56

Collecting Data - LAKEKIT.NET · Anabaena sp. Cyanophyta 10 243 3.3 Aphanizomenon sp. Cyanophyta 259 6302 85.5 Aphanocapsa sp. Cyanophyta 14 341 4.6 Cyanophyta 10 243 3.3 Cyanophyta

  • Upload
    others

  • View
    9

  • Download
    0

Embed Size (px)

Citation preview

• TP, SRP

• NO2+NO3, NH4, TKN

• SO4

• Fe

• DOM, DOC, DIC

• Chlorophyll a

• TSS

0.000

0.050

0.100

0.150

0.200

0.250

0.300

0.350

0.400

0.450

Tota

l Ph

osp

ho

rus

(mg/

l)

Date

2012 Total Phosphorus (mg/l)

Surface Bottom

• Dissolved Oxygen (mg/l)

• Conductivity (mS/cm)

• Specific Conductance (mS/cm @ 25°C)

• Salinity (ppt)

• Temperature (C°)

• pH

• ORP (mV)

• % organic matter

• Fe/Mn bound P

• Ca bound P

• N

• SO4

• Fe

A

Some changes in structure and function of community, some loss of native taxa, unexpected/tolerant taxa sustained, anomalies infrequent

Extreme changes in structure and function, wholesale changes in taxa, virtual absence of sensitive taxa, predominance by one or a few tolerant, taxa, extremely low taxa richness, abnormalities and anomalies extremely elevated

Natural structure and function of community

Structure & function similar to natural community with some additional taxa and biomass, no or incidental anomalies, sensitive invasive taxa may be present

B

C

D

E

F

ORW Uses

Stressor Gradient [Effect of Human Activity]

LOW HIGH

Attainability Threshold

Bio

logi

cal C

on

dit

ion

[S

pe

cifi

c to

Eco

typ

e]

Algae Identification on Wild Goose Lake

27-May-08

6-foot composite sample

Taxa Division

#

count

ed

Concentrati

on

(units/ml)

Relative %

concentrati

on

Aulacoseira sp Bacillariophyta 2 8 0.6

Crucigenia sp. Chlorophyta 62 256 20.7

Oocystis sp. Chlorophyta 54 223 18

Pediastrum sp. Chlorophyta 3 12 1

Scenedesmus sp. Chlorophyta 41 169 13.7

Schroederia sp. Chlorophyta 8 33 2.7

Selenastrum sp. Chlorophyta 96 396 32

Spondylosium sp. Chlorophyta 3 12 1

Staurastrum sp. Chlorophyta 3 12 1

Staurodesmus sp. Chlorophyta 8 33 2.7

Tetraedron sp. Chlorophyta 5 21 1.7

Dinobryon sp. Chrysophyta 7 29 2.3

Cryptomonas sp. Cryptophyta 6 25 2

Woronichinia naegeliana Cyanophyta 1 4 0.3

Peridinium sp. Pyrrhophyta 1 4 0.3

Algae Identification on Wild Goose Lake

16-Jun-08

6-foot composite sample

Taxa Division

#

counte

d

Concentrati

on

(units/ml)

Relative %

concentrati

on

Aulacoseira sp Bacillariophyta 1 8 0.3

Pennales Diatoms Bacillariophyta 6 48 2

Cosmarium sp Chlorophyta 11 88 3.6

Crucigenia sp. Chlorophyta 143 1146 47.4

Dictyosphaerium sp. Chlorophyta 4 32 1.3

Oocystis sp. Chlorophyta 20 160 6.6

Pediastrum sp. Chlorophyta 2 16 0.7

Scenedesmus sp. Chlorophyta 28 224 9.3

Schroederia sp. Chlorophyta 2 16 0.7

Spondylosium sp. Chlorophyta 9 72 3

Staurastrum sp. Chlorophyta 8 64 2.6

Staurodesmus sp. Chlorophyta 5 40 1.7

Cryptomonas sp. Cryptophyta 6 48 2

Anabaena sp. Cyanophyta 1 8 0.3

Aphanocapsa sp. Cyanophyta 7 56 2.3

Aphanothece sp. Cyanophyta 8 64 2.6

Chroococcus sp. Cyanophyta 2 16 0.7

Merismopedia sp. Cyanophyta 1 8 0.3

Microcystis sp. Cyanophyta 3 24 1

Rhabdogloea smithii Cyanophyta 27 216 8.9

Ceratium hirundinella Pyrrhophyta 3 24 1

Peridinium sp. Pyrrhophyta 5 40 1.7

Algae Identification on Wild Goose Lake

14-Jul-08

6-foot composite sample

Taxa Division

#

counte

d

Concentrati

on

(units/ml)

