42
CMP-MIC 2006 Modeling Wafer Surface Damage Caused During CMP Terry A. Ring , Paul Feeney, Jaishankar Kasthurirangan, Shoutian Li, David Boldridge, James Dirksen Chemical Engineering Department 50 S. Central Campus Drive, MEB3 University of Utah Salt Lake City, UT 84112 www.che.utah.edu/~ring Cabot Microelectronics Corporation and 870 Commons Drive Aurora, IL 60504

CMP-MIC 2006 Modeling Wafer Surface Damage Caused During CMP Terry A. Ring ◊, Paul Feeney, Jaishankar Kasthurirangan, Shoutian Li, David Boldridge, James

Embed Size (px)

Citation preview

CMP-MIC 2006

Modeling Wafer Surface Damage Caused During CMP

Terry A. Ring◊, Paul Feeney, Jaishankar Kasthurirangan, Shoutian Li, David Boldridge,

James Dirksen

◊Chemical Engineering Department50 S. Central Campus Drive, MEB3290University of UtahSalt Lake City, UT 84112www.che.utah.edu/~ring

Cabot Microelectronics Corporation and

870 Commons DriveAurora, IL 60504

CMP-MIC 2006

Overview

• Description of Surface Damage– Fracture Mechanics

• Description of Surface Damage Experiments• Description of Surface Damage Model

– Two Simultaneous Population Balances• Under Wafer Impurity Particles• Surface Damage

• Comparison of Model with Experiments• Conclusions

CMP-MIC 2006

CL

CR

Plastic DamageBrittle Damage

Surface Damage•Indenter = Hard Impurity Particle

•Indenter Forced Into Surface•Indenter Dragged Across Surface

Plastic Deformation (Plow) Brittle Fracture gives Flakes

CMP-MIC 2006

Surface Damage

• ILD (PETEOS)• Failure by Brittle

Fracture

5 104

0.0010

50

100

150

200

250Borosilicate Glass

Elongation (or Strain)

Str

ess

(MP

a)

CMP-MIC 2006

Surface Damage

• Copper• Plastic Deformation

0 0 .1 0 .2 0 .3 0 .4 0 .5 0 .60

50

100

150

200

250Co p p er

E longa tion (o r Str ain)

Str

ess

(M

Pa

)

CMP-MIC 2006

Surface Damage

• Copper• Plastic Deformation

0 0 .1 0 .2 0 .3 0 .4 0 .5 0 .60

50

100

150

200

250Co p p er

E longa tion (o r Str ain)

Str

ess

(M

Pa

)

Dp=1-2 micron

CMP-MIC 2006

Experiments

• Copper CMP – Copper Slurry

• Fumed SiO2 Abrasive

– Same Copper Slurry• With 0.07% wgt

• 1.1 m -Al2O3 particles

• ILD CMP– Copper Slurry

• Fumed SiO2 Abrasive

– Same Copper Slurry• With 0.07% wgt

• 1.1 m -Al2O3 particles

100 mm Blanket Wafers, 60 s polishing on a Logitech CDP polisher (Logitech Ltd., Glasgow, UK) with an A110 pad with CMC standard concentric grooving (30 mils x 10 mils x 80 mils)

0

2

4

6

8

10

12

14

16

0.1 1 10

Particle Dia. (micro-meter)

Dif

fere

nti

al N

um

ber

%

Series1

Series2

Series3

Series4

Series5

CMP-MIC 2006

Experimental Results – Candela Instruments

• PETEOS– Explosion of Brittle

Fractures

• Copper– Explosion of Surface Damage

• Plow Lines

• Rolling Indenter

1

10

100

1000

10000

100000

50 100 200 500 1000

Size (micron)

Nu

mb

er o

f S

crat

ches

SiO2-1 SiO2-2

1

10

100

1000

10000

100000

50 100 200 500 1000

Size (micron)

Nu

mb

er o

f S

crat

ches

Cu-1 Cu-2 Theory

CMP-MIC 2006

Surface Defects on Copper (AFM)

1

10

100

1000

10000

100000

0 20 40 60 80

Scratch Depth (nm)

Cu

mu

lati

ve N

um

ber

Base

Spiked

Depth of Defects

• AFM of Copper Surface Damage

δave=9.6 nm

δave=1.7 nm

?

