9
Cold cracking susceptibility of X100 pipeline steel Yan Chunyan 1 , Jiang Xinyi 1 , Yuan Yuan 1,2 , Ji Xiulin 1 , Zhang Kezhao 1 严春妍姜心怡元媛纪秀林张可召 1. College of Mechanical and Electrical Engineering, Hohai University, Changzhou 213022, China; 2. CRRC Zhuzhou Locomotive Co., Ltd., Zhuzhou 412001, China Received 7 June 2019; accepted 12 July 2019 Abstract The y-groove Tekken test has been performed to evaluate the cold cracking susceptibility of X100 pipeline steel. The impact of preheating state on the microstructure, distribution of hardness, and the stress-strain state in the welded joint was analyzed. The results show that X100 pipeline steel reveals a low susceptibility to cold cracking with cracking ratios below 20%. It is found that elevated preheating temperature leads to longer cooling time in the welded specimen and ultimately results in a lower cold cracking susceptibility. Preheating temperatures of up to 100 are favorable in decreasing the cold cracking susceptibility due to a relative fine microstructure and low M-A constituent amount in coarse grained heat affected zone, a low hardenability, and low-level residual stress and strain. However, excessive preheating temperatures of 150 and 200 lead to grain coarsening, higher M-A constituent amount, higher residual stress level and in- creasing strain level in the Tekken specimens. Preheating temperature above 150 is not favorable for decreasing the cold cracking suscept- ibility of X100 steel. Key words numerical simulation, temperature field, residual stress, strain, M-A constituent 0 Introduction With soaring consumption of petroleum and natural gas in different application fields, the increasing transportation efficiency for long-distance oil-gas transportation pipelines necessitates the use of higher strength grade pipeline steel. In China, prevailing majority of the existed pipelines were manufactured using steels below X80 grade [1 2] . Steel X100 is required to serve for operation of more efficient pipelines due to its higher strength. The X100 pipeline steel is com- mercially produced via thermal mechanically controlled processing (TMCP) with higher strength level compared to X80 grade steel. Along with the elevated strength level in modern high strength steels, however, the heat-affected zones (HAZ) become comparatively sensitive to cold crack- ing. The cold cracking will shorten the service life span of X100 steel welded joint and lead to catastrophic failure. Cold cracking, also referred to as hydrogen-induced cracking (HIC), usually occurs at relative low temperatures below 150 . Among the welding cracking issues for relat- ive higher strength grade pipeline steel, cold cracking is per- haps the most significant and may happen abruptly, causing disastrous accidents if not well disposed. The occurrence of cold cracking is determined by the interaction of three factors: the hardenability of the steel, hydrogen content and distribution, and the local restraint stress and strain in the welded joint. To assess the cold-cracking sensitivity of the steels, y-groove Tekken test is frequently adopted due to its easy implementation. Węglowski et al. [3] suggested the cold-cracking tendency was decided by heat input and pre- heating temperature. Yi et al. [4] investigated the cold crack- ing in weld metal, and concluded that acicular ferrite is be- neficial to prevent cold cracking and is more influential than the other factors. Chen et al. found that cold cracking could occur in pipeline steel welding when celluloid electrode was used [5] . Tomić et al. [6] studied the susceptibility towards cold Foundation item: Project was supported by the National Natural Science Foundation of China (Grant No. 51804097) and Fundamental Re- search Funds for the Central Universities (Grant No. 2017B17614). Corresponding author: Yan Chunyan, (1982 – ), PhD, Associate Professor. Mainly engaged in hybrid laser arc welding, weldability of fer- rous metals and numerical simulation for prediction of welding residual stress. E-mail: [email protected] doi: 10.12073/j.cw.20190607001 Cold cracking susceptibility of X100 pipeline steel 25

Cold cracking susceptibility of X100 pipeline steel

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Cold cracking susceptibility of X100 pipeline steel

 

Cold cracking susceptibility of X100 pipeline steel

Yan Chunyan1,  Jiang Xinyi1,  Yuan Yuan1,2,  Ji Xiulin1,  Zhang Kezhao1

严春妍,姜心怡,元媛,纪秀林,张可召

1. College of Mechanical and Electrical Engineering, Hohai University, Changzhou 213022, China;2. CRRC Zhuzhou Locomotive Co., Ltd., Zhuzhou 412001, China

