Fs

Γ(

F

Fs

) ∣∣∣∣∣sin(πFT )

πFT

∣∣∣∣∣2

· |HLP (F )|2

18

Page 20: Collection of Formulas

Block Scheme describing D/A conversion

Ideal reconstruction

-Fs/2 Fs/2

S d( t-n T)n ya (t)

|Y (F)|a

Lowpass

-Fs/2 Fs/2

S d( t-n T)n

ya (t)

ya (t)

|Y (F)|a

FFs|X( ) T |

x(n)

Tx(n)

x(1) T

| X(f)|

ya (t)

x(n)

Tx(n)

x(1) T

| X(f)|

n t t

f F F-.5 .5 -Fs/2 Fs/2 -Fs/2 Fs/2

ya(t) =∞∑

n=−∞x(n)

sin πT

(t − nT )πT

(t − nT )

Ya(F ) =1

Fs

X(

F

Fs

)|F | ≤ Fs

2

Reconstruction using Sample-and-Hold

Lowpass

-Fs/2 Fs/2

1

T

hSH (t) ya (t)

ya (t)

|Y (F)|aSH

|X( ) H (F)|Fs

F

S d( t-n T)n

x(n)

x(n)

| X(f)|

n t t

f F F-.5 .5 -Fs/2 Fs/2 -Fs/2 Fs/2

Ya(F ) =1

Fs

X(

F

Fs

)· sin(πFT )

πFTe−j2πF T

2 · HLP (F )

19

Page 21: Collection of Formulas

2.2 Measures of Distortion

2.2.1 Folding distortion when sampling

Spectrum after anti-aliasing filter:

Γin(F )

Folding distortion:

DA = 2 ·∫ ∞

Fs−Fp

Γin(F )dF

Effective signal power:

Ds = 2∫ Fp

0Γin(F )dF

where 0 ≤ Fp ≤ Fs/2

Signal distortion relationship:

A: SDRA = DS

DA=

∫ Fp

0Γin(F )dF∫∞

Fs−FpΓin(F )dF

B: SDR0A = min|F |≤Fp

Γin(F )Γin(Fs−F )

If the spectrum is monotonously decreasing

SDR0A =

Γin(Fp)

Γin(Fs − Fp)

2.2.2 Periodic Distortion when Reconstructing

Periodic Distortion:DP = 2 ·

∫ ∞

Fs/2Γut(F )dF

Effective signal power:

DS = 2 ·∫ Fs/2

0Γut(F )dF

Signal Distortion Relationship:

A: SDRP = DS

DP=

∫ Fs/2

0Γut(F )dF∫∞

Fs/2Γut(F )dF

B: SDR0P = min|F |<Fs/2

Γut(F )Γut(Fs−F )

A good estimate is often given by

SDR0P =

Γut(Fp)

Γut(Fs − Fp)

where Fp is the highest frequency component in the sampled signal.

20

Page 22: Collection of Formulas

2.3 Quantizing Distortion

DQ ∆2

12linear quantizing, ∆ small

SQNR =Signal Power

Dq

Quantizing distortion for sinusoidal signal, maximum dynamical range used, r bits

SQNR = 1.76 + 6 · r[dB]

Quantizing distortion, dynamical range usage expressed in top- and RMS value, rbits

SQNR = 6 · r + 1.76 − 1010 log

(Apeak

ARMS · √2

)2

− 1010 log

(V

Apeak

)2

where [−V, V ] is the dynamical range of the quantizer.

2.4 Decimation and Interpolation

Downsampling a factor M

↓ M y(n) = . . . u(0), u(M), u(2M) . . .

Y (f) = 1M

∑M−1i=0 U

(f−iM

)Upsampling a factor L

↑ L w(n) = . . . x(0), 0, 0, . . .︸ ︷︷ ︸L-1 st

, x(1), 0, 0, . . .︸ ︷︷ ︸L-1 st

, x(2) . . .

W (f) = X(fL)

21

Page 23: Collection of Formulas

3 Analogue Filters

3.1 Filter Approximations if ideal LP filters

General form of the amplitude function of the approximation

|H(Ω)| =K√

1 + gN

((ΩΩp

)2) Ω = 2πF

where

gN

(

Ω

Ωp

)2

1∣∣∣ ΩΩp

∣∣∣ < 1

1∣∣∣ ΩΩp

∣∣∣ > 1

and Ωp is the cut-off frequency of the filter.Sometimes it is suitable to normalize the angular frequency to Ωp.In this section this corresponds to setting Ωp = 1.

3.1.1 Butterworth Filters

|H(Ω)| =K√

1 +(

ΩΩp

)2N

The amplitude function always passes these points.

K = The maximum value of the amplitude function.K = The value of the amplitude functionens for Ω = 0.

Arbitrary attenuation in the pass band (X dB)

|H(Ω)| =K√

1 + ε2

(ΩΩ

′p

)2N

When Ω′p = Ωp (3dB) then ε2 ≈ 1.

22

Page 24: Collection of Formulas

The amplitude function always passes these points.

Any arbitraryattenuation

Filter order:

N =log10

([√1δ22− 1

]/ε

)log10

(Ωs

Ωp

)δ2 is the maximum allowed value for the amplitude function at the stop band edge:

δ2 = |H(Ωs)|max

The denominator of the system function is a Butterworth polynomial if Ωp = 1.These polynomials can be found in Table 2.1. For a general Ωp

H(s) =K(

sΩp

)N+ aN−1

(s

Ωp

)N−1+ · · · + a1

(s

Ωp

)+ 1

where a1, . . . , aN−1 can be found in Table 4.1.

23

Page 25: Collection of Formulas

Table 4.1

Coefficients aν in Butterworth polynomials sN + aN−1sN−1 + . . . + a1s + 1

N a1 a2 a3 a4 a5 a6 a7

1

2√

23 2 24 2.613 3.414 2.6135 3.236 5.236 5.236 3.2366 3.864 7.464 9.141 7.464 3.8647 4.494 10.103 14.606 14.606 10.103 4.4948 5.126 13.138 21.848 25.691 21.848 13.138 5.126

Table 4.2

Factorized Butterworth polynomials for Ωp = 1. For Ωp = 1 let s → s/Ωp.