CMP-MIC 2006

Model Equations-1

• 1) Surface Damage type=i; surface material=j,

• Population No./cm2

• Population Balance of Surface Damage

02_ )(

# dcm

N sTs

Removal Generation Uncovery

ts_i t d

dRRj

s_i t d

d kij

i

I

i

t

UR t

s

s=/i

Impurity Particles

CMP-MIC 2006

Surface Damage Results

• Evolution of the Initial Size Distribution of Scratches with time, RRo=-400 nm/s, UR=0, PR=0.

0.01 0.1 1 10 100 1 1030

0.001

0.002

0.003

0.004

0.005

Scratch size (nm)

Differen

tial N

um

ber D

istribution

i 10

i

102

0.01 0.1 1 10 100 1 1031 10

71 10

61 10

51 10

4

1 103

0.01

0.1

1

Time (s)

Num

ber o

f Scr

atch

es

Time

Total Number density of Scratches

CMP-MIC 2006

Add 0.2% Impurity Particles

RRo=-400 nm/s,UR= 0, PR = - 0.002*0.2*RRo. 20% of RR is mechanical 0.2% Impurity Particles

0.01 0.1 1 10 100 1 1030

0.001

0.002

0.003

0.004

0.005

Scratch size (nm)

Differen

tial N

um

ber D

istribution i 10

i

102

0.01 0.1 1 10 100 1 103

1 104

0.1

1

10

Time (s)

Num

ber o

f Scr

atch

es

Time

CMP-MIC 2006

Add Impurity Particlesi 10

i

102

0.01 0.1 1 10 100 1 103

1 104

1

10

100

Time (s)

Nu

mbe

r of

Scr

atch

es

i 10

i

102

0.01 0.1 1 10 100 1 103

1 104

0.1

1

10

Time (s)

Nu

mb

er o

f S

crat

ches

2% impurity particles

0.2% impurity particles

0% impurity particles

PR = (% I Particles) RRo(Fraction Mechanical Removal)RRo= -400 nm/s

CMP-MIC 2006

Uncover of Pores with Scratch Production

• Total Number of Scratches as a Function of Polishing Time, RRo= -400 nm/s, UR= -RRo commencing at 5 s and continuing until the 4,000 nm pores are uncovered, PR = - 0.02*0.2*RRo.

i 10

i

102

0.01 0.1 1 10 1001 1031 10

41 10

50.1

1

10

100

1 103

1 104

Time (s)

Num

ber o

f Scra

tches

w/o uncovery

w uncovery

s

s=/i

s

Pore

CMP-MIC 2006

Surface Damage Model Conclusions

• Dynamic Population Balance Model of Scratches has been developed– With simple models for RR, PR and UR– Results are Expected

• Starting with a large population of surface scratches

– Low PR results in decreased number of scratches

– High PR results in increased number of scratches

• Uncover of pores is a temporal problem

CMP-MIC 2006

Model Equations-2

• 2) Impurity Particle Population No./mL

• Under Wafer Impurity Particle Population Balance

0

),()( dststN IT

Dissolution Inflow Outflow Production Removal by Grooves

t I s t( )d

dD

s I s t( )d

d

I_in s t( )

I s t( )

s( ) I s t( ) 1 s( ) I s t( ) 0

CMP-MIC 2006

Impurity Particles• Production Rate (ILD only) • Removal Rate in

Grooves s( ) o s n

c

scn

s n

RRmech_BFtMd

dgap kv

0

ss3 s( ) I s t( )

d

c

KMT s( )

gap

c

Vrel

2 gap

re re1

2

501

1)(

dd

d

1 s( )

The collision frequency, αc, varies from 10-3 to 104 Hz

The particle removal frequency, β,

β values ranging from 14 Hz to 440 Hz.