Received 7 June 2019; accepted 12 July 2019

Abstract The y-groove Tekken test has been performed to evaluate the cold cracking susceptibility of X100 pipeline steel. The impact ofpreheating state on the microstructure, distribution of hardness, and the stress-strain state in the welded joint was analyzed. The results showthat  X100 pipeline steel  reveals  a low susceptibility to cold cracking with cracking ratios below 20%.  It  is  found that  elevated preheatingtemperature leads to longer cooling time in the welded specimen and ultimately results in a lower cold cracking susceptibility.  Preheatingtemperatures of up to 100 ℃ are favorable in decreasing the cold cracking susceptibility due to a relative fine microstructure and low M-Aconstituent  amount in coarse grained heat  affected zone,  a  low hardenability,  and low-level  residual  stress and strain.  However,  excessivepreheating temperatures of 150 ℃ and 200 ℃ lead to grain coarsening, higher M-A constituent amount, higher residual stress level and in-creasing strain level in the Tekken specimens. Preheating temperature above 150 ℃ is not favorable for decreasing the cold cracking suscept-ibility of X100 steel.

Key words numerical simulation, temperature field, residual stress, strain, M-A constituent

 

0 Introduction

With soaring consumption of petroleum and natural gasin  different  application  fields,  the  increasing  transportationefficiency  for  long-distance  oil-gas  transportation  pipelinesnecessitates  the  use  of  higher  strength  grade pipeline  steel.In  China,  prevailing  majority  of  the  existed  pipelines  weremanufactured using steels below X80 grade[1 – 2]. Steel X100is required to serve for operation of more efficient pipelinesdue to  its  higher  strength.  The X100 pipeline steel  is  com-mercially  produced  via  thermal  mechanically  controlledprocessing (TMCP) with higher strength level compared toX80  grade  steel.  Along  with  the  elevated  strength  level  inmodern  high  strength  steels,  however,  the  heat-affectedzones (HAZ) become comparatively sensitive to cold crack-ing.  The cold cracking will  shorten the service life span ofX100 steel welded joint and lead to catastrophic failure.

Cold  cracking,  also  referred  to  as  hydrogen-induced

cracking (HIC), usually occurs at relative low temperaturesbelow 150 ℃. Among the welding cracking issues for relat-ive higher strength grade pipeline steel, cold cracking is per-haps the most significant and may happen abruptly, causingdisastrous accidents if not well disposed. The occurrence ofcold  cracking  is  determined  by  the  interaction  of  threefactors: the hardenability of the steel, hydrogen content anddistribution,  and  the  local  restraint  stress  and  strain  in  thewelded joint.  To assess  the  cold-cracking sensitivity  of  thesteels, y-groove Tekken test is frequently adopted due to itseasy  implementation.  Węglowski  et  al.[3]  suggested  thecold-cracking tendency was decided by heat input and pre-heating temperature. Yi et al.[4] investigated the cold crack-ing in weld metal, and concluded that acicular ferrite is be-neficial to prevent cold cracking and is more influential thanthe other factors. Chen et al. found that cold cracking couldoccur in pipeline steel welding when celluloid electrode wasused[5]. Tomić et al.[6] studied the susceptibility towards cold

Foundation item: Project was supported by the National Natural Science Foundation of China (Grant No. 51804097) and Fundamental Re-search Funds for the Central Universities (Grant No. 2017B17614).Corresponding author: Yan Chunyan, (1982 – ), PhD, Associate Professor. Mainly engaged in hybrid laser arc welding, weldability of fer-rous metals and numerical simulation for prediction of welding residual stress. E-mail: [email protected]: 10.12073/j.cw.20190607001

Cold cracking susceptibility of X100 pipeline steel 25   

Page 2: Cold cracking susceptibility of X100 pipeline steel

cracking  for  API  5L  X80  steel,  and  found  that  differentwelding  materials  showed  different  sensitivity  and  coldcracks  could  form  in  both  the  HAZ  and  the  weld  metal(WM)  zone.  According  the  above  review,  it  is  concludedthat there is  still  lack of available information on cold sus-ceptibility of X100 steel.

