5
Edited by Carlos Gershenson COLLABORATIONS: THE FOURTH AGE OF RESEARCH The following news item is taken in part from the May 30, 2013 issue of Nature titled ‘‘Collaborations: The Fourth Age of Research,’’ by Jonathan Adams. Research has progressed through three ages: the individual, the institutional, and the national. Nations competed to be at the cutting edge because this contributed to the wider economy through knowledge, new processes, and products. Today, we are entering the fourth age of research, driven by international collaborations between elite research groups. This will challenge the ability of nations to conserve their scientific wealth either as intellectual property or as research talent. Tensions are growing between the knowledge a country needs to remain competitive and the assets it can exclusively secure and between the collaborative and domestic parts of the research base. Institutions that do not form international collaborations risk progressive disenfranchisement and countries that do not nurture their talent will lose out entirely. A link to this article can be found at http://dx.doi.org/10.1038/497557a. EARLY WARNING SIGNALS The following news item is taken in part from the May 2013 issue of arXiv titled ‘‘Early Warning Signals: The Charted and Uncharted Territories,’’ by Carl Boettiger, Noam Ross, and Alan Hastings. The realization that complex systems such as ecological communities can collapse or shift regimes suddenly and without rapid external forcing poses a serious challenge to our understanding and management of the natural world. The potential to identify early warning signals that would allow researchers and managers to predict such events before they happen has therefore been an invaluable discovery that offers a way forward despite such seemingly unpredictable behav- ior. Research into early warning signals has demonstrated that it is possible to define and detect such early warning signals in advance of a transition in certain contexts. Here, we describe the pattern emerging as research continues to explore just how far we can generalize these results. A core of examples emerges that shares three properties: the phenomenon of rapid regime shifts, a pattern of ‘‘critical slowing down’’ that can be used to detect the approaching shift, and a mechanism of bifurcation driving the sudden change. As research has expanded beyond these core examples, it is becoming clear that not all systems that show regime shifts exhibit critical slowing down or vice versa. Even when systems exhibit critical slow- ing down, statistical detection is a challenge. We review the literature that explores these edge cases and highlights the need for (a) new early warning behaviors that can be used in cases where rapid shifts do not exhibit critical slowing down; (b) the development of methods to identify which behavior might be an appropriate signal when encountering a novel system, bearing in mind that a positive indication for some systems is a negative indication in others; and (c) statistical methods that can distinguish between signatures of early warning behaviors and noise. A link to this article can be found at http://arxiv.org/abs/1305.6700. BIG DATA NEEDS A BIG THEORY The following news item is taken in part from the May 15, 2013 issue of Scientific American titled ‘‘Big Data Needs a Big Theory to Go with It,’’ by Geoffrey West. COMPLEXITY 1 Q 2013 Wiley Periodicals, Inc., Vol. 19, No. 1 DOI 10.1002/cplx.21451 Published online 4 September 2013 in Wiley Online Library (wileyonlinelibrary.com)

Collaborations: The fourth age of research

  • Upload
    carlos

  • View
    213

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Collaborations: The fourth age of research

Edited by Carlos Gershenson

COLLABORATIONS: THE FOURTH AGE OF RESEARCH

The following news item is taken in part from the May 30, 2013 issue of Nature titled ‘‘Collaborations: The Fourth

Age of Research,’’ by Jonathan Adams.

Research has progressed through three ages: the individual, the institutional, and the national. Nations competed to

be at the cutting edge because this contributed to the wider economy through knowledge, new processes, and products.

Today, we are entering the fourth age of research, driven by international collaborations between elite research

groups. This will challenge the ability of nations to conserve their scientific wealth either as intellectual property or

as research talent. Tensions are growing between the knowledge a country needs to remain competitive and the

assets it can exclusively secure and between the collaborative and domestic parts of the research base. Institutions

that do not form international collaborations risk progressive disenfranchisement and countries that do not nurture

their talent will lose out entirely.

A link to this article can be found at http://dx.doi.org/10.1038/497557a.

EARLY WARNING SIGNALSThe following news item is taken in part from the May 2013 issue of arXiv titled ‘‘Early Warning Signals: The Charted

and Uncharted Territories,’’ by Carl Boettiger, Noam Ross, and Alan Hastings.