N1 (s + 1)

2 (s2 +√

2s + 1)3 (s2 + s + 1)(s + 1)4 (s2 + 0.76536s + 1)(s2 + 1.84776s + 1)5 (s + 1)(s2 + 0.6180s + 1)(s2 + 1.6180s + 1)

6 (s2 + 0.5176s + 1)(s2 +√

2s + 1)(s2 + 1.9318s + 1)7 (s + 1)(s2 + 0.4450s + 1)(s2 + 1.2465s + 1)(s2 + 1.8022s + 1)8 (s2 + 0.3896s + 1)(s2 + 1.1110s + 1)(s2 + 1.6630s + 1)(s2 + 1.9622s + 1)

3.1.2 Chebyshev Filters

|H(Ω)| =K√

1 + ε2T 2N

(ΩΩp

)

|H( )|

p

2K

1+

RippleK

The amplitude function always passes this point.

N odd

N even

Not necessary the 3 dB frequency

Ripple = 10 · log(1 + ε2) dB.K = The maximum value of the amplitude function.

24

Page 26: Collection of Formulas

K = the value of the amplitude function for Ω = 0 when N is even.TN( Ω

Ωp) is a Chebyshev polynomial. (Also denoted CN

(ΩΩp

)). These can be found

in Table 4.3 for Ωp = 1. For Ωp = 1 let Ω → ΩΩp

in Table 4.3.

System function

H(s) =

K · a0 ·

1 N odd1√

1+ε2 N even(s

Ωp

)N+ aN−1

(s

Ωp

)N−1+ · · · + a0

where ε, a0, . . . , aN−1 can be found in Table 4.4.The locations of the poles for H(s) can be found in Table 4.5 for Ωp = 1. ForΩp = 1 the pole locations are multiplied with Ωp.

Table 4.3

Chebyshev polynomials.

TN(Ω) =

cos(N arccos Ω) |Ω| ≤ 1

cosh(N arccoshΩ) |Ω| ≥ 1Ω = 2πF

or

TN(Ω) =

(Ω +

√Ω2 − 1

)N+

(Ω +

√Ω2 − 1

)−N

2|Ω| ≥ 1

Recursive calculation

TN+1(Ω) = 2ΩTN(Ω) − TN−1(Ω)

Filter order:

N =arccosh

([√1δ22− 1

]/ε

)arccosh

(Ωs

Ωp

)δ2 is the maximum allowed stop band ripple.

Alternative for arccosh:

arccosh(x) = ln(x +

√x2 − 1

)

25

Page 27: Collection of Formulas

N TN(Ω)0 11 Ω2 2Ω2 − 13 4Ω3 − 3Ω4 8Ω4 − 8Ω2 + 15 16Ω5 − 20Ω3 + 5Ω6 32Ω6 − 48Ω4 + 18Ω2 − 17 64Ω7 − 112Ω5 + 56Ω3 − 7Ω8 128Ω8 − 256Ω6 + 160Ω4 − 32Ω2 + 19 256Ω9 − 576Ω7 + 432Ω5 − 120Ω3 + 9Ω

10 512Ω10 − 1280Ω8 + 1120Ω6 − 400Ω4 + 50Ω2 − 1

26

Page 28: Collection of Formulas

Table 4.4. Chebyshev filter coefficients aν.

0.5dB ripple (ε = 0.349, ε2 = 0.122).N a7 a6 a5 a4 a3 a2 a1 a0

1 2.8632 1.426 1.5163 1.253 1.535 0.7164 1.197 1.717 1.025 0.3795 1.172 1.937 1.309 0.752 0.1796 1.159 2.172 1.589 1.172 0.432 0.0957 1.151 2.413 1.869 1.648 0.756 0.282 0.0458 1.146 2.657 2.149 2.184 1.148 0.573 0.152 0.024

1-dB ripple (ε = 0.509, ε2 = 0.259).N a7 a6 a5 a4 a3 a2 a1 a0

1 1.9652 1.098 1.1023 0.989 1.238 0.4914 0.953 1.454 0.743 0.2765 0.937 1.689 0.974 0.580 0.1236 0.928 1.931 1.202 0.939 0.307 0.0697 0.923 2.176 1.429 1.357 0.549 0.214 0.0318 0.920 2.423 1.655 1.837 0.447 0.448 0.107 0.017

2-dB ripple (ε = 0.765, ε2 = 0.585).N a7 a6 a5 a4 a3 a2 a1 a0

1 1.3072 0.804 0.8233 0.738 1.022 0.3274 0.716 1.256 0.517 0.2065 0.705 1.499 0.693 0.459 0.0826 0.701 1.745 0.867 0.771 0.210 0.0517 0.698 1.994 1.039 1.144 0.383 0.166 0.0208 0.696 2.242 1.212 1.579 0.598 0.359 0.073 0.013

3-dB∗) ripple (ε = 0.998, ε2 = 0.995).N a7 a6 a5 a4 a3 a2 a1 a0

1 1.0022 0.645 0.7083 0.597 0.928 0.2514 0.581 1.169 0.405 0.1775 0.575 1.415 0.549 0.408 0.0636 0.571 1.663 0.691 0.699 0.163 0.0447 0.568 1.911 0.831 1.052 0.300 0.146 0.0168 0.567 2.161 0.972 1.467 0.472 0.321 0.056 0.011

*) The table was calculated with “exactly” 3dB, not with 20 · log√

2 ≈ 3.01dB.Hence ε = 1 and a0 = 1 for N = 1.

27

Page 29: Collection of Formulas

Table 4.5. Pole locations for Chebyshev filters.

