66
CNN Technology for Brain-like Spatial-temporal Sensory Computing –Present and Future ISCAS-2004 Plenary Lecture Vancouver, May 2004 Tamás ROSKA Pázmány University and the Hungarian Academy of Sciences Budapest, Hungary

CNN Technology for Brain-like Spatial-temporal Sensory Computing –Present and Future ISCAS-2004 Plenary Lecture Vancouver, May 2004 Tamás ROSKA Pázmány

Embed Size (px)

Citation preview

Page 1: CNN Technology for Brain-like Spatial-temporal Sensory Computing –Present and Future ISCAS-2004 Plenary Lecture Vancouver, May 2004 Tamás ROSKA Pázmány

CNN Technology for Brain-like

Spatial-temporal Sensory Computing –Present and Future

ISCAS-2004 Plenary LectureVancouver, May 2004

Tamás ROSKA

Pázmány University and the Hungarian Academy of SciencesBudapest, Hungary

Page 2: CNN Technology for Brain-like Spatial-temporal Sensory Computing –Present and Future ISCAS-2004 Plenary Lecture Vancouver, May 2004 Tamás ROSKA Pázmány

Acknowledgements

Berkeley-Budapest-Seville (12 years) and Notre Dame-Harvard research groups

Office of Naval Research (ONR) Future and Emerging Technologies Division of

the EU R&D Directorate Human Frontiers of Science Program Hungarian National Research Fund Spanish National Research Council Pázmány University, Budapest Hungarian Academy of Sciences

Page 3: CNN Technology for Brain-like Spatial-temporal Sensory Computing –Present and Future ISCAS-2004 Plenary Lecture Vancouver, May 2004 Tamás ROSKA Pázmány

Table of contents1. Scenario: new vistas of complexity in

circuits, systems and computers2. A new framework for sensory-

computing- activating circuits and systems: Cellular Wave Computers and Wave-Logic

3. Various physical implementations: towards (topographic) visual microprocessors

4. Bio-inspiration- sensor fusion and proactive systems – multichannel retina models and cross-modalities

Page 4: CNN Technology for Brain-like Spatial-temporal Sensory Computing –Present and Future ISCAS-2004 Plenary Lecture Vancouver, May 2004 Tamás ROSKA Pázmány

Contents (cont.)

5. Wave-algorithms – a new kind of software with embedded sensors

6. Applications

– „CNN technology”

- Semantic embedding

7. CNN principles in nanotechnology

Page 5: CNN Technology for Brain-like Spatial-temporal Sensory Computing –Present and Future ISCAS-2004 Plenary Lecture Vancouver, May 2004 Tamás ROSKA Pázmány

1 Scenario: new vistas of complexity

New directions in micro- and nano- technologies – a must for cellular

The sensory revolution and its impact on data – a move to image flows and multimodal sensor fusion

Complexity: billion devices and interconnect problems – bio-inspired architectures

Mind inspired and brain inspired computing Sensory understanding and inferencing with

embedded spatial-temporal semantics-Events are patterns

Page 6: CNN Technology for Brain-like Spatial-temporal Sensory Computing –Present and Future ISCAS-2004 Plenary Lecture Vancouver, May 2004 Tamás ROSKA Pázmány
Page 7: CNN Technology for Brain-like Spatial-temporal Sensory Computing –Present and Future ISCAS-2004 Plenary Lecture Vancouver, May 2004 Tamás ROSKA Pázmány

2. Cellular Wave Computers and Wave-Logic

Data, Instructions, Subroutines, Events, and Algorithms

are different!