The realization that complex systems such as ecological communities can collapse or shift regimes suddenly and

without rapid external forcing poses a serious challenge to our understanding and management of the natural world. The

potential to identify early warning signals that would allow researchers and managers to predict such events before they

happen has therefore been an invaluable discovery that offers a way forward despite such seemingly unpredictable behav-

ior. Research into early warning signals has demonstrated that it is possible to define and detect such early warning signals

in advance of a transition in certain contexts. Here, we describe the pattern emerging as research continues to explore just

how far we can generalize these results. A core of examples emerges that shares three properties: the phenomenon of rapid

regime shifts, a pattern of ‘‘critical slowing down’’ that can be used to detect the approaching shift, and a mechanism of

bifurcation driving the sudden change. As research has expanded beyond these core examples, it is becoming clear that

not all systems that show regime shifts exhibit critical slowing down or vice versa. Even when systems exhibit critical slow-

ing down, statistical detection is a challenge. We review the literature that explores these edge cases and highlights the

need for (a) new early warning behaviors that can be used in cases where rapid shifts do not exhibit critical slowing down;

(b) the development of methods to identify which behavior might be an appropriate signal when encountering a novel

system, bearing in mind that a positive indication for some systems is a negative indication in others; and (c) statistical

methods that can distinguish between signatures of early warning behaviors and noise.

A link to this article can be found at http://arxiv.org/abs/1305.6700.

BIG DATA NEEDS A BIG THEORYThe following news item is taken in part from the May 15, 2013 issue of Scientific American titled ‘‘Big Data Needs a

Big Theory to Go with It,’’ by Geoffrey West.

C O M P L E X I T Y 1Q 2013 Wiley Periodicals, Inc., Vol. 19, No. 1DOI 10.1002/cplx.21451Published online 4 September 2013 in Wiley Online Library(wileyonlinelibrary.com)

Page 2: Collaborations: The fourth age of research

As the world becomes increasingly complex and interconnected, some of our biggest challenges have begun

to seem intractable. What should we do about uncertainty in the financial markets? How can we predict energy

supply and demand? How will climate change play out? How do we cope with rapid urbanization? Our tradi-

tional approaches to these problems are often qualitative and disjointed and lead to unintended consequences.

To bring scientific rigor to the challenges of our time, we need to develop a deeper understanding of complexity

itself.

A link to this article can be found at http://www.scientificamerican.com/article.cfm?id5big-data-needs-big-theory.

CULTURE, GENES, AND THE HUMAN REVOLUTIONThe following news item is taken in part from the May 24, 2013 issue of Science titled ‘‘Culture, Genes, and the

Human Revolution,’’ by Simon E. Fisher and Matt Ridley.

State-of-the-art DNA sequencing is providing ever more detailed insights into the genomes of humans, extant

apes, and even extinct hominins, offering unprecedented opportunities to uncover the molecular variants that make

us human. A common assumption is that the emergence of behaviorally modern humans after 200,000 years ago

required—and followed—a specific biological change triggered by one or more genetic mutations. For example, [it

has been] argued that the dawn of human culture stemmed from a single genetic change that ‘‘fostered the uniquely

modern ability to adapt to a remarkable range of natural and social circumstance.’’ However, are evolutionary

changes in our genome a cause or a consequence of cultural innovation?

A link to this article can be found at http://dx.doi.org/10.1126/science.1236171.

COMMUNITY DETECTION AND GRAPH PARTITIONINGThe following news item is taken in part from the May 2013 issue of arXiv titled ‘‘Community Detection and Graph

Partitioning,’’ by M. E. J. Newman.

Many methods have been proposed for community detection in networks. Some of the most promising are

methods based on statistical inference, which rest on solid mathematical foundations and return excellent results in

practice. In this article, we show that two of the most widely used inference methods can be mapped directly onto

versions of the standard minimum-cut graph partitioning problem, which allows us to apply any of the many

well-understood partitioning algorithms to the solution of community detection problems. We illustrate the approach

by adapting the Laplacian spectral partitioning method to perform community inference, testing the resulting

algorithm on a range of examples, including computer-generated and real-world networks. Both the quality of the

results and the running time rival the best previous methods.

A link to this article can be found at http://arxiv.org/abs/1305.4974.

THE FUTURE OF COGNITIVE SCIENCEThe following news item is taken in part from the June 2013 issue of Behavioral and Brain Sciences titled ‘‘Whatever

Next? Predictive Brains, Situated Agents, and the Future of Cognitive Science,’’ by Andy Clark.

