34
College Physics Instructor Solutions Manual Chapter 14 366 CHAPTER 14: HEAT AND HEAT TRANSFER METHODS 14.2 TEMPERATURE CHANGE AND HEAT CAPACITY 1. On a hot day, the temperature of an 80,000L swimming pool increases by . What is the net heat transfer during this heating? Ignore any complications, such as loss of water by evaporation. Solution Therefore, 2. Show that . Solution 3. To sterilize a 50.0g glass baby bottle, we must raise its temperature from to . How much heat transfer is required? Solution 4. The same heat transfer into identical masses of different substances produces different temperature changes. Calculate the final temperature when 1.00 kcal of heat transfers into 1.00 kg of the following, originally at : (a) water; (b) concrete; (c) steel; and (d) mercury. Solution C 1.50° . kg 10 8.00 L 1000 m 1 L) 000 80 )( kg/m 10 (1.00 4 3 3 3 × = × × = ρ = , V m J 10 02 . 5 C) 50 1 C)( J/kg 4186 ( ) kg 10 8.00 ( 8 4 × = ° ° × = Δ = . T mc Q C kcal/kg 1 C cal/g 1 ° = ° C kcal/kg 1 kg 1 g 1000 cal 1000 kcal 1 C g cal 1 ° = × × ° C 22.0° C 95.0° J 10 3.07 J 3066 C) 3.0 7 C)( J/kg 840 kg)( 10 (50.0 3 -3 × = = ° ° × = Δ = T mc Q C 20.0° mc Q T T mc Q = Δ Δ =

Cnx Physics Ism Ch 14 Heat and Heat Transfer

Embed Size (px)

DESCRIPTION

physics ch 14 solutions

Citation preview

College  Physics   Instructor  Solutions  Manual   Chapter  14    

366  

 

CHAPTER  14:  HEAT  AND  HEAT  TRANSFER  METHODS  14.2  TEMPERATURE  CHANGE  AND  HEAT  CAPACITY  

1.   On  a  hot  day,  the  temperature  of  an  80,000-­‐L  swimming  pool  increases  by   .  What  is  the  net  heat  transfer  during  this  heating?  Ignore  any  complications,  such  as  loss  of  water  by  evaporation.  

Solution      

Therefore,  

2.   Show  that   .    

Solution    

3.   To  sterilize  a  50.0-­‐g  glass  baby  bottle,  we  must  raise  its  temperature  from    to.  How  much  heat  transfer  is  required?    

Solution    

4.   The  same  heat  transfer  into  identical  masses  of  different  substances  produces  different  temperature  changes.  Calculate  the  final  temperature  when  1.00  kcal  of  heat  transfers  into  1.00  kg  of  the  following,  originally  at   :  (a)  water;  (b)  concrete;  (c)  steel;  and  (d)  mercury.  

Solution    

C1.50°

. kg 108.00L 1000

m 1L) 00080)(kg/m 10(1.00 43

33 ×=××=ρ= ,Vm

J 1002.5C)501C)(J/kg 4186()kg 108.00( 84 ×=°°⋅×=Δ= .TmcQ

Ckcal/kg1Ccal/g1 °⋅=°⋅

Ckcal/kg 1kg 1

g 1000cal 1000

kcal1Cg

cal1°⋅=××

°⋅

C22.0°C95.0°

J 103.07J 3066C)3.07C)(J/kg 840kg)( 10(50.0 3-3 ×==°°⋅×=Δ= TmcQ

C20.0°

mcQTTmcQ =Δ⇒Δ=

College  Physics   Instructor  Solutions  Manual   Chapter  14    

367  

 

(a)    

(b)    

(c)    

(d)    

5.   Rubbing  your  hands  together  warms  them  by  converting  work  into  thermal  energy.  If  a  woman  rubs  her  hands  back  and  forth  for  a  total  of  20  rubs,  at  a  distance  of  7.50  cm  per  rub,  and  with  an  average  frictional  force  of  40.0  N,  what  is  the  temperature  increase?  The  mass  of  tissues  warmed  is  only  0.100  kg,  mostly  in  the  palms  and  fingers.  

Solution   Let   be  the  number  of  hand  rubs  and    be  the  average  frictional  force  of  a  hand  

rub:    

6.   A  0.250-­‐kg  block  of  a  pure  material  is  heated  from    to    by  the  addition  of  4.35  kJ  of  energy.  Calculate  its  specific  heat  and  identify  the  substance  of  which  it  is  most  likely  composed.  

Solution    

It  is  copper.  

7.   Suppose  identical  amounts  of  heat  transfer  into  different  masses  of  copper  and  water,  causing  identical  changes  in  temperature.  What  is  the  ratio  of  the  mass  of  copper  to  water?    

Solution    

C 021C 001C 020C 001C)kcal/kg 001kg)( 001(

kcal 001°=°+°=⇒°=

°⋅=Δ ...T.

...T

C25.0C0.5C20.0C0.5C)kcal/kg kg)(0.20 (1.00

kcal 1.00°=°+°=⇒°=

°⋅=Δ TT

C3.92C26.9C20.0C26.9C)kcal/kg kg)(0.108 (1.00

kcal 1.00°=°+°=⇒°=

°⋅=Δ TT

C0.50C0.30C20.0C0.30C)kcal/kg kg)(0.0333 (1.00

kcal 1.00°=°+°=⇒°=

°⋅=Δ TT

N F

C0.171C)J/kg kg)(3500 (0.100m) 10N)(7.50 20(40.0 2

°=°⋅

×==Δ⇒Δ==

mcNFdTTmcNFdQ

C20.0° C65.0°

Ckcal/kg 09240C)045kg)( 2500(

kcal 041°⋅=

°=

Δ=⇒Δ= .

...

TmQcTmcQ

10.8Ckcal/kg 09240

Ckcal/kg 1

c

w

w

c

ccww

=°⋅

°⋅==

Δ==Δ

.cc

mm

TcmQTcm

College  Physics   Instructor  Solutions  Manual   Chapter  14    

368  

 

8.   (a)  The  number  of  kilocalories  in  food  is  determined  by  calorimetry  techniques  in  which  the  food  is  burned  and  the  amount  of  heat  transfer  is  measured.  How  many  kilocalories  per  gram  are  there  in  a  5.00-­‐g  peanut  if  the  energy  from  burning  it  is  transferred  to  0.500  kg  of  water  held  in  a  0.100-­‐kg  aluminum  cup,  causing  a    temperature  increase?  (b)  Compare  your  answer  to  labeling  information  found  on  a  package  of  peanuts  and  comment  on  whether  the  values  are  consistent.  

Solution   (a)

   

(b)  A  label  for  unsalted  dry  roasted  peanuts  says  that  33  g  contains  200  calories  (kcal),  

which  is    which  is  consistent  with  our  results  to  part  (a),  

to  one  significant  figure.  

9.   Following  vigorous  exercise,  the  body  temperature  of  an  80.0-­‐kg  person  is   .  At  what  rate  in  watts  must  the  person  transfer  thermal  energy  to  reduce  the  body  temperature  to    in  30.0  min,  assuming  the  body  continues  to  produce  energy  at  the  rate  of  150  W?    

Solution  

 

Thus,   .  

C54.9°

( )

kcal/g 5.73g 005

kcal 6328

kcal 6328C)954(C)kcal/kg 2150kg)( 1000(

C)kcal/kg 001kg)( 5000(

p

AlAlwwAlAlww

==

=°⎥⎦

⎤⎢⎣

°⋅

+°⋅=

Δ+=Δ+Δ=

..

mQ

......

Q

TcmcmTcmTcmQ

,kcal/g 6g 33

kcal 200

p

==mQ

C40.0°

C37.0°( )J/s1=W1orndjoule/seco1=watt1

W104.67min) s/1 min)(60 (30J 108.40

J 1040.8C)37-CC)(40J/kg kg)(3500 (80.0

25

cooling

5bodyhuman

×=×

==

×=°°°⋅=Δ=

tQP

TmcQ

W617 W150 W 467bodycoolingrequired =+=+= PPP

College  Physics   Instructor  Solutions  Manual   Chapter  14    

369  

 

10.   Even  when  shut  down  after  a  period  of  normal  use,  a  large  commercial  nuclear  reactor  transfers  thermal  energy  at  the  rate  of  150  MW  by  the  radioactive  decay  of  fission  products.  This  heat  transfer  causes  a  rapid  increase  in  temperature  if  the  cooling  system  fails   .  (a)  Calculate  the  rate  of  temperature  increase  in  degrees  Celsius  per  second    if  the  mass  of  the  reactor  core  is    and  it  has  an  average  specific  heat  of  

.  (b)  How  long  would  it  take  to  obtain  a  temperature  increase  of  ,  which  could  cause  some  metals  holding  the  radioactive  materials  to  melt?  

(The  initial  rate  of  temperature  increase  would  be  greater  than  that  calculated  here  because  the  heat  transfer  is  concentrated  in  a  smaller  mass.  Later,  however,  the  temperature  increase  would  slow  down  because  the    steel  containment  vessel  would  also  begin  to  heat  up.)  

Solution   (a)    

Recall  that  1  W  =  1  J/s.  Thus    for  1  s  is  given  by  

   

(b)    

14.3  PHASE  CHANGE  AND  LATENT  HEAT  

11.   How  much  heat  transfer  (in  kilocalories)  is  required  to  thaw  a  0.450-­‐kg  package  of  frozen  vegetables  originally  at    if  their  heat  of  fusion  is  the  same  as  that  of  water?  

Solution    

12.   A  bag  containing    ice  is  much  more  effective  in  absorbing  energy  than  one  containing  the  same  amount  of    water.  (a)  How  much  heat  transfer  is  necessary  to  raise  the  temperature  of  0.800  kg  of  water  from    to   ?  (b)  How  much  heat  transfer  is  required  to  first  melt  0.800  kg  of    ice  and  then  raise  its  temperature?  (c)  Explain  how  your  answer  supports  the  contention  that  the  ice  is  more  effective.  

megawatt)1=MW1andJ/s1=W1orndjoule/seco1=watt(1)C/s(°

kg1060.1 5×CkJ/kg0.3349 °⋅

C2000°

kg-105 5×

mcQTTmcQ =Δ⇒Δ=

C/s2.80RateC2.80C)kcal/kg kg)(0.0800 10(1.60

)kcal/4186J J)(1 10(1505

6

°=⇒°=°⋅×

×=ΔT

min 11.9s 714C/s2.80C2000

==°

°=t

C0°

kcal 35.9kcal/kg) kg)(79.8 (0.450f ===mLQ

C0°C0°

C0° C30.0°C0°

College  Physics   Instructor  Solutions  Manual   Chapter  14    

370  

 

Solution   (a)      

(b)    

(c)  The  ice  is  much  more  effective  in  absorbing  heat  because  it  first  must  be  melted,  which  requires  a  lot  of  energy,  then  it  gains  the  same  amount  of  heat  as  the  bag  that  started  with  water.  The  first    of  heat  is  used  to  melt  the  ice,  then  it  absorbs  the    of  heat  as  water.  