Relative %

concentrati

on

Oocystis sp. Chlorophyta 4 32 1.3

Scenedesmus sp. Chlorophyta 16 127 5.2

Tetraedron sp Chlorophyta 1 8 0.3

Cryptomonas sp. Cryptophyta 17 135 5.6

Anabaena sp. Cyanophyta 25 198 8.2

Aphanizomenon sp. Cyanophyta 62 491 20.2

Aphanocapsa sp. Cyanophyta 106 840 34.6

Aphanothece sp. Cyanophyta 59 467 19.3

Microcystis sp. Cyanophyta 16 127 5.2

Algae Identification on Wild Goose Lake

25-Aug-08

6-foot composite sample

Taxa Division

#

counte

d

Concentrati

on

(units/ml)

Relative %

concentrati

on

Scenedesmus sp. Chlorophyta 2 49 0.7

Cryptomonas sp. Cryptophyta 4 97 1.3

Anabaena sp. Cyanophyta 10 243 3.3

Aphanizomenon sp. Cyanophyta 259 6302 85.5

Aphanocapsa sp. Cyanophyta 14 341 4.6

Aphanothece sp. Cyanophyta 10 243 3.3

Chroococcus sp. Cyanophyta 3 73 1

Microcystis sp. Cyanophyta 2 49 0.7

Algae Identification on Wild Goose Lake

15-Sep-08

6-foot composite sample

Taxa Division

#

counte

d

Conce

ntratio

n

(units/

ml)

Relativ

e %

conce

ntratio

n

Aulacoseira sp. Bacillariophyta 2 68 0.6

Oocystis sp. Chlorophyta 1 34 0.3

Scenedesmus sp. Chlorophyta 2 68 0.6

Cryptomonas sp. Cryptophyta 5 170 1.6

Anabaena sp. Cyanophyta 3 102 0.9

Aphanizomenon sp. Cyanophyta 286 9742 89.7

Aphanocapsa sp. Cyanophyta 9 307 2.8

Aphanothece sp. Cyanophyta 2 68 0.6

Chroococcus sp. Cyanophyta 6 204 1.9

Microcystis sp. Cyanophyta 3 102 0.9

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Alg

ae t

ype

(%

)