0.5dB ripple (ε = 0.349, ε2 = 0.122).N = 1 2 3 4 5 6 7 8-2.863 -0.713 -0.626 -0.175 -0.362 -0.078 -0.256 -0.044

±j1.004 ±j1.016 ±j1.008 ±j1.005-0.313 -0.423 -0.112 -0.212 -0.057 -0.124

±j1.022 ±j0.421 ±j1.011 ±j0.738 ±j1.006 ±j0.852-0.293 -0.290 ±0.160 -0.186

±j0.625 ±j0.270 ±j0.807 ±j0.570-0.231 -0.220

±j0.448 ±j0.200

1-dB ripple (ε = 0.509, ε2 = 0.259).N = 1 2 3 4 5 6 7 8-1.965 -0.549 -0.494 -0.139 -0.289 -0.062 -0.205 -0.035

±j0.895 ±j0.983 ±j0.993 ±j0.996-0.247 -0.337 -0.089 -0.170 -0.046 -0.100

±j0.966 ±j0.407 ±j0.990 ±j0.727 ±j0.995 ±j0.845-0.234 -0.232 -0.128 -0.149

±j0.612 ±j0.266 ±j0.798 ±j0.564-0.185 -0.176

±j0.443 ±j0.198

2-dB ripple (ε = 0.765, ε2 = 0.585).N = 1 2 3 4 5 6 7 8-1.307 -0.402 -0.369 -0.105 -0.218 -0.047 -0.155 -0.026

±j0.813 ±j0.958 ±j0.982 ±j0.990-0.184 -0.253 -0.067 -0.128 -0.034 -0.075

±j0.923 ±0.397 ±j0.973 ±0.719 ±j0.987 ±j0.839-0.177 -0.175 -0.097 -0.113

±j0.602 ±j0.263 ±j0.791 ±j0.561-0.140 -0.133

±j0.439 ±j0.197

3-dB∗) ripple (ε = 0.998, ε2 = 0.995).N = 1 2 3 4 5 6 7 8-1.002 -0.322 -0.299 -0.085 -0.177 -0.038 -0.126 -0.021

±j0.777 ±j0.946 ±j0.976 ±0.987-0.1493 -0.206 -0.055 -0.104 -0.028 -0.061±j0.904 ±j0.392 ±j0.966 ±0.715 ±j0.983 ±j0.836

-0.144 -0.143 -0.079 -0.092±j0.597 ±j0.262 ±j0.789 ±j0.559

-0.114 -0.108±j0.437 ±j0.196

*) See note in Table 4.4.

28

Page 30: Collection of Formulas

3.2 Frequency Transformations of Analogue Filter

1. Start out from the frequencies in the filter specification in the analogue highpass-, band pass- or band stop filter.

2. Transform to the frequencies of the LP filter Ω′2 and Ω

′3.

3. Find the coefficients of the LP filter coefficients.

4. Transform back to the original filter (HP, BP, BS) by replacing s i the lowpass filter H(s); see below.

4Ω3Ω Ω l Ω2Ω2Ω3

Α(Ω) Α(Ω) Α(Ω)

ΩΩ Ω

LP HP BP BSΑ(Ω)

ΩΩ 2 Ω 3 4Ω3Ω Ω l Ω2

HP ⇒ LP Ω′2 = 1

Ω2Ω

′3 = 1

Ω3

BP ⇒ LP Ω′2 = Ω2 − Ω1 Ω

′3 = Ω4 − Ω3 Ω1Ω2 = Ω3Ω4 = Ω2

I

BS ⇒ LP Ω′2 =

Ω2I

Ω4−Ω3Ω

′3 =

Ω2I

Ω2−Ω1Ω1Ω2 = Ω3Ω4 = Ω2

I

LP HP BP BS

s → 1s s +

Ω2I

sΩ2

I

s +Ω2

I

s

29

Page 31: Collection of Formulas

4 Discrete Time Filters

4.1 FIR Filters and IIR Filters

H(z) = b0 + b1z−1 + . . . + bM−1z

−M+1

h(n) =

bn 0 ≤ n ≤ M − 10 Else

Linear phase FIR Filter :Symmetrical impulse response h(n) = h(M − 1 − n)Anti-symmetrical impulse response h(n) = −h(M − 1 − n)

IIR Filter

H(z) =b0 + b1z

−1 + . . . + bMz−M

1 + a1z−1 + . . . + aNz−N

h(n) = Z−1H(z)

4.2 Construction of FIR Filter

4.2.1 FIR Filter using the window method

Impulse responseh(n) = hd(n) · w(n)

with desired impulse response hd(n) and time window w(n).Filters designed using the window method have linear phase.

Desired impulse response hd(n) defined for 0 ≤ n ≤ M − 1Odd filter length

Low pass:

hd(n) =ωc

π

sin ωc

(n − M−1

2

)ωc

(n − M−1

2

)hd(

M − 1

2) =

ωc

π

Hd(ω) =

e−jω (M−1)/2 0 ≤ |ω| < ωc

0 Else

High pass:

hd(n) = δ(n − M − 1

2

)− ωc

π

sin ωc

(n − M−1

2

)ωc

(n − M−1

2

)Hd(ω) =

e−jω (M−1)/2 ωc < |ω| < π0 Else

30

Page 32: Collection of Formulas

Band pass:

hd(n) = 2 cos(ω0

(n − M − 1

2

))· ωc

π

sin ωc

(n − M−1

2

)ωc

(n − M−1

2

)Hd(ω) =

e−jω (M−1)/2 ω0 − ωc < |ω| < ω0 + ωc

0 Else

Band stop:

hd(n) = δ(n − M − 1

2

)− 2 cos

(ω0

(n − M − 1

2

))· ωc

π

sin ωc

(n − M−1

2

)ωc

(n − M−1

2

)Hd(ω) =

e−jω (M−1)/2 0 < |ω| < ω0 − ωc and ω0 + ωc < |ω| < π0 Else

The spectrum of the filter H(ω) = Hd(ω) ∗ W (ω).

At the cut-off frequency ωc the attenuation is 6dB.When dimensioning filters, the tables below offers a rough estimation of the requiredfilter length M .

Table 5.1

The main and sidelobe size for some common window functions.

Approximate Largest sidelobeWindow main lobe width relative main lobe

(rad) (dB)Rektangular 4π/M -13Bartlett 8π/M -27Hanning 8π/M -32Hamming 8π/M -43Blackman 12π/M -58

Table 5.2

Sidelobe size for some filters designed using the window method.