The  cold-cracking  sensitivity  of  X100  steel  based  onTekken test results and relative analysis of welding residualstress-strain  distribution  in  weldments  were  investigated  inthis  research.  Effects  of  preheating  temperature  on  coldcracks, microstructure  in  the  weldments,  hardness  distribu-tion  were  analyzed.  Three  dimensional  (3D)  finite  elementmodels  were  developed  to  evaluate  stress  distribution  and

investigate the effect of preheating temperature on its mag-nitude and distribution in the weldments. The residual straindistribution in the specimens was also analyzed.

1 Experimental

The base metal was provided as 18.4 mm thick plate andthe  element  contents  are  provided  in  Table 1.  Cellulosicwelding consumables of grade E10018 with 4 mm core wirediameter  were  used.  The  scanning  electron  microscope(SEM)  morphology  of  the  etched  X100  steel  specimen  isdisplayed in Fig. 1. The microstructure of the X100 steel re-veals a mainly ferritic/bainitic structure.

The y-groove  Tekken  test  was  carried  out  with   refer-ence  to  AWS  B4-2007.  The  Tekken  test  specimens  weremachined to the configuration illustrated in Fig. 2. Shieldedmetal arc welding was adopted to conduct the welding pro-cess. The  ambient  temperature  was  20  ℃ and  the  relativehumidity was 45%. The welding conditions consist of 175 Awelding current,  24  V average arc  voltage,  and 16 cm/mintravel speed. Five different preheating temperatures (20 ℃,60 ℃, 100 ℃, 150 ℃, and 200 ℃) were selected. Follow-ing welding,  the  specimens  were  left  at  ambient   temperat-ure  for  a  minimum  period  of  48  h  before  examination  forcracks. The test weld area of the assembly was examined forsurface cracks and cross-sectional cracks, and surface crack-ing ratio  and  cross-sectional  ratio  were  determined  and   re-corded.

Transverse sections of the test welds under different pre-heating temperatures were etched with a 2 % nital reagent toreveal  the  microstructure  using  an  optical  microscope.  Forrevealing the martensite-austenite (M-A) constituents in dif-

ferent  regions  of  the  investigated  welded  specimens,  LePera’s reagent was adopted[7]. The morphology and distribu-tion  of  the  M-A  islands  was  studied  using  field  emissionSEM. The statistical analysis of M-A constituent area frac-tion was performed using the MATLAB software based onquantification from at least ten images for each investigatedzone. Composition analysis of the M-A particles and the vi-cinal  matrix  metal  was  conducted  using  energy  dispersiveX-ray spectroscopy  (EDS).  Vickers  hardness  test  was   per-formed for  all  the  welded specimens  using  500 g  load  and15 seconds loading time.

2 Finite element model

In  this  work,  the  SYSWELD  finite  element  programwas  utilized  to  perform  both  the  thermal  and  mechanicalanalysis.  Due  to  the  asymmetry  of  the  welded  joint  acrossthe width direction, it is required to establish the whole FEmodel  of  the  joint.  In  general,  it  is  best  to  adopt  a  fullyidentical  3D  model  in  the  numerical  simulation,  but  thesemodels are  time  consuming  and  costly.  Therefore,   simpli-fied 3D  models  were  adopted  for  welding  related   simula-tion  due  to  the  high  numerical  effort. Fig. 3  shows  the  3Dmesh for the simplified y-groove Tekken test model. To de-crease  CPU  time  and  storage  capacity,  the  test  weld  areawas modeled.

The sequentially coupled thermal-mechanical  analyticalmethod was employed to save computation time. The weld-ing temperature field was solved first and its history was re-corded.  The residual  stress  field  was solved later  using thethermal data.  In  view  of  calculating  precision  and   effi-ciency, a fine mesh density was selected for the deposit met-al  and  the  HAZ.  The  nonlinearity  of  material  properties

Table 1 Composition of investigated X100 steel(wt%)C Si Mn P S Nb Ni Mo Cu Fe

0.053 0.260 1.950 0.011 0.003 0.048 0.360 0.240 0.200 Balance

 

5 μm

Fig. 1 X100 steel microstructure

  26 CHINA WELDING Vol. 28 No. 3 September 2019

Page 3: Cold cracking susceptibility of X100 pipeline steel

used  in  the  numerical  simulation  was  considered.  In  thethermal analysis, convection and radiation boundary condi-tions was also set and optimized.

