14
Code_Aster Version default Titre : Elasticité anisotrope Date : 02/02/2012 Page : 1/14 Responsable : Jean-Michel PROIX Clé : R4.01.02 Révision : 8448 Anisotropic elasticity Résumé This document treats anisotropic elasticity, used for the modelizations of continuums 3D and 2D (C_PLAN, D_PLAN, AXIS), or the layers of the composite shells. The springy medium can be anisotropic according to the 3 directions (orthotropic elasticity is spoken), or in isotropic in two directions (one speaks about transverse isotropic elasticity). Warning : The translation process used on this website is a "Machine Translation". It may be imprecise and inaccurate in whole or in part and is provided as a convenience. Licensed under the terms of the GNU FDL (http://www.gnu.org/copyleft/fdl.html)

Code Aster Aniso

Embed Size (px)

DESCRIPTION

Anisotropico

Citation preview

  • Code_Aster Version defaultTitre : Elasticit anisotrope Date : 02/02/2012 Page : 1/14Responsable : Jean-Michel PROIX Cl : R4.01.02 Rvision : 8448

    Anisotropic elasticity

    Rsum

    This document treats anisotropic elasticity, used for the modelizations of continuums 3D and 2D (C_PLAN, D_PLAN, AXIS), or the layers of the composite shells.

    The springy medium can be anisotropic according to the 3 directions (orthotropic elasticity is spoken), or in isotropic in two directions (one speaks about transverse isotropic elasticity).

    Warning : The translation process used on this website is a "Machine Translation". It may be imprecise and inaccurate in whole or in part and is provided as a convenience.

    Licensed under the terms of the GNU FDL (http://www.gnu.org/copyleft/fdl.html)

  • Code_Aster Version defaultTitre : Elasticit anisotrope Date : 02/02/2012 Page : 2/14Responsable : Jean-Michel PROIX Cl : R4.01.02 Rvision : 8448

    Contents1 Introduction ........................................................................................................................... 3 2 Topologie of the matrixes of Hooke ...................................................................................... 3.2.1

    transverse ............................................................................................................................. orthotropy 3.2.2 Isotropy ........................................................................................................................ 4.2.3 Isotropy ................................................................................................................................ 4

    3 Matrix of Hooke and flexibility ............................................................................................... 4.3.1 Notations .............................................................................................................................. 4.3.2 Cas 3D .................................................................................................................................

    6.3.2.1 0rthotropie .......................................................................................................... 6 3.2.1.1 Stamp flexibility ......................................................................................... 6 3.2.1.2 Matrice of Hooke .......................................................................................

    6.3.2.2 Isotropy transverse ............................................................................................. 7 3.2.2.1 Matrice flexibility ........................................................................................ 7 3.2.2.2 Matrice of Hooke .......................................................................................

    8.3.2.3 lasticit cubic .................................................................................................... 9.3.2.4 Isotropy .............................................................................................................. 10

    3.2.4.1 Matrice flexibility according to E and ..................................................... 10 3.2.4.2 Matrice of Hooke according to E and .................................................... 10 3.2.4.3 Matrice flexibility according to the coefficients of Lam and ............... 11 3.2.4.4 Matrice of Hooke according to the coefficients of Lam and .............. 11.3.3

    orthotropic in plane strains and axisymmetric Cas 2D .......................................................... 11.3.3.1 Matrix of flexibility ............................................................................................. 11.3.3.2 Matrice of Hooke .............................................................................................. 12.3.4

    Cas 2D orthotropic in plane stresses .................................................................................... 12.3.4.1 Matrice flexibility ............................................................................................... 12.3.4.2 Matrice of Hooke .............................................................................................. 12

    4 Utilisation in Code_Aster ...................................................................................................... 13 5 Bibliographie ......................................................................................................................... 14 6 Description of the versions of the document ......................................................................... 14

    Warning : The translation process used on this website is a "Machine Translation". It may be imprecise and inaccurate in whole or in part and is provided as a convenience.