Non-Boolean logic

Page 8: CNN Technology for Brain-like Spatial-temporal Sensory Computing –Present and Future ISCAS-2004 Plenary Lecture Vancouver, May 2004 Tamás ROSKA Pázmány

A first departure from the all digital-logic computing paradigm

Turing – von-Neumann framework:data are bit streams, time is discrete,elementary operations on bits, and

STORED PROGRAMMABLE Blum-Schub-Smale departure:

data are reals, the role of accuracy and problem parameter in comp.complexity

Newton machine, the role of algebra&nonlinearity

Page 9: CNN Technology for Brain-like Spatial-temporal Sensory Computing –Present and Future ISCAS-2004 Plenary Lecture Vancouver, May 2004 Tamás ROSKA Pázmány

A drastic departure Data are multivariable flows, continuous in

time and signal value on a finite time interval Events are patterns ,

in space, in space-time, or in multivariable synchronization

Elementary instructions: the solution of a nonlinear wave equation plus local and global binary logic

Architecture and algorithms => ?? Universality??

Page 10: CNN Technology for Brain-like Spatial-temporal Sensory Computing –Present and Future ISCAS-2004 Plenary Lecture Vancouver, May 2004 Tamás ROSKA Pázmány

•Brain-like: - analog signal array - several 2D strata of analog processors - mainly local and sparse global interconnections with variable delays - spatial-temporal active waves

Mind-like: - logical sequences - algorithmic

Hint: Left-brain – Right-brain

Univesral Machine on Flows

Page 11: CNN Technology for Brain-like Spatial-temporal Sensory Computing –Present and Future ISCAS-2004 Plenary Lecture Vancouver, May 2004 Tamás ROSKA Pázmány

A generic view of

CNN dynamics and

the CNN Universal Machine

on flows

Page 12: CNN Technology for Brain-like Spatial-temporal Sensory Computing –Present and Future ISCAS-2004 Plenary Lecture Vancouver, May 2004 Tamás ROSKA Pázmány

How to form a generic spatial temporal machine?

Take the simplest dynamical system, a cell Take the simplest spatial grid for placing the

cells (2D sheets) Introduce the simplest spatial interactions

between dynamic cells

CNN: Cellular Nonlinear Network;

archetype:Turing-morphogenesis Place the CNN dynamics into the simplest

stored programmable computing machine

CNN Universal Machine on Flows

Page 13: CNN Technology for Brain-like Spatial-temporal Sensory Computing –Present and Future ISCAS-2004 Plenary Lecture Vancouver, May 2004 Tamás ROSKA Pázmány

Cell Dynamics

ijij ax - dt /dx

)f(xy ijij 1-1

-1

1

Page 14: CNN Technology for Brain-like Spatial-temporal Sensory Computing –Present and Future ISCAS-2004 Plenary Lecture Vancouver, May 2004 Tamás ROSKA Pázmány
Page 15: CNN Technology for Brain-like Spatial-temporal Sensory Computing –Present and Future ISCAS-2004 Plenary Lecture Vancouver, May 2004 Tamás ROSKA Pázmány
Page 16: CNN Technology for Brain-like Spatial-temporal Sensory Computing –Present and Future ISCAS-2004 Plenary Lecture Vancouver, May 2004 Tamás ROSKA Pázmány

Introduction to CNN Dynamics

j

i

The Cellular Neural/nonlinearNetwork (CNN) is: an analog processor array on a rectangular grid with space invariant local interactions.

Page 17: CNN Technology for Brain-like Spatial-temporal Sensory Computing –Present and Future ISCAS-2004 Plenary Lecture Vancouver, May 2004 Tamás ROSKA Pázmány

Local interconnection pattern:cloning TEMPLATE

uij - input

xij - state/ yij - output

z - bias

Template - the program of the network: [A B z]

A

B

010

121

010

111

181

111

z= -0.5

Page 18: CNN Technology for Brain-like Spatial-temporal Sensory Computing –Present and Future ISCAS-2004 Plenary Lecture Vancouver, May 2004 Tamás ROSKA Pázmány

(ij)kl

kla

r

y kl)A(ij,iN

Interaction pattern defined by templates

(ij)kl

klb

r

u kl)B(ij,iN

)y(yA klij*

)u(uB klij*

ijbat ziii

Page 19: CNN Technology for Brain-like Spatial-temporal Sensory Computing –Present and Future ISCAS-2004 Plenary Lecture Vancouver, May 2004 Tamás ROSKA Pázmány
Page 20: CNN Technology for Brain-like Spatial-temporal Sensory Computing –Present and Future ISCAS-2004 Plenary Lecture Vancouver, May 2004 Tamás ROSKA Pázmány

