20
CNES activities in LEO DTE G. Artaud, J-L. Issler 1 "OLEODL-Workshop" at DLR-IKN on 10th Nov. 2016

CNES activities in LEO DTE - DLR Portal · L. Canuet, N. Védrenne, J-M Conan, G. Artaud, A. Rissons, and J. Lacan, “EVALUATION OF COMMUNICATION PERFORMANCE FOR ADAPTIVE OPTICS

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: CNES activities in LEO DTE - DLR Portal · L. Canuet, N. Védrenne, J-M Conan, G. Artaud, A. Rissons, and J. Lacan, “EVALUATION OF COMMUNICATION PERFORMANCE FOR ADAPTIVE OPTICS

CNES activities in LEO DTE

G. Artaud, J-L. Issler

1

"OLEODL-Workshop" at DLR-IKN on 10th Nov. 2016

Page 2: CNES activities in LEO DTE - DLR Portal · L. Canuet, N. Védrenne, J-M Conan, G. Artaud, A. Rissons, and J. Lacan, “EVALUATION OF COMMUNICATION PERFORMANCE FOR ADAPTIVE OPTICS

LEO DTE SCENARIO

2

� « Low complexity » scenario: � up to 10Gbps � Target: nanosat and microsat� Simple implementation: amplitude modulation, receiver with APD

� « High data rate » scenario:� High throughput 10 to 100Gbps� Target: very high demanding earth observation satellites� Provide more throughput than RF � More complex architecture

Page 3: CNES activities in LEO DTE - DLR Portal · L. Canuet, N. Védrenne, J-M Conan, G. Artaud, A. Rissons, and J. Lacan, “EVALUATION OF COMMUNICATION PERFORMANCE FOR ADAPTIVE OPTICS

Atmospheric effects on optical links

FSO links significantly impaired by atmospheric effects:

� Atmospheric absorption & clouds/aerosol attenuation» Study and PhD on that subject» Goal is to obtain variability of absorption in function of elevation

cause by semi transparent clouds and various aerosols

� At large scale: Clouds» Availability increased through site diversity» Ground network optimized using cloudiness experimental datasets

� At small scale: Atmospheric turbulence» Provision in link and pointing budgets, mitigation through air interface» Assessment and optimization using the TURANDOT simulator» Turbulence measurement on stars and satellite laser link» mitigation technique: Adaptive Optics

Turbulence

Page 4: CNES activities in LEO DTE - DLR Portal · L. Canuet, N. Védrenne, J-M Conan, G. Artaud, A. Rissons, and J. Lacan, “EVALUATION OF COMMUNICATION PERFORMANCE FOR ADAPTIVE OPTICS

Ground Network planification Tool

4

� Developped with meteo France� Use of SATMOS data (MSG)� Cloud type every 15mn, pixel 4km x 4km� Europe and north Africa

� GEO and LEO� Genetic algorithm� select the best N locations

� Example with GEO satellite, Europe area, 3 years of data :

Cloud typemean cloud coverage

using surounding pixels

Nb Stations Availability

3 95.859

4 97.845

5 98.818

7 99.435

10 99.788

Page 5: CNES activities in LEO DTE - DLR Portal · L. Canuet, N. Védrenne, J-M Conan, G. Artaud, A. Rissons, and J. Lacan, “EVALUATION OF COMMUNICATION PERFORMANCE FOR ADAPTIVE OPTICS

Turbulences

5

� Simulation tool: TURANDOT� From PILOT scientific software developed at ONERA/DOTA (“wave optics”)� engineering tool for turbulence simulation (main output: Far Field Patterns)

� Experimental measurements

Free atmosphere

Boundary layer

HV 5/7

Provided by ONERA: DOTA-SIMCOP-NTE-0004

Page 6: CNES activities in LEO DTE - DLR Portal · L. Canuet, N. Védrenne, J-M Conan, G. Artaud, A. Rissons, and J. Lacan, “EVALUATION OF COMMUNICATION PERFORMANCE FOR ADAPTIVE OPTICS

Emission/ reception scenario study

6

� For a given propagation channel and link budget at 20°� Comparison of architectures:� OOK – receiver APD; Rx telescope 50cm� OOK – receiver single mode preamplifier + PIN (using AO) ; Rx telescope 25cm� DPSK - receiver single mode preamplifier + PIN (using AO) ; Rx telescope 25cm

� received power from simulations (link budget, propagation, AO, SMF coupling, EDFA,…)� BER curves in function of received power� Statistics on fading duration and interfading time

Received power

Coupled in SMF

Example of fadding statistics on 4sec with preamplified RZ-DPSK

From ALOES study conducted by ADS, TAS and ONERA

Page 7: CNES activities in LEO DTE - DLR Portal · L. Canuet, N. Védrenne, J-M Conan, G. Artaud, A. Rissons, and J. Lacan, “EVALUATION OF COMMUNICATION PERFORMANCE FOR ADAPTIVE OPTICS

