COL-UTB-0000006_01

Embed Size (px)

Citation preview

  • 8/10/2019 COL-UTB-0000006_01

    1/18

    Composites Science and Technology

    45 (1992) 135-152

    Prediction of on-axes elastic properties of

    plain weave fabric composites

    N. K. Na ik V. K. Ganes h

    Aerospace Engineering Department, Indian Institute of Technology, Po wai , Bombay 400 076, India

    (Received 14 February 1991; revised version received 4 September 1991; accepted 2 October 1991)

    Two fabric composite models are presented for the on-axes elastic analysis of

    two-dimensional orthogonal plain weave fabric lamina. These are two-

    dimensional models taking into account the actual strand cross-section

    geometry, possible gap between two adjacent strands and undulation and

    continuity of strands along both warp and fill directions. The shape functions

    considered to define the geometry of the woven fabric lamina compare well

    with the photomicrographs of actual woven fabric lamina cross-sections. There

    is a good correlation between the predicted results and the experimental

    values. Certain modifications are suggested to the simple models available in

    the literature so that these models can also be used to predict the elastic

    properties of woven fabric laminae under specific conditions. Some design

    studies have been carried ou t for graphi te/epoxy woven fabric laminae. Effects

    of woven fabric geometrical parameters on the elastic properties of the

    laminae have been investigated.

    Keywords:

    woven fabric lamina, prediction, two-dimensional, plain weave,

    elastic constants

    NOTATI ON

    a

    a~*, b~*, d~*

    i , j = 1 , 2 , 6

    ax,, Zx,

    ay,, z r`

    Ao B j Dij

    i , j = l , 2 , 6

    EL, ET, ~/LT, GET,

    G rr

    eL(o), eT(o), vLT(o),

    CLT(O), C (O)

    Ex, vxy,

    St rand wid th

    Extens iona l , coupl ing and

    b e n d i n g c o m p l i a n c e

    cons t an t s

    Param eters as def ined in

    Fig. 6

    Param eters as def ined in

    Fig. 5

    Extens iona l , coupl ing and

    bend ing s t if fness cons t an t s

    UD compo si t e e las t ic p ro-

    per t i es a long the f ib re and

    t ransverse f ibre di rect ions

    Loca l red uced e l as ti c con-

    s t an ts for undu la t ion angle

    0

    Elast ic constants of uni t

    c e l l / WF l a m i n a

    Composites Science and Technology 0266-3538/92/$05.00

    1992 Elsevier Science Publishers Ltd.

    135

    g

    h

    hm

    hx,(x, y) ,

    i = 1 , 2 , 3 , 4

    hyi (y), i= 1, 2, 3, 4

    H

    k

    Qij, i , j = 1, 2, 6

    %,

    i , j = 1 , 2 , 6

    V

    Vm

    x, y, z

    G a p b e t w e e n t h e a d j a c e n t

    st rands

    Maximum s t rand th i ckness

    Thickness of mat r ix a t

    x = 0 , y = 0

    Thickness of mat r ix and

    s t rands in X -Z p l ane a t a

    poin t as d ef ined by co-

    ordin ates x and y (Fig. 6)

    Thickness of mat r ix and

    s t ra n d s i n Y -Z p l a n e a t

    x = 0 (Fig. 5)

    Tota l t h i ckness of WF

    lamina

    Transverse bu lk modulus

    Re duc ed s t if fness of

    l amina

    Loca l reduced and aver -

    aged comp l i ance cons t an ts

    V o l u m e

    Fibre vo lume f rac t ion

    Mat r ix vo lum e f rac t ion

    Car t es i an co-ord ina t es

  • 8/10/2019 COL-UTB-0000006_01

    2/18

    136 N. K. Naik, V. K. Ganesh

    ZX (x, y) , i = 1, 2

    zy i(y ) , i= 1, 2

    O(x ) , O(y )

    O

    Shape func t ions o f s t r and

    u n d u l a t i o n in X - Z p l a n e

    (Fig. 6)

    Shape func t ions o f s t r and

    u n d u l a ti o n in Y - Z p l a ne

    (Fig. 5)

    Local of f -axis angle of the

    u n d u l a t e d s t r a n d

    Maximum of f - ax i s ang le o f

    t h e u n d u l a t e d s t r a n d

    Subscr ipts

    f

    L

    T

    W

    Quant i t ies in f i l l di rect ion

    Quan t i t i es in f ib re

    d i r ec t ion

    Quant i t i es in t r ansver se

    f ib re d i r ec t ion

    Q u a n t i t i e s i n w a r p

    di r ec t ion

    Superscripts

    el

    f

    m

    O

    Q u a n t i t i e s o f e l e m e n t

    Quan t i t i es o f f ib re

    Quant i t i es o f mat r ix

    W F c o m p o s i t e o v e r a l l

    p r o p e r t i e s

    p m Q u a n t i t i e s o f p u r e m a t r i x

    s Qua nt i t i es o f s t r and

    s l Qu ant i t ies of s l ice

    * Qua nt i t i es o f U D cros sp ly

    l a m i n a t e

    Overbar s ind ica te average va lues /quan t i t i es t r ans -

    formed to g loba l d i r ec t ion

    Abbre v ia t ions

    C C A

    C L T

    E A M

    M K M

    M M P M

    PS

    S A M

    SP

    U D

    W F

    1-D

    2-D

    3-D

    Compos i t e cy l inder as -

    s e m b l a g e ( m o d e l )

    C las s ica l l amina te theory

    E l e m e n t a r r a y m o d e l

    M o d i f i e d K a b e l k a ' s m o d e l

    Modi f i ed mosa ic para l l e l

    m o d e l

    P a r a l l e l - s e r i e s ( m o d e l )

    S l i ce a r r ay model

    S e r i e s - p a r a l l e l ( m o d e l )

    U n i d i r e c t i o n a l

    W o v e n f a b ri c

    O n e - d i m e n s i o n a l

    T w o - d i m e n s i o n a l

    T h r e e - d i m e n s i o n a l

    1 I N T R O D U C T I O N

    The increas ing use o f compos i t e mater i a l s has

    revolu t ion i sed the aerospace indus t ry over the

    pas t two decades . The ab i l i ty to vary the

    p r o p e r t i e s a n d p e r f o r m a n c e o f c o m p o s i t e m a t e -

    r i a l s has been in l a rge measure r espons ib le fo r

    the g rea t impac t tha t these mater i a l s have had .

    Trad i t iona l ly , advanced compos i t e s t ruc tures

    have been f abr i ca ted f rom tape prepregs which

    were sys temat ica l ly s t acked to fo rm a l amina te .

    Thi s type of cons t ruc t ion t ends to g ive op t imal

    in-plane s t i f fness and s t rength. Since the pr imary

    loads usual ly are in-plane, the use of such

    c o m p o s i t e s a p p e a r e d l o g i c a l . H o w e v e r , t h e r e a r e

    m a n y s i t u a t i o n s w h e r e n e i t h e r p r i m a r y n o r

    secondary loads a re in -p lane . In such s i tua t ions

    tape prepreg l amina tes may no t be the mos t

    appropr ia t e .

    The fu ture fo r compos i t es i s undergo ing a

    t r ans i t ion . The aerospace per formance c r i t e r i a

    cons is t ing of high specif ic s t i f fness and high

    spec i f i c s t r eng th a re be ing supplemented wi th

    h igh toughnes s and e f f i c i en t manufac turab i l i ty .

    Wi th th i s , t ex t i l e s t ruc tura l compos i t es in genera l

    and woven f abr i c (WF) compos i t es in par t i cu la r

    are f inding increas ing use in pr imary as wel l as

    secondary s t ruc tura l app l i ca t ions a long wi th

    unid i r ec t iona l (UD) t ape compos i t es . Making use

    of the un ique combina t ion of l igh t weigh t ,

    f lexibi l i ty , s t rength and toughness , text i le s t ruc-

    tu res l ike wovens , kn i t s , b ra ids and nonwovens

    have now been r ecogni sed as a t t r ac t ive r e in for -

    cements fo r s t ruc tura l app l i ca t ions .

    Woven f abr i c i s fo rmed by in te r l ac ing two

    mutua l ly perpendicu la r s e t s o f yarns . The

    lengthwise th reads a re ca l l ed warp and the

    crosswise threads f i l l or wef t . The inter lacing

    pat tern of the warp and f i l l i s known as the

    w e a v e . T w o - d i m e n s i o n a l ( 2 - D ) f u n d a m e n t a l

    weaves are plain, twi l l and sat in . The micro-

    m e c h a n i c a l b e h a v i o u r o f w o v e n f a b r i c l a m i n a t e s

    depends on the f abr i c p roper t i es , which in tu rn

    d e p e n d o n t h e f a b r i c s t r u c t u r e . T h e p a r a m e t e r s

    involved in de te rmin ing the f abr i c s t ruc ture a re

    weave , f abr i c count , f inenes s o f yarn , f ib re

    charac te r i s t i cs , yarn s t ruc ture , degree o f undula-

    t ion , e t c . The a rch i t ec ture o f a WF lamina i s

    c o m p l e x a n d t h e r e f o r e t h e p a r a m e t e r s c o n t r o l l i n g

    t h e m e c h a n i c a l a n d t h e r m a l p r o p e r t i e s o f W F

    compos i t es a r e too numerous . Thi s makes i t

    imprac t i ca l to charac te r i s e the WF compos i t es

    th rough t es t s a lone , neces s i t a t ing ana ly t i ca l

  • 8/10/2019 COL-UTB-0000006_01

    3/18

    Prediction of on-axes elast ic propert ies o f plain weave fabric composi tes 137

    m o d e l s w h i c h c a n p r e d i c t t h e m e c h a n i c a l a n d

    t h e r m a l p r o p e r t i e s o f t h e W F c o m p o s i t e s .

    A var i e ty o f ana ly t i ca l model s (Raju et al. ~)

    h a s b e e n p r o p o s e d f o r t h e p r e d i c t i o n o f t h e

    t h e r m o - e l a s t i c p r o p e r t i e s o f W F l a m i n a e . T h e

    model s a r e based on the c l as s i ca l l amina te theory

    (CLT ) 2-4 or f ini te ele m en t analys is , s-7 Ha lph in

    et

    al. 2

    e x t e n d e d t h e l a m i n a t e a n a l o g y d e v e l o p e d t o

    predict the elas t ic s t i f fness of a randomly-

    or i en ted , shor t - f ib re compos i t e to 2 -D and 3-D

    w o v e n f a b r i c c o m p o s i t e s . T h e w e a v e g e o m e t r y

    cons idered here r epresen t s the f abr i c in 1 -D on ly

    and a l so the c i r cu la r geomet ry o f the s t r and

    cros s - sec t ion cons idered here i s no t r ea l i s t i c .

    C h o u & I s h i k a w a 3 h a v e p r e s e n t e d t h r e e m o d e l s

    to p red ic t the e l as t i c p roper t i es o f WF lamina .

    These a re the mosa ic model ,S the f ib re

    u n d u l a t i o n m o d e l s a n d t h e c o m b i n a t i o n o f t h e

    a b o v e t w o , t h e b r i d gi n g m o d e l . 9 T h e m o s a i c

    model idea l i s es the WF lamina as an

    as semblage of asymmet r i c c ros sp ly l amina tes .

