27
Coherent Control of Light Transmission and Absorption in Random Scattering Media Hui Cao Dept. of Applied Physics, Yale University 1 Sebastien Popoff, Seng Fatt Liew, Wenjie Wan Douglas Stone, Arthur Goetschy Charles Schmuttenmaer, Stafford Sheehan

Coherent Control of Light Transmission and Absorption in

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Coherent Control of Light Transmission and Absorption in Random Scattering Media

Hui Cao Dept. of Applied Physics, Yale University

1

Sebastien Popoff, Seng Fatt Liew, Wenjie WanDouglas Stone, Arthur GoetschyCharles Schmuttenmaer, Stafford Sheehan

Random Scattering Media

Milk

Sand Storm

Fog

Toothpaste

Sample thickness L < Transport mean free path l

R

T

Transmission Through Random Scattering Media

3

R

T

Can we modify total transmission?

Transmission Through Random Scattering Media

Sample thickness L > Transport mean free path l

4

Scatterers

t11 t1N

tNNtN1

t = 

Transmission Matrix

Field transmission matrix 

Scatterers

Transmission Matrix

=u11 u1N

uNNuN1

00

v11 v1N

vN1 vNN

t

Bimodal distribution of transmission eigenvalues

P

Dorokhov, Solid State Commun. 51, 381 (1984). Mello et al. Ann. Phys. 181, 290 (1988).Nazarov, Phys. Rev. Lett. 73, 134 (1994).

1

High Transmission Channel

7

Wavefront Shaping

Vellekoop & Mosk, Opt. Lett. 32, 2309 (2007) 8

Focusing through Scattering Media

Vellekoop & Mosk, Opt. Lett. 32, 2309 (2007) 9

Vellekoop & Mosk, Phys. Rev. Lett. 101, 120601 (2008)

Enhancement of Total Transmission

10

Quarter circle distribution of transmission eigenvalues

Experimental measurement of partial transmission matrix

Optical Transmission Matrix

Open geometry

11

Popoff et al. Phys. Rev. Lett. 104, 100601 (2010)

Kim et al, Nat. Photon. 6, 583 (2012). Yu et al, Phys. Rev. Lett. 111, 153902 (2013)

Popoff et al. Phys. Rev. Lett. 104, 100601 (2010)

Quarter circle distribution of transmission eigenvalues

Bimodal distribution of transmission eigenvalues

Optical Transmission Matrix

Kim et al, Nat. Photon. 6, 583 (2012). Yu et al, Phys. Rev. Lett. 111, 153902 (2013)

Slab geometry

p(T)

T

12

Berkovits & Feng, Phys. Rep. 238, 135 (1994)

Mesoscopic Correlation

13

Crossing of scattering paths induces non‐local correlation of transmitted light. 

Marcenko‐Pastur Law

Uncorrelated Model

14

Experimental SetupIr

It

Ii

Ii: input intensity  Ir: reflected intensity         It: total transmitted intensity

• High input NA, output NA~1• 2 polarizations phase modulation

• Control input wavefront with a large number of SLM segments (up to ~2000) 15

Enhancement & Suppression of Total Transmission

Sample thickness L ~ 20mMean free path l ~ 0.8mIllumination area diameter ~ 8.3mTotal transmission 〈T〉~ 5%

Tmax = 3.6〈T〉 ~ 18%Tmin = 0.3〈T〉 ~ 1.6%

11min

max TT

1 µm

TiO2particle

16

Mesoscopic Correlation

Vary sample thickness L from ~ 7 μm to 30 μmChange illumination size D from ~ 2.7 μm to 8.3 μm

Comparison with uncorrelated model

1

2

3

10 15 20 25 30 35

4

1

2

3

3 4 5 6 7 8

Popoff et al. Phys. Rev. Lett. 112, 133903 (2014) 17

Incomplete control of channels

Goetschy & Stone, Phys. Rev. Lett. 111, 063901 (2013)

Theoretical prediction

18

Random Media with Uniform Absorption

Liew, Popoff, Mosk, Vos, & Cao, Phys. Rev. B 89, 224202 (2014)

Random Media with Non‐Uniform Absorption

Liew & Cao, arXiv 1503.00821 (2015)

Maximal enhancement of total transmission through a random medium with non‐uniform absorption exceeds that without absorption. 

Coherent Control of  Light Absorption

Chong, Ge, HC, and Stone,  Phys. Rev. Lett. 105, 053901 (2010) Wan, Chong, Ge, Noh, Stone, & HC,  Science 331, 889 (2011)

0

20

40

60

80

100

997 998 999 10000

20

40

60

80

100

Mod

ulat

ion

Dep

th

Wavelength(nm)

Maximal output / Minimal Output

Laser

Coherent perfect absorber

21

Local absorption

na = 1.31 + 0.67 ing = 1.31 – 0.67 i

Coherent Perfect Absorption

Local gain

Broadband Enhancementof Total Absorption

Chong & Stone,  Phys. Rev. Lett. 107, 163901 (2011) 23

Dye‐Sensitized Solar Cell

• Scattering• Absorption

24

Experimental SetupP

oten

tiost

at

25

27min

max PP

Light-induced current Light-induced electric power

2.1

0.33

Variation of Light Absorption

26

Summary

• Used wavefront shaping to enhance or suppress light transmission or absorption in random scattering media.

• Achieved tenfold variation of total transmission and sixfold variation of absorption of coherent light.

27