Impurity Particle Rotation

Particle Mass Transfer

0 5 100

0.5

1

Size (micron)

Size

Sele

ctivi

ty

CMP-MIC 2006

Size of scratch debris particles (red line) versus the size of the

indenter causing the damage to the wafer surface (ILD).

12

Evans, A.G. and Marshall, D.B. Fundamentals of Friction and Wear of Materials, (ASM: 1980), p. 441

s

α(s)

0 0.5 1 1.5 20

0.5

1

1.5

2

Size of Indenter (micron)

Siz

e of

Scr

atch

Deb

ris

(mic

ron)

1/8 Results

Pointed Particle with 1/10th radius of curvature

Flake

n=1

CMP-MIC 2006

Flow in Grooves

Velocity Vectors for Flow of Slurry in Groove, Vrel= 1 m/s

Particle Trajectories for Flow of Slurry in Groove, Vrel= 1 m/s

CMP-MIC 2006

Solution for Impurity Particles

• Impurity Particle Population Balance

• Separation of Variables

• Solve for functions individually • Initial Condition

t I s t( )d

dD

L I s t( )d

d

I_in s t( )

I s t( )

s( ) I s t( ) 1 s( ) I s t( ) 0

I s t( ) t( ) s( )

I s t 0( )No

so

exps

so

CMP-MIC 2006

Solution for Impurity Particles

• Cases – Impurity Particle Equation– with particle dissolution– with particle generation– with particle removal

• Flow Types– Wafer Center – Dead (Stagnant) Zone

• Batch

– Wafer Periphery• Well mixed• Plug flow

CMP-MIC 2006

Impurity Particles - Stagnant Zone• Analytical Solutions• Stagnant Zone – dissolution + generation, n=0

• Stagnant Zone – dissolution + generation

• Stagnant Zone – dissolution + generation + Groove removal

I s t( )No

so

expo s n 1( ) so s D n s D

s so n 1( ) t

exps

so

I s t( )N o

s o

exp

o s n 1( ) s o d 50 atans

d 50

s o n 1( ) s D n 1( )

s s o n 1( ) t

exps

s o

I s t( )No

so

expD

so

c

t

exps

so

CMP-MIC 2006

Stagnant Zone – dissolution

Plot of impurity particle population with time for the conditions, n = 0, αc = 10-4 Hz, sc= 500 nm, D = 30

nm/s, No=1/mL, so=103nm. ηI_o(s) is given by the red

solid line, the population ηI(s,t) is given by all the other

lines with the dotted blue line for t = 0.1 τ, the dashed green line for t = 2 τ, the dot-dash magenta line for t = 4 τ, the dotted cyan line for t = 6 τ, the dotted brown line for t = 8 τ, the dashed black line for t = 10 τ, the dot-dash red line for t = 12 τ and the solid blue line for t = 14 τ where τ = 10 s. Scratch Debris Batch-2.mcd.

Impurity Particles

2000 4000 6000 8000 1 104

1

10

100

1 103

1 104

1 105

1 106

1 107

1 108

1 109

1 1010

1 1011

1 1012

1 1013

1 1014

1 1015

1 1016

Prime

Size of Impurity Particles (nm)

Impu

rity

Pop

ulat

ion

Den

sity

(#/

m^3

/m)

CMP-MIC 2006

Stagnant Zone – dissolution + generation

Plot of impurity particle population with time for the conditions, n = 2, αc = 10-2 Hz and 10-4 Hz, sc=500 nm, D =

30 nm/s, No=1/mL, so=103nm. ηI_o(s) is given by the red solid line, the population η I(s,t) is given by all the other

lines with the dotted blue line for t = 0.1 τ, the dashed green line for t = 2 τ, the dot-dash magenta line for t = 4 τ, the dotted cyan line for t = 6 τ, the dotted brown line for t = 8 τ, the dashed black line for t = 10 τ, the dot-dash red line for t = 12 τ and the solid blue line for t = 14 τ where τ = 10 s. Scratch Debris Batch-2.mcd.