    D e p e n d i n g o n w h e t h e r t h e p i e c e s o f t h e c r o s s p l y

    laminate are in paral lel or in ser ies , i .e . i sos t rain

    or i sos t r es s condi t ion , r espec t ive ly , the bounds of

    the s ti ffnes s as p red ic ted by the m osa ic mod el can

    b e e v a l u a t e d . T h i s m o d e l d o e s n o t c o n s i d e r t h e

    s t r and con t inu i ty and s t r es s d i s tu rbance a t the

    in te r f ace o f the as semblage . The f ib re undula t ion

    model cons ider s the s t r and con t inu i ty and

    undula t ion , bu t i t i s a 1 -D model as i t cons ider s

    t h e u n d u l a t i o n o f t h e s t r a n d i n t h e l o a d i n g

    d i r e c t i o n o n l y . T h e c o m b i n a t i o n o f m o s a i c a n d

    f ib re undula t ion model s , ca l l ed the b r idg ing

    m o d e l , w a s p r o p o s e d t o a n a l y s e s a t i n w e a v e

    fabr ics . The model cons ider s the b r idg ing e f f ec t

    presen t in the s a t in weave f abr i c due to the

    presence of non- in te r l ac ing r eg ions . The br idg ing

    model cons ider s the f ib re con t inu i ty and i s a 2 -D

    model fo r s a t in weave , bu t r educes to f ib re

    u n d u l a t i o n m o d e l i n t h e c a s e o f p l a i n w e a v e . T h i s

    m o d e l c o n s i d e r s t h e u n d u l a t i o n i n t h e l o a d i n g

    di r ec t ion , as in the case o f the f ib re undula t ion

    m o d e l , b u t t h e s t r a n d u n d u l a t i o n i n t h e

    t r ansver se d i r ec t ion and i t s ac tua l c ros s - sec t iona l

    g e o m e t r y a r e n o t c o n s i d e r e d . T h e s e m o d e l s w e r e

    l a t e r e x t e n d e d t o e v a l u a t e t h e t h e r m a l p r o p e r t i e s

    and to analyse hyb r id W F lam inae . ~-~2 In

    genera l , t he ana ly t i ca l p red ic t ions d id no t

    cor re la t e wel l wi th the expe r imen ta l r esu l t s ~3 for

    p la in weave f abr i c compos i t es .

    K a b e l k a 4 s u g g e s te d a m e t h o d o f e v a l u a t i n g t h e

    e las t i c and thermal p roper t i es o f a p la in weave

    fabr ic l amina . Thi s i s a 2 -D model t ak ing in to

    cons idera t ion the undula t ion in bo th warp and f i l l

    d i r ec t ions , bu t the ac tua l s t r and c ros s - sec t iona l

    g e o m e t r y w a s n o t c o n s i d e r e d . T h e p r o p e r t i e s o f

    the undula ted warp and f i l l s t r ands were

    eva lua ted under the cons tan t s t r es s condi t ion in

    the s t r and and then the c l as s i ca l l amina te theory

    was used to p red ic t the overa l l p roper t i es .

    A 3-D f in i t e e l ement ana lys i s was p resen ted by

    R a j u et al. ~ t o p r e d i c t t h e t h e r m a l e x p a n s i o n

    coef fi c ien t s o f the W F lam ina . He re , aga in the

    WF lamina was idea l i s ed as an as semblage of

    asymm et r i c c ros sp ly l am ina tes . Wh i tcom b 6 a l so

    used the 3 -D f in i t e e l ement ana lys i s to ana lyse

    W F l a m i n a . H e r e , t h e u n d u l a t i o n a n d c o n t i n u i t y

    o f t h e s t r a n d s w e r e c o n s i d e r e d i n o r d e r t o s t u d y

    t h e e f f e c t o f v a r i o u s w e a v e p a r a m e t e r s o n t h e

    m e c h a n i c a l p r o p e r t i e s o f t h e W F l a m i n a . T h e

    undula t ion shapes a t the in te r l ac ing cons idered in

    t h e a b o v e s t u d i e s w e r e v e r y a p p r o x i m a t e a n d

    m a y n o t p r e s e n t a n a c c u r a t e b e h a v i o u r o f a p la i n

    weave f abr i c l amina .

    Z h a n g & H a r d i n g 7 an d D o w & R a m n a t h 14

    p r e s e n t e d f a b r i c m o d e l s b a s e d o n e n e r g y

    pr inc ip les . Z han g & Ha rd ing 7 used the s t r a in

    energy equ iva lence pr inc ip le to p red ic t the e l as t i c

    proper t i es o f a p la in weave l amina . The f in i t e

    e l e m e n t m e t h o d w a s u s e d t o e v a l u a t e t h e s t r a i n

    energ ies o f the cons t i tuen t phases fo r the

    analys is . In these s tudies (Refs 7 and 14) , the

    u n d u l a t i o n o f t h e s t r a n d w a s c o n s i d e r e d i n t h e

    load ing d i r ec t ion on ly and there fore a l l t he

    inheren t d i s c repanc ies p resen t in 1 -D model s

    would a l so be p resen t .

    1 . 1 T h e c h o i c e o f a 2 - D m o d e l

    A s ing le l ayer WF compos i t e i s des igna ted as WF

    l a m i n a . T h e w o v e n f a b r i c c a n b e i n t h e f o r m o f

    a n o p e n w e a v e o r a c l o s e w e a v e . I n t h e c a s e o f

    t h e o p e n w e a v e , t h e r e m a y b e g a p s b e t w e e n t w o

    adjacen t s t r ands , whereas c lose weave f abr i cs a r e

    t i g h t l y w o v e n w i t h o u t a n y g a p b e t w e e n t w o

    adjacen t s t r ands . There can a l so be cer t a in

    fabr ics made of twis t ed s t r ands which would

    invar iab ly have a cer t a in amount o f gap even i f

    they a re t igh t ly woven . I t i s obv ious tha t the

    p r e s e n c e o f a g a p b e t w e e n t h e a d j a c e n t s t r a n d s

    would a f f ec t the s t i f fnes s o f the WF lamina and

    h e n c e s h o u l d b e a c c o u n t e d f o r w h i l e e v a l u a t i n g

    t h e t h e r m o - m e c h a n i c a l p r o p e r t i e s .

    T h e e x p e r i m e n t a l l y d e t e r m i n e d f i b r e v o l u m e

    fract ion, Vf , of the WF lamina is the overal l Vf ,

  • 8/10/2019 COL-UTB-0000006_01

    4/18

    138 N. K. Naik, V. K. Ganesh

    z

    h o

    h o

    SECTI ON S o- S O

    h 0 = h m/2

    z

    ~

    , :~ : :~ ,

    I

    SECTION S~ - S~

    z . ?z . ,

    ~ . . i

    I

    SECTION Sz -S z SECTION S 3- S 1

    t 1 1 - t - -

    o~ 2

    SEC TION S 4 - S~ j~_~11"

    I I I J l I F

    h4=( hm+ hf ) /2 S 0 E PLAN

    WARF

    lllfl .---_54

    5a

    Ii ---5Z

    . - - -5 1

    ,----~o x

    Fig. 1. Pla in we ave fabric lamina structure--cross-sections at different intervals.

    V~', bu t fo r the ana lys is o f the W F lamina the

    s t rand Vf, V~, form s the input . I t is the ref ore

    neces sary to eva lua te the s t r and Vf f rom the

    o v e r a ll Vf d e t e r m i n e d e x p e r i m e n t a l l y . T h e

    a v a i l a b l e m e t h o d o l o g i e s d o n o t t a k e i n t o a c c o u n t

    t h e g a p b e t w e e n t h e a d j a c e n t s t r a n d s , t h e a c t u a l

    c ros s - sec t iona l geomet ry o f the s t r and , and

    s t r and undula t ion t r ansver se to the load ing

    di r ec t ion . Ma them at ica l ly , the s e r ies mo del 3

    should g ive the lower bound of s t i f fnes s due to

    the as sumpt ion of the i sos t r es s condi t ion and

    t h e r e b y h i g h e r c o m p l e m e n t a r y e n e r g y . B u t

    owing to the g ros s s impl i f i ca t ion of no t

    c o n s i d e r in g t h e a b o v e m e n t i o n e d p a r a m e t e r s , t h e

    1-D ser i es model p red ic t s h igher s t i f fnes s than

    t h e e x p e c t e d l o w e r b o u n d . A l s o , f o r t h e

    eva luat io n of the s t ra nd Vf f rom the over al l Vf,

    t h e i n f o r m a t i o n a b o u t t h e g a p a n d s t r a n d

    undula t ion in bo th warp and f i l l d i r ec t ions i s

    neces sary .

    F igure 1 p resen t s the c ros s - sec t ions o f a p la in

    weave f abr i c l amina a t d i f f e ren t s ec t ions f rom the

    midpoint of the f i l l s t rand (So-S0) to the midpoint

    Fig. 2. Optical micrograph---cross-sectionalview of a plain

    weave fabric laminate.

  • 8/10/2019 COL-UTB-0000006_01

    5/18

    Prediction of on-axes elastic properties of plain weave fabric composites

    139

    Fig. 3. Plain weave fabric structure.

    i s ca l l ed a s l i ce a r r ay model , abbrev ia ted SAM.

    In the s econd model , the un i t ce l l i s d i s c re t i s ed

    in to s l i ces e i ther a long or ac ros s the load ing

    di r ec t ion . The s l i ces a r e fu r ther subdiv ided in to

    e l e m e n t s . T h e i n d i v i d u a l e l e m e n t s a r e a n a l y s e d

    s e p a r a t e l y . T h e e l e m e n t s a r e t h e n a s s e m b l e d i n

    paral lel or ser ies to obtain the s l ice elas t ic

    cons tan t s . Fur ther , the s l i ces a r e as sembled

    e i ther in s e r i es o r para l l e l to ob ta in the e l as t i c

    cons tan t s o f the un i t ce l l . Th i s s cheme of

    discret is ing the uni t cel l into s l ices and fur ther

    i n t o e l e m e n t s i s c a l l e d a n e l e m e n t a r r a y m o d e l ,

    a b b r e vi a te d E A M .

    of the gap ($4-$4) . Figure 2 is an opt ical

    micrograph showing the typ ica l c ros s - sec t ions o f

    the p la in weave f abr i c l amina a t d i f f e ren t

    sec t ions . A typ ica l p la in weave f abr i c s t ruc ture i s

    shown in F ig . 3 . I t i s s een tha t the th icknes s o f

    the f i l l s t r and decreases g radua l ly f rom the

    midpoin t o f the s t r and to zero in the gap r eg ion .

    Thi s r educ t ion due to the s t r and c ros s - sec t iona l

    geomet ry would r educe the overa l l s t i f fnes s o f

    t h e W F l a m i n a . T h e r e f o r e , t h e g e o m e t r y o f t h e

    s t r and c ros s - sec t ion should be cons idered whi le

    evaluat ing the s t i f fness and this requires a 2-D

    m o d e l . T h e a v a i l a b l e 1 - D m o d e l s p r e d i c t h i g h e r

    s t i f fnes s as the maximum s t r and th icknes s i s

    c o n s i d e r e d i n t h e s e m o d e l s .

    2 F A B R I C C O M P O S I T E M O D E L S

    T h e p l a i n w e a v e f a b r i c c o m p o s i t e m o d e l s

    p r e s e n t e d h e r e a r e 2 - D i n t h e s e n s e t h a t t h e y

    c o n s i d e r t h e u n d u l a t i o n a n d c o n t i n u i t y o f t h e

    s t r and in bo th the w arp a nd f il l d i r ec t ions . Th e

    mode l s a l so account , fo r the p r esenc e o f the gap

    b e t w e e n a d j a c e n t s t r a n d s a n d d i f f e r e n t m a t e r i a l

    and geomet r i ca l p roper t i es o f the warp and f i l l

    s t rands .

    2.1 Refined mod els

    Two re f ined model s a r e p resen ted in th i s s ec t ion .