Brains, it has recently been argued, are essentially prediction machines. They are bundles of cells that support

perception and action by constantly attempting to match incoming sensory inputs with top–down expectations or

predictions. This is achieved using a hierarchical generative model that aims to minimize prediction error within a

bidirectional cascade of cortical processing. Such accounts offer a unifying model of perception and action,

illuminate the functional role of attention, and may neatly capture the special contribution of cortical processing to

adaptive success. This target article critically examines this ‘‘hierarchical prediction machine’’ approach, concluding

that it offers the best clue yet to the shape of a unified science of mind and action.

A link to this article can be found at http://dx.doi.org/10.1017/S0140525X12000477.

CONTROLLABILITY TRANSITION AND NONLOCALITY IN NETWORK CONTROLThe following news item is taken in part from the May 14, 2013 issue of Physical Review Letters titled ‘‘Controllability

Transition and Nonlocality in Network Control,’’ by Jie Sun and Adilson E. Motter.

A common goal in the control of a large network is to minimize the number of driver nodes or control inputs.

Yet, the physical determination of control signals and the properties of the resulting control trajectories

2 C O M P L E X I T Y Q 2013 Wiley Periodicals, Inc.DOI 10.1002/cplx

Page 3: Collaborations: The fourth age of research

remain widely underexplored. Here, we show that (i) numerical control fails in practice even for linear systems if the

controllability Gramian is ill conditioned, which occurs frequently even when existing controllability criteria are satis-

fied unambiguously; (ii) the control trajectories are generally nonlocal in the phase space, and their lengths are

strongly anticorrelated with the numerical success rate and number of control inputs; and (iii) numerical success

rate increases abruptly from zero to nearly one as the number of control inputs is increased, a transformation we

term numerical controllability transition. This reveals a trade-off between nonlocality of the control trajectory in the

phase space and nonlocality of the control inputs in the network itself. The failure of numerical control cannot be

overcome in general by merely increasing numerical precision—successful control requires instead increasing the

number of control inputs beyond the numerical controllability transition.

A link to this article can be found at http://prl.aps.org/abstract/PRL/v110/i20/e208701.

ECOLOGY OF TUMORSThe following news item is taken in part from the May 2013 issue of arXiv titled ‘‘Exploiting Ecological Principles to

Better Understand Cancer Progression and Treatment,’’ by David Basanta and Alexander R. A. Anderson.

A small but growing number of people are finding interesting parallels between ecosystems as studied by ecolo-

gists (think of a Savanna, the Amazon rain forest or a Coral reef) and tumors. The idea of viewing cancer from an

ecological perspective has many implications, but fundamentally, it means that we should not see cancer just as a

group of mutated cells. A more useful definition of cancer is to consider it a disruption in the complex balance of

many interacting cellular and microenvironmental elements in a specific organ. This perspective means that organs

undergoing carcinogenesis should be seen as sophisticated ecosystems in homeostasis that cancer cells can disrupt.

It also makes cancer seem even more complex but may ultimately provide insights that make it more treatable. Here,

we discuss how ecological principles can be used to better understand cancer progression and treatment, using sev-

eral mathematical and computational models to illustrate our argument.

A link to this article can be found at http://arxiv.org/abs/1305.2249.

ENVIRONMENTAL HOMEOSTASISThe following news item is taken in part from the May 16, 2013 issue of PLoS Computational Biology titled ‘‘The

Emergence of Environmental Homeostasis in Complex Ecosystems,’’ by James G. Dyke and Iain S. Weaver.

Life on Earth is perhaps greater than three and a half billion years old and it would appear that once it started

it never stopped. During this period, a number of dramatic shocks and drivers have affected the Earth. These

include the impacts of massive asteroids, runaway climate change, and increases in brightness of the Sun. Has life

on Earth simply been lucky in withstanding such perturbations? Are there any self-regulating or homeostatic proc-

esses operating in the Earth system that would reduce the severity of such perturbations? If such planetary proc-

esses exist, to what extent are they the result of the actions of life? In this study, we show how the regulation of

environmental conditions can emerge as a consequence of life’s effects. If life is both affected by and affects it

environment, then this coupled system can self-organize into a robust control system that was first described dur-

ing the early cybernetics movement around the middle of the 20th century. Our findings are in principle applicable

to a wide range of real-world systems (. . .).

A link to this article can be found at http://dx.doi.org/10.1371/journal.pcbi.1003050.