s t

n

Dn 1( )

o so

Impurity Particles

2000 4000 6000 8000 1 104

1

10

100

1 103

1 104

1 105

1 106

1 107

1 108

1 109

1 1010

1 1011

1 1012

1 1013

1 1014

1 1015

1 1016

Size of Impurity Particles (nm)

Impu

rity

Popu

latio

n D

ensi

ty (#

/m^3

/m)

2000 4000 6000 8000 1 104

1

10

100

1 103

1 104

1 105

1 106

1 107

1 108

1 109

1 1010

1 1011

1 1012

1 1013

1 1014

1 1015

1 1016

Size of Impurity Particles (nm)

Impu

rity

Popu

latio

n D

ensi

ty (#

/m^3

/m)

αc = 0.0001 Hz αc = 0.01 Hz

CMP-MIC 2006

Stagnant Zone – dissolution + generation + groove removal

Plot of groove enhanced impurity particle population with time for the conditions, β = 1 Hz (A) and 10 Hz (B), d50= 1000 nm, n = 2, αc = 10-4 Hz, sc=500nm, D = 30 nm/s, No=1/mL, so=103nm. ηI_o(s) is given by the red solid

line, the population ηI(s,t) is given by all the other lines with the dotted blue line for t = 0.1 τ, the dashed green

line for t = 2 τ, the dot-dash magenta line for t = 4 τ, the dotted cyan line for t = 6 τ, the dotted brown line for t = 8 τ, the dashed black line for t = 10 τ, the dot-dash red line for t = 12 τ and the solid blue line for t = 14 τ where τ = 10 s. Scratch Debris Batch-2.mcd.

2000 4000 6000 8000 1 104

1

10

100

1 103

1 104

1 105

1 106

1 107

1 108

1 109

1 1010

1 1011

1 1012

1 1013

1 1014

1 1015

1 1016

Size of Impurity Particles (nm)

Impu

rity

Pop

ulat

ion

Den

sity

(#/

m^3

/m)

2000 4000 6000 8000 1 104

1

10

100

1 103

1 104

1 105

1 106

1 107

1 108

1 109

1 1010

1 1011

1 1012

1 1013

1 1014

1 1015

1 1016

Size of Impurity Particles (nm)

Impu

rity

Pop

ulat

ion

Den

sity

(#/

m^3

/m) =1 Hz =10 Hz

αc = 0.00001 Hz

CMP-MIC 2006

Conclusions-Impurity Particle Model

• When Impurity Particle Production Rate is Dominant– Explosion of Impurity Particles

• When Impurity Particle Removal Rate is Dominant– Decreasing Population of Under Wafer

Impurity Particles

CMP-MIC 2006

Apply to Several Types of Surface Damage

• ILD– Brittle Fracture

• Copper– Plastic Plow

– Rolling Indenter

• One Equation for Each type of Surface Damage

CMP-MIC 2006

Surface Damage

• Coupled to Impurity Population Balance

Removal Generation Uncovery

ts_i t d

dRRj

s_i t d

d kij

i

I

i

t

UR t

Surface Damage type=i; surface material=j,

ss=/i

CMP-MIC 2006

0 1 2 30

500

1000

1500

2000Copper Surface Damage Depth

Size of Particle Causing Damage (micron)

Dep

th o

f S

urfa

ce D

amag

e (n

m)

x 10 nm 20 nm 3000nm

0 1 2 30

100

200

300

400

500ILD Surface Damage Depth

Size of Particle Causing Damage (micron)

Dep

th o

f S

urfa

ce D

amag

e (n

m)

Scratch Depth

κκ

δ

δ

ss

Particle Pressed into Pad Asperity by Wafer Surface

CMP-MIC 2006

Rate of Surface Damage

FD is the fraction of particle collisions with the wafer surface that cause surface damage.

K.P_RC(s) is the particle collision rate with wafer surface due to particle rotation.