ApproximateWindow largest sidelobe

(dB)Rektangulr -20Bartlett -27Hanning -40Hamming -50Blackman -70Kaiser (β = 4.54) -50Kaiser (β = 6.76) -70Kaiser (β = 8.96) -90

31

Page 33: Collection of Formulas

Window functions defined for 0 ≤ n ≤ M − 1 (Odd filter length M)

Rectangular windoww(n) = 1

Bartlett (Triangular window)

w(n) = 1 −∣∣∣n − M−1

2

∣∣∣M−1

2

Hanning window

w(n) = 0.5

1 + cos

2π(n − M−1

2

)M − 1

=

= 0.5(1 − cos

2πn

M − 1

)

Hamming window

w(n) = 0.54 + 0.46 cos2π

(n − M−1

2

)M − 1

=

= 0.54 − 0.46 cos2πn

M − 1

Blackman window

w(n) = 0.42 + 0.5 cos2π

(n − M−1

2

)M − 1

+

+0.08 cos4π

(n − M−1

2

)M − 1

=

= 0.42 − 0.5 cos2πn

M − 1+ 0.08 cos

4πn

M − 1

Kaiser window

w(n) =I0

(β√

1 − [2(n − M−12

)/(M − 1)]2)

I0(β)

I0(x) is a Bessel function, whose value can be calculated according to

I0(x) = 1 +L∑

k=1

[(x/2)k

k!

]2

Usually L < 25.The value of β is decided from the stop band attenuation D.

32

Page 34: Collection of Formulas

Stop band attenuation D βD ≤ 21dB 0

21dB < D < 50dB 0, 5842(D − 21)0,4 + 0, 07886(D − 21)D ≥ 50dB 0, 1102(D − 8, 7)

Filter length M :

M ≥ D − 7, 95

14, 36∆f

∆f = fs − fp

fp Pass band frequency (normalized frequency)fs Stop band frequency (normalized frequency)

33

Page 35: Collection of Formulas

4.2.2 Equiripple FIR Filter

Dimensioning of equiripple filters when using the Remez algorithm. Approximatelyaccording to Kaiser.

ds

fs

1+dp

p1-

pf

f

|H(f)|

1d

Filter length M =−20 log10

(√δpδs

)− 13

14.6∆f+ 1

∆f = fs − fp

4.2.3 FIR Filters using Least-Squares

MinimizingE =

∑n

[x(n) ∗ h(n) − d(n)]2

yieldsM−1∑n=0

h(n)rxx(n − ) = rdx() = 0, . . . ,M − 1

and

Emin = rdd(0) −M−1∑k=0

h(k)rdx(k)

where rxx() is the correlation function for x(n) and rdx() is the cross correlationbetween d(n) and x(n).This can be written on matrix form as

Rxx · h = rdx

h = R−1xx · rdx

Emin = rdd(0) − hT · rdx

34

Page 36: Collection of Formulas

4.3 Constructing IIR Filters starting fromAnalogue Filters

4.3.1 The Impulse-Invariant Method

h(n) = ha(t)|t=nT = ha(nT )

H(z) =∞∑

n=0

ha(nT )z−n

1.

ha(t) = e−σ0t ←→ Ha(s) =1

s + σ0

⇒ H(z) =1

1 − e−σ0T z−1

2.

ha(t) = e−σ0t cos Ω0t ←→ Ha(s) =s + σ0

(s + σ0)2 + Ω20

⇒ H(z) =1 − z−1e−σ0T cos Ω0T

1 − 2z−1e−σ0T cos Ω0T + z−2e−2σ0T

3.

ha(t) = e−σ0t sin Ω0t ←→ Ha(s) =Ω0

(s + σ0)2 + Ω20

⇒ H(z) =z−1e−σ0T sin Ω0T

1 − 2z−1e−σ0T cos Ω0T + z−2e−2σ0T

4.3.2 Bilinear Transformation

Frequency transformation (“prewarp”)

Ωprewarp =2

Ttan

ω

2

Analogue construction of filters in the variable Ωprewarp = 2πFprewarp ( ω = 2πf).

H(z) = Ha(s) where s =2

T

1 − z−1

1 + z−1

T is a normalization factor (can often be set to 1).

35

Page 37: Collection of Formulas

4.3.3 Quantizing of Coefficients

Change in pole locations when the coefficients a1, . . . , ak is changed ∆a1, . . . , ∆ak

∆pi ≈ ∂pi

∂a1

∆a1 + · · · + ∂pi

∂ak

∆ak

If using normal form (Direct form II) then

∂pi

∂aj

=−pk−j

i

(pi − p1)(pi − p2) . . . (pi − pk)︸ ︷︷ ︸k−1 factors

(pi − pi) should not be included

4.4 Lattice Filters

z -1

+

+g (n)0 g (n)1

z -1

f (n)0 f (n)1

+

+f (n)2

z -1 +

+

K 1 K 2

K 1 K 2

f (n) = y(n)M-1

g (n)2 M -1g (n)

. . .

. . .

Kx(n)

Lattice FIR

z -1

+

+ z -1

+

+ z -1

Nf (n)

f (n)N-1 f (n)2 f (n)1

K 1

K 1

K 2

K 2

KN

KN

+

+g (n)N

+ +

g (n)0

0vv1Nv

f (n)0

g (n)2 g (n)1

v2

+

z -1

+

+

+

+ z -1

+

+ z -1

Nf (n)

f (n)N-1 f (n)2 f (n)1 f (n) = y(n)0

g (n)Ng (n)2 g (n)1 g (n)0

K 1

K 1

K 2

K 2

KN

KN

Lattice all-pole IIR

. . .

. . .

x(n)

y(n)

- - -

. . .

Lattice-ladder

. . .