13.   (a)  How  much  heat  transfer  is  required  to  raise  the  temperature  of  a  0.750-­‐kg  aluminum  pot  containing  2.50  kg  of  water  from    to  the  boiling  point  and  then  boil  away  0.750  kg  of  water?  (b)  How  long  does  this  take  if  the  rate  of  heat  transfer  is  500  W  [ ]?  

Solution   (a)

       

(b)    

14.   The  formation  of  condensation  on  a  glass  of  ice  water  causes  the  ice  to  melt  faster  than  it  would  otherwise.  If  8.00  g  of  condensation  forms  on  a  glass  containing  both  water  and  200  g  of  ice,  how  many  grams  of  the  ice  will  melt  as  a  result?  Assume  no  other  heat  transfer  occurs.  

Solution    

(Note  that    for  water  at    is  used  here  as  a  better  approximation  than    for  

 water.)  

J 101.00C)C)(30.0J/kg kg)(4186 (0.800 5×=°°⋅=Δ= TmcQ

J 1068.3J 101.005J/kg) 10kg)(334 (0.800 553f ×=×+×=Δ+= TmcmLQ

J 102.67 5×J 101.00 5×

C30.0°

J/s)1=W(1ndjoule/seco1=watt1

kcal 591kcal 590.5Qkcal/kg) kg)(539 (0.750

C)C)(70.0kcal/kg kg)(0.215 (0.750C)C)(70.0kcal/kg kg)(1.00 (2.50v

'wAlAlww

==

+

°°⋅+°°⋅=

+Δ+Δ=

QLmTcmTcmQ

s 104.94 W500J/kcal 4186kcal) (590.5

.time andpower where,

3×=⎟⎠

⎞⎜⎝

⎛=

===⇒=

t

tPPQtPtQ

g 58.1kcal/kg 79.8kcal/kg 580g) (8.00

f

vwiceficevw =⎟⎟

⎞⎜⎜⎝

⎛==⇒=

LL

mmLmLm

vL C37° vLC001 °

College  Physics   Instructor  Solutions  Manual   Chapter  14    

371  

 

15.   On  a  trip,  you  notice  that  a  3.50-­‐kg  bag  of  ice  lasts  an  average  of  one  day  in  your  cooler.  What  is  the  average  power  in  watts  entering  the  ice  if  it  starts  at    and  completely  melts  to    water  in  exactly  one  day  [

]?  

Solution    

16.   On  a  certain  dry  sunny  day,  a  swimming  pool’s  temperature  would  rise  by    if  not  for  evaporation.  What  fraction  of  the  water  must  evaporate  to  carry  away  precisely  enough  energy  to  keep  the  temperature  constant?    

Solution   Let   be  the  mass  of  pool  water  and    be  the  mass  of  pool  water  that  evaporates.  

 

(Note  that    for  water  at    is  used  here  as  a  better  approximation  than    for    water.)  

17.   (a)  How  much  heat  transfer  is  necessary  to  raise  the  temperature  of  a  0.200-­‐kg  piece  of  ice  from    to   ,  including  the  energy  needed  for  phase  changes?  (b)  How  much  time  is  required  for  each  stage,  assuming  a  constant  20.0  kJ/s  rate  of  heat  transfer?  (c)  Make  a  graph  of  temperature  versus  time  for  this  process.    

Solution   (a)  (i)  Heat  needed  to  warm  ice  to      

 (ii)  Heat  needed  to  melt  ice  at    

 

(iii)  Heat  required  to  warm   water  to    

 

(iv)    Heat  required  to  vaporize  water  at    

 

(v)  Heat  required  to  warm   vapor  to    

C0°C0°

J/s)1=W(1ndjoule/seco1=watt1

W 13.5 W3.531s 64008

C)kJ/kg kg)(334 (3.50f ==°⋅

===tmL

tQP

C1.50°

M m

3

C)v(37C)v(37 102.59

kcal/kg 580C)C)(1.50kcal/kg (1.00 −

°° ×=

°°⋅=

Δ=⇒=ΔLTc

MmmLTMc

vL C37° vLC001 °

C20.0°− C130°

C0°kJ8.36C)C)(20kJ/kgkg)(2.090(0.200ii1 =°°⋅=Δ= TcmQ

C0°

kJ8.66kJ/kg)kg)(334(0.200fi2 === LmQ

C0° C100°

kJ83.7kJ83.73C)C)(100kJ/kgkg)(4.186(0.200 oowi3 ==⋅=Δ= TcmQ

C100°

kJ451kJ2.451kJ/kg)kg)(2256(0.200vi4 ==== LmQ

C100° C130°

College  Physics   Instructor  Solutions  Manual   Chapter  14    

372  

 

 

Total  heat  required   .  

(b)                

(i)    

(ii)    

(iii)    

(iv)    

(v)    

Total  time      

(c)

   

18.   In  1986,  a  gargantuan  iceberg  broke  away  from  the  Ross  Ice  Shelf  in  Antarctica.  It  was  approximately  a  rectangle  160  km  long,  40.0  km  wide,  and  250  m  thick.  (a)  What  is  the  mass  of  this  iceberg,  given  that  the  density  of  ice  is   ?  (b)  How  much  heat  transfer  (in  joules)  is  needed  to  melt  it?  (c)  How  many  years  would  it  take  sunlight  alone  to  melt  ice  this  thick,  if  the  ice  absorbs  an  average  of   ,  12.00  h  per  day?  

kJ12.9C)C)(30kJ/kgkg)(1.520(0.200vi5 =°°⋅=Δ= TcmQ

kcal148kcal9.147kJ619.054321 ===++++= QQQQQQ

PQt

tQP =⇒=

s4180kJ/s20kJ8.361

1 .PQt ===

s343kJ/s20kJ66.82

2 .PQt ===

s4.19s1854kJ/s20kJ83.73

3 ==== .PQ

t

s622kJ/s20kJ5144

4 .PQt ===

s456.0kJ/s20kJ9.125

5 ===PQt

s31s00.3154321 ==++++= tttttt

3kg/m917

2W/m100

College  Physics   Instructor  Solutions  Manual   Chapter  14    

373  

 

Solution   (a)      

(b)    

(c)

   

19.   How  many  grams  of  coffee  must  evaporate  from  350  g  of  coffee  in  a  100-­‐g  glass  cup  to  cool  the  coffee  from    to   ?  You  may  assume  the  coffee  has  the  same  thermal  properties  as  water  and  that  the  average  heat  of  vaporization  is  2340  kJ/kg  (560  cal/g).  (You  may  neglect  the  change  in  mass  of  the  coffee  as  it  cools,  which  will  give  you  an  answer  that  is  slightly  larger  than  correct.)  

Solution   The  heat  gained  in  evaporating  the  coffee  equals  the  heat  leaving  the  coffee  and  glass  to  lower  its  temperature,  so  that    where    is  the  mass  of  coffee  that  evaporates.  Solving  for  the  evaporated  coffee  gives:  

 

20.   (a)  It  is  difficult  to  extinguish  a  fire  on  a  crude  oil  tanker,  because  each  liter  of  crude  oil  releases    of  energy  when  burned.  To  illustrate  this  difficulty,  calculate  the  number  of  liters  of  water  that  must  be  expended  to  absorb  the  energy  released  by  burning  1.00  L  of  crude  oil,  if  the  water  has  its  temperature  raised  from    to   ,  it  boils,  and  the  resulting  steam  is  raised  to   .  (b)  Discuss  additional  complications  caused  by  the  fact  that  crude  oil  has  a  smaller  density  than  water.    

Solution   (a)      

( )kg 101.47kg 101.467

m) m)(250 10m)(40.0 10)(160kg/m (9171515

333

×=×=

××=== lwhVm ρρ

J 104.90J/kcal) 186kcal/kg)(4 kg)(79.8 10(1.467 2015f ×=×== mLQ

y 48.5d 365.25

y 1d 101.773J 102.765

J/kcal) )(4186 kcal 10(1.171

J 102.765h 1

s 3600h) m)(12 10m)(40.0 10)(160 W/m(100

416

17

day

16332day

=××=×

×==

×=⎟⎠

⎞⎜⎝

⎛××=

QQn

Q

C95.0° C45.0°

,ΔΔ ggccv TcmTcmML += M

[ ] g 33.0C)cal/g g)(0.20 (100C)cal/g g)(1.00 (350cal/g 560

C)45.0C(95.0

)(

v

ggcc

=°⋅+°⋅⋅°−°

=

+Δ=

LcmcmT

M

J1080.2 7×

C20.0° C100°C300°

ssvww TmcmLTmcQ Δ++Δ=

College  Physics   Instructor  Solutions  Manual   Chapter  14    

374  

 

 

(b)  Crude  oil  is  less  dense  than  water,  so  it  floats  on  top  of  the  water,  thereby  exposing  it  to  the  oxygen  in  the  air,  which  it  uses  to  burn.  Also,  if  the  water  is  under  the  oil,  it  is  less  able  to  absorb  the  heat  generated  by  the  oil.  

21.   The  energy  released  from  condensation  in  thunderstorms  can  be  very  large.  Calculate  the  energy  released  into  the  atmosphere  for  a  small  storm  of  radius  1  km,  assuming  that  1.0  cm  of  rain  is  precipitated  uniformly  over  this  area.    

Solution   We  have  a  phase  change   .  We  need  to  find  mass  of  rain  in  a  cloud  of  radius  

1  km.     .    With   and  

,  we  find   –  about  the  energy  released  in  the  first  atomic  bomb  explosion.  

22.   To  help  prevent  frost  damage,  4.00  kg  of    water  is  sprayed  onto  a  fruit  tree.  (a)  How  much  heat  transfer  occurs  as  the  water  freezes?  (b)  How  much  would  the  temperature  of  the  200-­‐kg  tree  decrease  if  this  amount  of  heat  transferred  from  the  tree?  Take  the  specific  heat  to  be   ,  and  assume  that  no  phase  change  occurs.    