CNN Dynamics

ijklklij

tijij

zu kl)B(ij,y kl)A(ij,ax -

iax - dt /dx

)f(xy ijij

Page 21: CNN Technology for Brain-like Spatial-temporal Sensory Computing –Present and Future ISCAS-2004 Plenary Lecture Vancouver, May 2004 Tamás ROSKA Pázmány

Operation of the a CNN array (computation)

A

input

state/output

B

z

Page 22: CNN Technology for Brain-like Spatial-temporal Sensory Computing –Present and Future ISCAS-2004 Plenary Lecture Vancouver, May 2004 Tamás ROSKA Pázmány

PDE formulation of reaction-diffusion processes

Reaction-diffusion type nonlinear PDE:

)),,((

))),,(()),,(((),,(

tyxF

tyxgradtyxcdivt

tyx

If the first diffusion term is the Laplacian, and there are only two variables in , we get the simple reaction diffusion equation of Turing - morphogenesis

Page 23: CNN Technology for Brain-like Spatial-temporal Sensory Computing –Present and Future ISCAS-2004 Plenary Lecture Vancouver, May 2004 Tamás ROSKA Pázmány

Deriving coupled ODEs from PDEs

Reaction-diffusion type nonlinear ODE:

Templates (symmetric-isotropic class):

)((.)(.)))(()(

))()()()((4

)())(()(

000

11111

1

tbzzfcgtxft

zttttc

ttgdt

td

klNkl

klijijij

ijijijjijiijijij

0

212

101

212

1

101

1

;;

00

00

z

bbb

bbb

bbb

B

c

ccc

c

A

wavestriggerccdiffusioncc 010;0100

Page 24: CNN Technology for Brain-like Spatial-temporal Sensory Computing –Present and Future ISCAS-2004 Plenary Lecture Vancouver, May 2004 Tamás ROSKA Pázmány

Computing with diffusion and waves derived from reaction-diffusion systems

Examples:

Linear diffusion

Trigger-waves

Pattern formation

Page 25: CNN Technology for Brain-like Spatial-temporal Sensory Computing –Present and Future ISCAS-2004 Plenary Lecture Vancouver, May 2004 Tamás ROSKA Pázmány

A generalization of Turing’s morphogenesis and Von Neumann’s vision on

analytic theory of computing Generating a plethora of different

– waves and

– patterns A framework of modeling chemical,

physical, biological and abstract

complex systems Introducing algorithms on waves

Page 26: CNN Technology for Brain-like Spatial-temporal Sensory Computing –Present and Future ISCAS-2004 Plenary Lecture Vancouver, May 2004 Tamás ROSKA Pázmány

Make a computing machine with CNN elementary instructions

Extend each cell with– A few local memory units (LAM, LLM)– A local Communication and Control Unit– And possibly local logic and arithmetic units

Add a Global analogic Programming Unit (GAPU) with

- Analog and logic Registers and

- A machine code storage (GACU)

Page 27: CNN Technology for Brain-like Spatial-temporal Sensory Computing –Present and Future ISCAS-2004 Plenary Lecture Vancouver, May 2004 Tamás ROSKA Pázmány

CNN Universal Machine (CNN-UM)

G A P U

GAPU: Global Analogic Programming Unit

LAM: Local Analog MemoryLLM: Local Logic MemoryLCCU: Local Communication and Control UnitLAOU: Local Analog Output UnitLLU: Local Logic Unit

LCCU

LAM

LLM

APR: Analog Instruction RegisterLPR: Logic Program RegisterSCR: Switch Configuration RegisterGACU: Global Analogic Control Unit

CNNnucle

usLAOU LLU

[A1 B1 z1], [A2 B2 z2], . . .[A1 B1 z1], [A2 B2 z2], . . .