K.P_MT(s) is the particle collision rate with wafer surface due to particle mass transfer.

ILD Surface Damage (i=1)

Surface Damage Mechanism (j)

kij(s = δ/κi) κi Comment

Brittle Fracture Scratching FDK.P_MT(s) 0.1 Only valid for impurity particles above a certain size

Chatter Surface Damage FDK.P_RC(s)(1-(s/δgap)) >0.1 Impurity particles must be larger than the gap between wafer and pad

Copper Surface Damage (i=2)

Surface Damage Mechanism (j)

kij (s = δ/κi) κi Comment

Plastic plow surface deformation (line scratches)

FDK.P_MT(s) 0.54 Only valid for impurity particles between certain sizes, the size associated with the elastic limit and the plastic yield point

Rolling Indenter Particle Surface Damage

FDK.P_RC(s)(s/δgap) 0.54 Impurity particles must be larger on one axis than the gap between wafer and pad

CMP-MIC 2006

StagnantZone w/o Grooves

Stagnant Zone for Pad Without Grooves

A 10 100 1 10

31 10

41 10

101 1091 1081 1071 1061 1051 1041 1030.010.1

110

1001 10

31 1041 1051 1061 1071 1081 1091 10

101 10111 10121 10131 10141 10151 10161 10171 10181 10191 1020

Cu - Line Scratch

Size (nm)

Popu

latio

n of

Sur

face

Dam

age(

#/m

^3)

B 10 100 1 10

31 10

41 10

101 1091 1081 1071 1061 1051 1041 1030.010.1

110

1001 10

31 1041 1051 1061 1071 1081 1091 10

101 10111 10121 10131 10141 10151 10161 10171 10181 10191 1020

Cu - Rolling Particle Indenter

Size (nm)

Popu

latio

n of

Sur

face

Dam

age(

#/m

^3)

C 10 100 1 10

31 10

41 10

6

1 107

1 108

1 109

1 1010

1 1011

1 1012

1 1013

1 1014

1 1015

1 1016

1 1017

1 1018

1 1019

1 1020

BSG - Surface Damage

Size (nm)

Popu

latio

n of

Sur

face

Dam

age(

#/m

^3)

D

10 100 1 103

1 104

1

10

100

1 103

1 104

1 105

1 106

1 107

1 108

1 109

1 1010

1 1011

1 1012

1 1013

1 1014

1 1015

1 1016

Impurity Particles

Size (nm)

Po

pu

latio

n o

f Im

pu

rity

Par

ticle

s(#

/m^4

)

D 10 nm 9.896 10111

m4

CMP-MIC 2006

Stagnant Zone w Grooves

Stagnant Zone for Pad With Grooves

A10 100 1 10

31 10

41 10

101 1091 1081 1071 1061 1051 1041 1030.010.1

110

1001 10

31 1041 1051 1061 1071 1081 1091 10

101 10111 10121 10131 10141 10151 10161 10171 10181 10191 1020

Cu - L ine Scratch

Size (nm)

Popu

latio

n of

Sur

face

Dam

age(

#/m

^3)

B 10 100 1 10

31 10

41 10

101 1091 1081 1071 1061 1051 1041 1030.010.1

110

1001 10

31 1041 1051 1061 1071 1081 1091 10

101 10111 10121 10131 10141 10151 10161 10171 10181 10191 1020

Cu - Rolling Partic le Indenter

Size (nm)

Popu

latio

n of

Sur

face

Dam

age(

#/m

^3)

C 10 100 1 10

31 10

41 10

6

1 107

1 108

1 109

1 1010

1 1011

1 1012

1 1013

1 1014

1 1015

1 1016

1 1017

1 1018

1 1019

1 1020

BSG - Surface Damage

Size (nm)

Pop

ula

tion

of Sur

face

Dam

age(

#/m

^3)

D

10 100 1 103

1 104

1

10

100

1 103

1 104

1 105

1 106

1 107

1 108

1 109

1 1010

1 1011

1 1012

1 1013

1 1014

1 1015

1 1016

Impurity Particles

Size (nm)

