54
EE141 1 ESD II A.A. 08/09 CMOS logic CMOS logic

CMOS logic - unirc.it

  • Upload
    others

  • View
    13

  • Download
    0

Embed Size (px)

Citation preview

EE1411

ESD II A.A. 08/09

CMOS logicCMOS logic

EE1412

ESD II A.A. 08/09

Properties of CMOS Gates SnapshotProperties of CMOS Gates SnapshotHigh noise margins:

VOH and VOL are at VDD and GND, respectively.

No static power consumption:There never exists a direct path between VDD and VSS (GND) in steady-state mode.

Comparable rise and fall times:(under appropriate sizing conditions)

Extremely high input resistance:nearly zero steady-state input current.

Always a path to Vdd or Gnd in steady state:low output impedance.

EE1413

ESD II A.A. 08/09

Static CMOS CircuitStatic CMOS Circuit

- At every point in time (except during the switching transients) each gate output is connected to eitherVDD or Vss via a low-resistive path.

- The outputs of the gates assume at all times the value of the Boolean function, implemented by the circuit (ignoring, once again, the transient effects during switching periods).

- This is in contrast to the dynamic circuit class, which relies on temporary storage of signal values on the capacitance of high impedance circuit nodes.

EE1414

ESD II A.A. 08/09

Static Complementary CMOSStatic Complementary CMOS

VDD

F(In1,In2,…InN)

In1In2

InN

In1In2InN

PUN

PDN

PMOS only

NMOS only

PUN and PDN are dual logic networks

……

EE1415

ESD II A.A. 08/09

Threshold DropsThreshold DropsVDD

VDD → 0PDN

0 → VDD

CL

CL

PUN

VDD

0 → VDD - VTn

CL

VDD

VDD

VDD → |VTp|

CL

S

D S

D

VGS

S

SD

D

VGS

EE1416

ESD II A.A. 08/09

NMOS Transistors NMOS Transistors in Series/Parallel Connectionin Series/Parallel Connection

Transistors can be thought as a switch controlled by its gate signal

NMOS switch closes when switch control input is high

X Y

A B

Y = X if A and B

X Y

A

B Y = X if A OR B

NMOS Transistors pass a “strong” 0 but a “weak” 1

EE1417

ESD II A.A. 08/09

PMOS Transistors PMOS Transistors in Series/Parallel Connectionin Series/Parallel Connection

X Y

A B

Y = X if A AND B = A + B

X Y

A

B Y = X if A OR B = AB

PMOS Transistors pass a “strong” 1 but a “weak” 0

PMOS switch closes when switch control input is low

EE1418

ESD II A.A. 08/09

Complementary CMOS Logic StyleComplementary CMOS Logic Style

EE1419

ESD II A.A. 08/09

Example Gate: NANDExample Gate: NAND

EE14110

ESD II A.A. 08/09

Example Gate: NORExample Gate: NOR

EE14111

ESD II A.A. 08/09

Two-input CMOS NOR gate and reference inverter

EE14112

ESD II A.A. 08/09

CMOS NOR Gate Truth Table and Transistor States

EE14113

ESD II A.A. 08/09

Three-input CMOS NOR gate and reference inverter

EE14114

ESD II A.A. 08/09

Two-input CMOS NAND gate and reference inverter

EE14115

ESD II A.A. 08/09

Switch Delay ModelSwitch Delay Model

A

Req

A

Rp

A

Rp

A

Rn CL

A

CL

B

Rn

A

Rp

B

Rp

A

Rn Cint

B

Rp

A

Rp

A

Rn

B

Rn CL

Cint

NAND2 INV NOR2

EE14116

ESD II A.A. 08/09

Input Pattern Effects on DelayInput Pattern Effects on Delay

Delay is dependent on the pattern of inputsLow to high transition

both inputs go low– delay is 0.69 Rp/2 CL

one input goes low– delay is 0.69 Rp CL

High to low transitionboth inputs go high

– delay is 0.69 2Rn CL

CL

B

Rn

A

Rp

B

Rp

A

Rn Cint

EE14117

ESD II A.A. 08/09

Delay Dependence on Input PatternsDelay Dependence on Input Patterns

-0,5

0

0,5

1

1,5

2

2,5

3

0 100 200 300 400

A=B=1→0

A=1, B=1→0

A=1 →0, B=1

time [ps]

Vol

tage

[V]

76A= 1→0, B=1

57A=1, B=1→0

35A=B=1→0

62A= 0→1, B=1

50A=1, B=0→1

69A=B=0→1

Delay(psec)

Input DataPattern

NMOS = 0.5μm/0.25 μmPMOS = 0.75μm/0.25 μmCL = 100 fF

EE14118

ESD II A.A. 08/09

FanFan--In ConsiderationsIn Considerations

DCBA

D

C

B

A CL

C3

C2

C1

Distributed RC model(Elmore delay)

tpHL = 0.69 Reqn(C1+2C2+3C3+4CL)

Propagation delay deteriorates rapidly as a function of fan-in –quadratically in the worst case.