    In the f i rs t model , the uni t cel l i s discret ised into

    s l i ces a long the load ing d i r ec t ion . The ind iv idua l

    s l i ces a r e ana lysed s epara te ly and the un i t ce l l

    e l as t i c p roper t i es a r e eva lua ted by as sembl ing the

    s l i ces under the i sos t r a in condi t ion . Such a model

    2. 1.1 Slice array mode l (S AM )

    In the ana lys i s , the s t r and i s t aken to be

    t r ansver se ly i so t rop ic and i t s e l as t i c p roper t i es

    are eva lua ted f rom the t r ansver se ly i so t rop ic

    f ibre and matr ix proper t ies at s t rand Vf . I t should

    b e n o t e d t h a t o w i n g t o t h e p r e s e n c e o f p u r e

    mat r ix pocke t s in the WF lamina , the s t r and Vf

    w o u l d b e m u c h h i g h e r t h a n t h e c o m p o s i t e o v e r a ll

    Vf. The s t r and prop er t i es a r e eva lua ted us ing the

    c o m p o s i t e c y li n d e r a s s e m b l a g e ( C C A ) m o d e l

    (Refs 15 and 16) which is br ief ly presented in the

    Appendix . The de ta i l s o f eva lua t ion of s t r and Vf

    from c om posi te ov eral l Vf is discussed late r .

    The r epresen ta t ive un i t ce l l o f a WF lamina i s

    t aken as shown in F ig . 4 (a ) . By v i r tue o f the

    symmet ry of the in te r l ac ing r eg ion in p la in weave

    fabr ic , on ly one quar te r o f the in te r l ac ing r eg ion

    is analysed. The analys is of the uni t cel l i s then

    per formed by d iv id ing the un i t ce l l in to a number

    of s l ices as shown in Fig. 4(b) . These s l ices are

    then idea l i s ed in the fo rm of a four - l ayered

    lamina te i . e . an asymmet r i c c ros sp ly s andwiched

    be tween two pure mat r ix l ayer s as shown in F ig .

    4 (c ) . The e f f ec t ive p roper t i es o f the ind iv idua l

    l a y e r c o n s i d e r i n g t h e p r e s e n c e o f u n d u l a t i o n a r e

    used to eva lua te the e l as t i c cons tan t s o f the

    idea l i s ed l amina te . Th i s , in tu rn , i s used to

    eva lua te the e l as t i c cons tan t s o f the un i t ce l l /WF

    lamina .

    I n o r d e r t o d e f in e t h e u n d u l a t i o n a n d g e o m e t r y

    of the s t r and c ros s - sec t ion the fo l lowing shape

    f u n c t i o n s a r e u s e d . T h e b e l o w m e n t i o n e d

    expres s ions a re wi th r e fe rence to F igs 5 and 6 .

    I n t h e Y - Z p l a n e , i . e . a l o n g t h e w a r p d i r e c t i o n

    (Fig. 5)

    hf :~y

    zy , ( y ) = - ~- cos - - (1)

    ayt

  • 8/10/2019 COL-UTB-0000006_01

    6/18

    140 N. K . Na i k , V . K . Gane sh

    . j J ' '

    " ~ h f ~

    - ~

    (a ) UNIT CELL

    c

    (b) ACTUAL SLICES

    2

    * FACTORED h w

    (c) IOEALISED SLICES

    Fig.

    a nd

    hm/2

    i

    hw

    hf 0

    hm/2

    5 . P la in

    kZ

    _ _ _ ~ ~ ( y ) . . . . . . . . . . . . . .

    WARP

    hY2 [Y)

    L _ _ _

    $

    - - o f f 2 - - -~ g f l2

    w e a v e f a b r i c l a m i n a c r o s s - s e c t i o n :

    d i r e c t i o n .

    w a r p

    hyl( y) hf + hm

    - ~ zy2(y )

    hy2(y) = hw

    hy3(y) = zy2(y ) - zy~ (y) y = O--~afl2

    = 0 y = ae/2----~ (af + g,)12

    hy4 (y) hf + hm

    = ~ zy~(y)

    (3 )

    In the X- Z plane , i . e . a long the fi ll d i rec t ion

    (Fig. 6)

    hw

    : rx h m

    zx l ( x , y) = -~- cos -- - hy~(y) + - - (4)

    ax, 2

    hw ~rx hm

    zx2(x, y) = - -~- cos (aw + gw) h y j y ) + ~ (5)

    Fig . 4 . P la in we ave fabr ic l a mina un i t ce l l and i t s

    idea l i sa t ion .

    a nd

    whe re

    zy2(y ) hf :ry

    = ~ co s ia r + gf)

    J t a f

    ay t =

    2[ ~ - cos-,(2zY '~ ]

    \ h f / J

    h, ( ~ae ~

    zy, = + ~- cos \2 (a f + &) /

    (2)

    FILL

    I

    hx3 (x,y)

    hf

    r

    i ~ . . . . axt/2---

    hm/2

    4 aw/2

    Fig . 6 . P la in w eave fabr ic l amina

    d i r e c t i o n .

    J

    J

    cross - sec t ion : fill

  • 8/10/2019 COL-UTB-0000006_01

    7/18

    Prediction o f on-axe s elastic properties o f plain weav e fabric composites 141

    w h e r e

    a n d

    $'t'aw

    axt =

    _~[2z~;~

    2 cos t~

    \ h w /

    h~ [ n:a .

    = - - ~ C O S ~ , - - ~ /

    Zx, 2 2 ( a . + g . ) /

    hXl(X, y ) = hw + h.,_ _ zx l( x, y)

    2

    hxz(x , y ) = zx , ( x , y ) - z x2(x, y )

    x = 0---~ aw l2 (6)

    = 0 x = aw/2--->(aw + gw )/2

    hx3(x, y) = hy3(y)

    hx4(x, y) = zxz(x, y) - hx3(x, y)

    + (hw +

    h,,)/2 + hf

    The va l id i ty o f the above expres s ions can be

    a s c e r t a i n e d b y c o m p a r i n g t h e o p t i c a l m i c r o g r a p h

    of the ac tua l WF lamina c ros s - sec t ion a long the

    f i l l di rect ion (Fig. 7) and the s imulated plot

    m a k i n g u s e o f t h e s a m e s t r a n d p a r a m e t e r s ( F i g .

    8).

    I t can be s een in the above expres s ions tha t the

    para me ter z~, wo uld r educ e to zero and ax, to aw

    w h e n t h e g a p b e t w e e n t h e a d j a c e n t w a r p s t r a n d s

    i s z e r o ( X - Z p l a n e ) . S i m i l a r l y , i n t h e Y - Z p l a n e ,

    zy, wou ld r ed uce to zero and ay, to a~. Th e idea o f

    i n t r o d u c i n g t h e s e p a r a m e t e r s i n t h e s h a p e

    func t ions i s to s imula te the gap be tween the

    F i g . 7 . A c t u a l g e o m e t r y o f t h e p l a i n w e a v e f a b r i c l a m i n a

    c r o s s - s e c t i o n : s c a n n i n g e l e c t r o n m i c r o g r a p h .

    0.09 rnrn--=~ O-&8mm

    Fig. 8. Actual geometry of the plain weave fabric lamina

    cross-section: simulated.

    strands mathematically, which was otherwise not

    poss ib le i f the s am e expres s ion i s used for zx~ a n d

    zx2 and s imilar ly for zy~ a n d zyz. T h e s e

    p a r a m e t e r s o n l y s t e e p e n t h e o u t e r c o n t o u r o f t h e

    s t r and c ros s - sec t ion wi thout d i s tu rb ing the

    overa l l undula t ion of the s t r and . The s lope of the

    f i l l s t rand is so maintained that at a given point in

    a l l the s ec t ions acros s the load ing d i r ec t ion the

    s lope of the s t rand is the s am e, i .e . the loca l of f -axis

    angle of the f i l l s t rand, Of , i s not a funct ion of y.

    Similar ly, the local of f -axis angle of the warp

    s t r and , Ow, i s no t a func t ion of x . The s t eep en ing

    o f t h e o u t e r c o n t o u r a n d m a i n t a i n i n g t h e s a m e

    off-axis angle in al l the planes across the loading

    di r ec t ion a t a g iven po in t make the c ros s - sec t ion

    o f t h e W F l a m i n a u n i t c e l l u n s y m m e t r i c a l a b o u t

    i t s midplane . Thi s can be s een in F ig . 1 which

    presen t s the c ros s - sec t ions o f two ad jacen t un i t

    ce l l s . Only the c ros s - sec t ions a t the midpoin t o f

    the s t rand (S0-S0) and the gap ($4-$4) are

    s y m m e t r i c a b o u t t h e i r m i d p l a n e s . H e r e , a s y m -

    m e t r y o r s y m m e t r y i n d i c a t e s t h e p r e s e n c e o r

    absence of averaged coupl ing s t i f fnes s t e rms of

    tha t c ros s - sec t ion , r espec t ive ly . In a l l t he o ther

    sec t ions i t i s s een tha t the th icknes s o f the top

    pure mat r ix l ayer i s l es s than tha t o f the bo t tom

    pure mat r ix l ayer . Wi th th i s , h~>h~ a n d h~'>h~

    and ha '> h~. Thi s i s the beh aviou r in the r eg ion

    AB (F ig . 1 ) , whereas the behaviour i s as sumed to

    b e t h e r e v e r s e i n t h e r e g i o n B C . I n o t h e r w o r d s ,

    the th icknes s o f the pure mat r ix l ayer would be

    more a t the top than a t the bo t tom in the r eg ion

    BC. Mathemat ica l ly , i t means tha t the coupl ing

    ef fec t o f r eg ion AB and BC are ba lanc ing each

    other . Th i s exerc i s e i s done to s ee tha t the

    averaged coupl ing t e rms a re zero fo r the un i t

    ACDE and th i s i s t rue as the p la in weave f abr i c

    compos i t es do no t twis t g loba l ly on ex tens ion .

    Thi s apparen t twis t ing of the f abr i c on ex tens ion

    w a s s e e n b e c a u s e o f t h e s h a p e f u n c t i o n

    c o n s i d e r e d . T h e o t h e r w a y o f e l i m i n a t i n g t h e

    coupl ing t e rms i s to pu l l the en t i r e f abr i c in such

    I t __ ? t f ~ t

    a way tha t h ~ -h l in s ec t ion S~-S1 , h 2 - h 2 in

    sect ion Sz-S2 and so on.

  • 8/10/2019 COL-UTB-0000006_01

    8/18

    142

    N. K. Naik, V. K. Ganesh

    The volume of t he pure mat r ix reg ion in t he

    uni t cel l can be evaluated by calculat ing the

    th i cknesses i n t he pure mat r ix reg ion for t he

    shape func t ions cons idered and then in t egra t ing

    to ge t t he vo lume of t he mat r ix in t he pure

    mat r ix reg ion . The th i ckness ord ina t es i n t he

    pure mat r ix reg ion a re g iven by

    hx,(x, y)

    a n d

    hx4(x, y)

    as g iven in express ion (6). Know ing the

    overal l Vf of the WF lamina the st rand Vf can be

    calculated.

    The st rand f ibre volume fract ion i s given by

    vw o

    V~- ~- W - V pm ( 7 )

    The t ransversely i sot ropic st rand elast ic con-

    stants can be evalua ted from V~ and th e f ibre and

    mat r ix proper t i es . I t should be no ted here tha t

    these proper t i es a re t he proper t i es o f t he s t ra igh t

    s t rand , i . e . t he proper t i es o f t he equiva l en t UD

    lamina.

    The e l as t i c cons t an t s o f t he undula t ed s t rands

    a long the g loba l axes a re t o be de t e rmined in

    order t o eva lua t e t he g loba l e l as t i c cons t an t s o f

    the WF l amina . In t he case of warp s t rands (F ig .

    4) , i t i s done by t ransforming the compl i ance of

    the warp st rand for the off-axis angle at the

    midpoint of that s l ice. In the case of f i l l s t rands,

    the e f fec t ive mean va lue of t he compl i ance i s

    calculated by considering sect ions of infini tesimal

    thicknesses along the f i l l s t rand and t ransforming

    the compl i ance of t hese in f in i t es imal sec t ions

    a long the g loba l d i rec t ion and then in t egra t ing

    them in the in t e rva l (0 -~ O 0, Her e , O~ is t he

    off-axis a ngle at x = (aw+gw)/2 i .e . the maxi-

    mum off-axis angle.