<=<=Analogic (analog+logic) Analogic (analog+logic) algorithalgorithmm<=<=Analogic (analog+logic) Analogic (analog+logic) algorithalgorithmm

Page 28: CNN Technology for Brain-like Spatial-temporal Sensory Computing –Present and Future ISCAS-2004 Plenary Lecture Vancouver, May 2004 Tamás ROSKA Pázmány

Cellular Active Wave Computer on image Flows

Universal Machine on Flows (UMF)

Data: Image Flow

(t): i j (t) , t T= 0, td

1 i m 1 j n

at t = t, (t) is an m x n Picture P

if P is binary it is a Mask M

if t = t0, t0 + t, t0+ 2t, …… t0+ k t then:

image sequence or video stream.

Page 29: CNN Technology for Brain-like Spatial-temporal Sensory Computing –Present and Future ISCAS-2004 Plenary Lecture Vancouver, May 2004 Tamás ROSKA Pázmány

Operators on Image Flows The protagonist elementary instruction, also

called wave instruction, is defined as output (t):= ( input(t), Po, ); t T=0, td

where

: an array function on image flows or image sequences

Po : a picture defining initial state (0) and/or bias map

: boundary conditions (a frame), (t) is a boundary input might also be connected to all cells in a row

A scalar functional on an image flow:

q: = ( input(t), Po, );

Page 30: CNN Technology for Brain-like Spatial-temporal Sensory Computing –Present and Future ISCAS-2004 Plenary Lecture Vancouver, May 2004 Tamás ROSKA Pázmány

Algorithms on image flows α-recursive function.  initial settings of image flows, pictures, masks, and boundary values: (0), Po, M, ; equilibrium and non-equilibrium solutions of partial differential difference equations (PDDE) via canonical CNN equations on (t) ; global (and local) minimization on the above; memoryless (arithmetic) and logic combina-tions on the above results, comparisons (thresholding) and logic condi-tions in branchings, via scalar global functionals recursions on the above operations

Page 31: CNN Technology for Brain-like Spatial-temporal Sensory Computing –Present and Future ISCAS-2004 Plenary Lecture Vancouver, May 2004 Tamás ROSKA Pázmány

Properties of the Universal Machine on Flows

Universality in Turing sense and as a spatial-temporal nonlinear operator

Active waves in the region of edge of chaos within the locally active regime

Stored programmability is the key for practical applications

Combining analog spatial-temporal waves with local and global logic– analog-and-logic

Native operators for Programmable Sensor-Computing and in Nanotechnology

Page 32: CNN Technology for Brain-like Spatial-temporal Sensory Computing –Present and Future ISCAS-2004 Plenary Lecture Vancouver, May 2004 Tamás ROSKA Pázmány

3. Physical implementation: towards visual microprocessors

Mixed-signal CMOS Mixed signal BiCMOS Emulated digital CMOS Optical FPGA Integration of topographic sensors SoC Software and development

systems Self contained units e.g. Bi-i

Page 33: CNN Technology for Brain-like Spatial-temporal Sensory Computing –Present and Future ISCAS-2004 Plenary Lecture Vancouver, May 2004 Tamás ROSKA Pázmány

Comparison between an IBM Cellular Supercomputer and an analogic processor

65536 (32*32*64) Power PC

A = 65536 x 1.06 cm2 = 6.9468 m2

P = 491 kW

IBM Cellular Supercomputer 2002

Computing Power ~ 12 * 1012 (TeraFLOPS)

128 x 128 processor with optical input

An analog-and-logicic CNNsupercomputer

Computing Power ~ 12 * 1012

(TeraOPS) equivalent

A = 1.4 cm2

P = 4.5 W

1.

32.

1. 32.

64.