    Licensed under the terms of the GNU FDL (http://www.gnu.org/copyleft/fdl.html)

  • Code_Aster Version defaultTitre : Elasticit anisotrope Date : 02/02/2012 Page : 3/14Responsable : Jean-Michel PROIX Cl : R4.01.02 Rvision : 8448

    1 Introductionthe objective of this document is to give the form of the matrixes of flexibility and Hooke for elastic materials orthotropic, isotropic transverse and isotropic in the cases 3D, 2D-forced, 2D - plane strains and axisymetry.

    We speak about matrixes of Hooke because, by preoccupation with a simplification, we did not adopt the notation of a tensor of order 4.

    In any rigour, for the linear elastic materials, the stresses are linear functions of the strains.

    One writes: ij=H ijklkl

    The symmetric nature of { } and [ ] the adoption for these tensors of order 2 of a vectorial form make it possible to write:

    { }= [H ] { }

    where { } and [ ] are the vectorial representation of the tensors of order 2 { } and [ ] where [H ] is a matrix 66 .

    2 Topology of the matrixes of Hooke2.1 the orthotropy

    One can show the symmetry of the matrix of Hooke [H ] .

    We thus have twenty and one independent components in case 3D.

    [H ]=H 11 H 12 H 13 H 14 H 15 H 16

    H 22 H 23 H 24 H 25 H 26H 33 H 34 H 35 H 36

    SYM H 44 H 45 H 46H 55 H 56

    H 66

    An orthotropic material has two orthogonal planes of elastic symmetry.

    This wants to say that if one calls [H ' ] the matrix [H ] after symmetry (S)[H ' ]=[ H ] .

    The relations obtained between the coefficients make it possible to write that [H ] is defined by nine independent components.

    Warning : The translation process used on this website is a "Machine Translation". It may be imprecise and inaccurate in whole or in part and is provided as a convenience.

    Licensed under the terms of the GNU FDL (http://www.gnu.org/copyleft/fdl.html)

  • Code_Aster Version defaultTitre : Elasticit anisotrope Date : 02/02/2012 Page : 4/14Responsable : Jean-Michel PROIX Cl : R4.01.02 Rvision : 8448

    In the axes of orthotropy:

    [H ]=H 11 H 12 H 13 0 0 0

    H 22 H 23 0 0 0H 33 0 0 0

    SYM H 44 0 0H 55 0

    H 66

    9 coefficients thus should be provided.

    2.2 Transverse isotropythe transverse isotropy is a restriction of the orthotropy in where one has the isotropy in one of the two orthogonal planes of elastic symmetry.

    The matrix [H ] will have the same form as for the orthotropy but with additional relations between the components.Five components are enough to determine [H ] .

    2.3 Isotropy the material is isotropic if [H ] remains invariant in any change of reference.

    Two coefficients are enough to determine [H ] .

    3 Stamp of Hooke and from flexibility3.1 Notations

    Au lieu d' to use indices 1.2 and 3 to identify the axes, one will use the corresponding indices L , T and N :

    1. L for longitudinal2. T for transverse3. N for normal

    N T L

    Warning : The translation process used on this website is a "Machine Translation". It may be imprecise and inaccurate in whole or in part and is provided as a convenience.

    Licensed under the terms of the GNU FDL (http://www.gnu.org/copyleft/fdl.html)

  • Code_Aster Version defaultTitre : Elasticit anisotrope Date : 02/02/2012 Page : 5/14Responsable : Jean-Michel PROIX Cl : R4.01.02 Rvision : 8448

    Les coefficients which intervene are the following:

    Key word

    Notation meaning

    E_L EL longitudinal Modulus YoungE_T ET transverse Modulus YoungE_N EN normal Modulus YoungG_LT GLT Shear modulus in plane L ,T G_TN GTN Shear modulus in plane T , N G_LN GLN Shear modulus in plane L , N NU_LT LT Poisson's ratio in plane L ,T NU_TN TN Poisson's ratio in plane T , N NU_LN LN Poisson's ratio in the Remarque L , N

    plane very important:LT is different from TL :

    If one applies a tension according to L

    LL=LLEL

    (Hookes law according to a direction).