    The local off-axis angle in the fi l l strand

    Of(x)

    is

    expressed as

    0f(x) = tan -l d

    [zx2(x,

    y)]

    = t a n - / _ - - - s in } (8)

    \2(a w + gw) (aw + gw)

    and in the warp st rand i t i s expressed as

    d

    Ow(y) = tan-'-d-y [Zy2(y)]

    1[ :rh f ~y

    = t a n - / - - - s in ] ( 9)

    \2(af + g0 (ae--+ f)

    The respect ive off-axis angle reduces the

    effect ive elast ic constants in the global X and Y

    di rec t ions . The reduced compl i ance can be

    writ ten as (Ref. 17)

    1 m 4

    s , , (8 ) - - -

    E L ( S ) E l .

    n4

    1 2VLT]m2n2+

    I i

    2 ( o ) =

    E T ( 0 ) E T

    S1 2( 0 ) ~--- -VTL(0)

    _

    VTLm_ + --V'r'rn

    ET(0 ) ET ET

    1

    m 2 n 2

    _ _ - - ..[_ _ _

    s (o) =

    GLT(0) GET Gvr

    where m = cos 8, n = sin 0.

    For the f i l l s t rand the mean

    compl i ance i s expressed as

    (lO)

    value of t he

    afo

    ~j =~ Sij(O) dO (11)

    In an actual WF lamina O is very smal l , and

    there fore the fu nct ions sin 0 and cos 0 ca n b e

    subst i tuted by the f i rs t term of thei r Taylor series

    in the integrat ion of eqn (11).

    Integrat ing eqn (11), the effect ive elast ic

    constants of the f i l l s t rand are

    E L

    1+5-

    O z

    GET

    (~fLT = (~2( G L T -

    1)

    1+ 3 \GTr

    (12)

    Afte r eva lua t ing the reduced e l as t i c cons t an t s

    of t he warp s t rand as expla ined ear l ie r and of t he

    fi l l s t rand by using eqn (12) in the sl ice, and also

    cons ider ing the presence of pure mat r ix l ayers ,

    the extensional s t i ffness of that s l ice can be

    expressed as

    1 4

    A~ (y) = ~ ~ hXk(X, Y)(Q_.ij)k (13)

    k = l

    where , hxk(x, y) and (Qi j )k are the thicknesses

    and mean t ransformed s t i f fness of t he k th l ayer

    in the nth sl ice. Her e, hxk(x, y) i s eva luate d at

    constan t x, for di fferen t values of y.

    The th i ckness of t he warp s t rand i s maximum

  • 8/10/2019 COL-UTB-0000006_01

    9/18

    Prediction of on-axes elastic properties of plain weave fabric composites

    143

    a t x = 0 a n d z e r o f r o m x = a , / 2 t o x = ( a , +

    gw)/2.

    T h e r e f o r e t h e m i d t h i c k n e s s o f t h e w a r p

    s t r and i s t aken for the ex tens iona l s t i f fnes s

    ca lcu la t ions i . e . t he th icknes s hw i s mul t ip l i ed by

    a factor

    [0.71a, / (a, +

    gw)] . The ba lance of the

    th icknes s i s as sumed to be f i l l ed wi th pure

    matr ix.

    From the ex tens iona l s t i f fnes s o f the s l i ces the

    e las t i c cons tan t s o f the un i t ce l l a r e eva lua ted by

    as sembl ing the s l i ces toge ther under the i sos t r a in

    condi t ion in a l l t he s l i ces , i . e . t he averaged

    in-p lane ex tens iona l s t i f fnes s i s eva lua ted . The

    averaged in -p lane ex tens iona l s t i f fnes ses o f the

    u n i t c e l l / W F l a m i n a c a n b e e x p r e s s e d a s

    2 ~(.,+go/2

    = A~ (y)dy (14)

    Aij (af + gf) Jo

    I t can be s een f rom F ig . 4 tha t the un i t ce l l i s

    n o t s y m m e t r i c a b o u t i t s m i d p l a n e a n d t h e r e f o r e

    the coupl ing s t i f fnes s t e rms a re p resen t . But

    owing to the na ture o f in te r l ac ing of the s t r ands

    in the p la in weave f abr i c the coupl ing t e rms in

    t w o a d j a c e n t u n i t c e l l s o f t h e W F l a m i n a w o u l d

    have oppos i t e s igns and there fore a re zero fo r the

    WF lamina as a whole . The e las t i c cons tan t s o f

    t h e u n i t c e l l / W F l a m i n a c a n t h e n b e o b t a i n e d

    f rom the expres s ions : TM

    E x=A ~, (1 A~2 )

    Gxy=A66

    (15)

    A~2

    Vyx A22

    In the case o f ba lanced p la in weave f abr i cs the

    Young ' s modul i in bo th f i l l and warp d i r ec t ions ,

    i . e . Ex and Ey , a r e the s ame. For an unba lanced

    p l a i n w e a v e f a b r i c , t h e Y o u n g ' s m o d u l u s i n t h e

    w a r p d i r e c t i o n s h o u l d b e c a l c u l a t e d b y t h e s a m e

    proc edu re as in the f il l d i r ec t ion .

    2. 1.2 Element cirray mod el (E AM )

    T h e l i m i t a t i o n s o f S A M a r e t h a t t h i s m e t h o d

    approximates the s t i f fnes s con t r ibu t ion of the

    w a r p s t r a n d a n d a c c o u n t s f o r t h e g a p b e t w e e n

    t h e a d j a c e n t w a r p s t r a n d s a p p r o x i m a t e l y . I t

    s h o u l d a l s o b e n o t e d t h a t w h e n t h e m a x i m u m

    off-axis angle, O, is subs tant ial ly high such that

    the f i r s t t e rm of the Taylor s e r i es would no t be

    accura te enough to def ine the s ine and cos ine

    func t ions , SAM would f a i l t o g ive accura te

    results .

    I n E A M t h e s e c o n s t r a i n t s a r e o v e r c o m e b y

    c

    (a) SERIES-PARALLEL COMBINATION

    C'

    S

    Z X

    A"

    z

    (b) PARALLEL-SERIES COMBINATION

    Fig. 9. Plain weave fabric lamina unit cei l d iscret ised into

    slices and elements.

    subdividing the s l ices into ele me nts (1, 2 , 3) of

    inf ini tes imal thickness (Fig. 9) . Then, wi thin

    these e l ements , the e l as t i c cons tan t s o f the warp

    and f i l l s t r ands a re t r ans formed for the loca l

    off -axis angle (Fig. 9) and CLT is used to

    eva lua te the s t i f fnes s o f tha t e l ement . The

    average in -p lane compl iance of the s l i ces a r e

    eva lua ted under the cons tan t s t r es s condi t ion in

    every e lement o f tha t s l i ce , i . e . t he mean in tegra l

    v a l u e o f t h e e l e m e n t c o m p l i a n c e o v e r t h e l e n g t h

    of the s l i ce a long the f i l l s t r and a re eva lua ted .

    From the compl iances o f the s l i ces the s t i f fnes ses

    of the s l i ces a r e ca lcu la ted and then the e l as t i c

    cons tan t s o f . the un i t ce l l a r e eva lua ted

    cons ider ing a cons tant s t rain s tate in al l the

    s l i ces . Th i s p rocedure where the e l ements in the

    s l ices are assembled in ser ies ( isos t ress condi t ion)

    and then the s l i ces a r e cons idered in para l l e l

    ( i sos t r a in condi t ion) i s one way of eva lua t ing the

    overal l s t i f fness (Fig. 9(a) ) . Such a scheme is

    r e fe r r ed to as a s e r i es -para l l e l (SP) combina t ion .

    The o ther way i s to make the s l i ces acros s the

    loading direct ion as shown in Fig. 9(b) . The s l ices

    A ' , B ' a n d C ' a r e s u b d i v i d e d i n t o e l e m e n t s .

    T h e n t h e e l e m e n t s i n t h e s li ce s A ' , B ' a n d C ' a r e

    as sembled wi th i sos t r a in condi t ion to ob ta in the

    s l ice s t i f fness . The s l ice s t i f fnesses are inver ted to

  • 8/10/2019 COL-UTB-0000006_01

    10/18

    144 N. K . Naik , V . K . Ganesh

    obta in the s l i ce compl iances . The s l i ces A ' , B '

    and C ' a r e p laced in s e r i es a long the load ing

    di r ec t ion . The un i t ce l l compl iance i s ob ta ined by

    the in tegra ted average of the s l i ce compl iances .

    The un i t ce l l s t i f fnes ses a re ob ta ined by inver t ing

    the un i t ce l l compl iances . Thus i s the para l l e l -

    s e r i es (PS) combina t ion .

    Here , the expres s ions used to def ine the

    u n d u l a t i o n a n d t h e g e o m e t r y o f t h e s t r a n d

    cros s - sec t ion a re the s ame as the ones used in

    SAM , i . e . eqns (1 ) - (6 ) . The s t r and Vf and the

    local of f -axis angle in f i l l and warp direct ions are

    calcu lated f rom eqns (7) , (8) and (9) , respec-

    t ively. The elas t ic cons tants of the warp and f i l l

    s t r ands wi th in the e l ement a r e t r ans formed us ing

    eqn (10) . Then the s t i f fnes ses o f the e l ements a r e

    ca lcu la ted f rom CLT. The e las t i c cons tan t s o f the

    u n i t c e l l / W F l a m i n a a r e t h e n e v a l u a t e d a s

    descr ibed ear l i e r , i . e . by e i ther a s e r i es -para l l e l

    o r p a r a l l e l - s e r ie s c o m b i n a t i o n .

    In the SP combina t ion (F ig . 9 (a ) ) , t he average

    (b*~ ~ in the

    f the s l i ce coupl ing compl iance , , a , ,

    n t h s l ice would be nul l i f ied by a s imilar s l ice in

    the ad jacen t un i t ce l l . But , the e l ement coupl ing

    stiffness, (Bij) e~, and be nd in g stiffnes s, (D~j) ~,

    would increase the va lue o f the e l ement

    ex tens iona l com pl iance , * '~

    axi) ,

    on inver s ion . Thi s

    w o u l d a m o u n t t o l o c a l s o f t e n i n g o f t h e e l e m e n t

    and hence a r educ t ion in the s t i f fnes s o f the s l i ce

    and f ina lly the W F lam ina . But in a PS

    combina t ion (F ig . 9 (b) ) , t he average of the s l i ce

    coupling stiffness in the nth slice, (B~j)S~, w ou ld be

    nul l i f ied by a s imilar s l ice in the adjacent uni t

    ce l l . I n a PS combina t ion , s ince the s l i ce coupl ing

    s t i f fnesses are zero, the s l ice extens ional com-

    p l i a n c e s , * ' ~

    aij) , are no t a f f ec ted by the coupl ing

    and bending s t i f fness terms on invers ion. A PS

    c o m b i n a t i o n w o u l d t h e r e f o r e p r e d i c t a h i g h e r

    va lue of s t i f fnes s compared to a SP combina t ion .

    I n a W F l a m i n a , l o c a l ly i n d u c e d m o m e n t

    resu l t an t s would be p resen t as a r esu l t o f the

    appl icat ion of the in-plane s t ress resul tants . For a

    p la in weave f abr i c l amina , owing to the na ture o f

    i n t e r l a c i n g t h e i n d u c e d m o m e n t w o u l d b e s u c h

    tha t i t cons t r a ins the loca l bending deformat ion .

