33
9/12/2014 1 Audiological Management of Children with Hearing Loss and Auditory Listening Differences UNIVERSITY OF NORTH TEXAS Department of Speech and Hearing Sciences Cochlear Implants, Hearing Aids, & Hearing Assistance Technology (HAT)!! 1. Cochlear implants 2. Hearing aids 3. HAT for children with normal hearing & auditory difficulties 4. Fitting procedures for children with normal hearing Data from 5 studies: 1. Speechinnoise thresholds 14  Cochlear Freedom Users Compared CI alone to CI plus Oticon Arc 2. Speechinnoise thresholds: 9 users: Nucleus 5, Harmony, & OPUS Compared: CI alone, Oticon R2, and Oticon Arc 3. Electroacoustic testing with CIs 4. Adaptive digital wireless systems 5. Effect of adaptive signal processing: Nucleus 6 14 Cochlear Freedom Users with Oticon Arc Schafer et al., AJA, 2012 6.0 5.9 -6.5 -5.9 -10 -5 0 5 10 15 Session 1 Session 2 SNR at 50% Correct (dB) Test Session No FM FM 12 dB improvement with Arc Significant effect of FM No significant effect of session

Cochlear Implants, Hearing Aids, Hearing Assistance

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Cochlear Implants, Hearing Aids, Hearing Assistance

9/12/2014

1

Audiological Management of Children with Hearing 

Loss and Auditory Listening Differences

UNIVERSITY OF NORTH TEXASDepartment of Speech and Hearing Sciences

Cochlear Implants, Hearing Aids, & Hearing Assistance Technology (HAT)!!

1. Cochlear implants

2. Hearing aids

3. HAT for children with normal hearing &

auditory difficulties

4. Fitting procedures for children with normal 

hearing

•Data from 5 studies:1. Speech‐in‐noise thresholds14  Cochlear Freedom Users 

Compared CI alone to CI plus Oticon Arc

2. Speech‐in‐noise thresholds:9 users: Nucleus 5, Harmony, & OPUS

Compared: CI alone, Oticon R2, and Oticon Arc

3. Electroacoustic testing with CIs

4. Adaptive digital wireless systems

5. Effect of adaptive signal processing: Nucleus 6 

• 14 Cochlear Freedom Users with Oticon Arc

Schafer et al., AJA, 2012

6.0 5.9

-6.5 -5.9

-10

-5

0

5

10

15

Session 1 Session 2

SN

R a

t 50

% C

orr

ect

(dB

)

Test Session

No FM

FM

12 dB improvement with Arc Significant effect of FM

No significant effect of session

Page 2: Cochlear Implants, Hearing Aids, Hearing Assistance

9/12/2014

2

•9 users of various sound processors

0.7

-10.8-6.1

-20

-15

-10

-5

0

5

10

1

BK

B-S

IN S

NR

-50

Condition

No FM

Arc

R2

Both FM better than no FM Arc better than R2

WHY???

Schafer et al., JAAA, 2013a

• Adjusted FM gain to most closely simulate processor output

Measurement Steps 750 Hz 1000 Hz 2000 Hz

1. Processor in Test Box: 65 dB SPL Speech-Std1

2. Transmitter Microphone in Test Box: 65 dB SPL Speech-Std1

Difference Between Two Conditions

Average of Difference Scores (should be + 3 dB)

Schafer et al, 2013b, JAAA

•Step 1: Measure the output of the CI through the monitor earphones using speechinput

•Nucleus 5 in test box

•Coupler & earphone out

Nucleus 5

Earphone & HA-1 Coupler

Schafer et al., 2013b, JAAA

Step 2: Transmitter mic in Test Box:Measure Output of R2 Receiver

Transmitter Microphone

Oticon T30 Transmitter

Nucleus 5

Earphone & HA-1 Coupler

Oticon R2 FM Receiver plugged into earphone cord

Schafer et al., 2013b, JAAA

Page 3: Cochlear Implants, Hearing Aids, Hearing Assistance

9/12/2014

3

Oticon T30 Transmitter

Nucleus 5 withearphone cord

Transmitter Microphone

OticonArc

Why the difference between FMs in Study 3??

0102030405060708090

750 Hz 1000 Hz 2000 Hz

Out

put i

n dB

SPL

Frequency

CI Alone

Arc +8

R2 +16

•We want transparency:•Same output with same inputs to CI and FM mics

•But…..•When we compared the measurements from the CI alone, R2, and Arc, we got….

Schafer et al., JAAA, 2013b

0102030405060708090

750 Hz 1000 Hz 2000 Hz

Out

put i

n dB

SPL

Frequency

Arc +8

R2 +16

R2 +8

Study 3: Electroacoustic Results Cochlear & MED‐EL

Schafer et al., 2013b, JAAA

But…does this approach result in good behavioral results??

•Speech recognition with 2 list‐pairs of BKB‐SIN: speech at 0; Babble at 180 degrees

• Loudness ratings (in parenthesis below)

Subject: CI CI Alone R2 Arc

1: Nucleus 5 1.0 (2.7) ‐11.0 (4.3) ‐12.3 (3.7)

2: Nucleus 5 ‐2.5 (3.3) ‐11.3 (4.0) ‐12.2 (3.7)

Schafer et al., 2013b, JAAA

Page 4: Cochlear Implants, Hearing Aids, Hearing Assistance

9/12/2014

4

• Evaluated speech recognition in quiet and in noise with speech (HINT) at 64 dB at participant (85 dBA at transmitter )and classroom noise at  50, 55, 60, 65, 70, 75, 80 dBA

• Evaluated 3 RF remote microphone systems in Advanced Bionics and Cochlear users:–Fixed‐gain FM – MLxS–Adaptive FM – MLxi–Digital RF – Roger

Study 4 Results: AB (n = 16)

Wolfe et al., 2013, JAAA 

Adults with normal hearing score 95% correct here!

Study 4 Results: Cochlear (n = 21)

Wolfe et al., in press, JAAA 

Study 4: Summary 

Adaptive Digital technology significantly better than fixed‐gain and adaptive FM at 70, 75, and 80 dBA

Adaptive FM technology better than fixed gain FM at 70, 75, and 80 dBA noise levels

No differences were found between CI manufacturers.

Page 5: Cochlear Implants, Hearing Aids, Hearing Assistance

9/12/2014

5

Study 5: Adaptive Signal Processing: Nucleus 6

•Wolfe et al. evaluated potential benefit of acoustic scene analysis, fully adaptive directional processing, and digital noise reduction/ speech enhancement in Nucleus 6 

• Ninety‐three participants with Nucleus Freedom, Nucleus CI512, & Nnucleus 422 internal devices

•Conditions: • ADRO + ASC:  standard microphone directionality

• ADRO + ASC + SNR‐NR (standard microphone directionality) 

• ADRO + ASC + SNR‐NR + SCAN: (automatic microphone directionality) 

45.7 46.0

54.5

72.3

0

10

20

30

40

50

60

70

80

N5: ASC+ADRO N6: ASC+ADRO N6: ASC+ADRO+SNR

N6: SCAN+ASC+ADRO+SNR

Per

cent

Cor

rect

Sco

re

Conditions

Best!

Significantly Worse

Cochlear Implants, Hearing Aids, & Hearing Assistance Technology (HAT)!!

1. Cochlear implants

2. Hearing aids

3. HAT for children with normal hearing &

auditory difficulties

4. Fitting procedures for children with normal 

hearing

Hearing Aids

•Data from 3 pediatric studies & 1 adult study:

1. Potential benefit of VoicePriorityi in Oticon FM

2. Soundfield/Personal systems: NH and HA• Comparison of soundfield systems

• Comparison of soundfield to personal

•3. Phonak Lyric for children

•4. Resound Unite Mic vs. Phonak Roger

Page 6: Cochlear Implants, Hearing Aids, Hearing Assistance

9/12/2014

6

Goal of Oticon Voice Priority i (VPi)

•Automatic and adaptive adjustment of FM emphasis in Sensei:

•When using Amigo R2 or R12 receiver and T30 transmitter, Sensei monitors the noise level around child

•When noise exceeds 58 dBA (65 dB SPL), FM emphasis systematically increased

VPi vs. Other Products

•VPi determines necessary FM emphasis at the location of the child’s HA

•Other products adjust FM gain based on noise level measured at the teacher’s FM transmitter  

Determining FM Emphasis at HA: Why does it matter?