Page 34: CNN Technology for Brain-like Spatial-temporal Sensory Computing –Present and Future ISCAS-2004 Plenary Lecture Vancouver, May 2004 Tamás ROSKA Pázmány

CNN technology roadmap

time

20x22,bin I/O,

optical input50 000 fr/sec

64x64, gray I/O,par. optical input,

1000 fr/sec

128x128, gray I/O,

optical input50 000 fr/sec

128x96, gray I/O,

optical input10 000 fr/sec

embedded Digital Microprocessor

A-D cells

1995-96 1998-99 2003 2004

Complexity/resolution

ACE400 ACE4k

ACE16kXENON*

The ACE CNN chip family has been designed at IMSE-CNM and AnaFocus Ltd.,Seville Spain.The XENON chip was designed by ANCLab at the Hungarian Academy of Sciences

and AnaLogic Computers Ltd., Budapest, Hungary *under fabrication

Page 35: CNN Technology for Brain-like Spatial-temporal Sensory Computing –Present and Future ISCAS-2004 Plenary Lecture Vancouver, May 2004 Tamás ROSKA Pázmány

• Standalone

• Compact

• Embedded 128x128 ACE16k* chip (1 or 2)

• Above 5000 Fps

• Embedded 250MHz DSP

• Embedded 1.3M CMOS imager with ROI

• Ethernet 100MBit/s

• USB

Bi-i: a standalone visual system

*ACE16k chip was designed at IMSE-CNM Seville Spain

First prize and Product of the year at Vision 2003, Stuttgart

Page 36: CNN Technology for Brain-like Spatial-temporal Sensory Computing –Present and Future ISCAS-2004 Plenary Lecture Vancouver, May 2004 Tamás ROSKA Pázmány

CNN Universal Machine (CNN-UM) Chip

logicalcircuitry

base cell

analog synapses

analogmemory

analog synapses

opt.input

logmem

digital I/O bus

analo

g I/O

bus

glo

bális

contr

ol si

gnals

analo

g a

nd logic

al opera

tions

Page 37: CNN Technology for Brain-like Spatial-temporal Sensory Computing –Present and Future ISCAS-2004 Plenary Lecture Vancouver, May 2004 Tamás ROSKA Pázmány

CNN UM Chip /Multiscreen Theather

Page 38: CNN Technology for Brain-like Spatial-temporal Sensory Computing –Present and Future ISCAS-2004 Plenary Lecture Vancouver, May 2004 Tamás ROSKA Pázmány

Standard image processing functions

Separation of the stationary and moving parts

Original image Moving parts Stationary parts

Page 39: CNN Technology for Brain-like Spatial-temporal Sensory Computing –Present and Future ISCAS-2004 Plenary Lecture Vancouver, May 2004 Tamás ROSKA Pázmány

High dynamic range(integration time is indicated)

24s 200s 1.6ms 6.4ms

12.8ms 25.6ms 51.2ms 102.4ms

Page 40: CNN Technology for Brain-like Spatial-temporal Sensory Computing –Present and Future ISCAS-2004 Plenary Lecture Vancouver, May 2004 Tamás ROSKA Pázmány

High Frame rate AND

processing1,000 to 50, 000 frames

per secondand processing during

the 20-1000 microsec

windowHigh speed diffusion5 grids in 100 nsec

Page 41: CNN Technology for Brain-like Spatial-temporal Sensory Computing –Present and Future ISCAS-2004 Plenary Lecture Vancouver, May 2004 Tamás ROSKA Pázmány

4 Biological Relevance Retinotopic Visual Pathway New discovery in 2001 (Nature):

Multichannel Mammalian Retina Model Multilayer CNN dynamics with programmable

space and time constants Towards a programmable vision prosthesis

– the first 5 human retinal implants (at USC) Multichannel tactile (haptic) model Non-synaptic neural signal transmission Immune response inspired algorithms

Page 42: CNN Technology for Brain-like Spatial-temporal Sensory Computing –Present and Future ISCAS-2004 Plenary Lecture Vancouver, May 2004 Tamás ROSKA Pázmány

Retina structure

OPL

IPL

ConesCones

GanglionsGanglions

Page 43: CNN Technology for Brain-like Spatial-temporal Sensory Computing –Present and Future ISCAS-2004 Plenary Lecture Vancouver, May 2004 Tamás ROSKA Pázmány