    T h i s w o u l d a m o u n t t o s e t t i n g t h e e l e m e n t

    c u r v a t u r e t e r m s t o z e r o . W h e n t h i s i s d o n e , b o t h

    S P a n d P S c o m b i n a t i o n s w o u l d g i v e t h e s a m e

    results .

    I n S A M t h e m e a n i n t e g ra l v a l u e w a s c a l c u l a te d

    by us ing an exac t in tegra t ion . But in EAM the

    i n t e g r a t i o n b e c o m e s c o m p l e x a n d t h e i n t e g r a l

    s h o u l d t h e r e f o r e b e e v a l u a t e d n u m e r i c a l l y .

    3 M O D I F I E D S I M P L E M O D E L S

    The s imple model s ava i l ab le in the l i t e r a tu re a re

    no t accura te fo r the p red ic t ion of the e l as t i c

    cons tan t s o f 2 -D p la in weave f abr i c l aminae .

    Here , modi f i ca t ions a re sugges ted to the ex i s t ing

    s imple m ode ls , 3'4 whic h m ake the resul ts of these

    m o d e l s c o m p a r a b l e w i t h t h e r e f i n e d m o d e l

    pred ic t ions .

    3.1 Modif ied mosaic paral le l model (MMPM)

    In the 1 -D para l l e l mod el , 3 the f abr i c i s idea l i s ed

    as an as semblage of un i t s o f an t i symmet r i c

    cros sp ly l amina tes p laced in para l l e l ac ros s the

    load ing d i r ec t ion . Here , the con t inu i ty and

    undula t ion of the s t r ands a re no t cons idered . A

    cons tan t midplane s t r a in i s as sumed in o rder to

    eva lua te the s t i f fnes s o f the WF lamina . F rom

    th i s as sumpt ion the equa t ions fo r the in -p lane

    s t i f fness for a plain weave fabr ic lamina reduce to

    Aij = A~ (16)

    In the above model the c ros sp ly s t i f fnes ses a re

    ca lcu la ted f rom the e las t i c p roper t i es o f the UD

    lamina at the s t rand Vt . Therefore the s t i f fnesses

    pred ic ted by the mosa ic para l l e l model a r e much

    higher than the exper imenta l r esu l t s . I f the

    overa l l Vf o f the W F lamina e xper im enta l ly

    de te rmined i s used to eva lua te the e l as t i c

    p r o p e r t i e s o f t h e U D l a m i n a a n d t h e n t h e m o s a i c

    para l l e l model i s used to p red ic t the WF lamina

    s t i f fness proper t ies , the resul ts are in good

    agreement wi th the p red ic t ions o f the r e f ined

    model s as wel l as the exper imenta l r esu l t s .

    3.2 Modif ied Kabeika's model (MKM)

    In th i s mo del (Ref . 4 ) , t he W F lam ina i s idea l i s ed

    as a th ree- l ayered l amina te cons i s t ing of two

    undula ted l aminae in the c ros sp ly conf igura t ion

    (F ig . 10) and one pure mat r ix l ayer . Here ,

    the UD e las ti c p roper t i es o f the und ula ted

    laminae in the c ros sp ly conf igura t ion a re r educed

    for undula t ion and then CLT i s used to eva lua te

    the e l as t i c p roper t i es o f the WF lamina .

    The local of f -axis angle of the f i l l and warp

    s t r ands a re expres sed a s :

    d [h w z~x~

    0f(x) = tan -1 ~ t - - cos - - t (17)

    \ 2 a w /

    Ow(y) = ta n- l - v - cos (18)

    u y

  • 8/10/2019 COL-UTB-0000006_01

    11/18

    Prediction o f on-axes elastic properties of plain weave fabric com posites

    145

    Y

    J

    J

    Y

    ~X

    I Z h.,,, ,- ,,,, y)

    ~

    , y

    Fig. 10. Plain we av e fab ric lamina--representation of

    interlacing.

    The ra t ios

    hw/aw

    a n d

    hf/ae

    c a n b e c o n s i d e re d t o

    be very smal l for the actual s t rand configurat ions.

    Hence the maximum off-axis angles in the f i l l and

    warp d i rec t ions a re

    :rhw

    Of =

    2aw (19)

    :thf

    O w ~ - -

    2ae

    The reduced e l as t i c p roper t i es o f t he equiv-

    a l en t warp and f i l l l aminae a re eva lua t ed by

    f inding the mea n in t egra l va lue of t he loca l

    compl i ance of t he respec t ive l amina . Thi s i s done

    by t ransforming the compl i ance for t he loca l

    off-axis angle and then integrat ing the t rans-

    formed compl i ance .

    The average compl i ance may be expressed as

    S0= ~ S0(t~) d 0 (20)

    The above express ion can be used for bo th

    warp and f i l l s t rands by insert ing the respect ive

    s t rand geomet r i ca l and e l as t i c parameters .

    Inver t ing the compl i ance , t he e f fec t ive e l as t i c

    proper t i es can be found . Kno wing the e f fec t ive

    e l as t i c p roper t i es o f t he equiva l en t l aminae , t he

    st i ffness of the WF lamina i s evaluated using

    CLT.

    In thi s metho d , t he th i cknesses of t he warp and

    fi l l laminae are taken as the thicknesses of the

    respect ive st rands. But , in an actual case,

    normal ly the st rands are el l ipt ical ly shaped wi th

    maximum th i ckness a t t he mid sec t ion . Thi s

    model would therefore g ive a h igher s t i f fness

    because the maximum s t rand th i ckness i s

    cons idered for ca l cu la t ions . Secondly , t he pre -

    sence of a gap i s not accounted for .

    The presence of a gap can be approximate ly

    t aken in to account by rep lac ing the s t rand wid th

    by s t rand wid th p lus t he gap be tween the

    corresponding ad jacent s t rands in eqns (17)-

    (19).

    In order t o account for t he e l l i p t i ca l shape of

    the st rand, the st rand thickness i s factored to i t s

    mid value whi le calculat ing the in-plane st i ffness.

    The remain ing th i ckness i s t aken as pure mat r ix

    l ayer . The ord ina t e of t he s t rans th i ckness

    fo l lows the s ine func t ion , t here fore the mid

    thickness of the warp and f i l l s t rand would be

    hf = 0.707hf

    (21)

    /~w = 0-707hw

    If t he gap i s p resen t , t he average th i ckness can be

    approximated as

    ae

    /~f = 0 707 h'((af + gf) ) (22)

    hw= 0 707hw((aw+ gw))

    4 E X P E R I M E N T A L W O R K

    T h e e x p e r i m e n t a l p ro g ra m m e w a s d e s i g n e d t o

    de te rmine the e l as t i c modul i o f t he WF l amina

    along the warp and f i l l di rect ions. The experi -

    ment s were car r i ed ou t on E-g lass / epoxy and

    carbon/epoxy l aminae . The th i ckness of t he

    E-glass fabric was 0.2 mm , a nd th e wa rp and f i ll

    t h read count s were 15 per cm, whi l e t he

    th i ckness of t he c arbon fabr ic was 0 .16 mm and

    i ts warp and f i l l thread counts were 8-8 per cm. I t

    m a y b e n o t e d t h a t e v e n t h o u g h t h e n u m b e r o f

    count s a re t he same a long the warp and f i l l

    d i rec t ions , t he fabr i cs a re no t ba l anced because

    of di fferent gaps along the warp and f i l l di rect ions

    and hence a d i f fe ren t degree of undula t ion . The

    epoxy res in LY556 wi th hardener HY951

    suppl i ed by Ciba tu l , Ind ia , was used and the

  • 8/10/2019 COL-UTB-0000006_01

    12/18

    146

    N. K. Naik, V. K. Ganesh

    l a m i n a e w e r e p r e p a r e d a t r o o m t e m p e r a t u r e i n a

    s p e c i a l l y d e s i g n e d m a t c h e d d i e m o u l d . T h e

    overa l l f ib re vo lume f r ac t ions o f the l aminae

    w e r e d e t e r m i n e d a s d e s c r i b e d i n t h e A S T M

    specification D 3171.

    S ta t i c t ens i l e t es t spec imens were p repared

    accord ing to A ST M spec i f ica t ion D 3039 . The

    l a m i n a e t h i c k n e s s e s o f t h e E - g l a s s / e p o x y a n d

    c a r b o n / e p o x y c o m p o s i t e s w e r e l e s s t h a n t h e

    m i n i m u m r e q u ir e d b y A S T M D 3 0 3 9 . S in c e n o

    other s t andards a re ava i l ab le fo r such t es t ing , the

    s a m e s t a n d a r d w a s u s e d f o r t h e s p e c i m e n s m a d e

    f r o m W F l a m i n a e . T h e t e s t s w e r e p e r f o r m e d o n a

    L l o y d M 5 0 K m a c h i n e . T h e s p e c i m e n s w e r e

    tes ted a t room tempera ture (27C) a t a c ros shead

    speed of 1 m m/ mi n . A to ta l o f 40 spec ime ns was

    tes ted . The s ca t t e r r ange fo r ca rbon/epoxy for Ey

    was 56-61 GPa and for Ex i t was 47-50 GPa. For

    E-g las s /epoxy , the s ca t t e r r ange was 17-21 GPa.

    The mean va lues o f the t es t r esu l t s a r e p resen ted

    in the next sect ion.

    T h e g e o m e t r i c a l p a r a m e t e r s o f t h e f a b r i c w e r e

    d e t e r m i n e d b y m e a n s o f a n o p t i c a l m i c r o s c o p e a t

    a magnif icat ion of 20.

    5 R E S U L T S A N D D I S C U S S I O N

    T w o f a b r i c c o m p o s i t e m o d e l s h a v e b e e n p r e -

    sen ted fo r the on-axes e l as t i c ana lys i s o f 2 -D

    o r t h o g o n a l p l a i n w e a v e f a b r i c l a m i n a e . T h e

    model s cons ider the ac tua l s t r and c ros s - sec t iona l

    g e o m e t r y a n d t h e p r e s e n c e o f a g a p b e t w e e n t h e

    ad jacen t s t r ands . An ana ly t i ca l t echn ique to

    eva lua te VI f rom V~' de t e rm ine d exp er ime nta l ly

    i s a l so p resen ted . The shape func t ions cons idered

    a r e c o m p a r e d w i t h a s c a n n i n g e l e c t r o n m i c r o -

    graph . Th e shape func t ions agree wel l wi th the

    a c t u a l g e o m e t r y o f t h e W F l a m i n a .

    S o m e a p p r o x i m a t i o n s a r e i n c o r p o r a t e d i n

    S A M i n o r d e r t o r e d u c e t h e c o m p u t a t i o n a l

    c o m p l e x i t y w i t h o u t c o m p r o m i s i n g o n t h e f i n a l

    r esu l t s fo r ac tua l WF lamina conf igura t ions .

    These approx imat ions would pred ic t s l igh t ly

    h i g h e r s t i f f n e s s c o m p a r e d t o E A M . I n E A M t w o

    combina t ions o f as sembl ing the e l ement s t i f fnes s

    are p resen ted . In the SP combina t ion , the loca l

    b e n d i n g d e f o r m a t i o n s c a n b e c o n s i d e r e d o r t h e y

    can be as sumed to be cons t r a ined by loca l ly

    i n d u c e d m o m e n t s . T h e a s s u m p t i o n t h a t t h e l oc a l

    bending deformat ions a re cons t r a ined i s r ea l i s t i c

    cons ider ing the na ture o f in te r l ac ing of the p la in

    weave f abr i c compos i t es .

    Table 1. Elastic properties of fibre and matrix

    Material

    (GPa) (OPa) (GPa) (GPa)

    Fibre

    Car bon t9 230-0 40-0 24-0 14-3 0-26

    E-glass~ 72.0 72.0 27-7 27.7 0-30

    Gra phi te 19 388.0 7.2 6.8 2-4 0-23

    Matrix

    epoxy~ 3.5 3.5 1.3 1.3 0-35

    Isotropic.