Date

Bacillariophyta Chlorophyta Chrysophyta

Cryptophyta Cyanophyta Pyrrhophyta

• Population can change daily

• Indication of fish community

• Greatly affected by algae composition

• Could be a good indicator of lake recovery

• Ephippia remain viable for decades

Trichotria sp. 0 0 0 0 0 0 0 0 0

0

0

Nauplii (not counted in richness) 151 520.95 0 26 36 37

Calanoid nauplius 3 7 10 34.5 5 2 1

Cyclopoid nauplius 4 59 78 141 486.45 21 34 36

0

COPEPODA total 100 345 0 20 23 38

Calanoid total 13 44.85 0 0 4 3

Cyclopoid total 87 300.15 0 20 19 35

0

Cryptocyclops sp. 0 1 2

Cyclops sp. 0 1 1

Diacyclops sp. 5 9 14 48.3 1

Diaptomus sp. 4 2 3 9 31.05 4 3

Epischura lacustris 1 3 4 13.8

Microcyclops sp. 32 12 28 72 248.4 19 17 32

Paracyclops sp. 1 1 3.45

Thermocyclops sp. 0

0

CLADOCERA total 31 106.95 0 12 11 13

0

Bosmina/Eubosmina spp. 0

Ceriodaphnia sp. 0

Daphnia spp. 31 106.95 0 12 11 13

Daphnia ambigua 0 2 5

Daphnia galeata mendotae 1 7 20 28 96.6 6 3 5

Daphnia laevis 0

Daphnia lumholtzi 0 1

Daphnia pulex 3 3 10.35 2 3 2

Daphnia rosea 0 3 3 1

Diaphanosoma spp. 0 0 0 0 0 0

Diaphanosoma bergei 0

Diaphanosoma brachyurum 0

Holopedium gibberum 0

Sida crystalina 0

0

ARTHROPODA 0

Wild Goose Lake, 2008

0

200

400

600

800

1000

1200

27

-May

-08

10

-Ju

n-0

8

24

-Ju

n-0

8

8-J

ul-

08

22

-Ju

l-0

8

5-A

ug-

08

19

-Au

g-0

8

2-S

ep-0

8

# /

m3

Rotifera

Copepoda

Cladocera

Zooplankton Total Sample Concentration

0

200

400

600

800

1000

1200

1400

5/23/2005 6/12/2005 7/2/2005 7/22/2005 8/11/2005 8/31/2005

Zoopla

nkto

n (

anim

als

/L)

0

10

20

30

40

50

60

70

80

90

100

BG

and C

hl a

Zooplankton Blue Green Algae Relative Conc (%) Chlorophyll (ug/L)

Floristic Quality Index

NCI

(Nichols, 1999)

Floristic Quality Index v Secchi Depth

y = 1.0973x + 20.589

R2 = 0.3367

0.00

10.00

20.00

30.00

40.00

50.00

60.00

0 5 10 15 20 25 30

Secchi Depth

FQ

I

Floristic Quality Index v TP

y = -0.1029x + 34.936

R2 = 0.2212

0.00

10.00

20.00

30.00

40.00

50.00

60.00

0 50 100 150 200 250 300

TP

FQ

I

Floristic Quality Index v Chl a

y = -0.1609x + 33.73

R2 = 0.1765

0.00

10.00

20.00

30.00

40.00

50.00

60.00

0 50 100 150 200

Chl a

FQ

I

Hard Surface 7%

Landscaping 4%

Lawn 31%

Bare Soil 1%

Natural 57%

Big Lake Shoreline Buffer Composition

Row Crop 46%

Mixed Ag 2%

Pasture/Grass

9%

Medium Density

Residential 6%

Rural Residential

7%

Wetlands 2%

Forest 17%

Lake 11%

Land Use in the Long Lake Watershed

Reckhow 1977 Lakes < 50 meters model:

Nurnberg total phosphorus model: where

Osgood Lake mixing index:

Essentially all models are wrong, but some are useful. - George E. P. Box

• Chemical suite much like lakes

• Flow reading taken every foot

– Determines volume

– Volume x concentration = discharge

• Important to calibrate models

Using sediment cores

Element Source Analysis location

Core Dating

Core interpretation -record of ecological change -timing and magnitude -quantitative reconstruction of feeding groups

210Pb From natural radium minerals

SCWRS

137Cs Atmospheric tests of nuclear bombs

SCWRS

14C Cosmic rays hitting earth’s atmosphere

Arizona

Core Analysis -biogeochemical -biological, algae, chironomidae -sediment character -etc.

Whole system reconstruction: • Diatoms (WA nutrient inferences; littoral-pelagial

production)

• Pigments: non-siliceous algae (HPLC)

• Zooplankton - fish and trophic interactions

• Chironomids (maybe) - benthic and littoral dynamics

• Macrophytes - plant macrofossils

• Geochemistry - nutrient cycling

• Mineral magnetics - terrestrial inputs

Nutrients

Diatom-inferred TP

Response

Algal production and

composition

sedimentary pigments

Fish communities

Zooplankton-inferred fish

density

Macrophytes

Macrofossils

Predictors

Diatoms-a powerful tool

-1000s of species worldwide, fast turnover, preserve well -excellent indicators of environmental conditions -method for quantitative reconstruction of enviro variables

Slide courtesy of Mark Edlund

Diatom analysis

Samples taken from near core top to assess modern conditions in lake

Samples taken from below European settlement horizon to assess natural or background nutrient levels in lakes