Solution   (a)      

(b)      

23.   A  0.250-­‐kg  aluminum  bowl  holding  0.800  kg  of  soup  at    is  placed  in  a  freezer.  What  is  the  final  temperature  if  377  kJ  of  energy  is  transferred  from  the  bowl  and  soup,  assuming  the  soup’s  thermal  properties  are  the  same  as  that  of  water?  Explicitly  show  how  you  follow  the  steps  in  the  Problem-­‐Solving  Strategies  for  the  Effects  of  Heat  Transfer.    

Solution   To  bring  the  system  to    requires  heat,   ,  of:  

L 9.67m 10

L 1kg 101.00

m 1kg 9.67

kg 9.67C)C)(200J/kg (1520J/kg 102256C)C)(80.0J/kg (4186

J 102.80

333

3

3

7ssvww

=××

×=⇒

=°°⋅+×+°°⋅

×=

Δ++Δ=

−V

TcLTcQm

vmLQ =

kg 10)m 10m)( 01.0)(kg/m 1000( 7263 ×=×== ππρVm vmLQ =

kJ/kg 2256v =L J 107 13×=Q

C0°

CkJ/kg3.35 °⋅

kcal 319kcal 319.2C)kcal/kg kg)(79.8 (4.00f ==°⋅==mLQ

C2.00C)kcal/kg kg)(0.800 (200

kcal 319.2°=

°⋅==Δ⇒Δ=

mcQTTmcQ

C25.0°

C0° Q

College  Physics   Instructor  Solutions  Manual   Chapter  14    

375  

 

This  leaves    to  freeze  all  the  soup,  leaving    

 to  be  removed.  So,  we  can  now  determine  the  final  temperature  of  the  frozen  soup:  

 

24.   A  0.0500-­‐kg  ice  cube  at    is  placed  in  0.400  kg  of    water  in  a  very  well-­‐insulated  container.  What  is  the  final  temperature?    

Solution   First  bring  the  ice  up  to    and  melt  it  with  heat    

 

This  lowers  the  temperature  of  water  by      

 

Now,  the  heat  lost  by  the  hot  water  equals  that  gained  by  the  cold  water  (  is  the  final  temperature):  

 

25.   If  you  pour  0.0100  kg  of    water  onto  a  1.20-­‐kg  block  of  ice  (which  is  initially  at  ),  what  is  the  final  temperature?  You  may  assume  that  the  water  cools  so  

rapidly  that  effects  of  the  surroundings  are  negligible.  

[ ] kcal 21.34C)(25.0C)kcal/kg kg)(1.00 (0.800C)kcal/kg kg)(0.215 (0.250ssAlAl

=°°⋅+°⋅=

Δ+Δ= TcmTcmQ

kcal 68.66kcal )34.210.90( =−

kcal 4.82kcal )84.6366.68('' =−=Q

C10.6C)kcal/kg kg)(0.500 (0.800C)kcal/kg kg)(0.215 (0.250

kcal 4.82

".C0)()("

ssAlAlf

fssAlAlssAlAl

°−=°⋅+°⋅

−=

+−

=

°+=Δ+=

cmcmQT

)-T(cmcmTcmcmQ

C30.0°− C35.0°

C0° :1Q

( )[ ]kcal 4.74

kcal/kg) (79.8C)(30.0Ckcal/kg 0.500kg) (0.0500f11

=

+°°⋅=+Δ= mLTmcQ

:2TΔ

C23.15C11.85C35.0 New

C11.85C)kcal/kg kg)(1.00 (0.400

kcal 4.74

w

1221

°=°−°=

°=°⋅

==Δ⇒Δ=

TmcQTTmcQ

fT

C20.6K 293.7kg 0.450

K) kg)(273.15 (0.0500K) kg)(296.3 (0.400)()(

hc

cchhf

fhwhcfwc

°==+

=+

+=

−=−

mmTmTm

T

TTcmTTcm

C20.0°C15.0°−

College  Physics   Instructor  Solutions  Manual   Chapter  14    

376  

 

Solution   First,  we  need  to  calculate  how  much  heat  would  be  required  to  raise  the  temperature  of  the  ice  to   :

 

Now,  we  need  to  calculate  how  much  heat  is  given  off  to  lower  the  water  to   :  

Since  this  is  less  than  the  heat  required  to  heat  the  ice,  we  need  to  calculate  how  much  heat  is  given  off  to  convert  the  water  to  ice:

 

Thus,  the  total  amount  of  heat  given  off  to  turn  the  water  to  ice  at   :      

Since   ,  we  have  determined  that  the  final  state  of  the  water/ice  is  ice  at  some  temperature  below   .  Now,  we  need  to  calculate  the  final  temperature.  We  set  the  heat  lost  from  the  water  equal  to  the  heat  gained  by  the  ice,  where  we  now  know  that  the  final  state  is  ice  at   :  

 

Substituting  for  the  change  in  temperatures  (being  careful  that    is  always  positive)  and  simplifying  gives:

 

Solving  for  the  final  temperature  gives  

 

and  so  finally,    

 

26.   Indigenous  people  sometimes  cook  in  watertight  baskets  by  placing  hot  rocks  into  water  to  bring  it  to  a  boil.  What  mass  of    rock  must  be  placed  in  4.00  kg  of  

 water  to  bring  its  temperature  to   ,  if  0.0250  kg  of  water  escapes  as  vapor  from  the  initial  sizzle?  You  may  neglect  the  effects  of  the  surroundings  and  take  the  average  specific  heat  of  the  rocks  to  be  that  of  granite.  

C0°J 10762.3C)C)(15J/kg kg)(2090 (1.20 4

ice ×=°°⋅=Δ= TmcQ

C0°J 837.2C)C)(20.0J/kg kg)(4186 (0.010011 =°°⋅=Δ= TmcQ

J 103.340J/kg) 10kg)(334 (0.0100 33f2 ×=×==mLQ

C0° . J 10177.4 3

water ×=Q

waterice QQ >C0°

C0f °<T

?15iceice?0icewaterfwater020waterwater ice,by gainedby waterlost or →−→→ Δ=Δ++Δ= TcmTcmLmTcmQQ

C)].15([)]0)((C)20([ ficeiceficefwaterwater °−−=−++° TcmTcLcm

iceicewater

iceicefwaterwaterf )(

)C15(])C20([cmm

cmLcmT+

°−+°=

C13.2C)J/kg kg)(2090 1.20kg (0.0100

C)C)(15J/kg kg)(2090 (1.20C)J/kg kg)(2090 1.20kg (0.0100

J/kg] 10334C)C)(20J/kg kg)[(4186 (0.0100 3

f

°−=

°⋅+°°⋅

°⋅+×+°°⋅

=T

C500°C15.0° C100°

College  Physics   Instructor  Solutions  Manual   Chapter  14    

377  

 

Solution   Let  the  subscripts  r,  e,  v,  and  w  represent  rock,  equilibrium,  vapor,  and  water,  respectively.  

 

27.   What  would  be  the  final  temperature  of  the  pan  and  water  in  Calculating  the  Final  Temperature  When  Heat  Is  Transferred  Between  Two  Bodies:  Pouring  Cold  Water  in  a  Hot  Pan  if  0.260  kg  of  water  was  placed  in  the  pan  and  0.0100  kg  of  the  water  evaporated  immediately,  leaving  the  remainder  to  come  to  a  common  temperature  with  the  pan?  

Solution   Let  the  subscripts  Al,  e,  v,  and  w  represent  aluminum  pan,  equilibrium,  vapor,  and  water,  respectively.  

 

28.   In  some  countries,  liquid  nitrogen  is  used  on  dairy  trucks  instead  of  mechanical  refrigerators.  A  3.00-­‐hour  delivery  trip  requires  200  L  of  liquid  nitrogen,  which  has  a  density  of   .  (a)  Calculate  the  heat  transfer  necessary  to  evaporate  this  amount  of  liquid  nitrogen  and  raise  its  temperature  to   .  (Use    and  assume  it  is  constant  over  the  temperature  range.)  This  value  is  the  amount  of  cooling  the  liquid  nitrogen  supplies.  (b)  What  is  this  heat  transfer  rate  in  kilowatt-­‐hours?  (c)  Compare  the  amount  of  cooling  obtained  from  melting  an  identical  mass  of    ice  with  that  from  evaporating  the  liquid  nitrogen.  

kg 4.38C)100CC)(500J/kg (840

C)15CC)(100J/kg kg)(4186 (3.975J/kg) 10kg)(2256 (0.0250

)()()()(

3e1r

2ewwvvr

2ewwvve1rr

=

°−°°⋅°−°°⋅+×

=

−+=

−+=−

TTcTTcmLmm

TTcmLmTTcm

⇒−+=− )()( 2ewwvve1AlAl TTcmLmTTcm

C44.0

C)J/kg kg)(900 (0.500C)J/kg kg)(4186 (0.250J/kg) 10kg)(2256 (0.0100

C)C)(20.0J/kg kg)(4186 (0.250C)C)(150J/kg kg)(900 (0.5003

e

AlAlww

vv2ww1AlAle

°=

⎥⎥⎥⎥

⎢⎢⎢⎢

°⋅+°⋅

×−

°°⋅+°°⋅

=

+

−+=

T

cmcmLmTcmTcm

T

3kg/m808C3.00° pc

C0°

College  Physics   Instructor  Solutions  Manual   Chapter  14    

378  

 

Solution   (a)

   

(b)    

(c)    

29.   Some  gun  fanciers  make  their  own  bullets,  which  involves  melting  and  casting  the  lead  slugs.  How  much  heat  transfer  is  needed  to  raise  the  temperature  and  melt  0.500  kg  of  lead,  starting  from   ?  

Solution    

14.5  CONDUCTION  

30.   (a)  Calculate  the  rate  of  heat  conduction  through  house  walls  that  are  13.0  cm  thick  and  that  have  an  average  thermal  conductivity  twice  that  of  glass  wool.  Assume  there  are  no  windows  or  doors.  The  surface  area  of  the  walls  is    and  their  inside  surface  is  at   ,  while  their  outside  surface  is  at   .  (b)  How  many  1-­‐kW  room  heaters  would  be  needed  to  balance  the  heat  transfer  due  to  conduction?  

Solution   (a)        

(b)  1  one-­‐kilowatt  room  heater  is  needed.  

