54
EE141 1 CMOS logic CMOS logic

CMOS logic - unirc.it€¦ · - This is in contrast to the dynamic circuit class, which relies on temporary storage of signal values on the capacitance of high impedance circuit nodes

Embed Size (px)

Citation preview

EE1411

CMOS logicCMOS logic

EE1412

Properties of CMOS Gates SnapshotProperties of CMOS Gates SnapshotHigh noise margins:

VOH and VOL are at VDD and GND, respectively.

No static power consumption:There never exists a direct path between VDD and VSS (GND) in steady-state mode.

Comparable rise and fall times:(under appropriate sizing conditions)

Extremely high input resistance:nearly zero steady-state input current.

Always a path to Vdd or Gnd in steady state:low output impedance.

EE1413

Static CMOS CircuitStatic CMOS Circuit

- At every point in time (except during the switching transients) each gate output is connected to eitherVDD or Vss via a low-resistive path.

- The outputs of the gates assume at all times the value of the Boolean function, implemented by the circuit (ignoring, once again, the transient effects during switching periods).

- This is in contrast to the dynamic circuit class, which relies on temporary storage of signal values on the capacitance of high impedance circuit nodes.

EE1414

Static Complementary CMOSStatic Complementary CMOS

VDD

F(In1,In2,…InN)

In1In2

InN

In1In2InN

PUN

PDN

PMOS only

NMOS only

PUN and PDN are dual logic networks

……

EE1415

Threshold DropsThreshold DropsVDD

VDD → 0PDN

0 → VDD

CL

CL

PUN

VDD

0 → VDD - VTn

CL

VDD

VDD

VDD → |VTp|

CL

S

D S

D

VGS

S

SD

D

VGS

EE1416

NMOS Transistors NMOS Transistors in Series/Parallel Connectionin Series/Parallel Connection

Transistors can be thought as a switch controlled by its gate signal

NMOS switch closes when switch control input is high

X Y

A B

Y = X if A and B

X Y

A

B Y = X if A OR B

NMOS Transistors pass a “strong” 0 but a “weak” 1

EE1417

PMOS Transistors PMOS Transistors in Series/Parallel Connectionin Series/Parallel Connection

X Y

A B

Y = X if A AND B = A + B

X Y

A

B Y = X if A OR B = AB

PMOS Transistors pass a “strong” 1 but a “weak” 0

PMOS switch closes when switch control input is low

EE1418

Complementary CMOS Logic StyleComplementary CMOS Logic Style

EE1419

Example Gate: NANDExample Gate: NAND

EE14110

Example Gate: NORExample Gate: NOR

EE14111

Two-input CMOS NOR gate and reference inverter

EE14112

CMOS NOR Gate Truth Table and Transistor States

EE14113

Three-input CMOS NOR gate and reference inverter

EE14114

Two-input CMOS NAND gate and reference inverter

EE14115

Switch Delay ModelSwitch Delay Model

A

Req

A

Rp

A

Rp

A

Rn CL

A

CL

B

Rn

A

Rp

B

Rp

A

Rn Cint

B

Rp

A

Rp

A

Rn

B

Rn CL

Cint

NAND2 INV NOR2

EE14116

Input Pattern Effects on DelayInput Pattern Effects on Delay

Delay is dependent on the pattern of inputsLow to high transition

both inputs go low– delay is 0.69 Rp/2 CL

one input goes low– delay is 0.69 Rp CL

High to low transitionboth inputs go high

– delay is 0.69 2Rn CL

CL

B

Rn

A

Rp

B

Rp

A

Rn Cint

EE14117

Delay Dependence on Input PatternsDelay Dependence on Input Patterns

-0,5

0

0,5

1

1,5

2

2,5

3

0 100 200 300 400

A=B=1→0

A=1, B=1→0

A=1 →0, B=1

time [ps]

Vol

tage

[V]

76A= 1→0, B=1

57A=1, B=1→0

35A=B=1→0

62A= 0→1, B=1

50A=1, B=0→1

69A=B=0→1

Delay(psec)

Input DataPattern

NMOS = 0.5μm/0.25 μmPMOS = 0.75μm/0.25 μmCL = 100 fF

EE14118

FanFan--In ConsiderationsIn Considerations

DCBA

D

C

B

A CL

C3

C2

C1

Distributed RC model(Elmore delay)

tpHL = 0.69 Reqn(C1+2C2+3C3+4CL)

Propagation delay deteriorates rapidly as a function of fan-in –quadratically in the worst case.

