14
Présentation à TERATEC 2008 – 3 Juin 2008 1 CNES involvement in simulation CNES involvement in simulation Ter@tec Ter@tec 2008 2008 By Stéphane Janichewski Associate Director General Director for Strategy, Programmes And International Relations Présentation à TERATEC 2008 – 3 Juin 2008 2 CNES Missions 2 CNES is a state-owned but independently-managed commercial and industrial organisation. It is responsible for shaping and implementing France’s Space policy to serve Europe. CNES is the French Space Agency in charge of Space programmes. Its technical centres in Toulouse, Evry and French Guiana cover all aspects of Space Technology and Techniques IJM3

CNES involvement in simulation Ter@tec 2008€¢ CARMEN environment for engine and sub system definition + transient and steady state functional simulation. • Dedicated tools for

Embed Size (px)

Citation preview

Présentation à TERATEC 2008 – 3 Juin 20081

CNES involvement in simulation CNES involvement in simulation Ter@tecTer@tec 20082008

By Stéphane JanichewskiAssociate Director GeneralDirector for Strategy, ProgrammesAnd International Relations

Présentation à TERATEC 2008 – 3 Juin 20082

CNES Missions

2

� CNES is a state-owned but independently-managed commercial and industrial organisation. It is respo nsible for shaping and implementing France’s Space policy to serve Europe.

�CNES is the French Space Agency in charge of Space programmes. Its technical centres in Toulouse, Evry and French Guiana cover all aspects of Space Technology and Techniques

IJM3

Diapositive 2

IJM3 ajout traducteur dans deuxième paragraphe, à valider ou faire modifier. Me contacter au besoin, Ian MIan; 26/05/2008

Présentation à TERATEC 2008 – 3 Juin 20083

CNES Missions

CNES contributes its overall vision and expertise i n Space systems to encourage innovation:

� by serving as a meeting-place between scientific an d technical laboratories on the one hand and manufact urers and service providers on the other

� by stimulating research and progress in science,technology and industry for the benefit of public a nd private Space activities

Présentation à TERATEC 2008 – 3 Juin 20084

CNES missions

CNES and its European partners

• CNES represents France in the European Space Agency (ESA )

• It leads a multinational programme as a complement to European programmes

• CNES follows the guidelines laid down by the French government for constructing European Space capability

• CNES and its European partners combine and coordinate the irefforts to provide support for contracting authoritie s

• CNES contributes to changes in European institutions andconstructs European Space capability

Présentation à TERATEC 2008 – 3 Juin 20085

CNES MissionsCNES and its international partners:

CNES undertakes bilateral or multilateral cooperati on with most European countries, either directly or jointly (direct bilateral cooperation or cooperation via ESA)

With the major Space nations: United States, Russia , Japan, India, China etc.

Via specific projects with several partners around the world:Israel, Thailand, Argentina, Algeria, Brazil, Korea , among others

Présentation à TERATEC 2008 – 3 Juin 20086

Ministry of Higher Education andResearch

National institutionsE S A

Defence MinistryDGA (French arms

procurement agency)

Scientificlaboratories Other Space

users

Organisation of the Space sector in France

CNES Missions

Présentation à TERATEC 2008 – 3 Juin 20087

IMPORTANCE OF SIMULATIONS IN CNES

3 main goals

1.To improve costs and delays (for instance by the reduction of the number of tests)

2.To improve the reliability and the performances of operational systems

3.To capitalize conception and expertise know-how

Présentation à TERATEC 2008 – 3 Juin 20088

SIMULATIONS REQUIREMENTSREGARDING SYSTEMS CONCEPTION AND VALIDATION

� To validate mathematical and digital models of phenomena and to implement them to understand and anticipate these phenomena.

� To conceive and validate operational procedures allowing the

operation of space systems (space and ground segment).

� To assist the conception of systems, components and equipments.

� To produce data (images, telemetry, …) of space systems test and

qualification, on-board equipments, on-board processors and data

processing ground facilities.

� To contribute to systems operators training.

Présentation à TERATEC 2008 – 3 Juin 20089

FIELDS ISSUES (1)

1. Launchers� To develop tools in each discipline, in particular in the very complex

propulsion domain� To integrate progressively these tools in a global simulation project

(MINOS)

Objective : To predict tests outcomes and reduce their numbers Examples of past achievements :

1) � 7 tests for Ariane 5 boosters� Only 2 tests for P80 (more advanced solid propulsion booster)

2) Deletion of one stage test for Ariane 5 ECA

Présentation à TERATEC 2008 – 3 Juin 200810

FIELDS ISSUES (2)

2- Orbital Systems

• To improve the efficiency of missions studies and conception, including systems, instruments, equipments and ground segments ;

• To develop knowledge in each expertise domain (for example : electromagnetics, structure mechanics, thermal engineering, trajectories, …) ;

3- Space Research

• To provide tools for those research which request simulation and computer high rated performances

Présentation à TERATEC 2008 – 3 Juin 200811

EXAMPLES

1. MINOS : Global Space Transportation Simulation

2. System engineering simulators

3. Antennae / satellites interactions models

4. Gaia : Astronomy data processing

Présentation à TERATEC 2008 – 3 Juin 2008

MINOS program:global space transportation simulation

Présentation à TERATEC 2008 – 3 Juin 200813

What is MINOS program ?