Physical layer study

7

� Development of a simulator :� Simulate optical emission and reception � apply propagation time series� Evaluate FEC using mutual information theory� Test interlievers

� PhD : study of balance between OA , interleavers, FEC at physical layer and FEC at higher layer

L. Canuet, N. Védrenne, J-M Conan, G. Artaud, A. Rissons, and J. Lacan, “EVALUATION OF COMMUNICATION PERFORMANCE FOR ADAPTIVE

OPTICS CORRECTED GEO-TO-GROUND LASER LINKS”, ICSO2016

Page 8: CNES activities in LEO DTE - DLR Portal · L. Canuet, N. Védrenne, J-M Conan, G. Artaud, A. Rissons, and J. Lacan, “EVALUATION OF COMMUNICATION PERFORMANCE FOR ADAPTIVE OPTICS

10W amplifier prototype

8

� Developement of a prototype of a 10W optical amplifier in C band� Conducted by CILAS and IXBLUE� Space environment qualification tests (radiation, vibrations, thermal cycling, …)� Defined for data transmission and for fondamental science� Planning� CDR: 12/2016� End of functional tests: 01/2018� End of qualification: 10/2018

� Specifications:� Wavelength: range 1545 nm - 1565 nm� Input power: ∼10 mW� Output power : ≥10 W � Noise factor : ≤ 7 dB� Gain flatness in the band 1545 nm – 1565 nm : ≤1dB� Polarisation : PER > 20dB� Single mode: gaussian beam� Efficiency: ≥ 12%� Life time: 10 years

Page 9: CNES activities in LEO DTE - DLR Portal · L. Canuet, N. Védrenne, J-M Conan, G. Artaud, A. Rissons, and J. Lacan, “EVALUATION OF COMMUNICATION PERFORMANCE FOR ADAPTIVE OPTICS

Optical telecommunication demonstration between �SOTA optical terminal onboard SOCRATES microsatellite�MeO Optical Ground Station at OCA

Objectives�Study of Propagation channel�Link budget�Design of an OGS

Collaboration�NICT�CNES�OCA�ONERA�ADS &TAS�New: NASA with OPALS

DOMINO ProjectDemonstrator for direct Optical transMission at hIgh data rate iN Orbit

9

Page 10: CNES activities in LEO DTE - DLR Portal · L. Canuet, N. Védrenne, J-M Conan, G. Artaud, A. Rissons, and J. Lacan, “EVALUATION OF COMMUNICATION PERFORMANCE FOR ADAPTIVE OPTICS

DOMINOOGS Architecture

Downlink

Receiver Bench

TF Labo Focus LaboratoryControl

Dome

Tra

nsm

itte

r

Optical Turbulence Monitoring

ODISSEE

WFS

M4

NTP

Serveur

H-Maser

1.54 m

Telescope

Re

ceiv

er

195 mm

Telescope

Laser

10

Page 11: CNES activities in LEO DTE - DLR Portal · L. Canuet, N. Védrenne, J-M Conan, G. Artaud, A. Rissons, and J. Lacan, “EVALUATION OF COMMUNICATION PERFORMANCE FOR ADAPTIVE OPTICS

Downlink

Receiver Bench

TF Labo Focus LaboratoryControl

Dome

Tra

nsm

itte

r

Optical Turbulence Monitoring

ODISSEE

WFS

M4

NTP

Serveur

H-Maser

1.54 m

Telescope

Re

ceiv

er

195 mm

Telescope

Laser

11

DOMINO OGS Architecture1550nm Nasmyth

Page 12: CNES activities in LEO DTE - DLR Portal · L. Canuet, N. Védrenne, J-M Conan, G. Artaud, A. Rissons, and J. Lacan, “EVALUATION OF COMMUNICATION PERFORMANCE FOR ADAPTIVE OPTICS

DOMINO OGS Architecture976nm ODISSEE

Downlink

Receiver Bench

TF Labo Focus LaboratoryControl

Dome

Tra

nsm

itte

r

Optical Turbulence Monitoring

ODISSEE

WFS

M450%/50%

NTP

Serveur

H-Maser

1.54 m

Telescope

Re

ceiv

er

195 mm

Telescope

Laser

12

Page 13: CNES activities in LEO DTE - DLR Portal · L. Canuet, N. Védrenne, J-M Conan, G. Artaud, A. Rissons, and J. Lacan, “EVALUATION OF COMMUNICATION PERFORMANCE FOR ADAPTIVE OPTICS

Nasmyth bench anduplink 195 mm Telescope

13

Page 14: CNES activities in LEO DTE - DLR Portal · L. Canuet, N. Védrenne, J-M Conan, G. Artaud, A. Rissons, and J. Lacan, “EVALUATION OF COMMUNICATION PERFORMANCE FOR ADAPTIVE OPTICS