31.   The  rate  of  heat  conduction  out  of  a  window  on  a  winter  day  is  rapid  enough  to  chill  the  air  next  to  it.  To  see  just  how  rapidly  the  windows  transfer  heat  by  conduction,  calculate  the  rate  of  conduction  in  watts  through  a    window  that  is  

 thick  (1/4  in)  if  the  temperatures  of  the  inner  and  outer  surfaces  are    and   ,  respectively.  This  rapid  rate  will  not  be  maintained—the  inner  

surface  will  cool,  and  even  result  in  frost  formation.  

( )

[ ]kcal 101.57

C)195.8(C3.00C)kcal/kg (0.248kcal/kg 48.0

)kg/m )(808m 10(200

4

333

pvpv

×=

⎭⎬⎫

⎩⎨⎧

°−−°

⋅°⋅+×=

Δ+=Δ+=

−Q

TcLmTmcmLQ

hkW 18.3hkW 18.28J 103.60

hkW 1J/kcal) kcal)(4186 10(1.572 64 ⋅=⋅=⎟

⎞⎜⎝

⎛×

⋅×

kcal 101.29kcal 12,895kcal/kg) kg)(79.8 (161.6 4fice ×==== mLQ

C25.0°

( )( )( )[ ] kcal 7.53kcal/kg 5.85C25.0C327Ckcal/kg 0.0305kg) (0.500

ff

=+°−°°⋅⋅=

+Δ=+Δ=

QLTcmmLTmcQ

2m120C18.0° C5.00°

( ) [ ]

W101.01 W101.008m 0.130

C)5.00C)(18.0m (120C)mJ/s 2(0.042

33

212

×=×=

°−°°⋅⋅=

−=

dTTkA

tQ

2m-3.00cm0.635C5.00° C10.0°−

College  Physics   Instructor  Solutions  Manual   Chapter  14    

379  

 

Solution  

 

32.   Calculate  the  rate  of  heat  conduction  out  of  the  human  body,  assuming  that  the  core  internal  temperature  is   ,  the  skin  temperature  is   ,  the  thickness  of  the  tissues  between  averages   ,  and  the  surface  area  is   .    

Solution    

33.   Suppose  you  stand  with  one  foot  on  ceramic  flooring  and  one  foot  on  a  wool  carpet,  making  contact  over  an  area  of    with  each  foot.  Both  the  ceramic  and  the  carpet  are  2.00  cm  thick  and  are    on  their  bottom  sides.  At  what  rate  must  heat  transfer  occur  from  each  foot  to  keep  the  top  of  the  ceramic  and  carpet  at  

?    

Solution    

For  the  wool  carpet:  

 

For  the  ceramic  tile:    

34.   A  man  consumes  3000  kcal  of  food  in  one  day,  converting  most  of  it  to  maintain  body  temperature.  If  he  loses  half  this  energy  by  evaporating  water  (through  breathing  and  sweating),  how  many  kilograms  of  water  evaporate?  

Solution    

( )

[ ] W106.0 W5953m 100.635

C)10.0(C5.00)m C)(3.00mJ/s (0.84 32-

2

12

×==×

°−−°°⋅⋅=

−=

dTTkA

tQ

C37.0° C34.0°cm1.00 2m40.1

( ) W0.48m .01000

C)34.0C)(37.0m C)(1.40mJ/s (0.2 212 =

°−°°⋅⋅=

−=

dTTkA

tQ

2cm80.0C10.0°

C33.0°

( )dTTkA

tQ 12 −=

W0.368m .02000

C)10.0-C)(33.0m 10C)(80.0mJ/s (0.04 2-4w =

°°×°⋅⋅=

tQ

W73.7m .02000

C)32)(m 10C)(80.0mJ/s (0.84 2-4c =

°×°⋅⋅=

tQ

kg 2.59kcal/kg 580

kcal 1500

C)v(37C)v(37 ===⇒=

°° L

QmmLQ

College  Physics   Instructor  Solutions  Manual   Chapter  14    

380  

 

35.   (a)  A  firewalker  runs  across  a  bed  of  hot  coals  without  sustaining  burns.  Calculate  the  heat  transferred  by  conduction  into  the  sole  of  one  foot  of  a  firewalker  given  that  the  bottom  of  the  foot  is  a  3.00-­‐mm-­‐thick  callus  with  a  conductivity  at  the  low  end  of  the  range  for  wood  and  its  density  is   .  The  area  of  contact  is   ,  the  temperature  of  the  coals  is   ,  and  the  time  in  contact  is  1.00  s.  (b)  What  temperature  increase  is  produced  in  the    of  tissue  affected?  (c)  What  effect  do  you  think  this  will  have  on  the  tissue,  keeping  in  mind  that  a  callus  is  made  of  dead  cells?

 

Solution   (a)

   

(b)  Taking  the  density  of  the  callus  to  be   ,  the  change  in  temperature  can  be  found  from:  

 

(c)  At  a  temperature  change  of   ,  the  heat  probably  won’t  do  much  damage,  since  a  callus  is  made  of  dead  cells.  

36.   (a)  What  is  the  rate  of  heat  conduction  through  the  3.00-­‐cm-­‐thick  fur  of  a  large  animal  having  a    surface  area?  Assume  that  the  animal’s  skin  temperature  is  

,  that  the  air  temperature  is   ,  and  that  fur  has  the  same  thermal  conductivity  as  air.  (b)  What  food  intake  will  the  animal  need  in  one  day  to  replace  this  heat  transfer?

 

Solution  (a)    

(b)    

3kg/m300 2cm25.0C700°

3cm25.0

( )

J 44.2m .003000

C)(1.00s)37.0-C)(700m 10C)(25.0mJ/s (0.0800 24-

12

=°°×°⋅⋅

=

−=

dtTTkAQ

3kg/m 300=ρ

C1.68C)J/kg )(3500m 10)(25.0kg/m (300

J 41.7363 °=

°⋅×==Δ

⇒Δ=Δ=

−VcQT

TVcTmcQ

ρ

ρ

C2°<

2m-1.40C32.0° C5.00°−

( ) W39.7 W39.71

m .03000C))(37.0m C)(1.40mJ/s (0.023 2

12 ==°°⋅⋅

=−

=dTTkA

tQ

kcal 028kcal 819.7J 4186

kcal 1s) 10J/s)(8.64 (39.71 4 ==⎟⎠

⎞⎜⎝

⎛×== PtW

College  Physics   Instructor  Solutions  Manual   Chapter  14    

381  

 

37.   A  walrus  transfers  energy  by  conduction  through  its  blubber  at  the  rate  of  150  W  when  immersed  in    water.  The  walrus’s  internal  core  temperature  is   ,  and  it  has  a  surface  area  of   .  What  is  the  average  thickness  of  its  blubber,  which  has  the  conductivity  of  fatty  tissues  without  blood?  

Solution  

 

38.   Compare  the  rate  of  heat  conduction  through  a  13.0-­‐cm-­‐thick  wall  that  has  an  area  of    and  a  thermal  conductivity  twice  that  of  glass  wool  with  the  rate  of  heat  

conduction  through  a  window  that  is  0.750  cm  thick  and  that  has  an  area  of   ,  assuming  the  same  temperature  difference  across  each.  

Solution  

,  so  that  

 

39.   Suppose  a  person  is  covered  head  to  foot  by  wool  clothing  with  average  thickness  of  2.00  cm  and  is  transferring  energy  by  conduction  through  the  clothing  at  the  rate  of  50.0  W.  What  is  the  temperature  difference  across  the  clothing,  given  the  surface  area  is   ?  

Solution  

 

40.   Some  stove  tops  are  smooth  ceramic  for  easy  cleaning.  If  the  ceramic  is  0.600  cm  thick  and  heat  conduction  occurs  through  the  same  area  and  at  the  same  rate  as  computed  in  Example  14.6,  what  is  the  temperature  difference  across  it?  Ceramic  has  the  same  thermal  conductivity  as  glass  and  brick.  

C1.00°− C37.0°2m2.00

( )

( )cm 10.1m 0.101

W150C))(38.0m C)(2.00mJ/s (0.2

/

212

12

==°°⋅⋅

=−

=

⇒−

=

tQTTkAd

dTTkA

tQ

2m10.02m2.00

dTTkA

tQ )( 12 −=

wall: window1 : 35or window,: wall0288.0m) 10)(13.0m C)(2.00mJ/s (0.84

m) 10)(0.750m C)(10.0mJ/s 0.042(2)/()/(

22

22

wallwindowwindow

windowwallwall

window

wall

=

×°⋅⋅

×°⋅⋅×==

dAkdAk

tQtQ

2m1.40

C17.9C17.86)m C)(1.40mJ/s (0.04

W)m)(50.0 10(2.00)/(

)(

2

2-

12

°=°=°⋅⋅

×==Δ

⇒Δ

=−

=

kAtQdT

dTkA

dTTkA

tQ

College  Physics   Instructor  Solutions  Manual   Chapter  14    

382  

 

Solution  

 

∆𝑇 = !(!/!)!"

= (!.!!×!"!!m)(!!"#  W)(!.!"  J/s∙m∙℃)(!.!"×!"!!m!)

= 1046℃ =  1.32×10!  K  

41.   One  easy  way  to  reduce  heating  (and  cooling)  costs  is  to  add  extra  insulation  in  the  attic  of  a  house.  Suppose  the  house  already  had  15  cm  of  fiberglass  insulation  in  the  attic  and  in  all  the  exterior  surfaces.  If  you  added  an  extra  8.0  cm  of  fiberglass  to  the  attic,  then  by  what  percentage  would  the  heating  cost  of  the  house  drop?  Take  the  single  story  house  to  be  of  dimensions  10  m  by  15  m  by  3.0  m.  Ignore  air  infiltration  and  heat  loss  through  windows  and  doors.  

Solution   The  original  heat  loss  by  conduction  is  given  by   .    We  need  to  consider  all  

6  sides  that  contribute  to  the  heat  loss.  We  will  put  the  loss  through  the  attic  in  a  separate  part.  

 

If  we  add  8  cm  to  the  attic,  the  new  addition  is    

   

So  the  percentage  of  savings  in  heat  transfer  = .  

42.   (a)  Calculate  the  rate  of  heat  conduction  through  a  double-­‐paned  window  that  has  a    area  and  is  made  of  two  panes  of  0.800-­‐cm-­‐thick  glass  separated  by  a  1.00-­‐

cm  air  gap.  The  inside  surface  temperature  is   ,  while  that  on  the  outside  is  .  (Hint:  There  are  identical  temperature  drops  across  the  two  glass  panes.  