    This tension is accompanied, proportionally, of a contraction according to T ,LT .LLEL

    and of a contraction according to N ,LN .LLEL

    .

    The first index indicates the axis where the effect of the loading is exerted and the second index indicates the direction of the loading.

    Then one exerts a tension according to T , then a tension according to N ; one obtains:

    LL=LLE L

    TLTTET

    NL NNEN

    TT= LT LLE L

    TTET

    NTNNE N

    NN=LN LLE L

    TNTTET

    NNE N

    } S The matrix of flexibility [H ]1 being symmetric; one of deducted:

    LTEL

    =TLET

    LNE L

    =NLE N

    Warning : The translation process used on this website is a "Machine Translation". It may be imprecise and inaccurate in whole or in part and is provided as a convenience.

    Licensed under the terms of the GNU FDL (http://www.gnu.org/copyleft/fdl.html)

  • Code_Aster Version defaultTitre : Elasticit anisotrope Date : 02/02/2012 Page : 6/14Responsable : Jean-Michel PROIX Cl : R4.01.02 Rvision : 8448

    TNET

    =NTE N

    3.2 Case 3D3.2.1 0rthotropie

    3.2.1.1 Matrix of flexibility

    [LLTTNN2LT2LN2TN

    ]=[1EL

    TLET

    NLEN

    0 0 0

    LTEL

    1ET

    NTEN

    0 0 0

    LNEL

    TNET

    1EN

    0 0 0

    1G LT

    0 0

    SYM 1GLN0

    1GTN

    ][LLTTNNLT LNTN ] [H ]1 - Orthotropy

    3.2.1.2 Stamps of Hooke

    [LLLLNNLT LNTN

    ]= 1 [1TN NT

    ET E N TLNL TN

    ET . E N NLTL NT

    ET . E N0 0 0

    LT LN NT E LE N

    1NL LN E L . E N

    NTNL . LT E L . EN

    0 0 0

    LNLT .TN E L . ET

    TNTL . LN E L . ET

    1LT .TL E L . ET

    0 0 0

    GLT 0 0SYM GLN 0

    GTN

    ] [ LLTTNN2 LT2LN2TN ] [H ] - Orthotropy with:

    TLET

    =LTE L

    ; NLE N

    =LNE L

    ; NTEN

    =TNET

    Warning : The translation process used on this website is a "Machine Translation". It may be imprecise and inaccurate in whole or in part and is provided as a convenience.

    Licensed under the terms of the GNU FDL (http://www.gnu.org/copyleft/fdl.html)

  • Code_Aster Version defaultTitre : Elasticit anisotrope Date : 02/02/2012 Page : 7/14Responsable : Jean-Michel PROIX Cl : R4.01.02 Rvision : 8448

    1=

    E LET E N

    1TN NTNL LNLT TL2TN NL LT

    3.2.2 Transverse isotropy

    3.2.2.1 Matrice flexibility

    N

    T L

    the matrix [H ]1 can be deducted directly of the matrix [H ]1 - Orthotropy by using the properties of the transverse isotropy. In the plane L ,T :

    EL=ETTL=LT

    GLT=EL

    2 1LT

    In the planes L , N and T , N :

    NT=NLLN=TNGTN=G LN

    N

    T L

    Warning : The translation process used on this website is a "Machine Translation". It may be imprecise and inaccurate in whole or in part and is provided as a convenience.