The heat transfer analysis depends on the solution of ap-propriate  heat  equation  with  suitable  boundary  conditions.The  heat  input  was  represented  by  a  double  ellipsoid  heatsource to simulate the practical welding process. For repres-enting the influence of heat input, all  the parameters of theheat  source  were  tried  and  confirmed  based  on  the  weldconfiguration  and  the  thermal  cycles.  The  power  densitydistribution of the double ellipsoid heat source was determ-ined by the following equations:

q f =6√

3ηQ f f

π√πabc f

e−3( x2

a2 +y2

b2 +z2

c f2 ) (1)

qr =6√

3ηQ frπ√πabcr

e−3( x2

a2 +y2

b2 +z2

cr 2 ) (2)

where Q is the heat input; x, y, z account for coordinates; ηis the heat source efficiency; qf and qr account for heat dis-tribution in the front and rear heat source respectively; ff and

fr are distribution fractions satisfying ff + fr =2; a, b, cf andcr are shape parameters of the ellipsoids.

3 Results

3.1 Cold cracking ratioThe  cracking  ratio  obtained  is  given  in  Table 2.  It  is

found that the surface cracking ratio is zero for all the testedspecimens.  Cold  cracks  were  inspected  only  on  the  crosssections. The cracking ratio is below 20% even without pre-heating and decreases with increasing preheating  temperat-ure. With  a  relative  low  preheating  temperature  of  60  ℃,the cracking ratio decreases to zero. Generally, if the crack-ing ratio of y-groove Tekken test for low-alloy steels is lessthan  20%,  the  welded  structures  will  be  safe  from  coldcracks[8].The results  indicate  adequate  cold  cracking   resist-ance of the X100 steel.

3.2 MicrostructureIt  is  commonly  known  that  mechanical  properties  are

mainly  determined  by  its  microstructure,  and  the  worsttoughness  has  been  found  associated  to  the  coarse  grainHAZ (CGHAZ).  The microstructure of  CGHAZ under  dif-ferent  preheating  temperatures  is  shown  in  Fig. 4.  TheCGHAZ of  the  specimens  exhibits  a  typical  bainitic   struc-

Table 2 Cold cracking ratio result.

No.Preheating

temperature T0 /℃Surface crackingratio Cf (%)

Cross-sectionalcracking ratio Cs(%)

1 20(No preheating) 0 22.5

2 60 0 15.0

3 100 0 0

4 150 0 8.3

5 200 0 16.0

 

8 in (203 mm) APPROXSECTION A-A

SECTION B-B

60°

60°

t/2

t/2

t/2

t

t/2

t/2

t

2.0

±0.2

(2.0±0.2)

TEST WELD

AREARESTRAINING

WELDS

RESTRAINING

WELDS

A B

BA3-3/16 in

(81 mm)

2-3/8 in

(60 mm)

2-3/8 in

(60 mm)

6 i

n

(152 m

m)

Fig. 2 Shape and dimensions of the Tekken test specimen

 

zx

y

Fig. 3 FE mesh used for the analysis of Tekken test

Cold cracking susceptibility of X100 pipeline steel 27   

Page 4: Cold cracking susceptibility of X100 pipeline steel

ture.  Lath  bainite  and  granular  bainite  appeared  under  nopreheating condition  and  relatively  low preheating   temper-ature. With 150 ℃ and 200 ℃ preheating, less lath bainiteand more  granular  bainite  are  observed.  Moreover,  the   in-crease of  preheating  temperature  from  150  ℃ to 200  ℃coarsens  the  microstructures  of  CGHAZ  in  comparison  tothat  observed  in  specimen  with  no  preheating  and  60~100  ℃ preheating.  Besides,  higher  preheating  results  inlonger  cooling time  t8/3 and  t8/5, which means slower cool-ing rate.  It  is  believed  that  the  slower  cooling  rate  is   re-quired  to  eliminate  cold  cracking,  which  is  proved  by  thelow cracking ratio of 60 ℃ and 100 ℃ preheating.