First  find  these  and  then  the  temperature  drop  across  the  air  gap.  This  problem  ignores  the  increased  heat  transfer  in  the  air  gap  due  to  convection.)  (b)  Calculate  the  rate  of  heat  conduction  through  a  1.60-­‐cm-­‐thick  window  of  the  same  area  and  with  the  same  temperatures.  Compare  your  answer  with  that  for  part  (a).  

K101.05C 1046)m 10C)(1.54mJ/s (0.84

W)m)(2256 10(6.00)/(

)(

322-

3-

12

×=°=×°⋅⋅

×==Δ

⇒Δ

=−

=

kAtQdT

dTkA

dTTkA

tQ

dTkA

tQ Δ=

[ ]

TC)J/s/ (126 TC)J/s/ 42 CJ/s/ 84(m 0.15

Tm) 15m 10C(J/s/m/042.0m 0.15

Tm) 10m (152)m 3m 15()2m 3m (10C)J/s/m/ 042.0(

oo

o

o

Δ=Δ+°=

Δ×+

Δ⋅+×⋅+×⋅=

tQ

( ) TTT

Δ=

Δ+=Δ×+

CJ/s/ 111C)J/s/ 27CJ/s/ (84m] )/0.23m 150CJ/s/m/ (0.042CJ/s/ 84[

o

oo2oo

%12126/)111126( =−

2m-50.1C15.0°

C10.0°−

College  Physics   Instructor  Solutions  Manual   Chapter  14    

383  

 

Solution  

 

In  equilibrium,  the  heat  flows  across  each  “slab”  are  equal.

 

(a)

 

 

Adding  two  equations,  we  obtain:

 

 

Now,  we  have  

 

Q 2

Q 3Q 1

TL T1 T2 TR

d1 d1d2

Q

2RL1321 and TTTTtQ

tQ

tQ

−=−==

21R11222

1222L111

31

2R12R312232

122L1121

13

33

2

22

1

11

) since()()()(unit timeper

)()(unit timeper

,,

TaTaTaTaTaTaTaTa

aaTTAaTTAaTTAaQQ

TTAaTTAaQQ

adK

adKa

dKa

−=−

−=−

=

−=−=−⇒=

−=−⇒=

====

12

LR21122

2

LR12

112122211LR1

2)()(

)(2

)(2)()(

aaTTAaaTTAa

tQ

TTaa

aTTTTaTTaTTa

+

−=−=

−⎟⎟⎠

⎞⎜⎜⎝

+=−⇒−=−+−

Thus . C10.0;C15.0

CmJ/s 2.3m 101.00

CmJ/s 0.023

CmJ/s 105m 100.800CmJ/s 0.84

LR

22-

2

22

22-

1

11

°−=°=

°⋅⋅=×

°⋅⋅==

°⋅⋅=×

°⋅⋅==

TTdKa

dKa

College  Physics   Instructor  Solutions  Manual   Chapter  14    

384  

 

 

Since    

(b)    

The  single-­‐pane  window  has  a  rate  of  heat  conduction  equal  to  1969/83,  or  24  times  that  of  a  double  pane  window.  

43.   Many  decisions  are  made  on  the  basis  of  the  payback  period:  the  time  it  will  take  through  savings  to  equal  the  capital  cost  of  an  investment.  Acceptable  payback  times  depend  upon  the  business  or  philosophy  one  has.  (For  some  industries,  a  payback  period  is  as  small  as  two  years.)  Suppose  you  wish  to  install  the  extra  insulation  in  Problem  14.41.  If  energy  cost  $1.00  per  million  joules  and  the  insulation  was  $4.00  per  square  meter,  then  calculate  the  simple  payback  time.  Take  the  average    for  the  120  day  heating  season  to  be   .

 

Solution   We  found  in  Problem  14.41  that    as  baseline  energy  use.  So  the  

total  heat  loss  during  this  period  is    .      

At  the  cost  of  $1/MJ,  the  cost  is  $1960.  From  Problem  14.41,  the  savings  is  12%  or  .  We  need   of  insulation  in  the  attic.  At    this  is  a  $600  cost.  So  

the  payback  period  is   .  

44.   For  the  human  body,  what  is  the  rate  of  heat  transfer  by  conduction  through  the  body’s  tissue  with  the  following  conditions:  the  tissue  thickness  is  3.00  cm,  the  change  in  temperature  is   ,  and  the  skin  area  is   .  How  does  this  compare  with  the  average  heat  transfer  rate  to  the  body  resulting  from  an  energy  intake  of  about  2400  kcal  per  day?  (No  exercise  is  included.)  

Solution   The  rate  of  heat  transfer  by  conduction  is    

( )( ) ( )

W82.6CmJ/s 105C)mJ/s 2(2.3

C25.0)m (1.50CmJ/s 2.3CmJ/s 1052

)(22

222

12

LR212

=

°⋅⋅+°⋅⋅

°°⋅⋅°⋅⋅=

+

−=

aaTTAaa

tQ

W83 W6.82312 ==⇒===tQ

tQ

tQ

tQ

tQ

W1097.1 W9691m 101.60

C))(25.0m C)(1.50mJ/s (0.84)( 32-

2LR ×==

×

°°⋅⋅=

−=

dTTkA

tQ

TΔC15.0°

CJ/s 126 °⋅Δ= TtQ

J 101960s/day) 1086.4(days) 120)(C0.15(C)J/s126( 63 ×=×°°⋅=Q

y /235$ 2m 150 2m/4$cost)labor (excluding years 2.6 year /235$/600$ =

C2.00° 2m1.50

College  Physics   Instructor  Solutions  Manual   Chapter  14    

385  

 

 

On  a  daily  basis,  this  is  1,728  kJ/day.  

Daily  food  intake  is    

So  only    of  energy  intake  goes  as  heat  transfer  by  conduction  to  the  environment  at  this   .  

14.6  CONVECTION  

45.   At  what  wind  speed  does    air  cause  the  same  chill  factor  as  still  air  at   ?    

Solution   10  m/s  (from  Table  14.4)  

46.   At  what  temperature  does  still  air  cause  the  same  chill  factor  as    air  moving  at  15  m/s?  

Solution    (from  Table  14.4)  

47.   The  “steam”  above  a  freshly  made  cup  of  instant  coffee  is  really  water  vapor  droplets  condensing  after  evaporating  from  the  hot  coffee.  What  is  the  final  temperature  of  250  g  of  hot  coffee  initially  at    if  2.00  g  evaporates  from  it?  The  coffee  is  in  a  Styrofoam  cup,  so  other  methods  of  heat  transfer  can  be  neglected.  

Solution   Let    be  the  mass  of  coffee  that  is  left  after  evaporation  and    be  the  mass  of  coffee  that  evaporates.  

 

48.   (a)  How  many  kilograms  of  water  must  evaporate  from  a  60.0-­‐kg  woman  to  lower  her  body  temperature  by   ?  (b)  Is  this  a  reasonable  amount  of  water  to  evaporate  in  the  form  of  perspiration,  assuming  the  relative  humidity  of  the  surrounding  air  is  low?  

( )( ) . W0.20m 1000.3

C 00.2m 50.1C)mJ/s2.0(2

2o

°⋅⋅=

Δ=

−dTkA

tQ

kJ/day. 10,050J/kcal4186kcal/d 2400 =×

%2.17TΔ

C10°− C29°−

C5°−

C26°−

90.0°C

M m

C85.7C4.35C90.0

C4.35C)kcal/kg g)(1.00 (248

kcal/kg) g)(539 (2.00

if

vv

°=°−°=Δ−=

°=°⋅

==Δ⇒=Δ

TTTMcmLTmLTMc

0.750°C

College  Physics   Instructor  Solutions  Manual   Chapter  14    

386  

 

Solution   (a)   is  the  mass  of  the  woman  and    is  the  mass  of  water  that  evaporates:  

 

(b)  Yes,  64.4  g  of  water  is  reasonable.  If  the  air  is  very  dry,  the  sweat  may  evaporate  without  even  being  noticed.  

49.   On  a  hot  dry  day,  evaporation  from  a  lake  has  just  enough  heat  transfer  to  balance  the    of  incoming  heat  from  the  Sun.  What  mass  of  water  evaporates  in  1.00  h  from  each  square  meter?  Explicitly  show  how  you  follow  the  steps  in  the  Problem-­‐Solving  Strategies  for  the  Effects  of  Heat  Transfer.  

Solution  

 

(Note  that  we  can  use  the    value  at    as  a  closer  approximation  of  the  temperature  on  a  hot  day  than   .)  

50.   One  winter  day,  the  climate  control  system  of  a  large  university  classroom  building  malfunctions.  As  a  result,   of  excess  cold  air  is  brought  in  each  minute.  At  what  rate  in  kilowatts  must  heat  transfer  occur  to  warm  this  air  by    (that  is,  to  bring  the  air  to  room  temperature)?  

Solution    

51.   The  Kilauea  volcano  in  Hawaii  is  the  world’s  most  active,  disgorging  about    of    lava  per  day.  What  is  the  rate  of  heat  transfer  out  of  Earth  by  convection  if  this  lava  has  a  density  of    and  eventually  cools  to   ?  Assume  that  the  specific  heat  of  lava  is  the  same  as  that  of  granite.  

M m

kg 106.44kcal/kg 580

C)C)(0.750kcal/kg kg)(0.83 (60.0 2

C)v(37

C)v(37

°

°

×=°°⋅

=

⇒=Δ

LTMcm

mLTMc

2kW/m1.00

kg 1.48J/kg 102430

s) W)(360010(1.00so , W 101.00kW 1.00,m 1

3

3

C)v(37C)v(37

32

×==⇒==

×==⇒=

°° L

PtmmLQPt

PA

vL C37°C100°

3m50010.0°C

( )( )( )( )

.kW 77.5 W107.75s 60.0

C10.0CJ/kg 721m 500kg/m 1.29

4

33

=×=

°°⋅=

Δ=

Δ==

tTVc

tTmc

tQP ρ

35 m10 5×1200°C

3kg/m2700 30°C

College  Physics   Instructor  Solutions  Manual   Chapter  14    

387  

 

Solution  

 

For  c,  we  use  the  specific  heat  of  granite,  which  is  formerly  molten  rock.  

 

52.   During  heavy  exercise,  the  body  pumps  2.00  L  of  blood  per  minute  to  the  surface,  where  it  is  cooled  by   .  What  is  the  rate  of  heat  transfer  from  this  forced  convection  alone,  assuming  blood  has  the  same  specific  heat  as  water  and  its  density  is   ?  