Ganglion cell types Off Brisk L Off Brisk Tr On Brisk TrN On Brisk Tr On Beta On Sluggish Bistratified Local Edge Detector

IPL Strata

Parallel space-time featuresBotond Roska and FrankS.Werblin Nature, March 29, 2001

Page 44: CNN Technology for Brain-like Spatial-temporal Sensory Computing –Present and Future ISCAS-2004 Plenary Lecture Vancouver, May 2004 Tamás ROSKA Pázmány

MeasurementExcitation

Inhibition

Spiking

On Beta ganglion cell

x

x

x

t

t

t

Page 45: CNN Technology for Brain-like Spatial-temporal Sensory Computing –Present and Future ISCAS-2004 Plenary Lecture Vancouver, May 2004 Tamás ROSKA Pázmány

b2b1A11

A22

1

2

a12 a21

10

13a

b2b1A11

A22

1

2

a12 a21

10

b2b1A11

A22

1

2

a12 a21

10

b2b1A11

A22

1

2

a12 a21

10

b2b1A11

A22

1

2

a12 a21

10

General block input flow sampling output sample/hold spike generation

Complex R-Unit decomposition

OPLOPL

GRBGRB

IRE-AIRE-A IRE-DIRE-D IRIIRI

Page 46: CNN Technology for Brain-like Spatial-temporal Sensory Computing –Present and Future ISCAS-2004 Plenary Lecture Vancouver, May 2004 Tamás ROSKA Pázmány

Model Simulations

Local Edge Detector Off Brisk TrL cell

Stimulus and 3 different output together

Spikingtransfer to the brain

ExcitationInhibition

Page 47: CNN Technology for Brain-like Spatial-temporal Sensory Computing –Present and Future ISCAS-2004 Plenary Lecture Vancouver, May 2004 Tamás ROSKA Pázmány

3-Layer Prototype R-unit

b2b1A11

A22

1

2

Inputs

a12

13a

a21

a23

1|)0(|0:,1|)0(|0:,1||0,1,1

),(),( ,223,1133,3,22,2,11,1

,112,2,22,2,22

10,221,1,11,1,11

1

1

txrangeFullxYangChuauMjMi

yayafyxfyxfy

yayAxx

zubyayAxx

ijij

ij

ijijijijijijij

ijNkl

klklijij

ijNkl

ijklklijij

•mutually coupled 1st order „RC” cells, space constants•double time-scale property•separate inputs and initial states

Output

Page 48: CNN Technology for Brain-like Spatial-temporal Sensory Computing –Present and Future ISCAS-2004 Plenary Lecture Vancouver, May 2004 Tamás ROSKA Pázmány

5. Wave-algorithms – a new kind of software with

embedded sensors Are programmed complex nonlinear

~waves implementable on Silicon? Are ~spatial-temporal signatures

significant in coding some shapes? Can we combine these waves

algorithmically embedding in

~proactive adaptive systems?

Page 49: CNN Technology for Brain-like Spatial-temporal Sensory Computing –Present and Future ISCAS-2004 Plenary Lecture Vancouver, May 2004 Tamás ROSKA Pázmány

Five bio-inspired algorithmic wave computing principles:

    the twin wave principle     the push-pull principle   the multi-channel (e.g.color) opponent

principle (center channel – surround channel)    the programmable first action (proactive)

principle  the detection by emerging dynamics

principle

Page 50: CNN Technology for Brain-like Spatial-temporal Sensory Computing –Present and Future ISCAS-2004 Plenary Lecture Vancouver, May 2004 Tamás ROSKA Pázmány

Twin wave principle illustration

Inhibition wave(large lateral inhibition)

Excitation wave(small lateral excitation)

Combination

ContoursConcave curves from the bottom

(sad mouth)

All sad

No,He is laughing!