•1. DISTANCE• Intensity of talker’s voice & SNR vary based on location

Determining FM Emphasis at HA: Why does it matter?

•2. NOISE•Noise may be diffuse or localized

Page 7: Cochlear Implants, Hearing Aids, Hearing Assistance

9/12/2014

7

Determining FM Emphasisat HA: Why does it matter?

•Cruckley et al. (2011) 

•Noise levels varyacross & within children’s listening environments

Dosimeter measurements

71 73

6163

75% of the day sound levels between 60 to 80 dBA

Participants 

20 children with hearing loss Ages 5-18 years 10 male; 10 female 18 sensorineural 1 mixed 1 unilateral (bilateral ANs)

• All but 2 wearing hearing aids

0

10

20

30

40

50

60

70

80

90

250 500 1000 2000 4000

Th

resh

old

(d

B H

L)

Frequency (Hz)

Children using Phonak, Unitron, Oticon, and Starkey HAs or no aids (2)

Methods: Session 1

• Fit bilateral Oticon Sensei Pro BTE or RITE• Real ear measures: met DSL v5 targets

• Fit R12 Amigo receiver and T30 transmitter• Electroacoustic measures: confirmed transparency

•Asked to use the hearing aid & FM system with VPi 4‐week trial, 2 hrs/day, Sensei remainder of day

•Children/parents given an orientation 

Schafer et al., 2013JEA

Methods: Session 2

•3 Behavioral Measures• Speech recognition in noise• Acceptable Noise Levels (ANL)• Speech Intelligibility Ratings (SIR)

•3 Questionnaires• Children’s Home Inventory for Listening Difficulty (C.H.I.L.D.) – Parent & Child versions

• Auditory Performance Scale for FM systems (APS‐FM)

Page 8: Cochlear Implants, Hearing Aids, Hearing Assistance

9/12/2014

8

Methods: Speech Recognition

•Conducted in classroom • HINT‐C sentences & 4‐classroom noise

• FM conditions: • 1. Traditional FM

• 2. FM with VPi

• Signal levels: • 1. S65/N55

• 2. S70/N63

• 3. S74/N70

• 2 loudspeaker arrangements:• 1. Localized noise

• 2. Diffuse noise

Speech

Noise

Noise

FM

Speech

FM

CD

CD

CD

CD

CD

CD

Diffuse noise

Localized noise

0

20

40

60

80

100

120

Loc 65/55 Loc 70/63 Loc 74/70 Dif  65/55 Dif  70/63 Dif  74/70

% Correct

Loudspeaker Arrangement & SNR

Traditional FM

Voice Priority FM

Methods: ANL

•Conducted in booth: presented running speech at 0◦ and multi‐talker babble at 180◦

•Conditions:• 1. Sensei alone• 2. Sensei plus traditional, fixed‐gain FM• 3. Sensei plus FM with VPi enabled

•Procedure:• 1. Measure MCL with speech only

• 2. Measure BNL with speech set to MCL

• 3. Calculate ANL: MCL – BNL = ANL

Page 9: Cochlear Implants, Hearing Aids, Hearing Assistance

9/12/2014

9

Results: ANL

‐10

0

10

20

30

40

50

60

70

MCL BNL ANL

Intensity in

 dBHL

Listening Condition

Study HA

Traditional FM

Voice PriorityFM

• 15 items, which can be separated into five categories: hearing in quiet, media, social situations, noise, and at a distance

• Children & Parents completed three times:

• 1. Before the study about personal aids

• 2. After the study about Sensei plus FM

• 3. After the study about Sensei alone 

•Participant Version •Parent Version

Page 10: Cochlear Implants, Hearing Aids, Hearing Assistance

9/12/2014

10

Results: Participant Questionnaires

0

1

2

3

4

5

6

7

8

9

Quiet Media Social Noise Distance

Participant Ratings

C.H.I.L.D. Listening Situations 

Personal HA Study HA Study HA+FM

Schafer et al., in submission

0

1

2

3

4

5

6

7

8

9

Quiet Media Social Noise Distance

Parent Ratings

C.H.I.L.D. Listening Situations 

Personal HA Study HA Study HA+FM

•17 items separated into two categories: hearing at home and hearing in social situations related to hearing difficulty

•Children completed three times:

• 1. Before the study about personal aids

• 2. After the study about Sensei plus FM

• 3. After the study about Sensei alone 0

0.5

1

1.5

2

2.5

3

3.5

Home Social

Level of Difficulty Communicating

APS‐FM. Listening Situations 

Personal HA

Study HA

Study HA+FM

Page 11: Cochlear Implants, Hearing Aids, Hearing Assistance

9/12/2014

11

Results: APS‐FM Questionnaire

•Also included12 questions about the functionality of the FM system•Average ratings: 0.57 ‐ 1.67

• ‘liked it very much’ or ‘it was pretty good’. 

•FM receiver: comfortable, easy to use, reliable, clear, cosmetically appealing, & helped them hear. 

•FM transmitter: comfortable, cosmetically appealing, good sized, easy to use, & worked well. 

Results: APS‐FMAvg FM 

Use 

(hrs)

Where Most Helpful? Liked Most About FM?

2 At mall & in car Long range; could hear whispers

2 Voices far away and didn’t carry Multiple uses, use as headphones

1‐2 Car, getting attention from another 

room

Automatic frequency connection, small FM

6‐10 Coaching, presentations, school Portable

6‐10 Coaching, presentations, school Easy to use, portable, hear clearly at 

distance and background noise

1‐2 When person was in different room, 

TV

Worked well, reliable

8‐10 In car, TV Could hear much better, easy to use

2 In car, TV Easier to understand people, TV 

connection

1 Restaurant, another room Could hear from different room, when it 

was loud

1 Restaurant, another room Heard much better without needing to be 

loud or yell

Results: APS‐FMAvg FM 

Use (hrs)

Where Most Helpful? Liked Most About FM?

8 School, shopping Very easy to use, small

3 Happy to hear better Helps a lot, proud of it

2 Event outside with large group; 

grocery shopping

Child could hear all words said and 

didn’t ask ‘huh?’, heard better outside 

the home

4 Classroom, large noisy rooms Simplicity, size

6‐7 Noisy places Small, easy to use

5 Hear better, gets attention more Music player, mic was sensitive

3‐4 iTouch, classroom, teacher 

instructions

Clarity

4‐5 Classroom Clarity when there was no static

1‐2 Hear from different room, in 

noise

Mom doesn’t have to yell

3 Noise Distance, directly to ears

Results: APS‐FM

Liked Least About FM? Interference? Recommen

d to 

Others?

Charging No Yes

Mic clip not durable, too 

big

No Yes

Flashing light, batteries No Yes

* * *

Feedback Yes, when out of range and randomly Yes

Look, size No Yes

Bulky transmitter, mic 

detached easily

Not too much Yes

Feedback If far from receiver Yes

* No Yes

Makes some unwanted noise Yes Yes

Page 12: Cochlear Implants, Hearing Aids, Hearing Assistance

9/12/2014

12

Results: APS‐FMLiked Least About FM? Interference? Recommend 

to Others?

Need more than one 

transmitter: for each parent

No Yes

* 2‐3 times; fixed after battery reinserted Yes

Little buzzing, clip Yes, like a noisy waterfall Yes

Yes, when talking or a lot of 

noise

* *

Static, size When cord touched another part of the 

cord

Yes

Size Yes, static many times Yes

* Static when close to computer speakers Yes

Teachers would not mute, 

interfered with participation in 

class

Yes, nearly all the time Not in the 

classroom 

setting

Transmitter didn’t clip well, too 

heavy on shirt

No Yes

Transmitter was too heavy to 

clip on shirts without pockets

No Yes

Study 1 Summary

•VPi FM significantly improved speech recognition in noise, particularly in high level, localized noise over traditional FM

•VPi FM significantly improved ANL over HA & FM

•Both FM significantly improved SIR over HA

•Children ratings: significant benefit of FM over both study HA or personal HA

•Parent rating: significant benefit of FM over Sensei andpersonal HA.