    I n o r d e r t o e x a m i n e t h e m i c r o m e c h a n i c a l

    approaches fo r the p red ic t ion of the e l as t i c

    cons tan t s o f a WF lamina , th ree mater i a l sys tems

    w i t h d i ff e r en t w e a v e g e o m e t r i e s w e r e c o n s i d e r e d .

    The e las t i c p roper t i es o f the f ib res and mat r ix a re

    g i v e n i n T a b l e 1 . A s s u m e d g e o m e t r y w i t h i n t h e

    p r a c t i c a l r a n g e w a s t a k e n f o r t h e g r a p h i t e / e p o x y

    mater i a l sys tem in o rder to s tudy the s ens i t iv i ty

    of the f abr i c geomet ry on the e l as t i c p roper t i es o f

    t h e W F l a m i n a . T h e f a b r i c g e o m e t r i c a l p a r a -

    m e t e r s o f c a r b o n / e p o x y a n d E - g l a s s / e p o x y W F

    l a m i n a e a r e t h e a c t u a l d i m e n s i o n s m e a s u r e d w i t h

    an op t i ca l microscope (Table 2 ) . These two

    m a t e r ia l s y s te m s w e r e c o n s i d e r e d t o c o m p a r e t h e

    resu l t s o f the p roposed model s wi th the

    exper imenta l r esu l t s . Tab le 3 p resen t s the

    me asure d V~' and the cor resp ondin g ca lcu la ted

    V~. In the case o f the g raphi t e / epoxy WF lamina ,

    V~' was ca lcula ted f rom a V~ of 0.8. Th e

    max imum V~ was as sume d to be 0 .8 to ensure

    tha t the f ib res do no t become cont iguous . In the

    above ca lcu la t ions the V~ va lues o f the w arp and

    f i l l s t r ands were as sumed to be the s ame and th i s

    as sumpt ion i s va l id as the d iameter o f the f ib res

    in the warp and f il l s t r ands a re the s am e a nd the

    proces s ing condi t ions a re the s ame.

    I t i s seen f rom Tab le 3, tha t V~' i s a lmo st ha lf

    of V~. This is poss ible in the case of a plain

    w e a v e f a b r i c l a m i n a b e c a u s e o f t h e n u m b e r a n d

    s ize o f pure r es in pocke t s p resen t . I t may no t be

    poss ible to achiev e a V~' of abo ut 0.5 a nd a bov e

    in the case o f p la in weave f abr i c l aminae . Wi th

    th is the maxim um V~ of 0 -7-0 .8 wou ld have been

    a t t a ined .

    Table 4 p resen t s the e l as t i c p roper t i es o f the

    UD lamina a t VI and V~' ca lcu la ted f rom the

    com posi te cyl in der assem blag e ( CC A ) mo del . 15,16

    W i t h t h e s e U D l a m i n a p r o p e r t i e s a n d d i f f e r e n t

    m o d e l s d e s c r i b e d i n t h e p r e c e d i n g s e c t i o n s a n d

    Ref . 4 , the e l as t i c p roper t i es o f the WF laminae

    c o n s i d e r e d w e r e p r e d i c t e d . I n t h e c a s e o f t h e

  • 8/10/2019 COL-UTB-0000006_01

    13/18

    Prediction of on-axes elastic properties of plain weav e fabric composites

    Table 2. Plain weave fabric lamina strand and weav e geometrical parameters

    Mat e r i a l F i l l s t r and Wa r p s t r and H V ~

    ( m m )

    af hf gf aw hw gw

    ( m m ) ( m m ) ( m m ) ( m m ) ( m m ) ( m m )

    C ar bon / epoxy 0 .96 0 .08

    E- G l a s s / epox y 0- 62 0 - 10

    G r ap h i t e / ep oxy 2 .00 0 - 50

    0-18 1.10 0-08 0.04 0.16 0.44 a

    0-05 0.62 0.10 0.05 0-20 0.42 a

    0,50 2-00 0.50 0.50 1-00 0.41 b

    a D e t e r m i ned expe r i m en t a l l y .

    b Calcula ted f rom s t rand Vf of 0 .80.

    147

    Table 3. Overall Vf and the correspon ding strand Vf

    Ma teri al Ov era l l Vf (Vf ) Str and Vf (V~)

    C ar b on / ep oxy 0 - 44 0 .78

    E- G l a s s / epox y 0 .42 0 -70

    G r ap h i t e / ep oxy 0 -41 0 .80

    E-glass/epoxy WF lamina, the strand appeared,

    when seen through an optical microscope, to

    have a slight twist. Ideally, the UD lamina

    properties evaluated using the CCA model

    should be multiplied by the fibre-to-strand

    property translation efficiency factor and then

    these properties should be used for further

    Table 4. Elastic properties of UD lamina using CCA m odel

    Material EL ET GLT Gaa- VLT Vf

    (GPa) (GVa) (GPa) (GPa)

    Carbon /epoxy 18 2. 50 18-50 7-55 6.70 0.28 0.78

    105.40 8.60 3.00 3.00 0.40 0- 44

    E-Glass/epoxy 5 1. 5 0 17-50 5.80 6.60 0.31 0.70

    32.25 8.55 2.85 3.10 0.39 0.42

    Graph ite/epox y 311.00 6.30 4-40 2,10 0.25 0.80

    161.00 5.00 2-27 1,70 0- 30 0. 41

    calculations. But, in this case, as the angle of

    twist was small the translation efficiency factor

    was taken as unity. The predicted results are

    tabulated in Table 5.

    Table 5. Elastic properties of plain weav e fabric lamina: Comparison o f predicted and

    experimental results

    Mat e r i a l Mode l

    Er Ex Gxy Wx V7

    ( G P a ) ( G P a ) ( G P a )

    C a r bo n / epo xy SA M 58 .9 52 -4 5 .1 0 .07

    EA M - - PS 57-1 51 -2 4 -7 0 .10

    - - S P 35.6 35.4 4 .7 0-10

    MM PM 57.6 57.6 3 .0 0 .07

    MK M 64.8 58.5 5 .3 0 .04 0 .44

    Expe r i m en t 60 .3 49 .3 - - - -

    K a b e l k a ' s m e t h o d

    (Ref, 4) 89.3 89-3 7,0 0.04

    E- G l a s s / epoxy SA M 20-3 20 .3 3 ,7 0 -23

    EA M - - PS 19 .6 19 .6 3 .7 0 .20

    ra SP 17-9 17.9 3-7 0.20

    MM PM 20.7 20-7 2 .9 0 .17

    MK M 21.7 21.5 3 .9 0 .13 0 .42

    Expe r i m en t 19 -3 19- 3 - - - -

    K a b e i k a ' s m e t h o d

    (Ref . 4) 29.2 29.2 4 .9 0-12

    G r ap h i t e / epo xy SA M 28 .8 28 -8 2 .8 0 .08

    E A M - - PS 23-7 23 .7 2 .8 0 - 12

    - - S P 16.2 16.2 2 .8 0 .12

    MM PM 80.1 80-1 2-3 0 .02

    M KM 32.2 32.2 3 .0 0-04 0 .41

    E x p e r im e n t . . . .

    K a b e l k a ' s m e t h o d

    (Ref . 4) 44-3 44.3 3.7 0.03

    M M P M - - M o d i f i e d m o s a ic p a r a l l el m o d e l ,

    M K M - - M o d i f i e d K a b e i k a ' s m o d e l .

  • 8/10/2019 COL-UTB-0000006_01

    14/18

    148 N. K. Naik, V. K. Ganesh

    The un i t ce l l was subd iv ided in to 50 s l i ces

    pa ra l l e l t o t he l oad ing d i rec t i on in SAM. In

    EAM, the un i t ce l l was subd iv ided in to 50 s l i ces .

    The s l i ces were a long the l oad ing d i rec t i on in t he

    S P c o m b i n a t i o n w h e r e a s t h e y w e r e a c r o s s t h e

    l o a d i n g d i r e c t i o n i n t h e P S c o m b i n a t i o n . F o r

    bo th t he SP and PS com bina t ions , each s l i ce was

    f u r t h e r s u b d i v i d e d i n t o 5 0 e l e m e n t s . H e n c e , t h e

    to t a l num ber o f e l em en t s was 2500 . Th i s was

    a r r ived a t a f t e r a convergence s tudy . In t he case

    o f c a r b o n / e p o x y a n d E - g l a s s / e p o x y , t h e e x-

    p e r i m e n t a l v a l u e s o f Y o u n g ' s m o d u l i a l o n g t h e

    warp and f i l l d i rec t i ons a re a l so p resen t ed in

    T a b l e 5 . T h e c o m p a r i s o n o f t h e p r e d i c t e d r e s u l t s

    b y S A M , P S , t h e m o d i f i e d m o s a i c p a r al l el m o d e l

    ( M M P M ) a n d t he m o d i f i ed K a be l k a 's m o d e l

    ( M K M ) e x h i b i t g o o d a g r e e m e n t w i t h t h e

    e x p e r i m e n t a l r e s u l t s i n t h e c a s e o f c a r b o n / e p o x y

    a n d E - g l a s s / e p o x y .

    T h e l o ca l b e n d i n g d e f o r m a t i o n is c o n s i d e r e d i n

    SP and the re fo re t he re su l t s o f SP a re l ower

    com pared to t he re su l t s o f PS . Bu t , i n an ac tua l

    p l a in weave fab r i c l am ina , l oca l bend ing

    defo rm a t ions due to t he coup l ing e f fec t i n each

    un i t ce l l can be a ssum ed to be cons t ra ined . The

    resu l t s o f PS in wh ich the e l em en t coup l ing t e rm s

    do no t a f fec t t he s l i ce com pl i ance a re t he re fo re

    t aken a s rea l i s t i c . I t shou ld be no t ed tha t t he

    resu l t s o f PS wi th o r w i thou t t he coup l ing t e rm s

    wou ld be t he sam e and the re su l t s o f SP wi thou t

    t h e c o u p l i n g t e r m s w o u l d b e t h e s a m e a s t h e

    resu l t s o f PS . The re su l t s p re sen t ed in Tab le 5

    aga ins t SP com bina t ion a re t he re su l t s ob t a ined

    c o n s i d e ri n g t h e l o c al b e n d i n g d e f o r m a t i o n s .

    C o m p a r i n g t h e r e s u l t s o f P S a n d S P o f E A M ,

    i t can be seen tha t t he coup l ing t e rm s have

    a f f e c t e d t h e c a r b o n / e p o x y W F l a m i n a r e s u l t s

    m o r e t h a n t h e E - g l a s s / e p o x y o r g r a p h i t e / e p o x y

    WF l am ina re su l t s . Th i s i s due t o l e ss undu la t i on

    i n c a r b o n / e p o x y W F l a m i n a a n d l a r g e r EL/ET

    r a ti o o f t h e e q u i v a l e n t c a r b o n / e p o x y U D l a m i n a .

    Th i s wou ld i nc rease t he abso lu t e va lue o f t he

    coup l ing t e rm s an d the r eby l ead to g rea t e r l oca l

    s o f t e n i n g . I n t h e c a s e o f t h e g r a p h i t e / e p o x y W F

    lam ina , a l t hough i t s equ iva l en t UD EL/E.r ra t io

    i s h igh , t he e f fec t o f coup l ing t e rm s i s sm a l l e r , by

    c o m p a r i s o n w i th t h e c a r b o n / e p o x y W F l a m i n a ,

    b e c a u s e o f t h e g r e a t e r u n d u l a t i o n o f t h e s t r a n d s .