Popu

latio

n of

Impu

rity

Parti

cles

(#/m

^4)

RRMech_BF0

t '0

x'o x'n x'3 D x' t'( )

d

d

CMP-MIC 2006

Peripheral (CSTR) w/o Grooves

Peripheral Zone for Pad Without Grooves and well-mixed flow

A10 100 1 10

31 10

41 10

101 1091 1081 1071 1061 1051 1041 1030.010.1

110

1001 10

31 1041 1051 1061 1071 1081 1091 10

101 10111 10121 10131 10141 10151 10161 10171 10181 10191 1020

Cu - Line Scratches

Size (nm)

Popu

latio

n of

Sur

face

Dam

age(

#/m

^3)

B10 100 1 10

31 10

41 10

101 1091 1081 1071 1061 1051 1041 1030.010.1

110

1001 10

31 1041 1051 1061 1071 1081 1091 10

101 10111 10121 10131 10141 10151 10161 10171 10181 10191 1020

Cu - Rolling Particle Indenter

Size (nm)

Popu

latio

n of

Sur

face

Dam

age(

#/m

^3)

C10 100 1 10

31 10

41 10

101 1091 1081 1071 1061 1051 1041 1030.010.1

110

1001 10

31 1041 1051 1061 1071 1081 1091 10

101 10111 10121 10131 10141 10151 10161 10171 10181 10191 1020

BSG - Surface Damage

Size (nm)

Popu

latio

n of

Sur

face

Dam

age(

#/m

^3)

D

1 0 1 0 0 1 1 03

1 1 04

1

1 0

1 0 0

1 1 03

1 1 04

1 1 05

1 1 06

1 1 07

1 1 08

1 1 09

1 1 010

1 1 011

1 1 012

1 1 013

1 1 014

1 1 015

1 1 016

Impurity Particles

Size (n m)

Po

pu

latio

n o

f Im

pu

rity

Par

ticle

s(#

/m^4

)

CMP-MIC 2006

Peripheral (CSTR) w Groove

Peripheral Zone for Pad With Grooves and well-mixed flow

A10 100 1 10

31 10

41 10

101 1091 1081 1071 1061 1051 1041 1030.010.1

110

1001 10

31 1041 1051 1061 1071 1081 1091 10

101 10111 10121 10131 10141 10151 10161 10171 10181 10191 1020

Cu - Line Scratches

Size (nm)

Popu

latio

n of

Sur

face

Dam

age(

#/m

^3)

B10 100 1 10

31 10

41 10

101 1091 1081 1071 1061 1051 1041 1030.010.1

110

1001 10

31 1041 1051 1061 1071 1081 1091 10

101 10111 10121 10131 10141 10151 10161 10171 10181 10191 1020

Cu - Rolling Particle Indenter

Size (nm)

Popu

latio

n of

Sur

face

Dam

age(

#/m

^3)

C10 100 1 10

31 10

41 10

101 1091 1081 1071 1061 1051 1041 1030.010.1

110

1001 10

31 1041 1051 1061 1071 1081 1091 10

101 10111 10121 10131 10141 10151 10161 10171 10181 10191 1020

BSG - Surface Damage

Size (nm)

Popu

latio

n of

Sur

face

Dam

age(

#/m

^3)

D

1 0 1 0 0 1 1 03

1 1 04

1

1 0

1 0 0

1 1 03

1 1 04

1 1 05

1 1 06

1 1 07

1 1 08

1 1 09

1 1 010

1 1 011

1 1 012

1 1 013

1 1 014

1 1 015

1 1 016

Impurity Particles

Size (n m)

Po

pu

latio

n o

f Im

pu

rity

Par

ticle

s(#

/m^4

)

RRMech _ BF0

t'0

x'o x'n x'3 D x' t'( )

d

d

CMP-MIC 2006

Model Comparison

• Measure the number, types and location of surface defects on a wafer polished under a given set of CMP operating conditions – Standard Slurry