• Sensei over personal aid

Hearing Aid: Study Two

•Wolfe et al., 2013:

• Participants: 10 NH adults; 15 NH children; 15 children with moderate hearing loss and bilateral hearing aids

• Children ages 6‐13; Losses  35‐75 dB for 4 frequency PTA (most mod)

• Phonak or Oticon hearing aids

• Stimuli: HINT sentences in 4‐classroom noise

• Signal Levels: Quiet 65 dBA; Noise at 50, 55, 60, 65, 70, and 75 dBA

• 3 Conditions: No FM, Phonak Dynamic Soundfield, Audio Enhancement Traditional Soundfield

Study Two Results

Wolfe et al., 2013, JEA

0

0.2

0.4

0.6

0.8

1

Q 50 55 60 65 70 75 Q 50 55 60 65 70 75 Q 50 55 60 65 70 75

HI Child

NH Child

NHA Adult

Phonak SoundfieldNo FM Audio EnhancementSoundfield

Significant effect of

signal level

Significant effect of

group

Significant effect ofcondition

Page 13: Cochlear Implants, Hearing Aids, Hearing Assistance

9/12/2014

13

Hearing Aid: Study Two

•Wolfe et al., 2013:•Participants: 13 children with mild‐sev hearing loss & HAs•Stimuli: HINT sentences in 4‐classroom noise

•Signal Levels: Quiet 65 dBA; Noise at 50, 55, 60, 65, 70, and 75 dBA

•6 Conditions: • No FM• Phonak Dynamic Soundfield (SF)

• Audio Enhancement Traditional SF• Phonak Dynamic SF + Personal• Audio Enhancement Traditional SF + Personal• Personal

Study Two Results

Not much to see here; good performance everywhere

0%

20%

40%

60%

80%

100%

120%

Quiet 50 55

No FM

Phonak Soundfield

Audio Enhancement Soundfield

Phonak Soundfield/ Personal FM

Audio Enhancement Soundfield/Personal FM

Personal FM

More Study Two Results

0%

20%

40%

60%

80%

100%

120%

60 65 70 75

No FM

Phonak Soundfield

Audio EnhancementSoundfield

PhonakSoundfield/Personal FM

Audio EnhancementSoundfield/Personal FM

Personal FM

Significant effect of

signal level

Significant effect of condition

Personalsystems

best

Plugginginspiro

into AE systemeliminated Dynamic

Study Three Phonak Lyric

•Children, ages 10‐17with mild to moderate hearing loss, currently using bilateral aids, & 60% on CNC words while aided 

•Attempted to meet DSL v5 real ear targets + 5 dB for 55, 65, and 75 dB SPL

• Overall, neither  the daily wear (personal) or Lyric were meeting target, but daily wear had higher output

(both a better fit to NAL‐NL1 targets)

Analog device

Page 14: Cochlear Implants, Hearing Aids, Hearing Assistance

9/12/2014

14

Table 1. Personal Hearing Aids Used by Participants Prior to the Study

Subject # Age

(years)

Old HA Make/Model SR (kHz) CR Datalogging

(hours/day)

1 12.3 Phonak Nios S H20 III 3.4 2.5 4

2 17.7 Phonak Nios S H20 V 6.0 1.5 14

3 13.1 Oticon Safari 300 BTE NA NA 0

4 15.8 Phonak Nios Micro III 4.5 2.8 0

5 17.3 Phonak Nios Micro III 2.5 3.5 0

6 17.3 Phonak Nios Micro III 2.8 3.1 1

7 16.8 Phonak Certéna Art CIC 4.4 2.7 11

8 12.8 Phonak Naida Q50 RIC 3.0 3.6 14

9 17.4 Phonak Nios Micro V 3.2 2.4 NA

10 10.4 Phonak Versáta M NA . 4

11 12.3 Phonak Nios S H20 III 4.3 2.7 9

12 11.3 Phonak Nios S H20 III 3.4 2.7 4

13 14.8 Phonak Nios S H20 III 4.3 2.7 12

14 11.3 Phonak Nios S H20 III NA 2.3 2

15 12.6 Phonak Nios Micro III 3.2 2.4 NA

16 17.2 Phonak Audéo S Small V 4.6 2.8 NA

AVG:5.8

Study 3 ResultsThresholds: Own Aid vs. Lyric

0

10

20

30

40

50

60

250 500 1000 2000 3000 4000 6000

Th

resh

old

(d

B H

L)

Frequency (Hz)

Own Aid

Lyric

Only significant difference

Study 3 ResultsWord Recognition: Quiet

0

20

40

60

80

100

120

50 dBA 60 dBA

Sp

eech

Rec

ogn

itio

n (

% c

orre

ct)

Condition

Own Aid

Lyric

No significant differences

Study Two ResultsWord Recognition: Noise

0

0.5

1

1.5

2

2.5

3

3.5

4

1 2

Th

resh

old

in n

oise

(d

B S

NR

)

ConditionOwn Aid Lyric

Lyric resulted in significantly better performance on BKB‐SIN

Page 15: Cochlear Implants, Hearing Aids, Hearing Assistance

9/12/2014

15

Study Two ResultsAPHAB Questionnaire

0

5

10

15

20

25

30

35

40

45

EC BN RV Global

Lev

el o

f D

iffi

cult

y

APHAB Subscales

Own Aid

Lyric

Significantly lower difficultywith Lyric

Study 3 ResultsSSQ Questionnaire

-0.5

0.5

1.5

2.5

3.5

4.5

5.5

Speech Hearing Spatial Hearing Qualities of Hearing

Ch

ange

Rat

ing

SSQ-C Subscale

Greater perceived benefit with Lyric vs. Daily Wear Aid

Study 3 Summary

•Most kids do not wear regular aids all day 

•Did not meet target with Lyric

•Thresholds similar with the exception of 6k

•Word recognition in quiet similar

• Lyric significantly better than daily wear aid in noise•Greater perceived benefit and less difficulty reported in noisy situations with Lyric

•What do you think????

Study Four: Resound Unite Mic vs. Phonak Roger

•17 adults with mod‐severe SNHL• Fit Phonak Bolero 90 with Roger system• Fit ReSound Verso with Unite Mic

•Tested speech recognition with each aid and with each wireless system in:

• Quiet• Noise: 55, 65, 75, and 80 dBA

Page 16: Cochlear Implants, Hearing Aids, Hearing Assistance

9/12/2014

16

Study 4 Results

-10

10

30

50

70

90

110

Quiet 55 dBA 65 dB 75 dBA 80 dBA

Per

cent

Cor

rect

Signal Levels

Resound Verso

Phonak Bolero90

Resound Versowith Unite Mic

Phonak Bolero90 with Roger

Bolero+Rogerbest

Both wireless better than both aids alone

Study 4 Summary

•Phonak Bolero and ReSound Verso resulted in similar speech recognition in quiet and in noise 

•Phonak Bolero + Roger best in high noise levels•Both wireless systems helpful in lower noise

•Wireless mics certainly an option for children at homeand at school when the child does not receive special edsupport

Cochlear Implants, Hearing Aids, & Hearing Assistance Technology (HAT)!!

1. Cochlear implants

2. Hearing aids

3. HAT for children with normal hearing &auditory difficulties

4. Fitting procedures for children with normal hearing

No surprise!