Solution  

 

53.   A  person  inhales  and  exhales  2.00  L  of    air,  evaporating    of  water  from  the  lungs  and  breathing  passages  with  each  breath.  (a)  How  much  heat  transfer  occurs  due  to  evaporation  in  each  breath?  (b)  What  is  the  rate  of  heat  transfer  in  watts  if  the  person  is  breathing  at  a  moderate  rate  of  18.0  breaths  per  minute?  (c)  If  the  inhaled  air  had  a  temperature  of   ,  what  is  the  rate  of  heat  transfer  for  warming  the  air?  (d)  Discuss  the  total  rate  of  heat  transfer  as  it  relates  to  typical  metabolic  rates.  Will  this  breathing  be  a  major  form  of  heat  transfer  for  this  person?

 Solution   (a)    

(b)    

(c)

   

tTVc

tTmc

tQ Δ

( )( )( )( )

MW 102 W102 W101.54s 108.64

C1701CJ/kg 840m 105kg/m 2700

41010

4

353

×=×=×=

×

°°⋅×=

tQ

2.00°C

3kg/m1050

( )( )( )( ) W293s 06

C00.2CJ/kg 4186m 102.00kg/m 1050 33-3

=°°⋅×

=

Δ=

Δ=

tTVc

tTmc

tQ ρ

37.0°C g1000.4 2−×

C20.0°

J 97.2J/kg) 10kg)(2430 10(4.00 3-5C)v(37 =××== °mLQ

W29.2s 60.0J) 18(97.2===

tNQP

W49.9s 60.0J) 18(31.6

:is lossheat of rate theso ,J/breath 31.6C)20.0CC)(37.0J/kg )(721m 10)(2.00kg/m (1.29 333

===

=

°−°°⋅×=

Δ=Δ=−

tNQP

TVcTmcQ ρ

College  Physics   Instructor  Solutions  Manual   Chapter  14    

388  

 

(d)  The  total  rate  of  heat  loss  would  be  29.2  W  +  9.49  W  =  38.7  W.  While  sleeping,  our  body  consumes  83  W  of  power,  while  sitting  it  ranges  120-­‐210  W.  Therefore,  the  total  rate  of  heat  loss  from  breathing  will  not  be  a  major  form  of  heat  loss  for  this  person.  

54.   A  glass  coffee  pot  has  a  circular  bottom  with  a  9.00-­‐cm  diameter  in  contact  with  a  heating  element  that  keeps  the  coffee  warm  with  a  continuous  heat  transfer  rate  of  50.0  W.  (a)  What  is  the  temperature  of  the  bottom  of  the  pot,  if  it  is  3.00  mm  thick  and  the  inside  temperature  is   ?  (b)  If  the  temperature  of  the  coffee  remains  constant  and  all  of  the  heat  transfer  is  removed  by  evaporation,  how  many  grams  per  minute  evaporate?  Take  the  heat  of  vaporization  to  be  2340  kJ/kg.  

Solution   (a)    

(b)    

14.7  RADIATION  

55.   At  what  net  rate  does  heat  radiate  from  a    black  roof  on  a  night  when  the  roof’s  temperature  is    and  the  surrounding  temperature  is   ?  The  emissivity  of  the  roof  is  0.900.  

Solution      

Note  that  the  negative  answer  implies  heat  loss  to  the  surroundings.  

56.   (a)  Cherry-­‐red  embers  in  a  fireplace  are  at    and  have  an  exposed  area  of    and  an  emissivity  of  0.980.  The  surrounding  room  has  a  temperature  of  

.  If  50%  of  the  radiant  energy  enters  the  room,  what  is  the  net  rate  of  radiant  heat  transfer  in  kilowatts?  (b)  Does  your  answer  support  the  contention  that  most  of  the  heat  transfer  into  a  room  by  a  fireplace  comes  from  infrared  radiation?  

60.0°C

C88C88.07

C28.07m) 104.50()CmJ/s 48.0(

)m 10 W)(3.00.050()/(

i

22

3

2

°=°=⇒Δ+=

°=×°⋅⋅

×==Δ⇒

Δ=

TTTTrkdtQT

dTkA

tQ

ππ

g 1.282340J/g

s) W)(60.0(50.0

vv ===⇒=

LPtmmLPt

2m-275C0.30 ° C0.15 °

( ) ( )[ ]kW 7.12

K 303K 288)m 75)(0.900)(2KmJ/s 10(5.67)( 44242841

42

−=

−⋅⋅×=−= −TTeAtQ

σ

C850°2m200.0

C0.18 °

College  Physics   Instructor  Solutions  Manual   Chapter  14    

389  

 

Solution   (a)

   

Note  that  the  negative  answer  implies  heat  loss  to  the  surroundings.  

(b)  This  answer  is  quite  large,  so  it  does  indeed  suggest  that  the  heat  put  into  a  room  by  a  fireplace  comes  mainly  from  infrared  radiation  (which  is  hotter  than  red  embers).  

57.   Radiation  makes  it  impossible  to  stand  close  to  a  hot  lava  flow.  Calculate  the  rate  of  heat  transfer  by  radiation  from    of    fresh  lava  into    surroundings,  assuming  lava’s  emissivity  is  1.00.  

Solution    

58.   (a)  Calculate  the  rate  of  heat  transfer  by  radiation  from  a  car  radiator  at    into  a    environment,  if  the  radiator  has  an  emissivity  of  0.750  and  a    

surface  area.  (b)  Is  this  a  significant  fraction  of  the  heat  transfer  by  an  automobile  engine?  To  answer  this,  assume  a  horsepower  of  200  hp  (1.5  kW)  and  the  efficiency  of  automobile  engines  as   .  

Solution   (a)    

(b)  Assuming  an  automobile  engine  is  200  horsepower  and  the  efficiency  of  a  gasoline  

engine  is  25%,  the  engine  consumes      

Therefore,  600  horsepower  is  lost  due  to  heating.  The  radiator  transfers  

 from  radiation,  which  is  not  a  significant  fraction  

because  the  heat  is  primarily  transferred  from  the  radiator  by  other  means.  

( ) ( )[ ]kW 80.8

K 1123K 291)m .200)(0.980)(0KmJ/s 10(5.6721

)(21

442428

41

42

−=

−⋅⋅×=

−=

TTeAtQ

σ

2m00.1 C1200° C0.30 °

( ) ( )[ ]kW 266

K 1473K 303)m 00)(1.00)(1.KmJ/s 10(5.67)( 44242841

42

−=

−⋅⋅×=−= −TTeAtQ

σ

110°C 50.0°C 2m-20.1

25%

( ) ( )[ ] W543K 383K 323)m .20)(0.750)(1KmJ/s 10(5.67

)(

442428

41

42

−=−⋅⋅×=

−=

TTeAtQ

σ

horsepower 00825%

horsepower 200=

hp 0.728 W746

hp 1 W543 =×

College  Physics   Instructor  Solutions  Manual   Chapter  14    

390  

 

59.   Find  the  net  rate  of  heat  transfer  by  radiation  from  a  skier  standing  in  the  shade,  given  the  following.  She  is  completely  clothed  in  white  (head  to  foot,  including  a  ski  mask),  the  clothes  have  an  emissivity  of  0.200  and  a  surface  temperature  of   ,  the  surroundings  are  at   ,  and  her  surface  area  is   .  

Solution    

60.   Suppose  you  walk  into  a  sauna  that  has  an  ambient  temperature  of   .  (a)  Calculate  the  rate  of  heat  transfer  to  you  by  radiation  given  your  skin  temperature  is    

,  the  emissivity  of  skin  is  0.98,  and  the  surface  area  of  your  body  is   .  (b)  If  all  other  forms  of  heat  transfer  are  balanced  (the  net  heat  transfer  is  zero),  at  what  rate  will  your  body  temperature  increase  if  your  mass  is  75.0  kg?  

Solution  (a)

     

(b)      

61.   Thermography  is  a  technique  for  measuring  radiant  heat  and  detecting  variations  in  surface  temperatures  that  may  be  medically,  environmentally,  or  militarily  meaningful.(a)  What  is  the  percent  increase  in  the  rate  of  heat  transfer  by  radiation  from  a  given  area  at  a  temperature  of    compared  with  that  at   ,  such  as  on  a  person’s  skin?  (b)  What  is  the  percent  increase  in  the  rate  of  heat  transfer  by  radiation  from  a  given  area  at  a  temperature  of    compared  with  that  at  

,  such  as  for  warm  and  cool  automobile  hoods?  

Solution  (a)    

(b)          

C0.10 °15.0°C− 2m1.60

( ) ( )[ ] W0.63K 283K 258)m .60)(0.200)(1KmJ/s 10(5.67

)(

442428

41

42

−=−⋅⋅×=

−=

TTeAtQ

σ

50.0°C

37.0°C 2m1.50

( ) ( )[ ] W371K 310K 323)m 50)(0.98)(1.KmJ/s 10(5.67

)(

442428

41

42

=−⋅⋅×=

−=

TTeAtQ

σ

C/min 0.0314C/s 105.24C)J/kg kg)(3500 (75.0

W)(1371 4 °=°×=°⋅

==Δ

⇒Δ=

mctQ

tT

TmcQ

34.0°C 33.0°C

34.0°C20.0°C

1.31%100%1K 306K 307 4

=×⎥⎥⎦

⎢⎢⎣

⎡−⎟

⎞⎜⎝

20.5%100%1K 293K 307 4

=×⎥⎥⎦

⎢⎢⎣

⎡−⎟

⎞⎜⎝

College  Physics   Instructor  Solutions  Manual   Chapter  14    

391  

 

62.   The  Sun  radiates  like  a  perfect  black  body  with  an  emissivity  of  exactly  1.  (a)  Calculate  the  surface  temperature  of  the  Sun,  given  that  it  is  a  sphere  with  a    radius  that  radiates    into  3-­‐K  space.  (b)  How  much  power  does  the  Sun  radiate  per  square  meter  of  its  surface?  (c)  How  much  power  in  watts  per  square  meter  is  that  value  at  the  distance  of  Earth,   away?  (This  number  is  called  the  solar  constant.)  

Solution  (a)

       

(b)      

(c)  Let    be  the  radius  of  a  sphere  with  the  sun  at  the  center  and  the  earth  at  a  point  on  the  surface  of  the  sphere.  