AGENT-BASED TECHNOLOGY FOR TRAFFIC AND TRANSPORTATIONThe following news item is taken in part from the May 3, 2013 issue of The Knowledge Engineering Review titled ‘‘A

Review on Agent-Based Technology for Traffic and Transportation,’’ by Ana L. C. Bazzan and Franziska Kl€ugl.

In the last few years, the number of papers devoted to applications of agent-based technologies to traffic and

transportation engineering has grown enormously. Thus, it seems to be the appropriate time to shed light over the

achievements of the last decade, on the questions that have been successfully addressed, as well as on remaining

challenging issues. In this article, we review the literature related to the areas of agent-based traffic modeling and

simulation and agent-based traffic control and management. Later, we discuss and summarize the main achieve-

ments and the challenges.

A link to this article can be found at http://dx.doi.org/10.1017/S0269888913000118.

C O M P L E X I T Y 3Q 2013 Wiley Periodicals, Inc.DOI 10.1002/cplx

Page 4: Collaborations: The fourth age of research

CHAOS AT FIFTYThe following news item is taken in part from the 2013/05 issue of Physics Today titled ‘‘Chaos at fifty,’’ by Adilson E.

Motter and David K. Campbell.

Starting in the 19th century (. . .) and culminating with a 1963 paper by MIT meteorologist Edward Lorenz (. . .), a

series of developments revealed that the notion of deterministic predictability, although appealingly intuitive, is in

practice false for most systems. Small uncertainties in an initial state can indeed become large errors in a final one.

Even simple systems for which all forces are known can behave unpredictably. Determinism, surprisingly enough,

does not preclude chaos.

A link to this article can be found at http://dx.doi.org/10.1063/PT.3.1977.

GLOBALLY NETWORKED RISKS AND HOW TO RESPONDThe following news item is taken in part from the May 2, 2013 issue of Nature titled ‘‘Globally Networked Risks and

How to Respond,’’ by Dirk Helbing.

Today’s strongly connected, global networks have produced highly interdependent systems that we do not understand

and cannot control well. These systems are vulnerable to failure at all scales, posing serious threats to society, even when

external shocks are absent. As the complexity and interaction strengths in our networked world increase, man-made

systems can become unstable, creating uncontrollable situations even when decision makers are well skilled, have all data

and technology at their disposal, and do their best. To make these systems manageable, a fundamental redesign is needed.

A ‘‘Global Systems Science’’ might create the required knowledge and paradigm shift in thinking.

A link to this article can be found at http://dx.doi.org/10.1038/nature12047.

NETWORKS IN COGNITIVE SCIENCEThe following news item is taken in part from the April 2013 issue of arXiv titled ‘‘Networks in Cognitive Science,’’ by

Andrea Baronchelli, Ramon Ferrer-i-Cancho, Romualdo Pastor-Satorras, Nick Chater, and Morten H. Christiansen.

Networks of interconnected nodes have long played a key role in cognitive science, from artificial neural networks

to spreading activation models of semantic memory. Recently, however, a new Network Science has been developed,

providing insights into the emergence of global, system-scale properties in contexts as diverse as the Internet, meta-

bolic reactions, or collaborations among scientists. Today, the inclusion of network theory into cognitive sciences and

the expansion of complex systems science promise to significantly change the way in which the organization and

dynamics of cognitive and behavioral processes are understood. In this article, we review recent contributions of net-

work theory at different levels and domains within the cognitive sciences.

A link to this article can be found at http://arxiv.org/abs/1304.6736.

QUANTIFYING TRADING BEHAVIOR WITH GOOGLEThe following news item is taken in part from the April 2013 issue of Scientific Reports titled ‘‘Quantifying Trading

Behavior in Financial Markets Using Google Trends,’’ by Tobias Preis, Helen Susannah Moat, and H. Eugene Stanley.

Crises in financial markets affect humans worldwide. Detailed market data on trading decisions reflect some of

the complex human behaviors that have led to these crises. We suggest that massive new data sources resulting from

human interaction with the Internet may offer a new perspective on the behavior of market participants in periods

of large market movements. By analyzing changes in Google query volumes for search terms related to finance, we

find patterns that may be interpreted as ‘‘early warning signs’’ of stock market moves. Our results illustrate the poten-

tial that combining extensive behavioral data sets offers for a better understanding of collective human behavior.

A link to this article can be found at http://dx.doi.org/10.1038/srep01684.

BETWEEN HOLISM AND REDUCTIONISMThe following news item is taken in part from the 2013 issue of Biological Journal of the Linnean Society titled

‘‘Between Holism and Reductionism: A Philosophical Primer on Emergence,’’ by Massimo Pigliucci.