•Remote‐microphone technology improves hearing & educational performance in most children

•May be surprising: strong evidence to support FM systems in FM in several underserved populations‐‐

• 1. Auditory Processing Disorder (APD)• 2. Autism Spectrum Disorders (ASD) & Attention‐Deficit Hyperactivity Disorder (ADHD)

• 3. Dyslexia• 4. Friedreich Ataxia (FRDA)• 5. Language Disorders

Page 17: Cochlear Implants, Hearing Aids, Hearing Assistance

9/12/2014

17

Goals of This Section

•1. Review literature related to several normal hearing populations that need HAT

•2. Briefly review procedures to determine the need for HAT

•3. Recommend objective fitting procedures for these populations

1. Auditory Processing Disorders (APD)

•Johnston, John, Kreisman, Hall & Crandall (2009)•10 children with APD•13 children in control group•Test measures: 

•Speech recognition in quiet & noise: HINT‐C

•Academic performance: SIFTER & LIFE

1. APD: Speech Recognition

Quiet (dB) Noise (dB SNR)

1. APD: Academic Performance‐‐ SIFTER

Page 18: Cochlear Implants, Hearing Aids, Hearing Assistance

9/12/2014

18

1. APD: Academic Performance‐‐ LIFE 2. Autism Spectrum Disorders (ASD)

•Rance, Saunders, Carew, Johansson, & Tan (2014)• 20 children with ASD

• 20 matched controls• Test measures: 

• Speech recognition in noise

• APHAB• Temporal processing• Spatial processing

2. ASD: Comparison of Groups—ASD vs. Controls

2. ASD: Speech Recognition in Noise

Page 19: Cochlear Implants, Hearing Aids, Hearing Assistance

9/12/2014

19

2. ASD: Speech Recognition in Noise 2. ASD & ADHD

•Schafer, Mathews, Mehta, Hill, Munoz, Bishop, & Moloney (2012)• 11 children with ASD: 

• 7 had ASD: APD (2), anxiety disorder (1), ADHD (2)• 4 had ADHD: APD (1), SLI (1)

• 11 age‐matched peers• Test measures:

• Speech recognition in noise• Classroom observations• Teacher questionnaires

2. ASD & ADHD: Speech Recognition in NoiseLower scores are better!

-14

-12

-10

-8

-6

-4

-2

0

No FM: ASD & ADHD No FM: Typical FM: ASD & ADHD

BK

B-S

IN T

hre

sho

ld i

n d

B S

NR

Condition: Group

Significantly poorer than typical peers

Same as peers when using FM

p < .001 p > .05

-5.4

-10.7

-4.2

-11.2

-14

-12

-10

-8

-6

-4

-2

0

No-FM 1 FM 1 No-FM 2 FM 2

BK

B-S

IN T

hre

sho

ld i

n d

B S

NR

Condition

2. ASD & ADHD: Speech Recognition in Noise

Lower scores are better!

Significantly better performance in FM conditions No effect of session

Page 20: Cochlear Implants, Hearing Aids, Hearing Assistance

9/12/2014

20

63.8%

84.4%

62.9%

71.1%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

FM Off 1 FM On 1 FM Off 2 FM On 2

Per

cen

tag

e o

f O

n-T

ask

Beh

avio

rs

Experimental Phase

2. ASD & ADHD: On‐Task Behaviors

Significantly more on-task behaviors with FM during both trial periods

Both FM conditions significantly better than both no-FM conditions

2. ASD & ADHD: C.H.A.P.S. Results

-35

-30

-25

-20

-15

-10

-5

0

Noise Quiet Ideal MultipleInputs

AuditoryMemory

AuditoryAttention

Teac

her

Rat

ing

C.H.A.P.S. Listening Condition

No FM

FM

Significant improvements in most areas*

* * * * *

3. Dyslexia

•Hornickel et al. (2012)•38 normal hearing children, ages 8‐14 years, with dyslexia

• 19 used FM system (Phonak EduLink) for 1 year

• 19 wore no device (control group)

•Test Measures:• Reading Ability

• Phonological Awareness

• Auditory Brainstem 

Response to Speech (cABR) 

Significant improvement in FM group; no change for control group

Significant improvement; no change for control group

Significant difference relative to control group

II. New FM Research

• Hornickel et al. (2012)

BaDaGa

stimuli

Page 21: Cochlear Implants, Hearing Aids, Hearing Assistance

9/12/2014

21

3. Dyslexia

•Hornickel et al. (2012)• Subset of participants showed even greater improvements on phonological awareness

• Coined the “learners”

4. Friedreich ataxia (FRDA)

•Rance et al. (2010)• Neurodegenerative disease affecting motor and sensory systems due to mutations in the FXN gene, results in auditory neuropathy spectrum disorder (ANSD)

•10 participants, ages 8‐42 years, normal hearing but abnormal ABR with evidence of ANSD & control group

• Used FM system (Phonak iSense) for 6‐week trial

•Test Measures:• Auditory processing testing

• Word recognition in noise: 0 dB SNR

• Abbreviated Profile of Hearing Aid Benefit (APHAB)

4. Friedreich ataxia (FRDA)

•Word recognition with no FM:• FRDA:  43% (SD= 26)• Control: 80% (SD=1.8)

•FRDA with FM:

4. Friedreich ataxia (FRDA)

•APHAB Results:

Page 22: Cochlear Implants, Hearing Aids, Hearing Assistance

9/12/2014

22

5. Language Disorders

•Will discuss after the section on fitting because we did some validation of our fitting procedure on this group

•First, we will briefly discuss (or review) identifying educational need

Determining Educational Need…

•1. Cite literature and assess classroom acoustics using an app to see if it meets ASHA/ANSI criteria (AudioTools from Studio Six Digital)

• Measure unoccupied noise, occupied noise, estimated SNR, RT

•2. Perform classroom observation:• Seating, on/off task behaviors, participating, ambient noise

•3. Speech recognition in noise: BKB‐SIN & PINT•4. Student & teacher questionnaires•5. Other informal assessments: Interviews with parent & 

student; grades, review of special education file or previous testing

•6. Cite Literature on that population

Fitting HAT on Children with Normal Hearing Fitting HAT: NH

• Schafer, Bryant, Sanders, Baldus, Algier, Lewis, Traber, Layden, Amin (in press, JAAA)

• Examined validity of AAA protocol & clearly define procedures for fitting ear‐level, open ear, FM‐only devices to 26 NH children

•Meet prescribed targets: DSL

•Measure RESR

•We also evaluated REOR to determine potential changes in REUR due to receiver placement iSense micro with smaller

xStandard receivers

Page 23: Cochlear Implants, Hearing Aids, Hearing Assistance

9/12/2014

23

Specific Goals & Fitting Procedures

•1. Meet DSL targets at 1, 2, 3, & 4 kHz •FM mic in the test box; real‐ear mic in child’s  ear•Verifit: select ‘FM’; ‘On‐ear’; Speech‐std[1]; FM volume adjusted, if necessary 

•2. Do not exceed estimated UCL•Same settings, but MPO selected as the stimulus•Compared MPO to the estimated UCL on screen

•3‐4. Examine difference between REOR & REUR•Transmitter turned off•Verifit: ‘Open’ instrument; Speech‐std[1] at 65 dB SPL.  