. . .

x(n)

- --

36

Page 38: Collection of Formulas

Conversion from Lattice to Direct form:

A0(z) = B0(z) = 1

Am(z) = Am−1(z) + Kmz−1Bm−1(z)Bm(z) = KmAm−1(z) + z−1Bm−1(z)

m = 1, 2, . . . , M − 1

Relationship between Am(z) and Bm(z)

Am(z) = αm(0) + αm(1)z−1 + ... + αm(m − 1)z−m+1 + αm(m)z−m

Bm(z) = βm(0) + βm(1)z−1 + ... + βm(m − 1)z−m+1 + βm(m)z−m

Bm(z) = z−mAm(z−1)

βm(k) = αm(m − k)

k = 0, 1, . . . , m

Conversion from Direct form to Lattice:

Am−1(z) =1

1 − K2m

(Am(z) − KmBm(z))

m = M − 1,M − 2, . . . , 1

Reflection coefficient:Km = αm(m)

FIR Filter

H(z) = AN(z)

AM−1(z) = AN(z)

IIR Filter (all-pole)

H(z) =1

AN(z)

AM−1(z) = AN(z)

Lattice-LadderConversion from Direct form to Lattice-Ladder:

H(z) =CM(z)

AN(z)=

c0 + c1z−1 . . . cMz−M

AN(z)

Cm−1(z) = Cm(z) − vmBm(z)

vm = cm(m) m = 0, 1, . . . , M

37

Page 39: Collection of Formulas

5 Correlation

Correlation, Cross Correlation, spectrum, cross spectrum and coherence betweeninput and output signal.

Continuous time process:

y(t) = h(t) ∗ x(t)Y (F ) = H(F ) · X(F )ryy(τ) = rhh(τ) ∗ rxx(τ)Ryy(F ) = |H(F )|2Rxx(F )ryx(τ) = h(τ) ∗ rxx(τ)Ryx(F ) = H(F ) · Rxx(F )rxx(τ) =

∫t x(t)x(t − τ)dt

ryx(τ) =∫t y(t)x(t − τ)dt

γxx(τ) = Ex(t)x(t − τ)γyx(τ) = Ey(t)x(t − τ)

Discrete time process:

y(n) = h(n) ∗ x(n)Y (f) = H(f) · X(f)ryy(n) = rhh(n) ∗ rxx(n)Ryy(f) = |H(f)|2 · Rxx(f)ryx(n) = h(n) ∗ rxx(n)Ryx(f) = H(f) · Rxx(f)rxx(n) =

∑ x()x( − n)

ryx(n) =∑

y()x( − n)γxx(n) = Ex()x( − n)γyx(n) = Ey()x( − n)

Normally distributed stochastic variables. Xi ∈ N(mi, σi)

EX1X2X3X4 = EX1X2 EX3X4 + EX1X3 EX2X4 +

+ EX1X4 EX2X3 − 2m1m2m3m4

38

Page 40: Collection of Formulas

6 Spectrum Estimation

Spectrum Estimation

γxx(m) = Ex(n)x(n + m) autocorrelation

Γxx(f) =∞∑

m=−∞γxxe

−j2πfm power spectrum

rxx(m) =1

N

N−m−1∑n=0

x(n)x(n + m) 0 ≤ m ≤ N − 1 auto correlation (estimate)

Pxx(f) =N−1∑

m=−N+1

rxx(m)e−j2πfm =1

N

∣∣∣∣∣N−1∑m=0

x(m)e−j2πfm

∣∣∣∣∣2

power spectrum (estimate)

Periodogram

Pxx(f) =1

N

∣∣∣∣∣N−1∑m=0

x(m)e−j2πfm

∣∣∣∣∣2

power spectrum (estimate)

Erxx(m) =

(1 − |m|

N

)γxx(m) → γxx(m) when N → ∞

var(rxx(m)) ≈ 1

N

∞∑n=−∞

[γ2xx(n) + γxx(n − m)γxx(n + m)] → 0 when N → ∞

EPxx(f) =∫ 1/2

−1/2Γxx(α)WB(f − α)dα

where WB(f) is the Fourier transform of the Bartlett window(1 − |m|

N

)

var(Pxx(f)) = Γ2xx(f)

1 +

(sin2πfN

Nsin2πf

)2 → Γ2

xx(f) when N → ∞

if x(n) Gaussian.

Periodogram using DFT:

Pxx

(k

N

)=

1

N

∣∣∣∣∣N−1∑n=0

x(n)e−j2π nkN

∣∣∣∣∣2

k = 0, . . . , N − 1

39

Page 41: Collection of Formulas

Bartletts method

Averaging periodograms.Divide the N sample data sequence x(n) into K blocks with M samples in eachblock. The blocks are not overlapping (N = K · M).

xi(n) = x(n + iM) i = 0, 1 . . . , K − 1 and n = 0, 1 . . . , M − 1

P ixx(f) =

1

M

∣∣∣∣∣N−1∑m=0

xi(m)e−j2πfm

∣∣∣∣∣2

i = 0, 1 . . . , K − 1

PBxx(f) =

1

K

K−1∑i=0

P ixx(f)

EPBxx(f) =

1

K

K−1∑i=0

EP ixx(f) = EP i

xx(f)

EP ixx(f) =

1

M

∫ 1/2

−1/2Γxx(α)WB(f − α)dα

where WB(f) is the Fourier Transform of the Bartlett window(1 − |m|

N

)

WB(f) =1

M

(sin πfM

sin πf

)2

var(PBxx(f)) =

1

K2

K−1∑i=0

var(P ixx(f))

var(PBxx(f)) =

1

KΓ2

xx(f)

1 +

(sin2πfN

Nsin2πf

)2

Welch’s method

Averaging modified periodograms.Divide the N sample data sequence x(n) into L block with M samples in eachblock. The blocks may be overlapping. The starting point for block i is given byiD. D = M means no block overlap and D = M/2 yields 50% overlap.

xi(n) = x(n + iD) i = 0, 1 . . . , L − 1 and n = 0, 1 . . . , M − 1

40

Page 42: Collection of Formulas

Modified periodogram.