Ever since Darwin, a great deal of the conceptual history of biology may be read as a struggle between two philo-

sophical positions: reductionism and holism. On one hand, we have the reductionist claim that evolution has to be

understood in terms of changes at the fundamental causal level of the gene. As Richard Dawkins famously put it,

4 C O M P L E X I T Y Q 2013 Wiley Periodicals, Inc.DOI 10.1002/cplx

Page 5: Collaborations: The fourth age of research

organisms are just ‘‘lumbering robots’’ in the service of their genetic masters. On the other hand, there is a long

holistic tradition that focuses on the complexity of developmental systems, on the nonlinearity of gene–environment

interactions, and on multilevel selective processes to argue that the full story of biology is a bit more complicated

than that. Reductionism can marshal on its behalf the spectacular successes of genetics and molecular biology

throughout the 20th and 21st centuries. Holism has built on the development of entirely new disciplines and concep-

tual frameworks over the past few decades, including evo-devo and phenotypic plasticity. Yet, a number of biologists

are still actively looking for a way out of the reductionism–holism counterposition, often mentioning the word ‘‘emer-

gence’’ as a way to deal with the conundrum. This article briefly examines the philosophical history of the concept of

emergence, distinguishes between epistemic and ontological accounts of it, and comments on conceptions of emer-

gence that can actually be useful for practicing evolutionary biologists.

A link to this article can be found at http://philpapers.org/rec/PIGBHA.

CAUSAL ENTROPIC FORCESThe following news item is taken in part from the May 19, 2013 issue of Physical Review Letters titled ‘‘Causal

Entropic Forces,’’ by A. D. Wissner-Gross and C. E. Freer.

Recent advances in fields ranging from cosmology to computer science have hinted at a possible deep connection

between intelligence and entropy maximization, but no formal physical relationship between them has yet been

established. Here, we explicitly propose a first step toward such a relationship in the form of a causal generalization

of entropic forces that we find can cause two defining behaviors of the human ‘‘cognitive niche’’—tool use and social

cooperation—to spontaneously emerge in simple physical systems. Our results suggest a potentially general thermo-

dynamic model of adaptive behavior as a nonequilibrium process in open systems.

A link to this article can be found at http://dx.doi.org/10.1103/PhysRevLett.110.168702.

LABOR NETWORKSThe following news item is taken in part from the May 2, 2013 issue of PLoS One titled ‘‘Employment Growth through

Labor Flow Networks,’’ by Omar A. Guerrero and Robert L. Axtell.

It is conventional in labor economics to treat all workers who are seeking new jobs as belonging to a labor pool,

and all firms that have job vacancies as an employer pool, and then match workers to jobs. Here, we develop a new

approach to study labor and firm dynamics. By combining the emerging science of networks with newly available

employment microdata, comprehensive at the level of whole countries, we are able to broadly characterize the pro-

cess through which workers move between firms. Specifically, for each firm in an economy as a node in a graph, we

draw edges between firms if a worker has migrated between them, possibly with a spell of unemployment in

between. An economy’s overall graph of firm–worker interactions is an object we call the labor flow network (LFN).

This is the first study that characterizes a LFN for an entire economy. We explore the properties of this network,

including its topology, its community structure, and its relationship to economic variables. It is shown that LFNs can

be useful in identifying firms with high growth potential. We relate LFNs to other notions of high-performance firms.

Specifically, it is shown that fewer than 10% of firms account for nearly 90% of all employment growth. We conclude

with a model in which empirically salient LFNs emerge from the interaction of heterogeneous adaptive agents in a

decentralized labor market.

A link to this article can be found at http://dx.doi.org/10.1371/journal.pone.0060808.

CONFERENCE ANNOUNCEMENTS

� Emerging Technologies for Evolving Systems: Socio-Technical, Cyber and Big Data, Baltimore, Maryland,

USA, 2013/11/13:15 http://complexsystems.mst.edu

� Second International Workshop on Complex Networks and Their Applications, Complex Networks 2013,

Kyoto, Japan, 2013/12/2–5 https://sites.google.com/site/complexnetworks13/

� ALife XIV: 14th International Conference on the Simulation and Synthesis of Living Systems, New York City,

NY, USA, 2014/07/23:26 http://blogs.cornell.edu/alife14nyc/

C O M P L E X I T Y 5Q 2013 Wiley Periodicals, Inc.DOI 10.1002/cplx