1. DSL Targets vs. Output

30

40

50

60

70

80

90

100

110

1000 2000 3000 4000

Target Output

No significant effect of output type

Significant interaction effect

Output 2-3 dBlower than target

2. MPO vs. UCL

Schafer et al., in press-c, JAAA

30

40

50

60

70

80

90

100

110

250 500 1000 2000 3000 4000 6000

dB SPL

Frequency (Hz)

UCL

OutputMPO output significantly lower than estimated UCL

3. REOR vs. REUR

0

10

20

30

40

50

60

70

1000 2000 3000 4000

dB SPL

Frequency (Hz)

iSense

Unaided

Significant difference: average= 3 dB

Page 24: Cochlear Implants, Hearing Aids, Hearing Assistance

9/12/2014

24

Behavioral Validation:Speech Recognition in Noise

0

10

20

30

40

50

60

70

80

90

100

110

Left FM Right FM Bilateral FM No FM

Percen

t Correct Speech Recogn

ition

Listening Condition

5‐8 yrs

9‐12 yrs

Behavioral Validation:

Loudness Ratings in Noise

0.0

1.0

2.0

3.0

4.0

5.0

6.0

Left FM Right FM Bilateral FM No FM

Loudness Rating

Listening Condition

5‐8 yrs

9‐12 yrs

4. Language Disorders (LD) & Various Disabilities

Table 1. Overview of Subject Demographics and Frequency Modulation (FM) System Volume

Subject # Age  Disorder FM Volume: Right FM Volume: Left

1 8; 10 APD ‐2 ‐2

2 10; 7 APD 8 8

3 8; 0 Teacher reported 

listening problems

6 6

4 11; 11 ADHD, LD 6 8

5 9; 6 ASD, SLI 8 8

6 9; 3 ASD, APD, SLI 6 6

7 10; 5 ASD, APD, SLI 8 8

8 9; 5 ASD, ID, ADHD, SLI 2 0

9 8; 11 SLI 0 0

10 6; 4 SLI, APD, ADHD 2 2

11 10; 2 SLI 8 6

12 11; 3 SLI 6 6

4. LD & Other Disabilities

•Test Measures:

•Same procedure as the previous fitting study

•Same speech recognition measures

• Listening Comprehension Test 2 (recorded in noise)

•Trial period: child, parent, & teacher questionnaires

Page 25: Cochlear Implants, Hearing Aids, Hearing Assistance

9/12/2014

25

4. LD: Fitting Results

60

65

70

75

80

85

1000 2000 3000 4000

Out

pu

t (d

B S

PL

)

Frequency (Hz)

Targret

FM Output

DSL output was met or slightly exceeded (by 3 dB) for  all 24 ears

4. LD: Speech Recognition Results (n=10)

‐10

0

10

20

30

40

50

60

70

80

90

100

110

FM Left FM Right Bilateral FM Unaided

Speech Recogn

ition Score (%)

Condition

We recommend bilateral FM!

All loudness ratings “Comfortable” or “Loud, but OK”

4. LD: Listening Comprehension(n=8)

0

2

4

6

8

10

12

14

16

18

Main Idea Details Reasoning Vocabulary Underst.Messages

Listening Test Score

Subtest

Unaided FM

4. LD: Participant C.H.I.L.D. (n=7)

0

10

20

30

40

Quiet Noise Distance Social Media

Subject C.H.I.L.D. Rating

Listening Condition

Baseline With FM

Page 26: Cochlear Implants, Hearing Aids, Hearing Assistance

9/12/2014

26

4. LD: Parent C.H.I.L.D. (n=10)

0

5

10

15

20

25

30

35

Quiet Noise Distance Social Media

Paren

t C.H.I.L.D. Rating

Listening Condition

Baseline With FM

All Conditions Better with FM!

Cochlear Implants, Hearing Aids, & Hearing Assistance Technology (HAT)!!

1. Cochlear implants

2. Hearing aids

3. HAT for children with normal hearing &

auditory difficulties

4. Fitting procedures for children with normal 

hearing

Questions??

•Thank you!• [email protected]

Page 27: Cochlear Implants, Hearing Aids, Hearing Assistance

Helpful References! Erin C. Schafer, Ph.D.

Typical Classroom Acoustics Arnold, P., & Canning, D. (1999). Does classroom amplification aid comprehension? British Journal of

Audiology, 33(3), 171-178. Bess, F. H., Sinclair, J. S., & Riggs, D. E. (1984). Group amplification in schools for the hearing impaired. Ear

& Hearing, 5(3), 138-144. Crandell, C. & Smaldino J. (1996). An update of classroom acoustics for children with hearing impairment.

Volta Review, 1, 4-12. Cruckley, J., Scollie, S., & Parsa, V. (2011). An exploration of non-quiet listening at school. Journal of

Educational Audiology, 17, 23-35. Knecht, H. A., Nelson, P. B., Whitelaw, G. M., & Feth, L. L. (2002). Background noise levels and reverberation

times in unoccupied classrooms: predictions and measurements. American Journal of Audiology, 11, 65-71.

Leavitt, R., & Flexer, C. (1991). Speech degradation as measured by the Rapid Speech Transmission Index (RASTI). Ear Hear, 12(2), 115-118.

Markides, A. (1986). Speech levels and speech-to-noise ratios. British Journal of Audiology, 20, 115-120. Nelson, E. L.., Smaldino, J., Erler, S., Garsteki, D. (2007/2008). Background Noise Levels and Reverberation

Times in Old and New Elementary School Classrooms Journal of Educational Audiology, 14, 12-18. Sanders, D. A. (1965). Noise Conditions in Normal School Classrooms. Except Child, 31, 344-353.

Recommended Classroom Acoustics & Measuring Acoustics American National Standards Institute. (2010). American National Standard Acoustical Performance Criteria,

Design Requirements, and Guidelines for Schools, Part 1: Permanent Schools (No. ANSI S12.60-2010). Melville, NY.

American Speech-Language-Hearing Association. (2005). Acoustics in educational settings: Position statement. [Position Statement]. Available from www.asha.org/policy.

Ostergren, D., & Smaldino, J. (2013). Technology in educational settings: It may already be in your pocket or purse! Journal of Educational Audiology, 18, 10-13.

Effects of Noise on Younger Listeners Eisenberg, L. S., Shannon, R. V., Martinez, A. S., Wygonski, J., & Boothroyd, A. (2000). Speech recognition

with reduced spectral cues as a function of age. Journal of the Acoustical Society of America, 107(5 Pt 1), 2704-2710.

Elliott, L. L. (1979). Performance of children aged 9 to 17 years on a test of speech intelligibility in noise using sentence material with controlled word predictability. Journal of the Acoustical Society of America, 66(3), 651-653.

Elliott, L. L., Connors, S., Kille, E., Levin, S., Ball, K., & Katz, D. (1979). Children's understanding of monosyllabic nouns in quiet and in noise. Journal of the Acoustical Society of America, 66(1), 12-21.

Gravel, J. S., Fausel, N., Liskow, C., & Chobot, J. (1999). Children's speech recognition in noise using omni- directional and dual-microphone hearing aid technology. Ear and Hearing, 20(1), 1-11.

Jamieson, D. G., Kranjc, G., Yu, K., & Hodgetts, W. E. (2004). Speech intelligibility of young school- aged children in the presence of real-life classroom noise. J Am Acad Audiol, 15, 508-517.

Schafer, E. C., Beeler, S., Ramos, H., Morais, M., Monzingo, J., & Algier, K. Developmental effects and spatial hearing in young children with normal-hearing sensitivity. Ear Hear, 33(6), e32-43.

Soli, S. D., & Sullivan, J. A. (1997). Factors affecting children's speech communication in classrooms. Journal of the Acoustical Society of America, 101, S3070.

Stelmachowicz, P. G., Hoover, B. M., Lewis, D. E., Kortekaas, R. W., & Pittman, A. L. (2000). The relation between stimulus context, speech audibility, and perception for normal-hearing and hearing-impaired children. Journal of Speech, Language, and Hearing Research, 43(4), 902-914.

Effects of Noise: Normal Hearing Listeners Dubno, J. R., Dirks, D. D., & Morgan, D. E. (1984). Effects of age and mild hearing loss on speech recognition

in noise. Journal of the Acoustical Society of America, 76(1), 87-96.

Page 28: Cochlear Implants, Hearing Aids, Hearing Assistance

Duqesnoy, A. J., & Plomp, R. (1983). The effect of hearing aid on the speech-reception threshold of hearing- impaired listeners in quiet and noise. Journal of the Acoustical Society of America, 73(2166-2173).

Erber, N. P. (1971). Auditory and audiovisual reception of words in low-frequency noise by children with normal hearing and by children with impaired hearing. Journal of Speech and Hearing Research, 14, 496-512.

Finitzo-Hieber, T., & Tillman, T. (1978). Room acoustics effects on monosyllabic word discrimination ability for normal and hearing impaired children. Journal of Speech and Hearing Research, 21, 440-458.