It was  reported  by  previous  researchers  that  M-A   con-stituents in the microstructure seriously impaired toughnessof the high-strength welded joint[9 – 10]. Firstly, the M-A con-stituent  amounts  were  calculated  for  CGHAZ,  fusion  zone(FZ), and weld metal  under  all  preheating temperatures re-spectively.  Then  the  carbon  contents  of  M-A  constituentswere  measured  using  EDS,  and  compared  with  that  of  the

matrix.  Representative  morphology  of  M-A constituents  inCGHAZ is  exhibited  in Fig. 5.  Both  blocky  and  elongatedM-A constituents  can  be  recognized.  The  blocky  M-A   is-lands mostly formed at the grain boundaries, with the widthof  0.5−2  μm  and  the  length  of  1−3  μm.  The  slender  M-Aconstituents are mostly distributed between two ferrite laths,with the width of 0.2−0.5 μm and the length of 1~6 μm. It isreported blocky M-A constituents which are mostly locatedat  the  prior  austenite  grain  boundaries  dominantly  promoteimpact toughness deterioration.

The effect  of  preheating  temperature  on  M-A constitu-ent amount in CGHAZ, WM and FZ is shown in Fig. 6. Asthe  preheating  temperature  increases,  the  area  fractions  ofM-A constituent in CGHAZ, WM and FZ tend to decreaseuntil  it  reaches  a  minimum  with  100  ºC  preheating.However,  the  area  fractions  of  M-A  constituent  increasewith  preheating  temperature  in  the  range  of  100  ºC  to200 ºC. This result indicates that larger amount of M-A con-stituent generates due to excessive preheating. Besides, over

 

(d) (e)

20 μm 20 μm

(a) (b) (c)

20 μm 20 μm 20 μm

Fig. 4 CGHAZ microstructures in y-groove Tekken test specimens (a) No preheating (b) 60 ℃ preheating (c) 100 ℃ pre-heating (d) 150 ℃ preheating (e) 200 ℃ preheating

 

(a)

5 μm

(b)

1

2

1 μm

Fig. 5 SEM observation of M-A constituents in CGHAZ (a) Morphology at 2 000× (b) Morphology at 10 000×

  28 CHINA WELDING Vol. 28 No. 3 September 2019

Page 5: Cold cracking susceptibility of X100 pipeline steel

preheating can lead to incidence of more blocky M-A con-stituents in CGHAZ which in turn contributes to worse im-pact toughness and higher sensitivity to cold cracking. Fur-thermore,  the  microstructure  coarseness  can  be  enhancedwith high preheating temperature, which further impairs thetoughness.

EDS  spectra  of  the  M-A  constituent  and  the  adjacentmatrix metal marked with arrow 1 and arrow 2 in Fig. 5b is

displayed  in Fig. 7.  The  comparison  of Fig. 7a and Fig. 7bindicates that  the compositions of the matrix metal  and theM-A constituents are similar. Carbon content analysis basedon  EDS  shows  that  M-A  constituents  are  more  enrichedwith carbon  compared  with  the  matrix  metal.  The   differ-ence of the two is estimated to be about 1.55 wt %.

3.3 HardnessTraditionally,  the  maximum  hardness  value  in  HAZ  is

often used to evaluate the cold cracking sensitivity in HAZ.It is suggested that 350 HV is the maximum tolerable HAZhardness for avoiding welding cold cracks. Hardness distri-bution  across  the  welded  joints  under  different  preheatingtemperatures is presented in Fig. 8.

It  is  obvious  from  Fig. 8  that  HVmax  value of   unpre-heated  specimen  is  270  HV.  The  HVmax  values  under  allfive  conditions  are  below  350  HV,  which  means  relativelow hardenability  of  the  HAZs.  However,  preheated  speci-mens exhibit lower HVmax values. Under preheating condi-tion,  hardness  values  in  both  HAZ  and  the  weld  metalslightly decrease. Under preheating temperatures of 150 ℃and 200  ℃, the  hardness  profiles  are  relatively  flat   com-pared to that of the unpreheated specimen. For the preheat-ing temperature  of  200  ℃,  the  HVmax  value  (240  HV)  isslightly below the hardness of the base metal.