– Spiked with Impurity Particles

1

10

100

1000

10000

100000

50 100 200 500 1000

Size (micron)

Nu

mb

er o

f S

crat

ches

Cu-1 Cu-2 Theory

CMP-MIC 2006

Conclusions• Surface Damage Mechanisms

– Copper Plastic Deformation• Line Scratch & Rolling Indenter

– ILD Brittle Fracture• Chatter Scratch & Brittle Fracture

• Model Gives Size Distribution of Defects as it Changes with Polish Time

• Slightly More Scratching in Stagnant Zone (Wafer Center)• When there is an excess of debris production compared to

debris removal by either washout or removal in the pad grooves, the impurity particles will build up and cause surface damage

CMP-MIC 2006

Extra Slides

CMP-MIC 2006

Die Yield

• N = No. metal layers• n = No. metal CMP )perations• m = No. ILD CMP Operations• o = No. Barrier CMP Operations

• Pi = Probability of die failure due to CMP o

Barrierm

ILD

N

i

nCu PPPYield )1()1()1(

CMP-MIC 2006

Surface Damage at Wafer Rim• Scratching in Wafer Rim

• Production Rate (BSG only)

s( ) o s nc

scn

s n

c

Vrel

2 gap

re re1 Impurity Particle

Rotation

Across Gap

x = Rw - r

CMP-MIC 2006

Wafer Rim has more Surface Damage

0 50 10010

0

10

20

30Copper Line Scratches

Wafer Radius (mm)

Loc

al P

opul

atio

n - A

vera

ge P

opul

atio

n

Rim Center

CMP-MIC 2006

Model Equations

• Impurity Particle Population No./mL• Under Wafer Impurity Particle Population Balance

• Surface Damage type=i; surface material=j, • Population No./cm2

• Population Balance of Surface Damage

0

),()( dststN IT

Dissolution Inflow Outflow Production Removal by Grooves

02_ )(

# dcm

N sTs

Removal Generation Uncovery

ts_i t d

dRRj

s_i t d

d kij

i

I

i

t

UR t

t I s t( )d

dD

s I s t( )d

d

I_in s t( )

I s t( )

s( ) I s t( ) 1 s( ) I s t( ) 0

s

s=/i

CMP-MIC 2006

Increase Generation RateStagnant Zone – dissolution + generation + groove removal

Plot of groove enhanced impurity particle population with time for the conditions, β = 1 Hz (A) and 10 Hz (B), d50= 1000 nm, n = 2, αc = 10-2 Hz, sc=500nm, D = 30 nm/s, No=1/mL, so=103nm. ηI_o(s) is given by the red solid

line, the population ηI(s,t) is given by all the other lines with the dotted blue line for t = 0.1 τ, the dashed green

line for t = 2 τ, the dot-dash magenta line for t = 4 τ, the dotted cyan line for t = 6 τ, the dotted brown line for t = 8 τ, the dashed black line for t = 10 τ, the dot-dash red line for t = 12 τ and the solid blue line for t = 14 τ where τ = 10 s. Scratch Debris Batch-2.mcd.

s t root o s n 1( ) so d50 atans

d50

so n 1( )( ) s D n 1( )

s

=1 Hz =10 Hz

2000 4000 6000 8000 1 104

1

10

100

1 103

1 104

1 105

1 106

1 107

1 108

1 109

1 1010

1 1011

1 1012

1 1013

1 1014

1 1015

1 1016

Size of Impurity Particles (nm)

Impu

rity

Pop

ulat

ion

Den

sity

(#/

m^3

/m)

2000 4000 6000 8000 1 104

1

10

100

1 103

1 104

1 105

1 106

1 107

1 108

1 109

1 1010

1 1011

1 1012

1 1013

1 1014

1 1015

1 1016

Size of Impurity Particles (nm)Im

puri

ty P

opul

atio

n D

ensi

ty (

#/m

^3/m

)

αc = 0.01 Hz