Page 51: CNN Technology for Brain-like Spatial-temporal Sensory Computing –Present and Future ISCAS-2004 Plenary Lecture Vancouver, May 2004 Tamás ROSKA Pázmány

Original image

CNN initial state

(a patch in the spiral-wave region)

CNN input

( noisy, compressed original image )

Example: Contour Detection of a Spiral-wave

Page 52: CNN Technology for Brain-like Spatial-temporal Sensory Computing –Present and Future ISCAS-2004 Plenary Lecture Vancouver, May 2004 Tamás ROSKA Pázmány

Case 1: pixel-wise adaptation

Strategies to Control a Trigger-wave - I.

A B

b b b

b b b

b b b

z t

0 25 0 25 0 25

0 25 3 0 25

0 25 0 25 0 25

2 1 2

1 0 1

2 1 2

. . .

. .

. . .

, , ( )

z and B

3 75

0 0 0

0 2 5 0

0 0 0

. .

Page 53: CNN Technology for Brain-like Spatial-temporal Sensory Computing –Present and Future ISCAS-2004 Plenary Lecture Vancouver, May 2004 Tamás ROSKA Pázmány

Strategies to Control a Trigger-wave - II.

Case 2: adaptation through an optimal reconstruction filter + bias control

t

z

3.75

-3.75

2.25

-2.25

T1 T2 T3

Global propagation

Local propagation

when z

B

375

01 0 2 01

0 2 13 0 2

01 0 2 01

.

. . .

. . .

. . .

Page 54: CNN Technology for Brain-like Spatial-temporal Sensory Computing –Present and Future ISCAS-2004 Plenary Lecture Vancouver, May 2004 Tamás ROSKA Pázmány

Experiment:

Endocardial (inner) contour de-tection of the left ventricle from a sequence of echocardio-graphic images

Apical four-chamber view of the human heart

LV - left ventricle

LA - left atrium

RV - right ventricle

RA - right atrium

Motivation:

Feature extraction from echocardiographic images

Major importance for both quantitative and qualitative analysis of the heart function

LV

LA

RV

RA

Tracking Experiments in Echocardiography

Page 55: CNN Technology for Brain-like Spatial-temporal Sensory Computing –Present and Future ISCAS-2004 Plenary Lecture Vancouver, May 2004 Tamás ROSKA Pázmány

(k-1)-th frame k-th frame(k-1)-th result

k-th result

VIIt

)(0 IfIIIt

~30 sec/fr

~60 sec/fr

~160 sec/fr

~ 250 sec/fr

PDE formalism:CNN-UMchip results(ACE4K):

Active contour tracking based on trigger-waves

0IIIt

Page 56: CNN Technology for Brain-like Spatial-temporal Sensory Computing –Present and Future ISCAS-2004 Plenary Lecture Vancouver, May 2004 Tamás ROSKA Pázmány

6 Applications Very high frame rate real-time detection : ~

10-50 k frame per second Proactive, adaptive, topographic sensory

computing – with locally tuned sensors Very high computing power for complex,

wavetype algorithms: Tera OPS Very high number of targets and pattern

matching templates – immune response inspired CNN algorithms

Embedded semantics - handwriting (geometrical features)- multimodal (vision and tactile)

Page 57: CNN Technology for Brain-like Spatial-temporal Sensory Computing –Present and Future ISCAS-2004 Plenary Lecture Vancouver, May 2004 Tamás ROSKA Pázmány

Virtual action closing a hole I

StarflexR septal occluder 3D modellje

Page 58: CNN Technology for Brain-like Spatial-temporal Sensory Computing –Present and Future ISCAS-2004 Plenary Lecture Vancouver, May 2004 Tamás ROSKA Pázmány

Virtual action closing a hole II

AmplatzerR septal occluder 3D modellje

Page 59: CNN Technology for Brain-like Spatial-temporal Sensory Computing –Present and Future ISCAS-2004 Plenary Lecture Vancouver, May 2004 Tamás ROSKA Pázmány

Virtual action closing a hole III.

Virtualis ASD zárás AmplatzerR septal

occluderrel

Interventional closing

Page 60: CNN Technology for Brain-like Spatial-temporal Sensory Computing –Present and Future ISCAS-2004 Plenary Lecture Vancouver, May 2004 Tamás ROSKA Pázmány

Virtual action closing a hole IV.