Valente, D. L., Plevinsky, H. M., Franco, J. M., Heinrichs-Graham, E. C., & Lewis, D. E. (2012). Experimental investigation of the effects of the acoustical conditions in a simulated classroom on speech recognition and learning in children. J Acoust Soc Am, 131(1), 232-246.

Nabelek, A., & Pickett, J. M. (1974). Monaural and binaural speech perception through hearing aids under noise and reverberation with normal and hearing-impaired listeners. Journal of Speech and Hearing Research, 17, 724-739.

Nabelek, A., & Pickett, J. M. (1974). Reception of consonants in a classroom as affected by monaural and binaural listening, noise, reverberation, and hearing aids. Journal of the Acoustical Society of America, 56, 628-639.

Effects of Noise: English Language Learners Crandell, C.C. & Smaldino, J.J. (1996). Speech perception in noise by children for whom English is a second

language. American Journal of Audiology, 5, 47-51. Hasegawa, M., Carpenter, P. A., & Just, M. A. (2002). An fMRI study of bilingual sentence comprehension and

workload. Neuroimage, 15(3), 647-660. Nabelek, A.K. & Donahue, A.M. (1984). Perception of consonants in reverberation by native and non-native

listeners. Journal of the Acoustical Society of America, 75, 632-634. Nelson, P., Kohnert, K., Sabur, S., & Shaw, D. (2005). Classroom noise and children learning through a

second language: double jeopardy? Lang Speech Hear Serv Sch, 36(3), 219-229. Takata, Y. & Nabelek, A.K. (1990). English consonant recognition in noise and in reverberation by Japanese

and American listeners. Journal of the Acoustical Society of America, 88, 663-666.

Effects of Noise: Hearing Loss and Hearing Aids Crandell, C. (1992). Noise effects on the speech recognition of children with minimal hearing loss. Ear and

Hearing, l7, 210-217. Crandell, C. & Flannagan, R. (1999). Effects of conductive hearing loss on speech recognition in quiet and

noise. Journal of Educational Audiology, 8, 5-14. Dubno, J. R., Dirks, D. D., & Morgan, D. E. (1984). Effects of age and mild hearing loss on speech recognition

in noise. Journal of the Acoustical Society of America, 76(1), 87-96. Duqesnoy, A. J., & Plomp, R. (1983). The effect of hearing aid on the speech-reception threshold of hearing-

impaired listeners in quiet and noise. Journal of the Acoustical Society of America, 73(2166-2173). Erber, N. P. (1971). Auditory and audiovisual reception of words in low-frequency noise by children with normal

hearing and by children with impaired hearing. Journal of Speech and Hearing Research, 14, 496-512. Finitzo-Hieber, T., & Tillman, T. (1978). Room acoustics effects on monosyllabic word discrimination ability for

normal and hearing impaired children. Journal of Speech and Hearing Research, 21, 440-458. Nabelek, A., & Pickett, J. M. (1974). Monaural and binaural speech perception through hearing aids under noise

and reverberation with normal and hearing-impaired listeners. Journal of Speech and Hearing Research, 17, 724-739.

Nabelek, A., & Pickett, J. M. (1974). Reception of consonants in a classroom as affected by monaural and binaural listening, noise, reverberation, and hearing aids. Journal of the Acoustical Society of America, 56, 628-639.

Effects of Noise: Unilateral Hearing Loss Bess, F.H. & Tharpe, A.M. (1986). Case history data on unilaterally hearing-impaired children. Ear and

Hearing, 7, 14-17. Bess, F.H. & Tharpe, A.M. (1986). An introduction to unilateral sensorineural hearing loss in children. Ear

and Hearing, 7, 3-13.

Page 29: Cochlear Implants, Hearing Aids, Hearing Assistance

3 Bess, F.H., Tharpe, A.M. & Gibler, A.M. (1986). Auditory performance of children with unilateral sensorineural

hearing loss. Ear and Hearing, 7, 20-26. Culbertson, J.L. & Gilbert, L.E. (1986). Children with unilateral sensorineural hearing loss: cognitive, academic,

and social development. Ear and Hearing, 7, 38-42. Kenworthy, O.T., Klee, T. & Tharpe, A.M. (1990). Speech recognition ability of children with unilateral

sensorineural hearing loss as a function of amplification, speech stimuli and listening condition. Ear and Hearing, 11, 264-270.

Effects of Noise: Cochlear Implants Fetterman, B. L., & Domico, E. H. (2002). Speech recognition in background noise of cochlear implant patients.

Otolaryngology Head and Neck Surgery, 126(3), 257-263. Garnham, C., O'Driscoll, M., Ramsden, & Saeed, S. (2002). Speech understanding in noise with a Med-El

COMBI 40+ cochlear implant using reduced channel sets. Ear and Hearing, 23(6), 540-552. Gantz, B. J., Tyler, R. S., Rubinstein, J. T., Wolaver, A., Lowder, M. W., Abbas, P., et al. (2002). Binaural

cochlear implants placed during the same operation. Otology & Neurotology, 23(2), 169-180. Hamzavi, J., Franz, P., Baumgartner, W. D., & Gstoettner, W. (2001). Hearing performance in noise of

cochlear implant patients versus severely-profoundly hearing-impaired patients with hearing aids. Audiology, 40(1), 26-31.

Nelson, P. B., Jin, S. H., Carney, A. E., & Nelson, D. A. (2003). Understanding speech in modulated interference: cochlear implant users and normal-hearing listeners. Journal of the Acoustical Society of America, 113(2), 961-968.

Schafer, E. C., Pogue, J., & Milrany, T. List equivalency of the AzBio sentence test in noise for listeners with normal-hearing sensitivity or cochlear implants. J Am Acad Audiol, 23(7), 501- 509.

Wolfe, J., Schafer E. C., John, A., Hudson, M. (2011). The effect of front-end processing on cochlear implant performance of children. Otology & Neurotology, 32(4), 533-538.

Effects of Noise: Otitis Media Friel-Patti, S. & Finitzo, T. (1990). Language learning in a prospective study of otitis media with effusion in the

first two years of life. Journal of Speech and Hearing Research, 33, 188-194. Gravel, J.S. & Wallace, I.F. (1992). Listening and language at 4 years of age: effects of early otitis media.

Journal of Speech and Hearing Research, 35, 588-595. Silva, P.A., Kirkland, C., Simpson, A., Stewart, I.A. & Williams, S.M. (1982). Some developmental and

behavioral problems associated with bilateral otitis media with effusion. Journal of Learning Disabilities, 15, 417-421.

Zumach, A., Gerrits, E., Chenault, M. N., & Anteunis, L. J. (2009). Otitis media and speech-in-noise recognition in school-aged children. Audiol Neurootol, 14(2), 121-129.

Other Effects: Listening Comprehension Schafer, E. C., Bryant, D., Sanders, K., Baldus, N., Lewis, A., Traber, J., et al. (2013). Listening comprehension

in background noise in children with normal hearing. Journal of Educational Audiology, 19(58-64). Working Memory Osman, H. & Sullivan, J. (2013). Children’s auditory working memory performance in degraded listening

conditions. Journal of Speech, Language, and Hearing Research, 57(4), 1503-1511. Listening Effort (see pubmed.com for more studies on this): Picou, E. M., & Rickets, T. A. (in press). The effect of changing the secondary task in dual-task paradigms for

measuring listening effort. Ear & Hearing. Ross, M. (1992). Room acoustics and speech perception. In M. Ross (ed.), FM Auditory Training Systems:

Characteristics, Selection, and Use, 40-41. Timonium, MD: York Press. Processing Time: Downs, D., & Crum, M. (1978). Processing demands during auditory learning under degraded listening

conditions. Journal of Speech and Hearing Research, 21, 702-714. Teacher Vocal Fatigue Rogerson, J. & Dodd, B. (2005). Is there an effect of dysphonic teachers’ voices on children’s processing of

spoken language? Journal of Voice, 19(1), 47-60.

Page 30: Cochlear Implants, Hearing Aids, Hearing Assistance

Roy, N., Merrill, R.M., Thibeault, S., Parsa, R.A., Gray, S.D., & Smith, E.M. Prevalence of voice disorders in

teachers and the general population. Journal of Speech, Language, and Hearing Research, 47(2), 281- 293.