Power fluctuation

14

47 sec (21.0°->28,8°)

1549 nm laser

171 sec (11,6°->45,4°)

172 sec (9,2°->34,5°)

976 nm laser

253 sec (6,2°->48,8°)

90 sec (35°->65,5°)

Page 15: CNES activities in LEO DTE - DLR Portal · L. Canuet, N. Védrenne, J-M Conan, G. Artaud, A. Rissons, and J. Lacan, “EVALUATION OF COMMUNICATION PERFORMANCE FOR ADAPTIVE OPTICS

Atmospheric Turbulence Analysis using ODISSEE AO bench

• Took opportunity of already existing AO bench• AO bench working on telescope full pupil

(1.5 m ! 25<D/ r0 <36 @500nm)

• AO bench not designed for telecommunication applications(satellite imaging, concepts/components validation)

Wavefront sensor: E2V EMCCD220 OCAM² Firstlight Imaging8x8 square subaperturesShannon/2 sampling @ 600 nm1500 Hz

PCO imaging camera (100Hz)

10x10 piezo

stacked deformable

mirror (CILAS)

10kHz bandwidth

TT mirror

Control:

- 1.45kHz sampling frequency,

- 3.3 frame delay

- Straightforward WFS slopes

computation and DM control

Page 16: CNES activities in LEO DTE - DLR Portal · L. Canuet, N. Védrenne, J-M Conan, G. Artaud, A. Rissons, and J. Lacan, “EVALUATION OF COMMUNICATION PERFORMANCE FOR ADAPTIVE OPTICS

SH-WFS data analysis and propagation channel caracterisation

16

Measurement of the turbulent parameters during the pass ( 21 July)

Fried Parameter Scintillation index

Turbulence profile estimation based on WFS slopes and intensities

Page 17: CNES activities in LEO DTE - DLR Portal · L. Canuet, N. Védrenne, J-M Conan, G. Artaud, A. Rissons, and J. Lacan, “EVALUATION OF COMMUNICATION PERFORMANCE FOR ADAPTIVE OPTICS

AO results: AO correction

Without AO with AO

short exposure images (each normalized to 1)Without AO with AO

?

(each normalized to 1)

Long exposure images (same scale)

Without AO with AO

x45

Page 18: CNES activities in LEO DTE - DLR Portal · L. Canuet, N. Védrenne, J-M Conan, G. Artaud, A. Rissons, and J. Lacan, “EVALUATION OF COMMUNICATION PERFORMANCE FOR ADAPTIVE OPTICS

Preliminary results of coupling into a SMF (SOTA, 10/21/2015)K. Saab Phd Thesis

Close loop (SOTA)

Simultaneous acquisition of PSF and output of SMF to consolidate injection efficiency models

Close loop (SOTA)Open loop (SOTA) Internal close loop PSF

• Open loop: pointing residual => PSF out of FOV

• Close loop: injection into SMF

Theoretical coupling efficiency : 4,1 %, measured: 2,1%

Poor coupling efficiency: turbulence residuals (r0 ~ 7 cm @ 976 nm)

To improve the coupling efficiency the Telescope diameter shall be reduced

Page 19: CNES activities in LEO DTE - DLR Portal · L. Canuet, N. Védrenne, J-M Conan, G. Artaud, A. Rissons, and J. Lacan, “EVALUATION OF COMMUNICATION PERFORMANCE FOR ADAPTIVE OPTICS

LISA AO bench at 1550 nm 40 cm pupil Nasmyth

• A new small adaptive optics bench (30 x 60 cm wide) has been developed and integrated by ONERA, at the nasmyth of MeO

• As for ODISSEE, the usefull aperture at the telescope level has been reduced to 40 cm to be representative of laser communication systems.

• The wave front sensor runs at 2.2kHz and the deformable mirror has 97 actuators.

19

Page 20: CNES activities in LEO DTE - DLR Portal · L. Canuet, N. Védrenne, J-M Conan, G. Artaud, A. Rissons, and J. Lacan, “EVALUATION OF COMMUNICATION PERFORMANCE FOR ADAPTIVE OPTICS

CONCLUSION

• Overview of CNES activities in the domain of LEO DTE

• Field measurements are needed in order to improve our knowledge onFree space optical communications between space and Earth

• The few links that have been successfully established with SOTAprovide valuable insight on link budget and the contributions ofpointing and atmospheric turbulences

• Having access to a laser link from a satellite enables to assessperformances of techniques such as adaptive optics in the conditionsof the future system

• More experimental links need to be performed in order to obtain morevariability on the transmission conditions and be finally able to sizefuture operational laser communication systems for space to ground

20