P ixx(f) =

1

MU

∣∣∣∣∣N−1∑m=0

xi(m)w(n)e−j2πfm

∣∣∣∣∣2

i = 0, 1 . . . , L − 1

w(n) window function

U =1

M

N−1∑n=0

w2(n)

PWxx (f) =

1

L

L−1∑i=0

P ixx(f)

EPWxx (f) =

1

L

L−1∑i=0

EP ixx(f) = EP i

xx(f)

EP ixx(f) =

∫ 1/2

−1/2Γxx(α)W (f − α)dα

W (f) =1

MU

∣∣∣∣∣M−1∑n=0

w(n)e−j2πfn

∣∣∣∣∣2

No block overlap (L = K)

var(PWxx (f)) =

1

Lvar(P i

xx(f))

≈ 1

LΓ2

xx(f)

50% block overlap (L = 2K) and Bartlett window (triangular window).

var(PWxx (f)) ≈ 9

8LΓ2

xx(f)

41

Page 43: Collection of Formulas

Averaging Periodograms

Quality factor

Q =[EPxx(f)]2var(Pxx(f))

Relative variance 1Q

Q ≈ time-bandwidth product.

Periodogram ∆f = 0.9M

Q = 1

Bartlett (N = K · M) ∆f = 0.9M

Q = NM

Rectangular windowNo overlap

Welch (N = L · M) ∆f = 1.28M

Q = 169· N

MTriangular window50% overlap

Welch (N = L · M) ∆f = 1.50M

Q = 31.08·2 · N

MHanning window50% overlap

Welch ∆f = 1.50M

Q = 32· N

MHanning window62,5% overlap

Blackman/Tukey ∆f = 0.6M

Q = 12· N

MRectangular window

∆f = 0.9M

Q = 32· N

MTriangular window

The resolution ∆f is calculated at the -3dB points from the main lobe of thewindow.

42

Page 44: Collection of Formulas

A Basic Relationships

A.1 Trigonometrical formulas

sin α = cos(α − π/2)cos α = sin(α + π/2)cos2 α + sin2 α = 1cos2 α − sin2 α = cos 2α2 sin α cos α = sin 2αsin(−α) = − sin αcos(−α) = cos αcos2 α = 1

2(1 + cos 2α)

sin(α + β) = sin α cos β + cos α sin βcos(α + β) = cos α cos β − sin α sin β2 sin α sin β = cos(α − β) − cos(α + β)2 sin α cos β = sin(α + β) + sin(α − β)2 cos α cos β = cos(α + β) + cos(α − β)

sin α + sin β = 2 sin α+β2

cos α−β2

cos α + cos β = 2 cos α+β2

cos α−β2

cos α = 12

(ejα + e−jα), sin α = 12j

(ejα − e−jα), ejα = cos α + j sin α

A cos α + B sin α =√

A2 + B2 cos(α − β)

where cos β = A√A2+B2 , sin β = B√

A2+B2

and β =

arctan BA

if A ≥ 0

arctan BA

+ π if A < 0

A cos α + B sin α =√

A2 + B2 sin(α + β)

where cos β = B√A2+B2 , sin β = A√

A2+B2

and β =

arctan AB

if B ≥ 0

arctan AB

+ π if B < 0

43

Page 45: Collection of Formulas

Degrees Rad sin cos tan cot

0 0 0 1 0 ±∞30 π

612

√3

21√3

√3

45 π4

1√2

1√2

1 1

60 π3

√3

212

√3 1√

390 π

2 1 0 ±∞ 0

A.2 Some Common Relationships

Sum of geometrical series

N−1∑n=0

an =

N if a = 1

1−aN

1−aif a = 1

Summation of sinusoid over an even number of periods

N−1∑n=0

ej2π kn/N =

N if k = 0,±N, . . .0 Else

A.3 Matrix Theory

Matrix notation A and vector x

A matrix A with dimension m × n and a vector x with dimension n is defined by

A =

a11 a12 . . . a1n

a21 a22 . . . a2n...

......

am1 am2 . . . amn

x =

x1

x2...

xn

The matrix A is symmetrical if aij = aji ∀ ij.I denotes the unity matrix.

Transposing matrix A

B = AT where bij = aji

(AB)T = BTAT

44

Page 46: Collection of Formulas

Matrix A determinant

detA = |A| =

∣∣∣∣∣∣∣∣∣∣

a11 a12 . . . a1n

a21 a22 . . . a2n...

......

am1 am2 . . . amn

∣∣∣∣∣∣∣∣∣∣=

n∑i=1

aij(−1)i+j detMij

where Mij is the resulting matrix if row i and column j in matrix A is deleted.

detAB = detA · detB

Especially, for a 2×2 matrix:

detA = a11a22 − a12a21

Inverse of matrix A

A−1A = AA−1 = I (if detA#0)

A−1 =1

detA· CT

where C is defined bycij = (−1)i+j · detMij

(AB)−1 = B−1A−1

Especially for a 2×2 matrix:

A−1 =1

detA

(a22 −a12

−a21 a11

)

Eigenvalues and Eigenvectors

The eigenvalues (λi, i = 1, 2, . . . , n) and the eigenvectors (qi, i = 1, 2, . . . , n) aresolutions for the equation system

Aq = λq or (A − λI)q = 0

The eigenvalues can be calculated as solutions to the characteristic equation (sec-ular equation) for A

det(λI − A) = λn + αn−1λn−1 + · · · + α0 = 0

det(λI−A) is called the characteristic polynomial (the secular polynomial) for A.

45

Page 47: Collection of Formulas

B Transforms

B.1 The Laplace Transform

B.1.1 The Laplace transform of causal signals

In the table below f(t) = 0 for t < 0 (i.e. f(t) · u(t) = f(t)).

1. f(t) = ←→ F(s) =1

2πj

∫ σ+j∞σ−j∞ F(s)estds

∫∞0− f(t)e−stdt

2.∑

ν aνfν(t) ←→ ∑ν aνFν(s) Linearity

3. f(at) ←→ 1aF( s

a) Scaling

4. 1a

f( ta) ←→ F(as) a > 0 Scaling

5. f(t − t0); t ≥ t0 ←→ F(s) e−st0 Time shift

6. f(t) · e−at ←→ F(s + a) Frequency shift

7. dnfdtn

←→ snF(s) Derivation

8.∫ t0− f(τ)dτ ←→ 1

sF(s) Integration

9. (−t)nf(t) ←→ dnF(s)dsn Derivation in

frequency domain

10. f(t)t

←→ ∫∞s F(z)dz Integration in

frequency domain

11. limt→0 f(t) = lims→∞ s · F(s) Initial valuetheorem

12. limt→∞ f(t) = lims→0 s · F(s) End value theorem

13. f1(t) ∗ f2(t) = ←→ F1(s) · F2(s)∫ t0 f1(τ)f2(t − τ)dτ = Convolution in time domain∫ t0 f1(t − τ)f2(τ)dτ