    Licensed under the terms of the GNU FDL (http://www.gnu.org/copyleft/fdl.html)

  • Code_Aster Version defaultTitre : Elasticit anisotrope Date : 02/02/2012 Page : 8/14Responsable : Jean-Michel PROIX Cl : R4.01.02 Rvision : 8448

    EL=ETLT=TL

    GLT=EL

    2 1LT NT=NLLN=TNGTN=G LNNTEN

    =LNEL

    [LL TTNN2LT2LN2TN

    ]=[1E L

    LTE L

    NLEN

    0 0 0

    TLE L

    1E L

    NTEN

    0 0 0

    LNE L

    TNE L

    1EN

    0 0 0

    2 1LT E L

    0 0

    SYM 1GLN

    0

    1GTN

    ][ LLTT NN LT LN TN ] [H ]1 - Transverse Isotropy

    3.2.2.2 Matrice of Hooke

    the matrix [H ] has same symmetries as [H ]1 .

    N

    T L

    Warning : The translation process used on this website is a "Machine Translation". It may be imprecise and inaccurate in whole or in part and is provided as a convenience.

    Licensed under the terms of the GNU FDL (http://www.gnu.org/copyleft/fdl.html)

  • Code_Aster Version defaultTitre : Elasticit anisotrope Date : 02/02/2012 Page : 9/14Responsable : Jean-Michel PROIX Cl : R4.01.02 Rvision : 8448

    [ LL TT NN LT LNTN

    ]= 1 ' [1NL . LNE L . E N

    LTNL LNE L . EN

    NLLT NLE L . EN

    0 0 0

    TLNL LNE L . E N

    1 NL. LNE L . EN

    LNLT LNE L . EN

    0 0 0

    LN LT . LNE L

    2

    TN LT .TNE L

    2

    1 LT2

    E L2 0 0 0

    EL . '2 1LT

    GLN . 'GLN . '

    ][ LLTTNN2LT2LN2TN ] [H ] - Transverse Isotropy

    1'=

    E L2 .EN

    [12NL .LN LT22NL LN LT ]

    3.2.3 cubic lasticitcubic elasticity corresponds to a matrix of elasticity of the form :

    [y1111 y1122 y1122y1122 y1111 y1122y1122 y1122 y1111

    y1212y1212

    y1212]

    Being given cubic symmetry, it remains to determine 3 coefficients:E L=EN=ET=E ,GLT=GLN=GTN =G ,LN=LT= LN=

    To reproduce cubic elasticity with ELAS_ORTH, it is enough to calculate the coefficients of the orthotropy such that the matrix of elasticity obtained is form above:

    y1111=E 12

    13223

    y1122=E 1

    13223y1212=G LT=GLN=GTN

    therefore, as long as 132230 (i.e. different from 0.5).

    Warning : The translation process used on this website is a "Machine Translation". It may be imprecise and inaccurate in whole or in part and is provided as a convenience.

    Licensed under the terms of the GNU FDL (http://www.gnu.org/copyleft/fdl.html)

  • Code_Aster Version defaultTitre : Elasticit anisotrope Date : 02/02/2012 Page : 10/14Responsable : Jean-Michel PROIX Cl : R4.01.02 Rvision : 8448

    y1122y1111

    = 1

    what provides = 1

    1y1111y1122

    then E= y111113223

    12

    3.2.4 Isotropie

    3.2.4.1 Stamps flexibility according to E and

    [LLTTNN2LT2LN2TN

    ]=[1E

    E

    E

    0 0 0

    1E

    E

    0 0 0

    1E 0 0 0

    1G=

    21 E

    0 0

    SYM 1G=

    2 1 E

    0

    1G=

    2 1 E

    ][ LLTT NN LT LNTN ] [H ]1 - complete Isotropy

    3.2.4.2 Matrice of Hooke according to E and

    [ LLTT NN LT

    LN

    TN]= E1 12 [

    1 0 0 01 0 0 0

    1 0 0 0

    SYM 122

    0 0

    122

    0

    122

    ][ LLTTNN2LT

    2LN

    2TN

    ] [H ] - complete Isotropy

    Warning : The translation process used on this website is a "Machine Translation". It may be imprecise and inaccurate in whole or in part and is provided as a convenience.