M1

M2

M3

M4

EE14119

ESD II A.A. 08/09

ttpp of CMOS NAND as a functionof CMOS NAND as a functionof Fanof Fan--InIn

0

250

500

750

1000

1250

2 4 6 8 10 12 14 16

tpHL

quadratic

lineartpLH

t p(p

sec)

fan-in

Gates with a fan-in greater than 4 should be avoided.

tp

EE14120

ESD II A.A. 08/09

ttpp as a Function of Fanas a Function of Fan--OutOut

2 4 6 8 10 12 14 16

tpNOR2

t p(p

sec)

eff. fan-out

All gates have the same drive current.

tpNAND2

tpINV

Slope is a function of “driving strength”

EE14121

ESD II A.A. 08/09

ttpp as a Function of Fanas a Function of Fan--In and FanIn and Fan--OutOut

Fan-in: quadratic due to increasing resistance and capacitanceFan-out: each additional fan-out gate adds two gate capacitances to CL

tp = a1FI + a2FI2 + a3FO

EE14122

ESD II A.A. 08/09

Design Techniques for large fanDesign Techniques for large fan--ininTransistor sizing

as long as fan-out capacitance dominatesProgressive sizingInN CL

C3

C2

C1In1

In2

In3

M1

M2

M3

MNDistributed RC line

M1 > M2 > M3 > … > MN(the fet closest to theoutput is the smallest)

Can reduce delay by more than 20%; decreasing gains as technology shrinks

EE14123

ESD II A.A. 08/09

Transistor ordering

C2

C1In1

In2

In3

M1

M2

M3 CL

C2

C1In3

In2

In1

M1

M2

M3 CL

critical path critical path

charged1

0→1charged

charged1

delay determined by time to discharge CL, C1 and C2

delay determined by time to discharge CL

1

1

0→1 charged

discharged

discharged

EE14124

ESD II A.A. 08/09

Alternative logic structures

F = ABCDEFGH

EE14125

ESD II A.A. 08/09

Isolating fan-in from fan-out using buffer insertion

CLCL

EE14126

ESD II A.A. 08/09

Power consumption in CMOS logic gatesPower consumption in CMOS logic gates

EE14127

ESD II A.A. 08/09

A

B

C

ZX

A

BZ

X

Example illustrating the effect of signal correlations

EE14128

ESD II A.A. 08/09

Glitching in Static CMOS

EE14129

ESD II A.A. 08/09

Example: Chain of NAND Gates

EE14130

ESD II A.A. 08/09

How to Cope with Glitching?

A

B

CD

A

B

C

D

,

,

,

A

B

CD

A

B

C

D

,

,

,

A

B

CD

A

B

C

D

,

,

,

EE14131

ESD II A.A. 08/09

Reordering of inputs affects the circuit activity

A

B

C

ZX

C

B

A

ZY

P(A=1) = 0.5

P(B=1) = 0.2

P(C=1) = 0.1

Input ordering

EE14132

ESD II A.A. 08/09

Time multiplexing resources

EE14133

ESD II A.A. 08/09

RatioedRatioed LogicLogic

VDD

VSS

PDNIn1In2In3

F

RLLoad

VDD

VSS

In1In2In3

F

VDD

VSS

PDNIn1In2In3

FVSS

PDN

Resistive DepletionLoad

PMOSLoad

(a) resistive load (b) depletion load NMOS (c) pseudo-NMOS

VT < 0

Goal: to reduce the number of devices over complementary CMOS

EE14134

ESD II A.A. 08/09

VDD

VSS

PDNIn1In2In3

F

RLLoadResistive

N transistors + Load

• VOH = VDD

• VOL = RPN

RPN + RL

• Assymetrical response

• Static power consumption

• tpL= 0.69 RLCL

ResistiveResistive LoadLoad

EE14135

ESD II A.A. 08/09

Active LoadsActive LoadsVDD

VSS

In1In2In3

F

VDD

VSS

PDNIn1In2In3

F

VSS

PDN

DepletionLoad

PMOSLoad

depletion load NMOS pseudo-NMOS

VT < 0

EE14136

ESD II A.A. 08/09

PseudoPseudo--NMOS Inverter VTCNMOS Inverter VTC

0.0 0.5 1.0 1.5 2.0 2.50.0

0.5

1.0

1.5

2.0

2.5

3.0

Vin [V]

Vou

t[V

]