MINOS aims giving a global and efficient simulation capacity of a space transportation system, along all phases of its development

Future launcher preparation

Dynamic / aero Solid propulsion

PerformanceGuidance, navigation

Liquid propulsion

Structure, Thermal,Material

...

Ground activities

Launcher, material,database …

Launcher under developmentor improvment of existing launcher

Researchand

Technologyactivities

Modelling,validation

Présentation à TERATEC 2008 – 3 Juin 200814

What kind of tools ?

• Dedicated tools for each technical discipline

Integrated simulation environment with multidisciplinary optimisation (multi physics - multi scale)

• From global analysis (predevelopment) till very fine modelling (development, production phase)

CALCUL ECOULEMENT INTERNE PROPULSEUR SOLIDE (Z9A)

TRAJECTOIRE A5ES-ATV

CALCULS DE COMBUSTION MOTEUR VINCI

BOUCLE SYSTEME AVANT-PROJETS

DISPENSER GALILEO

CROSS-CHECKING

CARDAN HM7

Présentation à TERATEC 2008 – 3 Juin 200815

What kind of environment ?

• For dedicated tools, environment allows:� To give all tools available for any engineer, and secure technical experts analysis� To build easily and quickly a specific computation loop, e.g. for flight anomaly

treatment; to assure domain of validity of used loops and codes� To give access to databases (test results, material, thermodynamics,

manufacturing) and to capitalize know-how� To give aid to decision, using graphical comprehensive presentation

• For integrated environment, analysis is under progress due to diversity of loops and codes� Analysis of the market, by privileging open source solution� Adaptation of existing solution to specifics Minos needs� Participation to “pole of competitiveness” System@tic� Building of a common project with ONERA

Present evaluation concerns SALOME, ModeFrontier, ModelCenter and DAKOTA

• CNES computers resources

– Parallel Calculator at CST :12 IBM Power 4 processors, 28 Gb RAM.

– Local PC cluster for pre and post treatment : 4 Xeon processors 16 Gb RAM

– Evolution 2008 : increase RAM x 10 and increase by factor 6 the processor treatment capacity, in Linux cluster environment

Présentation à TERATEC 2008 – 3 Juin 200816

Examples: dedicated CFD tool CEDRE

• CEDRE : new CFD code– 3D, multi species, reactive code– Multi domain and multi solver

• Navier Stokes solver and thermal solver• Lagrangian and Eulerian solver

– Unstructured grids– Common development with ONERA and DGA– Introduction of models developed within R&T

activities– Partners: Onera, SNPE, Bertin– Applications :

Maillages

Aerothermodynamics: Pre X calculation

Jet noise

MPS : Ariane 5 solid rocket motor

Unsteady state

Présentation à TERATEC 2008 – 3 Juin 200817

Examples: Liquid Propulsion tools

• CARMEN environment for engine and sub system definition + transient and steady state functional simulation.

• Dedicated tools for components (turbopump, valve, thrust chamber, mechanical, …

VINCI engineVINCI engine

Russian inducerRussian inducer

Températures des ergols : OxT-01 (TPE_127), OxT-03 (TPE_128), FuT-02 (TPE_227) et FuT-04 (TPE_228)

293,3

293,4

293,5

293,6

293,7

293,8

293,9

294,0

294,1

0 500 1 000 1 500 2 000 2 500 3 000 3 500 4 000

temps (s)

Tem

péra

ture

(K)

TPE_127

TPE_128

TPE_227

TPE_228

Domaine de fonctionnement AVUM

27

28

29

30

31

32

33

27 28 29 30 31 32 33Pression entrée moteur Fu

Pre

ssio

n en

trée

mot

eur O

x

Qualification Box Technical specifications Resu Carins

SCHEMA FONCTIONNEL CYCLE MOTEURet TRANSITOIRES

DEVELOPPEMENT DE LA CAVITATION DANS UN INDUCTEUR

MOUVEMENT DES ERGOLS PASSIVATION ESCA

Présentation à TERATEC 2008 – 3 Juin 200818

5 10 15 20 25 30 35 40 45 50 55 60 65 7051

68

85

102

119

0,0E+00

1,0E+09

2,0E+09

3,0E+09

4,0E+09

5,0E+09

6,0E+09

7,0E+09

8,0E+09

9,0E+09

1,0E+10

Del

ta th

rust

PS

D (N

2/H

z)

fre qu enc y (Hz )

time (s )

GNC : RESTITUTIONSIMULATION DE VOL

V503

MODES DE FLEXION VEGA

EXPLOITATION ODP VOL EAP A5

RETOMBEES A5ES-ATV

Fdown

Fup

+∆P

-∆P

Ζ

Pressure

1st mode+∆P

Ζ

Pres.Fdown

Fup

Fluct.