 

63.   A  large  body  of  lava  from  a  volcano  has  stopped  flowing  and  is  slowly  cooling.  The  interior  of  the  lava  is  at   ,  its  surface  is  at   ,  and  the  surroundings  are  at  

.  (a)  Calculate  the  rate  at  which  energy  is  transferred  by  radiation  from    of  surface  lava  into  the  surroundings,  assuming  the  emissivity  is  1.00.  (b)  

Suppose  heat  conduction  to  the  surface  occurs  at  the  same  rate.  What  is  the  thickness  of  the  lava  between  the    surface  and  the    interior,  assuming  that  the  lava’s  conductivity  is  the  same  as  that  of  brick?  

Solution  (a)

     

Note  the  negative  answer  implies  heat  lost  to  the  surroundings.  

m-107.00 8×W103.80 26×

m101.50 11×

K105.74m) 10)(7.00)(4KmJ/s 10(5.67

W103.80

)4 is sphere a of area surface (the4

31/4

2848

26

241

24

×=⎥⎦

⎤⎢⎣

×π⋅⋅×

×=

π⎥⎦

⎤⎢⎣

πσ=⇒σ=

−T

r)r(e

t/QTeATtQ

/

2728

26

2 W/m106.17m) 10(7.004

W103.804

×=×

×==

ππrP

AP

r

23211

26

2 W/m1034.1m) 10(1.504

W103.804

×=×

×=

ππrP

1200°C 450°C27.0°C

2m 1.00

450°C 1200°C

( ) ( )[ ]kW 15.0 W101.50 W101.503

K 723K 300)m 00)(1.00)(1.KmJ/s 10(5.67

)(

44

442428

41

42

−=×−=×−=

−⋅⋅×=

−=

tQ

TTeAtQ

σ

College  Physics   Instructor  Solutions  Manual   Chapter  14    

392  

 

(b)

   

64.   Calculate  the  temperature  the  entire  sky  would  have  to  be  in  order  to  transfer  energy  by  radiation  at   —about  the  rate  at  which  the  Sun  radiates  when  it  is  directly  overhead  on  a  clear  day.  This  value  is  the  effective  temperature  of  the  sky,  a  kind  of  average  that  takes  account  of  the  fact  that  the  Sun  occupies  only  a  small  part  of  the  sky  but  is  much  hotter  than  the  rest.  Assume  that  the  body  receiving  the  energy  has  a  temperature  of   .  

Solution  

 

65.   (a)  A  shirtless  rider  under  a  circus  tent  feels  the  heat  radiating  from  the  sunlit  portion  of  the  tent.  Calculate  the  temperature  of  the  tent  canvas  based  on  the  following  information:  The  shirtless  rider’s  skin  temperature  is    and  has  an  emissivity  of  0.970.  The  exposed  area  of  skin  is   .  He  receives  radiation  at  the  rate  of  20.0  W—half  what  you  would  calculate  if  the  entire  region  behind  him  was  hot.  The  rest  of  the  surroundings  are  at   .  (b)  Discuss  how  this  situation  would  change  if  the  sunlit  side  of  the  tent  was  nearly  pure  white  and  if  the  rider  was  covered  by  a  white  tunic.  

Solution  (a)

       

cm 4.2m 104.19 W101.503

C))(750m C)(1.00mJ/s (0.84/

24

2

=×=×

°°⋅⋅=

Δ=

⇒Δ

=

tQTkAd

dTkA

tQ

2W/m1000

27.0°C

K 401)(1.00)KmJ/s 10(5.67

W/m1000K) (300

W/m1000/

/)(

1/4

428

24

1

2

4/14

214

14

2

=⎥⎦

⎤⎢⎣

⋅⋅×

−−=∴

−=

⎟⎠

⎞⎜⎝

⎛ −=⇒−=

−T

AtQ

eAtQTTTTeA

tQ

σσ

34.0°C2m0.400

34.0°C

C48.5K 321.63

K) (307)m .400)(0.970)(0KmJ/s 10(5.67

W)2(20.0

)/(2)2/(

/

, )(2

1/44

2428

4/14

1

4/14

12

41

42

°==

⎥⎦

⎤⎢⎣

⎡+

⋅⋅×=

⎥⎦

⎤⎢⎣

⎡ +=⎥⎦

⎤⎢⎣

⎡+=

−⎟⎠

⎞⎜⎝

⎛=

TeAtQT

AetQT

TTAetQ

σσ

σ

College  Physics   Instructor  Solutions  Manual   Chapter  14    

393  

 

(b)  A  pure  white  object  reflects  more  of  the  radiant  energy  that  hits  it,  so  the  white  tent  would  prevent  more  of  the  sunlight  from  heating  up  the  inside  of  the  tent,  and  the  white  tunic  would  prevent  that  radiant  energy  inside  the  tent  from  heating  the  rider.  Therefore,  with  a  white  tent,  the  temperature  would  be  lower  than   ,  and  the  rate  of  radiant  heat  transferred  to  the  rider  would  be  less  than  20.0  W.  

66.   Integrated  Concepts  One    day  the  relative  humidity  is   ,  and  that  evening  the  temperature  drops  to   ,  well  below  the  dew  point.  (a)  How  many  grams  of  water  condense  from  each  cubic  meter  of  air?  (b)  How  much  heat  transfer  occurs  by  this  condensation?  (c)  What  temperature  increase  could  this  cause  in  dry  air?  

Solution   (a)  Let    be  the  vapor  density  during  the  day.  Percent  relative  humidity  is  equal  to  the  vapor  density  divided  by  the  saturation  vapor  density.  Using  the  values  for  relative  humidity  and  saturation  vapor  density,  we  have  

 

(b)    

(c)    

67.   Integrated  Concepts  Large  meteors  sometimes  strike  the  Earth,  converting  most  of  their  kinetic  energy  into  thermal  energy.  (a)  What  is  the  kinetic  energy  of  a    meteor  moving  at  25.0  km/s?  (b)  If  this  meteor  lands  in  a  deep  ocean  and    of  its  kinetic  energy  goes  into  heating  water,  how  many  kilograms  of  water  could  it  raise  by  

 (c)  Discuss  how  the  energy  of  the  meteor  is  more  likely  to  be  deposited  in  the  ocean  and  the  likely  effects  of  that  energy.  

Solution   (a)    

(b)    

C48.5°

30.0°C 75.0%20.0°C

x

333

33

g/m 5.60g/m 17.2g/m 22.8

g/m 22.8750.0g/m 0.43

=−

=⇒= xx

kcal 3.02kcal/kg) kg)(539 10(5.60 3v =×== −mLQ

C6.13C)kcal/kg kg)(0.172 (1.29

kcal 3.02°=

°⋅==Δ⇒Δ=

mcQTTmcQ

kg109

80%

5.0°C?

J 103J 103.125m/s) 10kg)(25.0 0.5(1021 17172392 ×≈×=×== mvKE

kg 101kg 101.19C)C)(5.0J/kg (4186J) 1025(0.80)(3.1 1313

17

×≈×=°°⋅

×=

Δ=⇒Δ=

TcQmTmcQ

College  Physics   Instructor  Solutions  Manual   Chapter  14    

394  

 

(c)  When  a  large  meteor  hits  the  ocean,  it  causes  great  tidal  waves,  dissipating  a  large  amount  of  its  energy  in  the  form  of  kinetic  energy  of  the  water.  

68.   Integrated  Concepts  Frozen  waste  from  airplane  toilets  has  sometimes  been  accidentally  ejected  at  high  altitude.  Ordinarily  it  breaks  up  and  disperses  over  a  large  area,  but  sometimes  it  holds  together  and  strikes  the  ground.  Calculate  the  mass  of  

 ice  that  can  be  melted  by  the  conversion  of  kinetic  and  gravitational  potential  energy  when  a    piece  of  frozen  waste  is  released  at  12.0  km  altitude  while  moving  at  250  m/s  and  strikes  the  ground  at  100  m/s  (since  less  than  20.0  kg  melts,  a  significant  mess  results).  

Solution   Let    be  the  mass  of  the  ice  block  and    be  the  mass  that  melts  before  hitting  the  ground.  

   

69.   Integrated  Concepts  (a)  A  large  electrical  power  facility  produces  1600  MW  of  “waste  heat,”  which  is  dissipated  to  the  environment  in  cooling  towers  by  warming  air  flowing  through  the  towers  by   .  What  is  the  necessary  flow  rate  of  air  in  ?  (b)  Is  your  result  consistent  with  the  large  cooling  towers  used  by  many  large  electrical  power  plants?  

Solution  (a)

   

(b)  This  is  equivalent  to  12  million  cubic  feet  of  air  per  second.  That  is  tremendous.  This  is  too  large  to  be  dissipated  by  heating  the  air  by  only    .  Many  of  these  cooling  towers  use  the  circulation  of  cooler  air  over  warmer  water  to  increase  the  rate  of  evaporation.  This  would  allow  there  to  be  much  smaller  amounts  of  air  

0°Ckg20.0

M m

2ff

2i

fi

21

21 MvmLMghMv

KEQPEKE

+=+

+=+

[ ]

[ ] kg 8.61J/kg 10334

m/s) 0.5(100m/s) 0.5(250m) 10)(12.0m/s (9.80kg) (20.0

)(5.0

3

2232f

2f

2i

−+×=

−+=

LvvghMm

5.00°C /sm3

/sm 103.44/sm 103.44kg/m 1.29

kg/s 104.438

kg/s 104.438C)C)(5.00J/kg (721

J/s 101600

35353

5

56

×==⇒×=×

==

×=°°⋅

×=

Δ=⇒Δ=

tVFmV

TcQmTmcQ

ρ

C5°

College  Physics   Instructor  Solutions  Manual   Chapter  14    

395  

 

necessary  to  remove  such  a  large  amount  of  heat,  because  evaporation  removes  larger  quantities  of  heat  than  was  considered  in  part  (a).  

70.   Integrated  Concepts  (a)  Suppose  you  start  a  workout  on  a  Stairmaster,  producing  power  at  the  same  rate  as  climbing  116  stairs  per  minute.  Assuming  your  mass  is  76.0  kg  and  your  efficiency  is   ,  how  long  will  it  take  for  your  body  temperature  to  rise    if  all  other  forms  of  heat  transfer  in  and  out  of  your  body  are  balanced?  (b)  Is  this  consistent  with  your  experience  in  getting  warm  while  exercising?  

Solution   (a)  You  produce  power  at  a  rate  of  685  W,  and  since  you  are  20%  efficient,  you  must  

have  generated:   .    

If  only  685  W  of  power  was  useful,  the  power  available  to  heat  the  body  is  .    

Now,   so  that

 

(b)  This  says  that  it  takes  about  a  minute  and  a  half  to  generate  enough  heat  to  raise  the  temperature  of  your  body  by   ,  which  seems  quite  reasonable.  Generally,  within  five  minutes  of  working  out  on  a  Stairmaster,  you  definitely  feel  warm  and  probably  are  sweating  to  keep  your  body  from  overheating.  