 

0 50 100 150 200 2500

2

4

6

8

10

12

14

16

Fra

ctio

n o

f M

-A c

onst

ituen

t (%

)

Preheating temperature/°C

CGHAZWMFZ

Fig. 6 Effect of preheating temperature on fraction of M-Aconstituent

 

cps/eV

100

80

60

40

20

0

cps/eV

100

(a)

(b)

80

60SCOMn

Fe Si S Mn Fe

SC

O

MnFe

Si S Mn Fe

40

20

0

0 2 4 6 8 10

Energy/keV

0 2 4 6 8 10

Energy/keV

Fig. 7 EDS spectra analysis result (a) Matrix (b) M-A constituent

Cold cracking susceptibility of X100 pipeline steel 29   

Page 6: Cold cracking susceptibility of X100 pipeline steel

3.4 Thermal analysisInvestigation  on  the  temperature  distribution  and  the

thermal cycles  in  the  welding  process  is  of  great   import-ance,  as  the  thermal  cycle  data  is  the  basis  of  many  otheranalyses like the prediction of microstructures in weld met-al  and  HAZ,  prediction  of  residual  welding  distortion  andstress, and susceptibility of the weld joint for cracking, etc.The  transient  temperature  distribution  in  the  weldmentswith preheating of  100 ℃ is  illustrated in Fig. 9. The  tem-perature distribution is unsteady at the initial stage of weld-ing (t=5.3 s), and gradually becomes steady (t=15 s). Due toa preheating of 100 ℃, the peak temperature in the welding

process can reach 2 488 ℃,  which is much higher than thepeak temperature of 1 888 ℃ with no preheating. It is alsoobvious  that  the  temperature  distribution  in  the  weld  pieceis nonsymmetrical due to the asymmetrical Y joint shape.

Fig. 10a and Fig. 10b show the thermal cycles at the loc-ations which are 3.0 mm from fusion-line in 1/2 weld thick-ness  on  both  sides  of  the  weld,  respectively.  The  overalltemperature is high at a high preheating temperature.

The  cooling  times  t8/5  and  t8/3  of  a  node  in  HAZ  wereplotted against preheating temperature, as shown in Fig. 11.With  higher  preheating  temperature,  the  cooling  rates  inboth HAZ  and  WM  decrease,  changing  the  HAZ   micro-structure accordingly.  Besides,  a  high preheating   temperat-ure  enlarges  the  austenite  formation  and  may  lead  to  ingrain coarsening in the HAZ.

3.5 Mechanical analysisThe  residual  stress  distribution  in  the  weldments  under

different  preheating  conditions  is  provided  in  Fig. 12  toFig. 14. It is apparent that the residual stress distribution inthe entire joint is clearly uneven due to the asymmetrical Y

 

−10 −5 0 5 1050

100

150

200

250

300

no preheating

60°C preheating100°C preheating150°C preheating200°C preheating

Distance from the weld centerline/mm

Har

dnes

s (H

V10

)

Fig. 8 Hardness distribution in the welded joints

 

1 939.665(a)

(b)

1 816.8091 693.9521 571.0951 448.2391 325.3821 202.5261 079.669956.812833.956711.099588.242465.386342.529219.67396.816

1 882.4001 763.2181 644.0371 524.8551 405.6741 286.4921 167.3111 048.129928.947809.766690.584571.403452.221333.040213.85894.677

Tra

nsi

ent

tem

per

ature

/°C

Tra

nsi

ent

tem

per

ature

/°C

Fig. 9 Transient temperature distribution (a) 5.3 s (b) 15.0 s

 

0 50 100 150 200

Time/s

250 300 350 400

0

200

400

600

800

1000

1200

1400

1600

1800no preheating

60°C preheating

100°C preheating

150°C preheating

200°C preheating

no preheating

60°C preheating

100°C preheating

150°C preheating

200°C preheating

Tem

per

ature

/°C

0 50 100 150 200

Time/s

250 300 350 400

0

200

400

600

800

1000

1200

1400

1600

Tem

per

ature

/°C

(a)

(b)

Fig. 10 Simulated thermal histories in the weld (a) non-symmetrical side (b) symmetrical side

  30 CHINA WELDING Vol. 28 No. 3 September 2019

Page 7: Cold cracking susceptibility of X100 pipeline steel

joint  shape.  Tensile  stress  occurs  in  both  WM  and  HAZclose to fusion boundary while compressive stress occurs inbase metal remote from the weld center. It can be seen fromthe  figures  that  the  stress  levels  of  the  stop  positions  ofwelding are higher than that of the start positions.