Remote-Microphone Technology Guidelines American Academy of Audiology Clinical Practice Guidelines. (2008, April). Remote Microphone Hearing

Assistance Technologies for Children and Youth from Birth to 21 Years.

FM System Research: Young Children American Speech-Language-Hearing Association. (1991). The use of FM amplification instruments for infants

and preschool children with hearing impairment, ASHA, 33, (suppl.5). 1-2.

Benoit, R. (1989). Home use of FM amplification systems during the early childhood years. Hearing Instruments, 40, 8-10.

Moeller, M.P., Donagy, K.F., Beauchaine, K.L., Lewis, D.E. & Stelmachowicz, P.G. (1996). Longitudinal study of FM system use in non-academic settings: effects on language development. Ear and Hearing, 17, 28- 40.

FM/DM System Research: Normal Hearing Arnold, P. & Canning, D. (1999). Does classroom amplification aid comprehension?. British Journal of

Audiology, 33,171-178. Crandell, C.C., Charlton, M., Kinder, M., and Kreisman, B.M. Effects of portable sound field systems on speech

perception in noise. Journal of Educational Audiology, 9, 8-12. Mendel, L.L., Roberts, R.A., & Walton, J.H. (2003). Speech perception benefits from sound field FM

amplification. American Journal of Audiology, 12(2), 114-124. Picard, M. & Lefrancois, J. (1986). Speech perception through FM auditory trainers in noise and

reverberation. Journal of Rehabilitation Research and Development, 23, 53-62. Rosenberg, G.G., Blake-Rahter, P., Heavner, J., Allen, L., Redmond, B.M., Phillips, J. & Stigers, K. (1999).

Improving classroom acoustics (ICA): a three-year FM sound field classroom amplification study. Journal of Educational Audiology, 7, 8-21.

Schafer, E.C., Bryant, D., Sanders, K., Baldus, N., Algier, K., Lewis, A., Traber, J., Layden, P., Amin, A. (in press). Fitting and verification of frequency modulation (FM) systems on children with normal hearing Journal of the American Academy of Audiology.

Wolfe, J.,Morais, M., Neumann, S., Schafer, E. C., Wells, N., Mülder, H. E., John, A., & Hudson, M. (2013). Evaluation of speech recognition with personal FM and classroom audio distribution systems. Journal of Educational Audiology, 19, 65-79.

FM System Research: English Language Learners Lederman, N., DeConde Johnson, C., Crandell, C.C. & Smaldino, J.J. (2000). The development and

validation of an "intelligent classroom sound field frequency modulation (FM) system. Journal of Educational Audiology, 8, 37-42.

Nabelek, A.K. & Donahue, A.M. (1986). Comparison of amplification systems in an auditorium. Journal of Acoustical Society of America, 79, 2078-2082.

FM System Research: Auditory Processing Disorder, Autism Spectrum Disorders, ANSD, AD HD, & Other Needs Blake, R., Field, B., Foster, C., Platt, F. & Wertz, P. (1991). Effect of FM auditory trainers on attending

behaviors of learning-disabled children. Language, Speech, and Hearing Services in the Schools, 22, 111-114.

Clarke-Klein, S.M., Roush, J., Davis, K. & Medley, L. (1995). FM amplification for enhancement of conversational discourse skills: case study. Journal of American Academy of Audiology, 6, 230-234.

Flexer, C., Millin, J.P. & Brown, L. (1990). Children with developmental disabilities: the effect of sound field amplification on word identification. Language, Speech and Hearing Services in the Schools, 21, 177- 182.

Flexer, C. & Savage, H. (1993). Use of mild gain amplifier with preschoolers with language delay. Language, Speech, and Hearing Services in the Schools, 24, 151-155.

Friederichs, E. & Friederichs, P. (2005). Electrophysiologic and psycho-acoustic findings following one-year

Page 31: Cochlear Implants, Hearing Aids, Hearing Assistance

5 application of personal ear-level FM device in children with attention deficit and suspected central auditory processing disorder, Journal of Educational Audiology, 12, 29-34.

Hornickel, J., Zecker, S. G., Bradlow, A. R., & Kraus, N. Assistive listening devices drive neuroplasticity in

children with dyslexia. Proc Natl Acad Sci U S A, 109(41), 16731-16736. Johnston, K.N., John, A.B., Kreisman, N.V., Hall, J.W. 3rd, Crandell, C.C. (2009). Multiple benefits of personal

FM system use by children with auditory processing disorder (APD). International Journal of Audiology, 48(6), 371-383.

Rance, G., Corben, L. A., Du Bourg, E., King, A., & Delatycki, M. B. (2010). Successful treatment of auditory perceptual disorder in individuals with Friedreich ataxia. Neuroscience, 171(2), 552-555.

Rance, G., Saunders, K., Carew, P., Johansson, M., & Tan, J. (2014). The use of listening devices to ameliorate auditory deficit in children with autism. J Pediatr, 164(2), 352-357.

Schafer, E.C., Bryant, D., Sanders, K., Baldus, N., Algier, K., Lewis, A., Traber, J., Layden, P., Amin, A. (in press). Fitting and verification of frequency modulation (FM) systems on children with normal hearing Journal of the American Academy of Audiology.

Schafer, E. C., Mathews, L., Mehta, S., Hill, M., Munoz, A., Bishop, R., & Maloney, M. (2012). Personal FM systems for children with autism spectrum disorders (ASD) and/or attention-deficit hyperactivity disorder (ADHD): An initial investigation. Journal of Communication Disorders, 46, 40-52.

Schafer, E. C., Traber, J., Layden, P., Amin, A., Sanders, K., Bryant, D., & Baldus, N. (in press). Use of wireless technology for children with APD, ADHD, and language disorders. Seminars in Hearing.

Smith, D.E., McConnell, J.V., Walter, T.L. & Miller, S.D. (1985). Effect of using an auditory trainer on the attentional, language, and social behaviors of autistic children. Journal of Autism and Developmental Disorders, 15, 285-302.

Stach, B.A., Loiselle, L.H., Jerger, J.F., Mintz, S.L. & Taylor, C.D. (1987). Clinical experience with personal FM assistive listening devices. The Hearing Journal, May, 24-30.

FM/DM System Research: Minimal and Mild Hearing Loss Ross, M. & Giolas, T.G. (1971). Effect of three classroom listening conditions on speech intelligibility.

American Annals of the Deaf, 116, 580-584. Sariff, L.S. (1981). An innovative use of free field amplification in regular classrooms. In R. Roeser & M.

Downs (Eds.) Auditory Disorders in School Children (p. 263-272). New York: Thieme Stratton, Inc. Wolfe, J.,Morais, M., Neumann, S., Schafer, E. C., Wells, N., Mülder, H. E., John, A., & Hudson, M. (2013).

Evaluation of speech recognition with personal FM and classroom audio distribution systems. Journal of Educational Audiology, 19, 65-79.

FM System Research: Unilateral Hearing Loss Bess, F.H., Klee, T. & Culbertson, J.L. (1986). Identification, assessment, and management of children with

hearing loss. Ear and Hearing, 7, 43-51. Updike, C.D. (1994). Comparison of FM auditory trainers, CROS aids, and personal amplification in

unilaterally hearing-impaired children. Journal of American Academy of Audiology, 5, 204-209.

FM System & Digital Transmission Research: Moderate to Profound Hearing Loss and Hearing Aids Anderson, K.L. & Goldstein, H. (2004). Speech perception benefits of FM and infrared devices to children with

hearing aids in a typical classroom. Journal of Speech, Language, and Hearing Services in the Schools, 35(2), 169-184.

Anderson, K. L., Goldstein, H., Colodzin, L., & Iglehart, F. (2005). Benefit of S/N enhancing devices to speech perception of children listening in a typical classroom with hearing aids or a cochlear implant. Journal of Educational Audiology, 12, 14-28.