+∆P

2nd mode

Fdown

Fup

+∆P

-∆P

Ζ

Pressure

3rd mode

SAUVEGARDE EN CHAMP PROCHE

Examples: System tools

AERODYNAMIQUE SIMPLIFIEE SOYOUZ

Présentation à TERATEC 2008 – 3 Juin 200819

2. SYSTEM ENGINEERING SIMULATOR

• Simulators are necessary in each phase of a dedicated project– Example : Presto (Proteus Platform Digital Simulator)

Use for :- Operational Ground Control segment procedures validation

during system tests- Command Control Operators training- Expertise for flight events analysis

ModèleEnvironnement

ModèleOrbite

Modèle calculateur

Emulateurprocesseur

Logiciel Vol

Modèlesnumériques

contrôle d’attitude et

d’orbite

ModèlesThermiques

ModèlesElectrique

Interface

Centre de

Contrôle

Noyau de Simulation

Base de données

ModèleCharge Utile

ConduiteDe tests

ModèleEnvironnement

ModèleOrbite

Modèle calculateur

Emulateurprocesseur

Logiciel Vol

Modèlesnumériques

contrôle d’attitude et

d’orbite

ModèlesThermiques

ModèlesElectrique

Interface

Centre de

Contrôle

Noyau de Simulation

Base de données

ModèleCharge Utile

ConduiteDe tests

Architecture PRESTO

Présentation à TERATEC 2008 – 3 Juin 200820

3. ANTENNAE – SATELLITES INTERACTION MODELS

• Objective : Prediction of antennae electromagnetic radiation perturbation

due to satellite structure ;

• Until the end of the 90's, only "asymptotic methods" were used ;

• New methods (MoM), associated with the use of high performance

Computer have led to solve these problems with a good level of accuracy

• Use of Cerfacs Electromagnetic Solver Codes

• N (Size of the matrix system) : N ~ (frequency)2

N ~ (satellite surface)

Présentation à TERATEC 2008 – 3 Juin 200821

Exemple d’application

• 1er exemple d’application (FMM)– N = 61 000 degrés de liberté

MoM-LUTemps CPU> 50 hMémoire >30 Go

MoM-FMMTemps CPU=15h 50 minMémoire=940 Mo

Présentation à TERATEC 2008 – 3 Juin 200822

Exemple d’application

Géométrie du satellite MICROSCOPESimulation des courants électriques crééssur le satellite par le rayonnement des antennes

• 2ème exemple d’application (FMM)

– N = 68 000 degrés de liberté

MoM-FMMTemps CPU=16h 25 minMémoire=1200 Mo

Présentation à TERATEC 2008 – 3 Juin 200823

4- GAIA

• CNES in charge of the data processing Center of Gaïa Scientific ESA satellites.

• Gaia will map our galaxy in 3D, with an assessment of earth-stars distance and relative speed. It will also discover and register billions of unknown objects, with a good accuracy (7 to 300 µ arc / s for the position, speed accuracy, speed accuracy of 2 to 10 Km/s, spectral measurement).

• In 2012, data processing will request 6 Teraflops.

• Beyond 2017, all measures will be reprocessed : need of 30 Teraflops

• 1 Peta octets of Data will be required.

Présentation à TERATEC 2008 – 3 Juin 200824

WAY AHEAD (1)

• Situation as of today

– All simulation applications do not require emphasized computer performances

– The fields requiring significative performance are emerging : Models based on detailed networks, requiring a lot of measurements or numerous iterations (e.g. meteo forecasts, thermo elastic structural engineering models)

– Requirements for each application : hundreds of G Flops and Tera octets

– Consistent with existing means

• Cluster IBM AIX/Power (5 units) (48 processors, 224 G Octets, 364 Flops)

• 2 clusters Linus/X 86 -64 (49 units in Toulouse, 4 units in Evry) (172 processors, 716 G octets, 928 G Flops)

• Use of CERFACS expertise to optimize and parallelize codes

Présentation à TERATEC 2008 – 3 Juin 200825

WAY AHEAD (2)

• Situation in the future

– Requirement for enhanced simulation and data processing tools• Tens of Teraflops

• Several Peta octets

– CNES is interested by Teratec initiative in this context and would like to follow with attention its promising development