The  maximum  magnitudes  of  two  stress  componentsand  the  equivalent  stress  were  described  in  Fig. 15.  Themagnitude  of  longitudinal  stress  is  higher  than  that  of  thetransverse stress. Orientation of maximum principal stress isclose to the weld direction.  It  is  therefore believed that  themain  crack  propagates  along the  transverse  weld  direction.This  agrees  with  the  experimental  findings  of  the  presentwork. As  one  can  see,  Von  Mises  stress  magnitude   de-creases  with  preheating  temperature  until  the  preheatingtemperature reaches 100 ℃, and then increases with the pre-heating temperature.  The  longitudinal  residual  stress  mag-nitude  decreases  with  the  preheating  temperature  until

 

0 50 100 150 200 2500

10

20

30

40

50

60

70

Cooli

ng t

ime/

s

Preheating temperature/°C

t8/5

t8/3

Fig. 11 Impact of preheating temperature on cooling time

 

610.042(a)

(b)

(c)

569.781529.519489.258448.997408.736368.475328.214287.952247.691207.430167.169126.90886.64646.3856.124

582.430544.464506.499468.533430.567392.601354.635316.670278.704240.738202.772164.807126.84188.87550.90912.944

557.653521.398485.143448.889412.634376.379340.124303.869267.614231.359195.104158.849122.59486.33950.08413.829

Von M

ises

str

ess/

MP

aV

on M

ises

str

ess/

MP

aV

on M

ises

str

ess/

MP

a

Fig. 12 Distribution of Von Mises stress with different pre-heating conditions (a) No preheating (b) 100 ℃ preheating(c) 150 ℃ preheating

 

651.035(a)

(b)

(c)

589.426527.817466.207404.598342.988281.379219.770158.16096.55134.942−26.688−88.277−149.886−211.496−273.105

613.977554.502495.027435.551376.076316.601257.126197.651138.17678.70119.225−40.250−99.725−159.200−218.675−278.150

617.974558.585499.196439.807380.418321.029261.640202.251142.86283.47324.084−35.305−94.694−154.083−213.472−272.861

Longit

udin

al r

esid

ual

str

ess/

MP

aL

ongit

udin

al r

esid

ual

str

ess/

MP

aL

ongit

udin

al r

esid

ual

str

ess/

MP

a

Fig. 13 Distribution of longitudinal residual stress withdifferent preheat conditions (a) No preheating (b) 100 ℃preheating (c) 150 ℃ preheating

Cold cracking susceptibility of X100 pipeline steel 31   

Page 8: Cold cracking susceptibility of X100 pipeline steel

150 ℃ and then increases with the preheating temperature.The calculated  equivalent  strain  for  non-preheated   spe-

cimen  is  shown  in  Fig. 16.  It  can  be  seen  that  the  higheststrain appeared at the symmetrical side of the weld root, in-dicating high possibility of cracking occurrence in this posi-tion. The variation of strain distribution under different pre-heating conditions is shown in Fig. 17. Under a relative low

 

394.788(a)

(b)

(c)

345.416296.043246.671197.299147.92698.55449.182−0.191−49.563−98.935−148.307−197.680−247.052−296.424−345.797

450.621395.745340.869285.994231.118176.242121.36666.49111.615−43.261−98.137−153.012−207.888−262.764−317.639−372.515

472.803415.715358.626301.537244.449187.360130.27273.18316.094−40.994−98.083−155.172−212.260−269.349−326.438−383.526

Tra

nsv

erse

res

idual

str

ess/

MP

aT

ransv

erse

res

idual

str

ess/

MP

aT

ransv

erse

res

idual

str

ess/

MP

a

Fig. 14 Distribution of transverse residual stress with dif-ferent preheat conditions (a) No preheating (b) 100 ℃ pre-heating (c) 150 ℃ preheating

 

0 50 100 150 200 250

200

400

600

800

Res

idual

str

ess/

MP

a

Preheating temperature/°C

Von Mises stressLongitudinal residual stressTransverse residual stress

Fig. 15 Variation of maximum residual stresses with pre-heating temperature

 

0.0570.0530.0490.0450.0410.0380.0340.0300.0260.0230.0190.0150.0110.0080.0040

Equiv

alen

t st

rain

Fig. 16 Calculated distribution of equivalent strain 

(a)

−80 −60 −40 −20 0 20 40 60−0.5

00.51.01.52.02.53.03.54.04.5

No preheating

60°C preheating100°C preheating150°C preheating200°C preheating

No preheating

60°C preheating100°C preheating150°C preheating200°C preheating

Str

ain (

%)

Str

ain (

%)

Distance from the weld centerline/mm

(b)

0 10 20 30 40 50 60 70 80 90−0.5

0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Distance from the welding strart position/mm