    Licensed under the terms of the GNU FDL (http://www.gnu.org/copyleft/fdl.html)

  • Code_Aster Version defaultTitre : Elasticit anisotrope Date : 02/02/2012 Page : 11/14Responsable : Jean-Michel PROIX Cl : R4.01.02 Rvision : 8448

    3.2.4.3 Matrice flexibility according to the coefficients of Lam and

    the Hookes law takes the following form with the coefficients of Lam and .

    ij=kkij2 ij

    By using system of equations (S), one obtains:

    [ LLTT NNLT ]= 11LT . TL [EL TL .ET 0 0

    LT .EL ET 0 00 0 0 00 0 0 G LT

    ][ LLTTNN2LT ] [H ] - Plane Orthotropy in plane stresses

    3.2.4.4 Stamps of Hooke according to the coefficients of Lam and

    [ LLTT NNLN LTTN

    ]=[ 2 0 0 02 0 0 02 0 0 0SYM 0 0 0][

    LLTTNN2LN2LT2TN

    ] [H ] - complete Isotropy with the coefficients of Lam

    3.3 Cas 2D orthotropic in plane strains and axisymmetric3.3.1 Matrice of flexibility

    [ LLTT02LT

    ]=[1E L

    TLET

    NLE N

    0

    LTE L

    1ET

    NLE N

    0

    0 0 0 0

    0 0 0 1GLT

    ] [ LL TT NN LT ] [H ]1 - plane Orthotropy in plane strains and Matrice

    Warning : The translation process used on this website is a "Machine Translation". It may be imprecise and inaccurate in whole or in part and is provided as a convenience.

    Licensed under the terms of the GNU FDL (http://www.gnu.org/copyleft/fdl.html)

  • Code_Aster Version defaultTitre : Elasticit anisotrope Date : 02/02/2012 Page : 12/14Responsable : Jean-Michel PROIX Cl : R4.01.02 Rvision : 8448

    3.3.2 axisymetry of Hooke

    [ LL TT NN LT ]= 1 [1TN NT

    ET E NTLNL TN

    ET . E N NLTL NT

    ET . EN0

    LTLN NT EL EN

    1NL LN E L . EN

    NT NL. LT E L .E N

    0

    LN LT .TN E L .ET

    TNTL . LN E L .ET

    1 LT .TL EL .ET

    0

    0 0 0 GLT] [ LLTT0 LT ]

    [H ] - plane Orthotropy in plane strains and axisymetry

    1=

    E LET EN

    1TN NTNL LN LT TL2TN NL LT

    3.4 orthotropic Cas 2D in Matrice

    3.4.1 plane stresses flexibility

    [ LLTT

    NN2LT

    ]=[1E L

    TLET

    0 0

    LTE L

    1ET

    0 0

    0 0 0 0

    0 0 0 1G LT

    ][ LLTT NN LT ] [H ]1 - plane Orthotropy in Matrice

    3.4.2 plane stresses of Hooke

    [ LLTT0 LT ]= 11 LT .TL [E L TL ET 0 0

    LT E L ET 0 00 0 0 00 0 0 GLT

    ][ LLTTNN2LT ] [H ] - Orthotropy in Utilisation

    Warning : The translation process used on this website is a "Machine Translation". It may be imprecise and inaccurate in whole or in part and is provided as a convenience.

    Licensed under the terms of the GNU FDL (http://www.gnu.org/copyleft/fdl.html)

  • Code_Aster Version defaultTitre : Elasticit anisotrope Date : 02/02/2012 Page : 13/14Responsable : Jean-Michel PROIX Cl : R4.01.02 Rvision : 8448

    4 plane stresses in Code_Aster Dans Aster , the definition of the constant orthotropic elastic characteristics or functions of the temperature are carried out by command DEFI_MATERIAU , key words ELAS_ORTH, ELAS_ISTR, ELAS_ISTR_FO or ELAS_ORTH_FO for the isoparametric shell elements and solid elements or layers constitutive of a composite (see command DEFI_COMPOSITE ).