71.   Integrated  Concepts  A  76.0-­‐kg  person  suffering  from  hypothermia  comes  indoors  and  shivers  vigorously.  How  long  does  it  take  the  heat  transfer  to  increase  the  person’s  body  temperature  by    if  all  other  forms  of  heat  transfer  are  balanced?  

Solution  

 

20.0%C1.00º

W34250.20

W685efficiency

producedgenerated ===

PP

W102.740 W 685 W3425 3wasted ×=−=P

, wasted tTmc

tQP Δ==

s 97.1 W102.74

C)C)(1.00J/kg kg)(3500 (76.03

wasted

°°⋅=

Δ=P

Tmct

C1.00°

C2.00º

min 20.9s 101.25 W425

C)C)(2.00J/kg kg)(3500 (76.0 3 =×=°°⋅

=

⇒Δ==

PTmct

TmcPtQ

College  Physics   Instructor  Solutions  Manual   Chapter  14    

396  

 

72.   Integrated  Concepts  In  certain  large  geographic  regions,  the  underlying  rock  is  hot.  Wells  can  be  drilled  and  water  circulated  through  the  rock  for  heat  transfer  for  the  generation  of  electricity.  (a)  Calculate  the  heat  transfer  that  can  be  extracted  by  cooling    of  granite  by   .  (b)  How  long  will  it  take  for  heat  transfer  at  the  rate  of  300  MW,  assuming  no  heat  transfers  back  into  the    of  rock  by  its  surroundings?  

Solution   (a)  

 

(b)    

73.   Integrated  Concepts  Heat  transfers  from  your  lungs  and  breathing  passages  by  evaporating  water.  (a)  Calculate  the  maximum  number  of  grams  of  water  that  can  be  evaporated  when  you  inhale  1.50  L  of    air  with  an  original  relative  humidity  of  40.0%.  (Assume  that  body  temperature  is  also   .)  (b)  How  many  joules  of  energy  are  required  to  evaporate  this  amount?  (c)  What  is  the  rate  of  heat  transfer  in  watts  from  this  method,  if  you  breathe  at  a  normal  resting  rate  of  10.0  breaths  per  minute?  

Solution   (a)  To  solve  this,  we  calculate  the  mass  of  water  initially  in  the  breath  and  subtract  this  value  from  the  mass  of  the  water  in  an  exhaled  breath  at  100%  humidity.  Using  the  saturation  vapor  density  of  water  at   ,  

 

(b)    

(Note  that for  water  at    is  used  here  as  a  better  approximation  than  for  water  at   )  

(c)    

3km1.00 100°C3km1.00

J 102.27C)C)(100J/kg (840m) 10)(1.00kg/m (2700 17333 ×=°°⋅×=

Δρ=Δ= TVcTmcQ

y 24.0s 107.57 W10300

J 102.27 86

17

=×=×

×==⇒=

PQtQPt

37.0°C37.0°C

C37°

( )( )

( ) ( ) g 103.96g 102.64g 106.60

g 106.60)g/m (44.0m 101.50

g 102.64)(0.400)g/m (44.0m 101.50

222inex

2333ex

2333in

−−−

−−

−−

×=×−×=−=Δ

×=×=

×=×=

mmmmm

J 96.2J 96.23J/g) g)(2430 10(3.96 2C)v(37 ==×== −°mLQ

vL C37° vLC.001 °

W16.0s 60.0

J) 10(96.23===

tNQP

College  Physics   Instructor  Solutions  Manual   Chapter  14    

397  

 

74.   Integrated  Concepts  (a)  What  is  the  temperature  increase  of  water  falling  55.0  m  over  Niagara  Falls?  (b)  What  fraction  must  evaporate  to  keep  the  temperature  constant?  

Solution  (a)    

(b)  Let    be  the  mass  of  water  that  evaporates.

 

(Note  that    for  water  at    is  used  here  as  a  better  approximation  than    for  water  at   )  

75.   Integrated  Concepts  Hot  air  rises  because  it  has  expanded.  It  then  displaces  a  greater  volume  of  cold  air,  which  increases  the  buoyant  force  on  it.  (a)  Calculate  the  ratio  of  the  buoyant  force  to  the  weight  of    air  surrounded  by    air.  (b)  What  energy  is  needed  to  cause    of  air  to  go  from    to    (c)  What  gravitational  potential  energy  is  gained  by  this  volume  of  air  if  it  rises  1.00  m?  Will  this  cause  a  significant  cooling  of  the  air?  

Solution   (a)    The  density  of  a  given  volume  of  air  will  be  proportional  to   .  

           

The  buoyant  force  is  equal  to  the  weight  of  the  displaced  cold  air  (Archimedes’  principle.)  Thus,  

 

(b)    

(c)    

This  will  not  cause  a  significant  cooling  of  the  air  because  it  is  much  less  than  the  

C0.117CJ/kg 4186

m) )(50.0m/s (9.80 2

°=°⋅

==Δ⇒Δ=cghTTmcmgh

M4

3

2

vv 1017.2

CJ/kg 102430m) )(50.0m/s (9.80 −×=°⋅×

==⇒=Lgh

mMMLmgh

vL C37° vLC.001 °

50.0°C 20.0°C3m1.00 20.0°C 50.0°C?

⇒= nRTPVT1

hh

1~T

ρc

c1~T

ρ

1.102K 293K 323

and

c

h

h

c

h

B

hhccB

====

===

TT

VgVg

wF

VgwVgwF

ρρ

ρρ

J 102.79C)C)(30.0J/kg )(721m )(1.00kg/m (1.29 433

pp

×=°°⋅=

Δ=Δ= TVcTmcQ ρ

J 12.6m) )(1.00m/s )(9.80m )(1.00kg/m (1.29 233 === mghPE

College  Physics   Instructor  Solutions  Manual   Chapter  14    

398  

 

energy  found  in  part  (b),  which  is  the  energy  required  to  warm  the  air  from    to   .  

76.   Unreasonable  Results  (a)  What  is  the  temperature  increase  of  an  80.0  kg  person  who  consumes  2500  kcal  of  food  in  one  day  with    of  the  energy  transferred  as  heat  to  the  body?  (b)  What  is  unreasonable  about  this  result?  (c)  Which  premise  or  assumption  is  responsible?  

Solution   (a)    

This  says  that  the  temperature  of  the  person  is      (b)  Any  temperature  increase  greater  than  about    would  be  unreasonably  large.  

In  this  case  the  final  temperature  of  the  person  would  rise  to   .  

(c)  The  assumption  that  the  person  retains  95%  of  the  energy  as  body  heat  is  unreasonable.  Most  of  the  food  consumed  on  a  day  is  converted  to  body  heat,  losing  energy  by  sweating  and  breathing,  etc.  

77.   Unreasonable  Results  A  slightly  deranged  Arctic  inventor  surrounded  by  ice  thinks  it  would  be  much  less  mechanically  complex  to  cool  a  car  engine  by  melting  ice  on  it  than  by  having  a  water-­‐cooled  system  with  a  radiator,  water  pump,  antifreeze,  and  so  on.  (a)  If    of  the  energy  in  1.00  gal  of  gasoline  is  converted  into  “waste  heat”  in  a  car  engine,  how  many  kilograms  of    ice  could  it  melt?  (b)  Is  this  a  reasonable  amount  of  ice  to  carry  around  to  cool  the  engine  for  1.00  gal  of  gasoline  consumption?  (c)  What  premises  or  assumptions  are  unreasonable?  

Solution  (a)

     

(b)  No,  the  mass  of  ice  is  greater  than  1/4  of  a  ton.  

(c)  Not  all  waste  heat  goes  into  the  engine.  

C0.20 ° C0.50 °

95.0%

.C36C)kcal/kg kg)(0.83 (80.0

kcal) 00(0.950)(25 that so , °=°⋅

==ΔΔ=mcQTTmcQ

! C73C36C37 °=°+°C3°

( )F163 C73 °°

80.0%0°C

( )( ) kg103.1kg4.311

J/kg 10334J 103.1800.0

Thus, J.103.1800.0

23

8

8gas

f

gasfgas

×==×

×=

×=

=⇒=

M

QLQ

MMLQ

College  Physics   Instructor  Solutions  Manual   Chapter  14    

399  

 

78.   Unreasonable  Results  (a)  Calculate  the  rate  of  heat  transfer  by  conduction  through  a  window  with  an  area  of    that  is  0.750  cm  thick,  if  its  inner  surface  is  at  

 and  its  outer  surface  is  at   .  (b)  What  is  unreasonable  about  this  result?  (c)  Which  premise  or  assumption  is  responsible?  

Solution   (a)    

(b)  This  is  very  high  power  loss  through  a  window.  An  electric  heater  of  this  power  can  keep  an  entire  room  warm.  

(c)  The  surface  temperatures  of  the  window  do  not  differ  by  as  great  an  amount  as  assumed.  The  inner  surface  will  be  warmer,  and  the  outer  surface  will  be  cooler.  

79.   Unreasonable  Results  A  meteorite  1.20  cm  in  diameter  is  so  hot  immediately  after  penetrating  the  atmosphere  that  it  radiates  20.0  kW  of  power.  (a)  What  is  its  temperature,  if  the  surroundings  are  at    and  it  has  an  emissivity  of  0.800?  (b)  What  is  unreasonable  about  this  result?  (c)  Which  premise  or  assumption  is  responsible?    

Solution   (a)  Given   (Note  that  the  negative  

sign  indicates  that  the  meteorite  radiates  heat  to  the  surroundings.)  

 

(b)  The  meteorite  has  too  high  a  temperature.  It  would  completely  melt.  

(c)  The  rate  of  radiation  is  probably  too  high.  

2m1.0022.0°C 35.0°C

( )

kW46.1 W101.46 W1456m 10.7500

C)22.0-C)(35.0m C)(1.00mJ/s (0.84

3

2-

212

=×==

×

°°°⋅⋅=

−=

dTTkA

tQ

20.0°C

cm. 0.600 and W 100.02kW .020 3 =×−=−= RtQ

K 105.59

)m 100.600()(0.800)4KmJ/s 10(5.67 W100.02K) (293

/

3

1/4

22428

34

4/14

21

×=

⎥⎦

⎤⎢⎣

×⋅⋅×

×−−=

⎟⎠

⎞⎜⎝

⎛ −=

−− π

σeAtQTT