Apply modern calibration models to fossil assemblages to calculate historical nutrient levels

Slide courtesy of Mark Edlund

The paleo approach 2. -sample many lakes that span environmental gradients -sample modern chemistry -sample surface sediments, analyze modern diatom communities -use ordination techniques, CCA -generate transfer function using weighted averaging regression to estimate species-enviro optima

Lotus Lake

Planktonic Benthic

pre-European settlement

1850-1891

1900-1950

1960-2006

Slide courtesy of Joy Ramstack-Hobbs

1700

1750

1800

1850

1900

1950

2000

2050

10 20 30 40

TP (ug/l)Y

ea

r

Horse Lake

1700

1750

1800

1850

1900

1950

2000

2050

10 20 30 40 50

TP (ug/l)

Ye

ar

Lotus Lake

Slide courtesy of Joy Ramstack-Hobbs

Sediment core imaging, magnetics, and 210-Pb

gamma analysis

core imaging can identify major changes in sedimentation history such as loss of macrophytes or drying of lake beds (paleosols)

peaks in magnetic susceptibility can indicate landuse changes from: -European land clearance -historical lake level changes impact on sediment character

Unsupported levels of 210Pb at or below zero indicate sediments deposited >150 yrs ago, i.e. pre-European settlement

(top of core sectioned in field)

Slide courtesy of Mark Edlund

1700

1750

1800

1850

1900

1950

2000

0.00 0.02 0.04 0.06 0.08

Sediment Accumulation (g/cm2

yr)

lea

d-2

10

ag

e (

yr)

1700

1750

1800

1850

1900

1950

2000

0.00 0.10 0.20 0.30 0.40

Sediment Accumulation (g/cm2

yr)

lea

d-2

10

ag

e (

yr)

Horse Lake Lotus Lake

Sediment Accumulation Rates

Slide courtesy of Joy Ramstack-Hobbs

Altered biological structure and the reconstruction of fish

• How do we get to fish from the sediment record? – directly: fish scales

– indirectly - through zooplankton assemblage structure

– Pigments – grazing indicators

Slide courtesy of N. John Anderson

• Pigments are an important record of non-siliceous algae

• Pigment losses are well studied

• Zooplankton can increase transfer rate

Slide courtesy of N. John Anderson

• Pigment analysis • Pheophorbide as a grazing indicator • Good agreement with %Daphnia – a important grazer (in terms of grazing

rates)

Slide courtesy of N. John Anderson

• Herbarium records

• Sporadic monitoring data

• Natural history observations

Slide courtesy of N. John Anderson

0

20

40

60

80

100

0

200

400

600

800

1750 1800 1850 1900 1950 2000

0

4000

8000

0

10

20

30

40

0

400

800

Lake Lading

%

An

gio

spe

rms

Flo

atin

g-le

aved

Ch

arop

hytes

Op

en

wat

er A

ttache

d

Diatoms

Aquatic Plants

Zoo-plankton

Fragilaria spp.

Planktonic spp.

Angiosperms Charophytes

Floating-leaved

Attached Open

Year Slide courtesy of N. John Anderson

1750 1800 1850 1900 1950 2000

0

100

200

300

400

500

0

50

100

150

200

250

Lake Lading

TP

Fish Plants

Mac

rofo

ssils

nu

mb

ers

/ 1

00

cm3

µ

gTotal p

ho

sph

oru

s/ L

CP

UE P

lanktivo

rou

s Fish

Slide courtesy of N. John Anderson

Floristic Quality v Alkalinity

y = -0.0528x + 30.661

R2 = 0.2472

0.00

10.00

20.00

30.00

40.00

50.00

0 50 100 150 200

Alkalinity

FQ

I

Floristic Quality v pH

y = -5.9621x + 73.918

R2 = 0.2276

0.00

10.00

20.00

30.00

40.00

50.00

6.5 7 7.5 8 8.5 9 9.5 10

pH

FQ

I

Floristic Quality v Conductivity

y = -0.0167x + 29.019

R2 = 0.1705

0.00

10.00

20.00

30.00

40.00

50.00

0 100 200 300 400 500 600 700 800

Conductivity

FQ

I