14. f1(t) · f2(t) ←→ 12πj

F1(s) ∗ F2(s) =1

2πj

∫ σ+j∞σ−j∞ F1(z) · F2(s − z) · dz

Convolution in frequency domain

15.∫∞0− f1(t) · f2(t)dt =1

2πj

∫ σ+j∞σ−j∞ F1(s) · F2(−s)ds Parseval’s relation

46

Page 48: Collection of Formulas

16. δ(t) ←→ 1

17. δn(t) ←→ sn

18. 1 ←→ 1s

19. 1n! tn ←→ 1

sn+1

20. e−σ0t ←→ 1s + σ0

21. 1(n − 1)!

tn−1e−σ0t ←→ 1(s + σ0)

n

22. sin Ω0t ←→ Ω0

s2 + Ω20

23. cos Ω0t ←→ ss2 + Ω2

0

24. t · sin Ω0t ←→ 2Ω0s(s2 + Ω2

0)2

25. t · cos Ω0t ←→ s2 − Ω20

(s2 + Ω20)

2

26. e−σ0t sin Ω0t ←→ Ω0

(s + σ0)2 + Ω2

0

27. e−σ0t cos Ω0t ←→ s + σ0

(s + σ0)2 + Ω2

0

28. e−σ0t sin(Ω0t + φ) ←→ (s + σ0) sin φ + Ω0 cos φ(s + σ0)

2 + Ω20

B.1.2 One-sided Laplace transform of non-causal signals

Notation

F+(s) =∫∞0− f(t)e−stdt Single sided Laplace transform,

f(t) not necessarily causal.F(s) = F+(s) For causal signals

Taking the derivative of f(t) yields

d

dtf(t) ←→ s · F+(s) − f(0−) Single derivation

dn

dtf(t) ←→ snF+(s) − sn−1f(0−)

−sn−2f (1)(0−) − . . . f (n−1)(0−) n derivations

47

Page 49: Collection of Formulas

B.2 The Fourier Transform of a Continuous Time Signal

Ω = 2πF

1. w(t) = F−1W (F ) = ←→ W (F ) = Fw(t) =∫∞−∞ W (F )ej2πFtdF

∫∞−∞ w(t)e−j2πFtdt

2.∑

ν aνwν(t) ←→ ∑ν aνWν(F )

3. w∗(−t) ←→ W ∗(F )

4. W (t) ←→ w(−F )

5. w(at) ←→ 1|a| W

(Fa

)

6. w(t − t0) ←→ W (F ) · e−j2πFt0

7. w(t) · ej2πF0t ←→ W (F − F0)

8. w∗(t) ←→ W ∗(−F )

9. dnw(t)dtn

←→ (j2πF )n W (F )

10.∫ t−∞ w(τ)dτ ←→ 1

j2πFW (F ) if W (F ) = 0 for F = 0

11. −j2πt w(t) ←→ dwdF

12. w1(t) ∗ w2(t) ←→ W1(F ) · W2(F )

13. w1(t) · w2(t) ←→ W1(F ) ∗ W2(F )

14.∫∞−∞ |w(t)|2dt =

∫∞−∞ |W (F )|2dF Parseval’s relation

15.∫∞−∞ w1(t) · w2(t)dt =∫∞−∞ W1(F ) · W ∗

2 (F )dF w1(t), w2(t) real

16. δ(t) ←→ 1

17. 1 ←→ δ(F )

18. u(t) ←→ 1j2πF

+ 12

δ(F )

19. e−atu(t) ←→ 1a+jΩ

48

Page 50: Collection of Formulas

20. e−a|t| ←→ 2aa2+Ω2

21. ej2πF0t ←→ δ(F − F0)

22. sin 2πF0t ←→ j 12δ(F + F0) − δ(F − F0)

23. sin 2πF0t · u(t) ←→ Ω0

Ω20−Ω2 + j 1

4δ(F + F0) − δ(F − F0)

24. cos 2πF0t ←→ 12δ(F + F0) + δ(F − F0)

25. cos 2πF0t · u(t) ←→ jΩΩ2

0−Ω2 + 14δ(F + F0) + δ(F − F0)

26. 1√2πσ2

e−t2/2σ2 ←→ e−(Ωσ)2/2

27. e−at sin 2πF0t · u(t) ←→ Ω0

(jΩ + a)2 + (Ω0)2

28. e−a|t| sin 2πF0|t| ←→ 2Ω0(Ω20 + a2 − Ω2)

(Ω2 + a2 − Ω20)

2 + 4a2Ω20

29. e−at cos 2πF0t · u(t) ←→ jΩ + a(jΩ + a)2 + (Ω0)

2

30. e−a|t| cos 2πF0t ←→ 2a(Ω20 + a2 + Ω2)

(Ω2 + a2 − Ω20)

2 + 4a2Ω20

31. rect(at) =

1 for |t| < 1

2a

0 Else←→ 1

asinc(F

a) a > 0

32. sinc(at) = sin(πat)πat

←→ 1a

rect(Fa) a > 0

33. repT (w(t)) =∑∞

m=−∞ w(t − mT ) ←→ 1|T | comb1/T (W (F ))

34. |T |combT (w(t)) = ←→ rep1/T (W (F ))|T |∑∞

m=−∞ w(mT )δ(t − mT )

35.∑∞

n=−∞ cnδ(t − nT ) ←→ ∑∞n=−∞

1T

cnδ(F − nT) =

∑cne

−j2πnTF

49

Page 51: Collection of Formulas

B.3 The Z-transform

B.3.1 The Z-transform of causal signals

1. X (z) = Z[x(n)] =∑∞

n=−∞ x(n)z−n Transform

2. x(n) = Z−1[X (z)] = 12πj

∫Γ X (z)zn−1dz Invers transform

3.∑

ν aνxν(n) ←→ ∑ν aνXν(z) Linearity

4. x(n − n0) ←→ z−n0X (z) Shift (n0 positive ornegative integer)