Boothroyd, A. & Iglehart, F. (1998). Experiments with classroom amplification. Ear and Hearing, 19, 207-217. Flynn, T.S. & Gregory, M. (2005). The FM advantage in the real classroom. Journal of Educational Audiology,

12, 35-42. Lewis, M. S., Crandell, C. C., Valente, M., & Horn, J. E. (2004). Speech perception in noise: directional

microphones versus frequency modulation (FM) systems. Journal of the American Academy of Audiology, 15, 426-439.

Nabelek, A.K. & Donahue, A.M. (1986). Comparison of amplification systems in an auditorium. Journal of Acoustical Society of America, 79, 2078-2082.

Nabelek, A.K., Donahue, A.M. & Letowski, T.R. (1986). Comparison of amplification systems in a classroom.

Page 32: Cochlear Implants, Hearing Aids, Hearing Assistance

Journal of Rehabilitation Research and Development, 23, 41-52.

Noe, C.M., Davidson, S.A. & Mishler, P.J. (1997). The use of large group assistive listening devices with and without hearing aids in an adult classroom setting. American Journal of Audiology, 6, 48-63.

Pittman, A.L., Lewis, D.E., Hoover, B.M. & Stelmachowicz, P.G. (1999). Recognition performance for four combinations of FM system and hearing aid microphone signals in adverse listening conditions. Ear and Hearing, 20, 279-289.

Ross, M., Giolas, T. & Carver, P. (1973). Effect of classroom listening conditions of speech intelligibility. Language, Speech, and Hearing Services in the Schools, 4, 72-76.

Schafer, E. C., Sanders, K., Bryant, D., Keeney, K., & Baldus, N. (2013). Effects of Voice Priority in FM systems for children with hearing aids. Journal of Educational Audiology, 19, 12-24.

Toe, D. (1999). Impact of FM aid use on the classroom behavior of profoundly deaf secondary students. Seminars in Hearing, 20, 223-234.

Wolfe, J.,Morais, M., Neumann, S., Schafer, E. C., Wells, N., Mülder, H. E., John, A., & Hudson, M. (2013). Evaluation of speech recognition with personal FM and classroom audio distribution systems. Journal of Educational Audiology, 19, 65-79.

FM System/Digital Transmission Research: Cochlear Implants Aaron, R., Sonneveldt, V., Arcaroli, J., & Holstad, B. (2003, November). Optimizing microphone sensitivity

settings of pediatric Nucleus 24 cochlear implant patients using Phonak MicroLink CI+ FM system. Poster presented at ACCESS: Achieving Clear Communication Employing Sound Solutions - Proceedings of the First International Conference, Chicago, IL.

Acoustical Society of America, (n.d.). Position on the Use of Sound Amplification in the Classroom. Retrieved October 12, 2006 from http://asa.aip.org

Anderson, K. L., Goldstein, H., Colodzin, L., & Iglehart, F. (2005). Benefit of S/N enhancing devices to speech perception of children listening in a typical classroom with hearing aids or a cochlear implant. Journal of Educational Audiology, 12, 14-28.

Catlett, D. & Brown, C.J. (2003, November). Optimal audio mix settings for pediatric Clarion cochlear implant patient using a Phonak MicroLink CI-S FM system. Poster presented at ACCESS: Achieving Clear Communication Employing Sound Solutions - Proceedings of the First International Conference, Chicago, IL.

Crandell, C. C., Holmes, A. E., Flexer, C., & Payne, M. (1998). Effects of soundfield FM amplification on the speech recognition of listeners with cochlear implants. Journal of Educational Audiology, 6, 21-27.

Davies, M. G., Yellon, L., & Purdy, S. C. (2001). Speech-in-noise perception of children using cochlear implants and FM systems. Australian and New Zealand Journal of Audiology, 23, 52-62.

Iglehart, F. (2004). Speech perception by students with cochlear implants using sound-field systems in classrooms. American Journal of Audiology, 13, 62-72.

Schafer, E. C., Huynh, C., Romine, D., Jimenez, R. (2012). Speech recognition in noise and subjective perceptions of neckloop FM receivers with cochlear implants. American Journal of Audiology, 22(1), 53-64.

Schafer, E.C. & Kleineck, M.P. (2009). Improvements in speech-recognition performance using cochlear implants and three types of FM systems: A meta-analytic approach. Journal of Educational Audiology, 15, 4-14

Schafer, E. C., Musgrave, E., Momin, S., Sandrock, C., & Romine, D. (2013). A proposed electroacoustic test protocol for personal FM receivers coupled to cochlear implant sound processors. Journal of the American Academy of Audiology, 24(10), 941-954.

Schafer, E. C., Pogue, J., Milrany, T. (2012). Equivalency of the AzBio Sentence Test in noise for listeners with normal-hearing sensitivity or cochlear implants. Journal of the American Academy of Audiology, 23(7), 501-509.

Schafer, E. C., Romine, D., Musgrave, E., Momin, S., & Huynh, C. (2013). Electromagnetic versus electrical coupling of personal frequency modulation (FM) receivers to cochlear implant sound processors. Journal of the American Academy of Audiology, 24(10), 927-940.

Schafer, E. C. & Thibodeau, L.M. (2006). Speech recognition in noise in children with cochlear implants while listening in bilateral, bimodal, and FM-system arrangements. American Journal of Audiology, 15(2), 114-126.

Schafer, E. C. & Thibodeau, L. M. (2004). Speech recognition abilities of adults using cochlear implants interfaced with FM systems. Journal of the American Academy of Audiology, 15(10), 678-691.

Page 33: Cochlear Implants, Hearing Aids, Hearing Assistance

7 Schafer, E. C. & Thibodeau, L. M. (2003). Speech recognition performance of children using cochlear implants

and FM systems. Journal of Educational Audiology, 11, 15-26. Schafer, E. C. & Wolfe, J. (2010). Hearing assistance technology for children: candidacy and selection.

Seminars in Hearing, 31(3), 219-232. Schafer, E. C. & Wolfe, J. (2010). Hearing assistance technology for children: candidacy and selection.

Seminars in Hearing, 31(3), 219-232. Schafer, E. C., Wolfe, J., Algier, K., Morais, M., Price, S., Monzingo, J., et al. (2012). Spatial hearing in

noise of young children with cochlear implants and hearing aids. Journal of Educational Audiology, 18, 38-52.

Schafer, E. C., Wolfe, J., Lawless, T., & Stout, B. (2009). Effects of FM-receiver gain on speech-recognition performance of adults with cochlear implants. International Journal of Audiology, 48(4), 196-203.

Wolfe, J., Morais, M., Schafer, E., Mills, E., Mulder, H. E., Goldbeck, F., et al. Evaluation of speech recognition of cochlear implant recipients using a personal digital adaptive radio frequency system. J Am Acad Audiol, 24(8), 714-724.

Wolfe, J., Morais, M., Schafer, E., Mills, E., Peters, R., Lianos, L., John, A., & Hudson, M. (2013). Better speech recognition with digital RF system in study of cochlear implants. The Hearing Journal, 66(7), 24-26

Wolfe, J. & Schafer E.C. (2008). Optimizing the benefits of Auria® sound processors coupled to personal FM systems with iConnect™ adaptors. Journal of the American Academy of Audiology, 19(8). 585-594.

Wolfe, J., Schafer, E.C., Heldner, B., Mulder, H., Ward, E., & Vincent, B. (2009). Evaluation of speech recognition in noise with cochlear implants and Dynamic FM. Journal of the

American Academy of Audiology, 20(7), 409-421. [Tier 1] Wolfe, J., Schafer, E. C., Parkinson, A., John, A., Hudson, M., Wheeler, J., & Mucci, A. (2013). Effects

of input processing and type of personal FM system on speech recognition performance of adults with cochlear implants. Ear and Hearing, 34(1), 52-62.

Wolfe, J., Thompson, K., Swim, L., Schafer, E.C. (2007/2008). Clinical evaluation of the FM advantage provided by contemporary personal FM systems. Journal of Educational Audiology, 14, 47-57.