    To define the reference of orthotropy L ,T , N related to the elements, one can refer to documentations [U4.42.03] DEFI_COMPOSITE and [U4.42.01] AFFE_CARA_ELEM .

    NT L

    L, T et N : directions d'orthotropie longitudinale, transversale et normale

    /ELAS_ORTH = _F ( E_L = ygl longitudinal Modulus Young. E_T = ygt transverse Modulus Young. E_N = ygn normal Modulus Young. GL_T = glt Shear modulus in the plane LT . G_TN = gtn Shear modulus in the plane TN . G_LN = gln Shear modulus in the plane LN . NU_LT = nult Poisson's ratio in the plane LT . NU_TN = nutn Poisson's ratio in the plane TN . NU_LN = nuln Poisson's ratio in the plane LN .

    Notice important:

    The talk of this note of reference is based on the convention of the books of J.L.Batoz and D.Gay. Documentation U of DEFI_MATERIAU describes these choices, and coefficient NU_LT is interpreted in the following way in Aster:

    if one exerts a tension according to the axis L giving place to a strain according to this axis

    equalizes with ygl

    lL

    = , one has a strain according to the axis T equalizes with:

    ygl*-nult lt

    = .

    Warning : The translation process used on this website is a "Machine Translation". It may be imprecise and inaccurate in whole or in part and is provided as a convenience.

    Licensed under the terms of the GNU FDL (http://www.gnu.org/copyleft/fdl.html)

  • Code_Aster Version defaultTitre : Elasticit anisotrope Date : 02/02/2012 Page : 14/14Responsable : Jean-Michel PROIX Cl : R4.01.02 Rvision : 8448

    5 Bibliography1) J.C. MASSON: Stamp of Hooke for the orthotropic materials, internal Rapport Applications in

    Mechanics, n79-018, CiSi, 1979.

    2) D. GAY: Composites, Hermes Edition, 1987

    3) J.L. BATOZ, G. DHATT: Modelization of structures by finite elements, Volume 1, Edition Hermes

    6 Description of the versions of the documentVersion Aster Auteur (S)

    Organisme (S)Description of amendments

    6.4 A. ASSIRE, EDF-R&D/AMA

    initial Texte

    8.4 A. ASSIRE, X. DESROCHES, J.M. PROIX EDF-R&D/Tiny

    AMA Corrections

    Warning : The translation process used on this website is a "Machine Translation". It may be imprecise and inaccurate in whole or in part and is provided as a convenience.

    Licensed under the terms of the GNU FDL (http://www.gnu.org/copyleft/fdl.html)

    1Introduction2Topology of the matrixes of Hooke2.1the orthotropy2.2Transverse isotropy2.3Isotropy

    3Stamp of Hooke and from flexibility3.1Notations3.2Case 3D3.2.10rthotropie3.2.1.1Matrix of flexibility3.2.1.2Stamps of Hooke

    3.2.2Transverse isotropy3.2.2.1Matrice flexibility3.2.2.2Matrice of Hooke

    3.2.3cubic lasticit3.2.4Isotropie 3.2.4.1Stamps flexibility according to and 3.2.4.2Matrice of Hooke according to and 3.2.4.3Matrice flexibility according to the coefficients of Lam and 3.2.4.4Stamps of Hooke according to the coefficients of Lam and

    3.3Cas 2D orthotropic in plane strains and axisymmetric3.3.1Matrice of flexibility3.3.2axisymetry of Hooke

    3.4orthotropic Cas 2D in Matrice3.4.1plane stresses flexibility3.4.2plane stresses of Hooke

    4plane stresses in Code_Aster 5Bibliography6Description of the versions of the document