Fig. 17 Effect of preheating temperature on equivalentstrain distribution (a) Width direction (b) Length direction

  32 CHINA WELDING Vol. 28 No. 3 September 2019

Page 9: Cold cracking susceptibility of X100 pipeline steel

preheating temperature of 60 ℃, the distribution of strain inthe  welded  specimen  becomes  more  even  and  the  residualstrain  level  is  depressed.  Yet,  under  a  higher  preheatingtemperature of 150 ℃, the residual strain level ascends andstrain localization  adjacent  to  WM  is  developed.  This   im-plies that the relationship between the preheating temperat-ure  and  mechanical  properties  is  not  monotonous.  Up  to100 ℃, preheating is  beneficial  and a preheating temperat-ure above 150 ℃ is not appropriate for cracking prevention.

4 Conclusions

In  the  present  paper  the  cold  cracking  susceptibility  ofHAZ in X100 pipeline steel was evaluated using the Tekkentest. Effects of preheating on distribution of microstructures,the hardness distribution,  the welding temperature historiesand the  stress-strain  state  were  discussed.  The  useful   con-clusions are summarized as below.

(1) Experimental  Tekken test  results  show that  the sus-ceptibility of investigated X100 steel to cold cracking is lowand the  cracking  ratio  is  significantly  decreased  with   pre-heating.

(2) The microstructures in the welded joints are signific-antly  influenced  by  the  preheating  temperature.  Preheatingat above  150  ℃ leads  to  grain  coarsening  and  increase  infraction of M-A constituents.

(3) Preheating  of  60  ℃ and 100  ℃ results in  a   reduc-tion in the magnitude of residual stress and strain level.

However,  preheating  above  150  °C  is  not  appropriatefor  reducing  the  cold  cracking  susceptibility  of  X100  steeldue to increasing level of residual stress and strain.

References

 Yang  Z W, Bi Z Y, Niu H. The development of high-grade

pipeline  Steel  welded  Pipe.  Welded  Pipe  and  Tube,  2011,

[1]

34(4):5 − 11. (in Chinese)

 Feng Y R, Huo C Y, Ji L K, et al. Progress and prospects of

research  and  applications  of  high  grade  pipeline  steels  &

steel  pipes  in  China.  Petroleum  Science  Bulletin,  2016,

1(1):143 − 153. (in Chinese)

[2]

 Węglowski  M,  Zeman  M.  Prevention  of  cold  cracking  in

ultra-high strength steel Weldox 1300. Archives of Civil and

Mechanical Engineering, 2014, 14(3):417 − 424.

[3]

 Yi H J, Lee Y J, Kim J H, et al. Effect of microstructure and

chemical  composition  on  cold  crack  susceptibility  of  high-

strength  weld  metal.  Journal  of  Mechanical  Science  and

Technology, 2011, 25(9):2185 − 2193.

[4]

 Chen  L  P,  Du  Z  Y,  Li,  Y  T,  et  al.  Oblique  Y-groove

cracking  test  of  the  welding  cold  cracking  susceptibility  of

domestic  X-70  pipeline  steel.  China  Welding,  2002,  11(2):

100 − 103.

[5]

 Tomić T, Kralj S, Kozuh Z. Mathematical model of critical

implant stress testing in the weld metal of API 5L X80 steel.

Materialwissenschaft  und  Werkstofftechnik,  2014,  45(11):

970 − 981.

[6]

 LePera F S.  Improved etching technique for  the determina-

tion of percent martensite in high-strength dual-phase steels.

Metallography, 1979, 12(3):263 − 268.

[7]

 Li Y J. Welding Metallurgy. China Machine Press: Beijing,

2007.

[8]

 Mohseni P, Solberg J K, Karlsen M, et al. Cleavage fracture

initiation  at  M-A  constituents  in  intercritically  coarse-

grained  heat-affected  zone  of  a  HSLA  steel. Metallurgical

and Materials Transactions A, 2014, 45(1):384 − 394.

[9]

 Huda  N,  Midawi  A  R  H,  Gianetto  J,  et  al.  Influence  of

martensite-austenite (MA) on impact toughness of X80 line

pipe  steels.  Materials  Science  and  Engineering  A,  2016,

662:481 − 491.

[10]

Cold cracking susceptibility of X100 pipeline steel 33