5. nx(n) ←→ −z ddz

X (z) Multiplication with n

6. anx(n) ←→ X(

za

)Scaling

7. x(−n) ←→ X(

1z

)Reflection of the time sequence

8.[∑n

=−∞ x()]←→ z

z−1X (z) Summation

9. x ∗ y ←→ X (z) · Y(z) Convolution

10. x(n) · y(n) ←→ 12πj

∫Γ Y(ξ)X

(zξ

)ξ−1dξ Product

11. x(0) = limz→∞X (z) (if the limit value exist) Initial value theorem

12. limn→∞ x(n) = limz→1(z − 1)X (z) End value theorem(if the unit cirle is included in the ROC)

13.∑∞

=−∞ x()y() = 12πj

∫Γ x(z)y

(1z

)z−1dz Parseval’s teorem for

real time sequences

14.∑∞

=−∞ x2() = 12πj

∫Γ X (z)X (z−1)z−1dz – ” –

50

Page 52: Collection of Formulas

Sequence ←→ Transform

x(n) ←→ X (z)

15. δ(n) ←→ 1

16. u(n) ←→ 11 − z−1

17. nu(n) ←→ z−1

(1 − z−1)2

18. αnu(n) ←→ 11 − αz−1

19. (n + 1)αnu(n) ←→ 1(1 − αz−1)2

20.(n + 1)(n + 2) . . . (n + r − 1)

(r − 1)!αnu(n) ←→ 1

(1 − αz−1)r

21. αn cos βn u(n) ←→ 1 − z−1α cos β1 − z−12α cos β + α2z−2

22. αn sin βn u(n) ←→ z−1α sin β1 − z−12α cos β + α2z−2

23. Fnu(n) ←→ (I − z−1F)−1

B.3.2 Single-Sided Z-transform of non-causal signals

Notation

X+(z) =∑∞

n=0 x(n)z−n Single-sided z-transform, x(n) notnecessarily causal.

X (z) = X+(z) For causal signals

Shifting x(n)yields:i) one step shift

x(n − 1) ←→ z−1X+(z) + x(−1)

x(n + 1) ←→ zX+(z) − x(0) · zii) n0 step shift (n0 ≥ 0)

x(n − n0) ←→ z−n0X+(z) + x(−1)z−n0+1 +

+x(−2)z−n0+2 + . . . + x(−n0)

x(n + n0) ←→ zn0X+(z) − x(0)zn0 − x(1)zn0−1 − . . . − x(n0 − 1)z

51

Page 53: Collection of Formulas

B.4 Fourier Transform for Discrete Time Signal

1. X(f) = F(x(n)) = Transform=

∑∞=−∞ x()e−j2πf ω = 2πf

2. x(n) =∫ 1/2−1/2 X(f)ej2πfndf = Inverse transform

= 12π

∫ π−π X(f)ejωndω

3.∑

aνxν(n) ←→ ∑ν aνXν(f) Linearity

4. x(n − n0) ←→ X(f) · e−j2πfn0 Shift

5. x(n)ej2πf0n ←→ X(f − f0) Frequency translation

6. x(n) · cos 2πf0n ←→ 1

2[X(f − f0) + X(f + f0)]

Modulation

7. x(n) · sin 2πf0n ←→ 1

2j[X(f − f0) − X(f + f0)]

Modulation

8. x ∗ y ←→ X(f) · Y (f) Convolution

9. x · y ←→ ∫ 1/2−1/2 X(λ) · Y (f − λ)dλ Product

10.∑∞

=−∞ x()y() = Parseval’s teorem

=∫ 1/2−1/2 X(f)Y ∗(f)df for real time sequences

11. X(f) = X (ejω) if x(n) = 0 for n < n0 and∑∞=−∞ |x()|2 < ∞

(Valid for for example: 18,19,20,21 och 22in the Z-transform table for |α| < 1)

12. δ(n) ←→ 1

13. δ(n − n0) ←→ e−jωn0

14. 1 ∀n ←→ ∑∞p=−∞ δ(f − p)

15. u(n) ←→ 1

2

∑∞p=−∞ δ(f − p) +

1

2+ 1

j · 2 · tan(πf)

52

Page 54: Collection of Formulas

16. 2f1 · sinc(2f1 · n) = 2f1sin(2πf1n)

2πf1n

←→ rectp

(f

2f1

)=

1 |f − n| < f1 < 1/2 , n integer

0 ElseIdeal LP filter

17. 4f1sinc(2f1n) cos(2πf0n)

←→ rectp

(f − f0

2f1

)+ rectp

(f + f0

2f1

)Ideal BP Filter

18. 2πf1n cos 2πf1n − sin 2πf1nπn2

←→ (j2πf)p =

j2π(f − n) |f − n| < f1 < 1/2 , n integer

0 Else“Derivating” system

19. cos(2πf0n) ←→ 1

2

∑∞p=−∞[δ(f − f0 − p) + δ(f + f0 − p)]

20. α|n| ←→ 1 − α2

1 + α2 − 2α cos 2πf

21. α|n| cos(2πf0n)

←→ 1 − α2

2

[1

1 + α2 − 2α cos 2π(f + f0)+ 1

1 + α2 − 2α cos 2π(f − f0)

]

22. pr(n) =

1 |n| ≤ M − 12

0 Else

M odd

←→ Pr(f) =sin(πfM)sin(πf)

Rectangular window

53

Page 55: Collection of Formulas

B.5 Some DFT Properties

Time Frequencyx(n), y(n) X(k), Y (k)x(n) = x(n + N) X(k) = X(k + N)x(N − 1) X(N − k)x((n − 1))<N> X(k)e−j2πk1/N

x(n)ej2π1n/N X((k − 1))<N>

x∗(n) X∗(N − k)x1(n) ©∗ x2(n) X1(k)X2(k)x(n) ©∗ y∗(−n) X(k)Y ∗(k)x1(n)x2(n) 1

NX1(k) N X2(k)∑N−1

n=0 x(n)y∗(n) 1N

∑N−1k=0 X(k)Y ∗(k)

54