W/Lp = 4

W/Lp = 2

W/Lp = 1

W/Lp = 0.25

W/Lp = 0.5

EE14137

ESD II A.A. 08/09

EE14138

ESD II A.A. 08/09

FourFour--input pseudoinput pseudo--NMOS NORNMOS NOR

EE14139

ESD II A.A. 08/09

Improved LoadsImproved Loads

A B C D

F

CL

M1M2 M1 >> M2Enable

VDD

Adaptive Load

EE14140

ESD II A.A. 08/09

Improved Loads (2)Improved Loads (2)VDD

VSS

PDN1

Out

VDD

VSS

PDN2

Out

AABB

M1 M2

Differential Cascode Voltage Switch Logic (DCVSL)

EE14141

ESD II A.A. 08/09

0 0.2 0.4 0.6 0.8 1.0-0.5

0.5

1.5

2.5

Time [ns]

Vol

tage

[V] A B

A B

A,BA, B

DCVSL AND/NAND Transient ResponseDCVSL AND/NAND Transient Response

EE14142

ESD II A.A. 08/09

PassPass--Transistor LogicTransistor LogicIn

puts Switch

Network

OutOut

A

B

B

B

• N transistors• No static consumption

EE14143

ESD II A.A. 08/09

Example: AND GateExample: AND Gate

B

B

A

F = AB

0

EE14144

ESD II A.A. 08/09

NMOSNMOS--only Switchonly Switch

A = 2.5 V

X

C = 2.5 V

CL

A = 2.5 V

C = 2.5 V

XM2

M1

Mn

Threshold voltage loss causesstatic power consumption

VB does not pull up to 2.5V, but 2.5V -VTN

NMOS has higher threshold than PMOS (body effect)

EE14145

ESD II A.A. 08/09

NMOSNMOS--Only LogicOnly Logic

VDD

In

Outx

0.5μm/0.25μm0.5μm/0.25μm

1.5μm/0.25μm

0 0.5 1 1.5 20.0

1.0

2.0

3.0

Time [ns]

Volta

ge[V

] xOut

In

EE14146

ESD II A.A. 08/09

Pass-transistor output (drain-source) terminal should not drive other terminals to avoid multiple threshold drops

EE14147

ESD II A.A. 08/09

PassPass--Transistor AND Gate VTCTransistor AND Gate VTC

EE14148

ESD II A.A. 08/09

NMOS Only Logic: NMOS Only Logic: Level Restoring TransistorLevel Restoring Transistor

M2

M1

Mn

Mr

OutA

B

VDDVDDLevel Restorer

X

• Advantage: Full Swing• Restorer adds capacitance, takes away pull down current at X• Ratio problem

EE14149

ESD II A.A. 08/09

Restorer SizingRestorer Sizing

0 100 200 300 400 5000.0

1.0

2.0

W / Lr

=1.0/0.25 W /L r =1.25/0.25

W /Lr

=1.50/0.25

W /L r =1.75/0.25

Vo l

tag e

[V]

Time [ps]

3.0

W/Ln= 0.5/0.25

Upper limit on restorer size

EE14150

ESD II A.A. 08/09

Transmission GateTransmission Gate

A B

C

C

A B

C

C

BCL

C = 0 V

A = 2.5 V

C = 2.5 V

EE14151

ESD II A.A. 08/09

Transmission Gate XORTransmission Gate XOR

A

B

F

B

A

B

BM1

M2

M3/M4

EE14152

ESD II A.A. 08/09

Resistance of Transmission GateResistance of Transmission Gate

Vout

0 V

2.5 V

2.5 VRn

Rp

0.0 1.0 2.00

10

20

30

Vout, V

Res

ista

nce,

ohm

s

Rn

Rp

Rn || RpRes

ista

nce,

Koh

ms

Vou t

0 V

2.5 V

2.5 VRn

Rp

0.0 1.0 2.00

10

20

30

Vout, V

Res

ista

nce,

ohm

s

Rn

Rp

Rn || Rp

Vout

0 V

2.5 V

2.5 VRn

Rp

0.0 1.0 2.00

10

20

30

Vout, V

Res

ista

nce,

ohm

s

Rn

Rp

Rn || RpRes

ista

nce,

Koh

ms

(W/L)p = (W/L)n = 0.5/0.25

EE14153

ESD II A.A. 08/09

Delay in Transmission Gate NetworksDelay in Transmission Gate NetworksV 1 V i-1

C

2.5 2.5

0 0

V i V i+1

CC

2.5

0

V n-1 V n

CC

2.5

0

In

V 1 V i V i+1

C

V n-1 V n

CC

In

R eqR eq R eq R eq

CC

(a)

(b)

C

R eq R eq

C C

R eq

C C

R eq R eq

C C

R eq

C

In

m

(c)

EE14154

ESD II A.A. 08/09

Delay OptimizationDelay Optimization