    I t m ay be no t ed tha t t he E-g l a ss and g raph i t e

    p l a in weave fab r i c s cons ide red a re ba l anced

    whereas t he ca rbon p l a in weave fab r i c i s

    unba l anced (Tab le 2 ) . Hence , t he e l a s t i c m odu l i

    a long the warp and f i l l d i rec t i ons a re t he sam e fo r

    t h e E - g l a s s / e p o x y a n d g r a p h i t e / e p o x y W F

    lam inae whereas t hey a re d i f fe ren t fo r t he

    c a r b o n / e p o x y W F l a m i n a . F o r t h e c a r b o n / e p o x y

    WF lamin a, s ince aw > af and gw < g~ , one wou ld

    expec t E , . t o be g rea t e r t han

    Ex.

    Such re su l t s a re

    o b t a i n e d f r o m S A M a n d P S . F o r S P , t h e t r e n d

    can be d i f fe ren t depend ing upon the e f fec t o f

    c o u p l i n g t e r m s . T h e c o n t r i b u t i o n o f t h e a b s o l u t e

    va lues o f t he coup l ing t e rm s i s m ore i n t he

    ove r l ap reg ion than in t he gap reg ion .

    I n t h e c a se o f t h e c a r b o n / e p o x y a n d

    E-g lass / epoxy WF l am inae t he d i f fe rence i n

    re su l t s o f SAM and PS i s l e s s , bu t t he re su l t s o f

    PS in t he case o f a g raph i t e / epoxy WF l am ina a re

    cons ide rab ly l ower t han the re su l t s p red i c t ed by

    SAM. Th i s i s due t o t he l ower s t rand th i ckness t o

    s t rand wid th

    (h/a)

    ra t io in the case of

    c a r b o n / e p o x y a n d E - g l a s s / e p o x y W F l a m i n a e

    a n d h i g h e r

    h/a

    f o r g r a p h i t e / e p x o y W F l a m i n a .

    R e c a l l i n g S A M , i n o r d e r t o c o n s i d e r t h e n e t

    e f fec t o f t he warp s t rand , warp s t rand th i ckness

    was fac to red to i t s m id va lue and the e f fec t o f t he

    g a p w a s t a k e n i n t o a c c o u n t a p p r o x i m a t e l y . T h e

    d i f fe rence i n t he re su l t s o f SAM and PS i s due t o

    t h i s a p p r o x i m a t i o n i n S A M . T h e a p p r o x i m a t i o n

    seem s to be va l id when the h/a rat io is low as the

    s l o p e o f t h e s t r a n d o u t e r c o n t o u r w o u l d b e s m a l l

    and the t h i ckness o f t he s t rand wou ld be nea r ly

    un i fo rm a long the s t rand wid th . In PS , t he s l i ces

    a r e s u b d i v i d e d f u r t h e r i n t o e l e m e n t s a n d t h e

    th i ckness o f t he warp s t rand a t t he m idpo in t o f

    tha t e l em en t i s cons ide red wh i l e ca l cu l a t i ng the

    s t i f fness . The re fo re , t h i s m e thod wou ld g ive

    consis tent resul t s for a l l h/a ra t i o s and the re su l t s

    wou ld a lways be l e ss t han tha t o f SAM. The on ly

    d rawback o f PS i s t ha t i t i nvo lves m ore

    c a l c u l a t i o n s a n d t h e r e f o r e c o n s u m e s m o r e c o m -

    pu ta t i ona l t im e .

    G e n e r a l e v a l u a t i o n o f a p p r o x i m a t e m e t h o d s i s ,

    o f cou rse , im poss ib l e . T he va l id i t y o f the

    m o d i f i e d s i m p l e m o d e l s , i .e . M M P M a n d M K M ,

    i s t he re fo re a ssessed on ly on the bas i s o f

    ind iv idua l cases . Two ac tua l WF l am inae

    c o n f i g u r a t i o n s a n d o n e a s s u m e d g e o m e t r y c a s e

    were cons ide red to a ssess t he m od i f i ed s im p le

    m o d e l s . T h e a s s u m e d g e o m e t r y c a s e w a s

    c o n s i d e r e d t o e v a l u a t e t h e m o d i f i e d s i m p l e

    m ode l s a t a h igh l eve l o f undu la t i on and fo r t he

    sake o f gene ra l i t y .

    T h e r e s u l t s o b t a i n e d f r o m t h e r e f i n e d m o d e l s ,

    m o d i f i e d s i m p l e m o d e l s a n d a s i m p l e m o d e l ( R e f .

    4 ) a re t abu la t ed i n Tab le 5 . The s im p le m ode l

    p resen t ed in Ref . 4 i s on ly fo r c lo se weave and

  • 8/10/2019 COL-UTB-0000006_01

    15/18

    Prediction of on-axes elastic properties of pla in weave abric composites 149

    h e n c e i t d o e s n o t t a k e t h e p r e s e n c e o f a g a p i n t o

    a c c o u n t . F o r t h e p r e s e n t c a l c u l a t i o n s , t h e r e f o r e ,

    t h e g a p w a s a s s u m e d t o b e e q u a l t o z e r o . T h e

    r e s u l t s o f M M P M c o m p a r e w e l l w i t h t h e r e s u l t s

    o f r e f i n e d m o d e l s i n t h e c a s e o f c a r b o n / e p o x y

    and E-g las s / epoxy WF laminae and i s g ros s ly

    i n a c c u r a t e f o r a g r a p h i t e / e p o x y W F l a m i n a . B u t

    t h e r e s u l t s o f M K M c o m p a r e w e l l f o r t h e

    E - g l a s s / e p o x y W F l a m i n a a n d n o t s o w e l l f o r

    g r a p h i te / e p o x y a n d c a r b o n / e p o x y W F l a m i na e .

    M M P M g i v e s a n a c c u r a t e p r e d i c t i o n f o r

    c a r b o n / e p o x y a n d E - g l a s s / e p o x y W F l a m i n a e ,

    b e c a u s e t h e s e W F l a m i n a e c o n f i g u r a t i o n s h a v e

    l o w e r h/a r a t ios . I t may be no ted tha t whi l e

    f o r m u l a t i n g t h i s m o d e l t h e p r e s e n c e o f u n d u l a -

    t i o n w a s i g n o r e d a n d l o w e r h/a a m o u n t s t o

    u n d u l a t i o n a n g l e t e n d i n g t o z e r o . T h e a u t h e n -

    t i c i ty o f th i s can be ver i f i ed by compar ing the

    resu l t s o f MMPM wi th the r esu l t s o f the r e f ined

    m o d e l s i n t h e c a s e o f a g r a p h i t e / e p o x y W F

    lamina . He re , i t i s s een tha t MM PM gives very

    h igh modulus va lues as i t does no t cons ider the

    u n d u l a t i o n w h e r e a s t h e u n d u l a t i o n i s t h e

    pr inc ipa l parameter which r educes the s t i f fnes s in

    t h e c a s e o f a g r a p h i t e / e p o x y W F l a m i n a .

    T h e p r e d i c t i o n o f M K M c o m p a r e s w e l l w i t h

    t h e r e s u l t s o f r e f i n e d m o d e l s c o m p a r e d t o t h e

    resu l t s o f MMPM for the f abr i c s t ruc tures hav ing

    higher h/a, i . e . f o r g r a p h i t e / e p o x y . F o r t h e c a s e

    o f a c a r b o n / e p o x y W F l a m i n a , t h o u g h t h e

    pred ic t ion i s no t as accura te as tha t o f MMPM,

    the resul ts are also not gross ly inaccurate . This is

    because MKM main ly cons ider s the s t i f fnes s

    r e d u c t i o n d u e t o t h e p r e s e n c e o f u n d u l a t i o n a n d

    t h e u n d u l a t i o n i s q u i t e s m a l l f o r a c a r b o n / e p o x y

    W F l a m i n a .

    The s t i f fnes s r educ t ion in a WF lamina i s

    main ly due to the lowe r V~' and th e p resenc e of

    u n d u l a t i o n i n t h e s t r a n d s a s c o m p a r e d t o t h e U D

    cros sp ly l amina tes . MMPM cons ider s the r e -

    duced V~' by cons ider in g the s t r and prope r t i es a t

    V~', bu t doe s no t c ons ide r the un dula t ion of

    s t r ands . Thi s model i s there fore app l i cab le fo r

    f abr i c s t ruc tures hav ing very much l es s undula-

    t ion . I t i s wor th no t ing here tha t mos t o f the

    ac tua l woven f abr i cs used in s t ruc tura l app l i ca-

    t ions and made of h igh modulus f ib res have lower

    h/a r a t ios . Th ere c an be a co mb ina t io n of Vf and

    u n d u l a t i o n w h i c h w o u l d g i v e p r a c ti c a l ly t h e s a m e

    r e s u l t s b y M M P M a n d M K M . T h i s c a n b e s e e n i n

    the case o f E-g las s / e poxy WF lam ina . F igu re 11

    shows the var iat io n of V~' and V~ as a funct ion o f

    h/a

    rat io . He re, i t i s seen t hat b oth V~' and V~

    are cons tan t fo r a l l h/a r a t ios and a g iven gap .

    Thi s i s t rue because the var i a t ion of h/a w o u l d

    c o r r e s p o n d i n g l y re d u c e t h e t o t a l t h i c k n es s o f t h e

    l a m i n a a n d t h e v o l u m e o f p u r e m a t r i x r e g i o n s ,

    thereby keep ing V~' cons tan t . Th i s c l ear ly

    ind ica tes tha t MMPM gives the s ame r esu l t fo r

    all

    h/a

    r a t ios fo r a g iven mater i a l sys tem and gap .

    Figure 12 shows the var ia t ion of V~' and V~ as a

    func t ion of the gap wid th to s t r and wid th (g/a)

    r a t io . Here , i t i s s een tha t V~ reduces wi th the

    same V~ as the gap increases . N ow , wi th th i s

    o b s e r v a t i o n i t c a n b e s h o w n t h a t M M P M

    cons ider s the gap ind i r ec t ly , i . e . wi th the

    presence of the gap , V~' f a ll s and c or respo nding ly

    a l te r s th e e q u i v a l e n t U D e l a st ic c o n s ta n t s . M K M

    cons ider s the e f f ect o f the r ed uce d Vf by

    c o n s i d e r i n g t h e b a l a n c e o f t h e f a c t o r e d w a r p a n d

    f i l l layer thicknesses as a pure matr ix layer .

    The pre dic ted values of Gxy and vxy are also

    p r e s e n t e d i n T a b l e 5 . I n g e n e r a l , t h e r e f i n e d a n d

    modi f i ed s imple model s g ive lower va lues o f WF

    l a m i n a G~y, w h e r e a s t h e s e m o d e l s g i v e h i g h e r

    va lues o f Vxy c o m p a r e d t o t h e s i m p l e m o d e l . T h e

    lower va lues o f G~y are due to the lower va lu e o f

    V~' and the p resenc e of undula t ion . The h igher

    values of Vxy o c c u r f o r t h e s a m e r e a s o n s . T h e

    va lues o f Gxy we re ev a lua te d by c ar ry ing ou t the

    ana lys i s a long the warp and f i l l d i r ec t ions

    s e p a r a te l y i n t h e c a s e o f c a r b o n / e p o x y W F

    l a m i n a . T h e s a m e r e s u l t s w e r e o b t a i n e d i n b o t h

    cases.

    T h e d e g r e e o f u n d u l a t i o n d e p e n d s o n t h e

    h/(a + g) r a t i o . L o w e r h/(a + g) r a t io ind ica tes a

    l o w e r d e g r e e o f u n d u l a t i o n a n d vice versa. F i g u r e

    11 presents the ef fect of the hw/aw rat io on E~ as

    a func t ion of gap (gw) fo r a ba lanc ed , p la in wea ve

    fabr ic lam ina with aw = af , hw = hf an d gw = gf. I t

    i s obv ious f rom the p lo t tha t as the hw/aw rat io

    increases for a given gap, Ex reduces . This is

    a t t r ibu ted to the f ac t tha t as the hw/aw rat io

    increases , the e f f ec t o f undula t ion i s increased .