Virtualis ASD zárás AmplatzerR septal occluderrel

Interventional Closing in 3D

Page 61: CNN Technology for Brain-like Spatial-temporal Sensory Computing –Present and Future ISCAS-2004 Plenary Lecture Vancouver, May 2004 Tamás ROSKA Pázmány

7 Towards Nanotechnology

Starting from nano-friendly device modesl

Evolutionary and revolutionary Nanotechnology (>100 nm)

Integrating sensing and computing CNN and Crossnet /CMOL technologies

Page 62: CNN Technology for Brain-like Spatial-temporal Sensory Computing –Present and Future ISCAS-2004 Plenary Lecture Vancouver, May 2004 Tamás ROSKA Pázmány

Cellular Wave Computer Chipwith 1000x1000 processors

Integrated sensing - computing Cellular Integrated sensing - computing Cellular Nano ArchitectureNano Architecture

multiple sensor array

Projected capability:10 PetaOps speed100,000 frame/sec

Enabling technology for•Ultra high speed multiple target detection•Fusion reactor control•Intelligent surveillance

nano antenna

Page 63: CNN Technology for Brain-like Spatial-temporal Sensory Computing –Present and Future ISCAS-2004 Plenary Lecture Vancouver, May 2004 Tamás ROSKA Pázmány

Start from Nano-friendly devices:easy to implement and interconnect => CNN

Function-in-layout or non-transistor-based Analog signals and logic (e.g. CMOL/BiCWAS)I/O via radiation - add sensing arrays and optical tranceivers

Processing via Unconventional Processing via Unconventional Nano –friendly devices and Nano SystemsNano –friendly devices and Nano Systems

Page 64: CNN Technology for Brain-like Spatial-temporal Sensory Computing –Present and Future ISCAS-2004 Plenary Lecture Vancouver, May 2004 Tamás ROSKA Pázmány

Lithographically-Defined Nanoantennas

Dipole antenna with MOM diode, which functions at THz frequencies

Bowtie antenna with MOM diode, which operates in the visible

I. Wilke, W. Herrmann, F. K. Kneubuhl, “Integrated Nanostrip Dipole Antennas for Coherent 30 THz Infrared Radiation,” Appl. Phys. B 58(2), pp. 87-95 (1994).

C. Fumeaux, J. Alda, and G. D. Boreman, “Lithographic Antennas at Visible Frequencies,” Optics Lett. 24, 1629-1631 (1999).

Page 65: CNN Technology for Brain-like Spatial-temporal Sensory Computing –Present and Future ISCAS-2004 Plenary Lecture Vancouver, May 2004 Tamás ROSKA Pázmány

Detector Layout for 30 THz

Si

SiO2

SiO2

Antenna

1.5 μm

1.5 μm

100 nm1.5 μm

NiNiO

Ni

Ni

200 nm

35 Å

200 nm

a) small enough ?

b) sensitive enough ?

c) fast enough ?

d) sufficient spectral purity ?

e) dynamically controllable ?

YES

YES

YES

Limited yes (Bias)

Maybe20.2 W/cmNEP

Page 66: CNN Technology for Brain-like Spatial-temporal Sensory Computing –Present and Future ISCAS-2004 Plenary Lecture Vancouver, May 2004 Tamás ROSKA Pázmány

References

L.O.Chua and T. Roska, Cellular Neural Networks and Visual Computing, Cambridge Univesrity Press, Cambridge, 2002

T.Roska and Á.Rodríguez Vázquez, „Towards Visual Microprocessors”, Proc. IEEE, July, 2002

http://lab.analogic.sztaki.hu: Bibliography Special Issues:

– IEEE Trans. CAS-I, May 2004– Int.J. Bifurcation and Chaos, February, 2004– J. Circuits, Systems and Computers, Nos.4 and 6,

2003– Int.J.Circuit Theory and Applications, Nos. 1 and

2, 2002