    The r educ t ion in E~ i s s t eeper fo r l a rger va lues o f

    gw. As s een f rom F ig . 11 , the p resence of l a rger

    gw c a n f u r t h e r r e d u c e t h e u n d u l a t i o n a n d

    consequent ly the h igher va lue o f E~ i s ob ta ined

    than w i th lower va lues o f gw unt i l an op t im um

    hw/aw v a l u e i s r e a c h e d . T h e t r e n d w o u l d b e t h e

    r e v e r s e a b o v e t h e o p t i m u m v a l u e o f t h e

    hw/aw

    r a t io . In o ther words , in th i s r ange , lower va lues

    o f Ex w o u l d b e o b t a i n e d w i t h h i g h e r v a l u e s o f g w

    than wi th low er va lues o f gw.

    The var i a t ion of Ex as a func t ion of gw/aw for

    dif ferent

    hw/aw

    rat ios is presented in Fig. 12 for a

  • 8/10/2019 COL-UTB-0000006_01

    16/18

    150

    N. K. Naik, V. K. Ganesh

    o

    O.

    t,L,l

    100

    90

    80

    70

    60

    50

    40

    30

    20

    10

    GRAPHITE /EPOXY

    k

    ~, ,B-- - - - gw law = 0-5 Ow= 2'0 mm

    -- _ ~ ~'S T R AND Vf

    I

    ~ gw = 0 5 mm

    - o / ) ' \

    \~. --OVERALL

    Vf

    _ ~ N ~ gw = 0 5

    mm

    1 I l I

    0"0 0-1 0"2 0"3 0"4

    h w / a w

    ]Fig. 1]. Var iatio n of K~ and V as a function o f h~/a,~.

    1-0

    0.8

    0'6

    0.4

    0 2

    O-0

    05

    balanced, plain weave fabric lamina. The effect

    of gwiS twofold. As the gap is increased,

    obviously V~' would decrease with the same V~,

    in turn the elastic moduli would reduce. On the

    other hand, the presence of a gap would reduce

    the degree of undulation and hence the elastic

    moduli would increase. From this it is obvious

    A

    o

    (1.

    X

    uJ

    4 0 -

    hw/aw= 0.15

    STRAND V~

    3 s = r -~

    h w /a W = 0-2

    __~_ . c~

    h w / a w = 0 3

    1 I I I

    0'0 0 2 0,4 0 6 0 8

    gw/aw

    that the optimum gap would give the maximum

    possible elastic moduli. In addition to this, the

    fabrics with gaps between adjacent strands, i.e.

    open weave fabrics, provide better wettability

    and in turn better performance of the WF

    lamina/laminate. It is seen from Fig. 12 that as

    gw/aw

    increases, Ex increases until an optimum gw

    - 1 - 0

    GRAPHITE /EPOXY

    aw= 2"0 mrn

    0 8

    0 ' 6

    0'4

    0'2

    0.0

    1 0

    Fig. 12. Variatio n of Ex and Vt as a functio n of

    gw/aw.

  • 8/10/2019 COL-UTB-0000006_01

    17/18

    Prediction of on-axes elastic properties o f plain weave fabric composites 151

    is reached, and thereafter it decreases. For larger

    h/a

    rat ios , the numerical value of the o ptim um

    gap is greater than for lower values of

    h/a

    ratios.

    For certain combinations of fabric geometrical

    parameters , the optimum gap can be zero, as

    seen for

    hw/aw=O.15.

    Even though the per-

    centage gain in Ex due to optim um gw may not be

    considerable , the magnitude of gap achieved can

    be significant enough to facilitate better wet-

    tability and formability. The gain in Ex as

    presented in Fig. 12 is the absolute value. The

    gain in terms of specif ic modulus would be much

    higher owing to the difference in densities of fibre

    and matrix. It may be noted that Figs 11 and 12

    are plotted by using SAM .

    For the balanced plain weave fabric lamina,

    the properties along the warp and fill directions

    are the same. Hence, the discussion relating to

    Ex along the fill direction and Ey along the warp

    direct ion are the same. For the unb alanced, plain

    weave fabric lamina, the same analysis can be

    used along the warp direction to obtain Ey.

    6 C O N C L U S I O N S

    T h e p r e d i c t i o n s o f t h e r e f i n e d m o d e l s h a v e b e e n

    e v a l u a t e d b y c o m p a r i s o n w i t h t h e r e s u l t s o f a n

    e x p e r i m e n t a l p r o g r a m m e . I t i s s e e n t h a t t h e

    pred ic t ions o f the r e f ined model s match wel l wi th

    the exper imenta l r esu l t s . I t should be no ted tha t

    cer t a in l imi ta t ions a re inheren t in the use o f

    modi f i ed s imple model s in t e rms of the r ange of

    appl i cab i l i ty . The r esu l t s ob ta ined f rom the

    m o d i f i e d s i m p l e m o d e l s , h o w e v e r , c e r t a i n t l y

    i n d i c a t e t h a t t h e s e t e c h n i q u e s , w h e n u s e d w i t h

    s o m e j u d g m e n t , a r e v e r y s at i sf a c to r y e n g i n e e r i n g

    tools.

    T h e r e f i n e d m o d e l , S A M , w a s u s e d t o s t u d y

    the ef fect of h /a a n d g /a o n t h e W F l a m i n a

    longi tud ina l mod ulus and V~'. I t i s s een tha t there

    is a significant effect of the

    h /a

    r a t io on the

    longi tu dinal mo dul us , b ut V~' i s con s tan t for al l

    h /a r a t i o s . W i t h t h e o p t i m u m g a p b e t w e e n t h e

    two ad jacen t s t r ands , the spec if i c s t if fnes s would

    be the h ighes t . Th e o vera l l Vf o f the WF lamina

    r e d u c e s w i t h t h e i n c r e a s e i n t h e g a p b e t w e e n t h e

    ad jacen t s t r ands wi th the s ame s t r and Vf .

    A C K N O W L E D G E M E N T

    This work was supported by the Structures Panel,

    Aeronaut ic s Research Deve lo pme nt Board,

    Ministry of Defence , Government of India,

    Grant No. Aero/RD -134/10 0/10/90 -91/659 .

    R E F E R E N C E S

    1. Raju, I . S. , Foye, R. L. & Avva, V. S., A review of

    analy tical methods for fabr ic and texti le composites .

    Proceedings of the Indo-US Workshop on Composites

    for Aerospace Application:

    Par t I , Indian Inst i tu te of

    Science, Bangal ore, July 1990. pp. 129-59.

    2 . Halp in , J . C . , Jer ine, K. & Whitney, J . M. , T he

    laminate analogy for 2 and 3 d imensional composite

    materials. J. Composite Mater., 5 (1971) 36-49.

    3. Chou, T. W. & Ishikawa, T., Analysis and modeling of

    two-dimensional fabr ic composites . In Textile Structural

    Composites, ed. Chou, T. W. & Ko, F. K. Elsevier

    Science Publishers, Amsterdam, 1989, pp. 209-64.

    4 . Kabelka, J . , Predict ion of the thermal proper t ies of

    f ibre- res in composites . In

    Developments in Reinforced

    Plastics--3, ed. Pritchard, G. Elsevier Applied Science

    Publishers, London, 1984, pp. 167-202.

    5. Raju, I . S. , Craft, W. J. & Avva, V. S., Thermal

    expansion character is t ics of woven fabr ic composites .

    Proceedings of the International Conference on

    Advances in Structural Testing, Analysis and Design,

    Vol. 1 , Bangalore, Ju ly 1990. Tata M cGra w-H ill , New

    Delhi, pp. 3-10.

    6 . Whitcomb, J . D. , Three-dimensional s tress analysis of

    p lain weave composites . Paper presented at the 3rd

    Symposium on Composite Mater ials : Fatigue and

    Fracture, Or lando, Flor ida, October 1989.

    7 . Zhang, Y. C. & Harding , J . , A numer ical micromecha-

    nics analysis of the mechanical properties of a plain

    weave composite .

    Computers and Structures, 36

    (1990)

    839-44.

    8 . I sh ikawa, T. & Chou, T. W. , One-dimensional

    micromechanical analysis of woven fabr ic composites .

    AIAA J . , 21 (1983) 1714-21.

    9. Ishikawa, T. & Chou, T. W., Stiffness and strength

    behaviour of woven fabr ic composites . J. Mater. Sci., 17

    (1982) 3211-20.

    10. Ishikawa, T. & Chou , T. W., Elastic beh avior of wove n

    hybrid composites.

    J. Composite Mater.,

    16 (1982)

    2-19.

    11. I sh ikawa, T. & Chou, T. W. , In-p lane thermal

    expansion and thermal bending co-efficients of fabric

    composites. J. Composite Mater., 17 (1983) 92-104.

    12. I sh ikawa, T. & Chou, T. W . , T hermo-me chanical

    analysis of hybrid fabric composites.

    J. Mater. Sci.,

    18

    (1983) 2260-8.

    13. I sh ikawa, T. , M atsushima, M. , Haya shi , Y. & Chou, T.

    W., Exper imental conf irmation of the theory of elas t ic

    moduli of fabric composites. J. Composite Mater., 19

    (1985) 443-58.

    14. Dow, N. F. & Ra mnath , V. , Analysis of Woven Fabr ics

    for Reinforced Composite Mater ials , NASA-CR-

    178275, (1987).

    15. Hashin , Z. , Theory of Fibre Re inforced M ater ials.

    NASA-CR-1974, (1972).

    16. Hashin , Z. , Analysis of composite mat er ia ls- -A survey.

    J. Appl. Mech.,

    50 (1983) 481-505.

    17. Lekhnitskii, S. G.,

    Theory of Elasticity of an

    Anisotropic Body. Holden-Day, San Francisco, 1963.

    18. Tsai, S. W. & Hahn, H. T., Introduction to Composite

    Materials.

    Technomic Publish ing Co. , Lancaster , PA

    1980.

    19. Engineered Materials Handbook, Vol. 1. American

    Society for Metals, Metals Park, Ohio, 1989.

  • 8/10/2019 COL-UTB-0000006_01

    18/18

    152

    N. K. Naik, V. K. Ganesh

    A P P E N D I X

    T h e c o m p o s i t e c y l i n d e r a s se m b l a g e (C C A )

    model (Refs 15 and 16) gives simple closed form

    analyt ical expressions for the effect ive composi te

    mo duli EL, GeT , VET an d k , wh ile the mo du li GTr

    and ET are bracke ted by c lose bounds . Here , t he

    UD composi t e i s model l ed as an assemblage of

    long composi t e cy l inders cons i s t i ng of t he inner

    c i rcu la r f i b re and the ou te r concent r i c mat r ix

    she l l . The f ib re and mat r ix a re cons idered to be

    t ransversely i sot ropic.

    The t ransverse bu lk modulus of t he UD

    composi te i s given by

    km(k e + G ~ ) (1 - G ) + U ( k m + G ~ ) V f

    k

    H e r e

    (k ' + G~'-r)(1 - Vr) + (k m + G~r )Vf

    1 4 4V~T 1

    k e E~- E [ G ~

    1 4 4VLmT 1

    k m E ~ E ~ G ~

    T h e l o n g i t u d i n a l Y o u n g ' s m o d u l u s o f t h e U D

    composi t e i s g iven by

    EL = EfL Vf + E'~Vm

    4(VII

    - V ~ T ) 2 V m

    Vf

    +

    V . , / U + V f /k m + 1 / G ~

    The longi tud ina l Poi sson ' s ra t i o and shear

    modu lus a re g iven by

    VLT = v~TV,+ v~TVm

    ( v [ T - v ' ~ O ( 1 / k ~ - 1 / U )V W , , ,

    +

    Vm/k f + Vf/ k m + |/G~ -r

    G~V~. + G ~T(1 + Vd