M1

M2

M3

M4

EE14119

ttpp of CMOS NAND as a functionof CMOS NAND as a functionof Fanof Fan--InIn

0

250

500

750

1000

1250

2 4 6 8 10 12 14 16

tpHL

quadratic

lineartpLH

t p(p

sec)

fan-in

Gates with a fan-in greater than 4 should be avoided.

tp

EE14120

ttpp as a Function of Fanas a Function of Fan--OutOut

2 4 6 8 10 12 14 16

tpNOR2

t p(p

sec)

eff. fan-out

All gates have the same drive current.

tpNAND2

tpINV

Slope is a function of “driving strength”

EE14121

ttpp as a Function of Fanas a Function of Fan--In and FanIn and Fan--OutOut

Fan-in: quadratic due to increasing resistance and capacitanceFan-out: each additional fan-out gate adds two gate capacitances to CL

tp = a1FI + a2FI2 + a3FO

EE14122

Design Techniques for large fanDesign Techniques for large fan--ininTransistor sizing

as long as fan-out capacitance dominatesProgressive sizingInN CL

C3

C2

C1In1

In2

In3

M1

M2

M3

MNDistributed RC line

M1 > M2 > M3 > … > MN(the fet closest to theoutput is the smallest)

Can reduce delay by more than 20%; decreasing gains as technology shrinks

EE14123

Transistor ordering

C2

C1In1

In2

In3

M1

M2

M3 CL

C2

C1In3

In2

In1

M1

M2

M3 CL

critical path critical path

charged1

0→1charged

charged1

delay determined by time to discharge CL, C1 and C2

delay determined by time to discharge CL

1

1

0→1 charged

discharged

discharged

EE14124

Alternative logic structures

F = ABCDEFGH

EE14125

Isolating fan-in from fan-out using buffer insertion

CLCL

EE14126

Power consumption in CMOS logic gatesPower consumption in CMOS logic gates

EE14127

A

B

C

ZX

A

BZ

X

Example illustrating the effect of signal correlations

EE14128

Glitching in Static CMOS

EE14129

Example: Chain of NAND Gates

EE14130

How to Cope with Glitching?

A

B

CD

A

B

C

D

,

,

,

A

B

CD

A

B

C

D

,

,

,

A

B

CD

A

B

C

D

,

,

,

EE14131

Reordering of inputs affects the circuit activity

A

B

C

ZX

C

B

A

ZY

P(A=1) = 0.5

P(B=1) = 0.2

P(C=1) = 0.1

Input ordering

EE14132

Time multiplexing resources

EE14133

RatioedRatioed LogicLogic

VDD

VSS

PDNIn1In2In3

F

RLLoad

VDD

VSS

In1In2In3

F

VDD

VSS

PDNIn1In2In3

FVSS

PDN

Resistive DepletionLoad

PMOSLoad

(a) resistive load (b) depletion load NMOS (c) pseudo-NMOS

VT < 0

Goal: to reduce the number of devices over complementary CMOS

EE14134

VDD

VSS

PDNIn1In2In3

F

RLLoadResistive

N transistors + Load

• VOH = VDD

• VOL = RPN

RPN + RL

• Assymetrical response

• Static power consumption

• tpL= 0.69 RLCL

Resistive Resistive LoadLoad

EE14135

Active LoadsActive LoadsVDD

VSS

In1In2In3

F

VDD

VSS

PDNIn1In2In3

F

VSS

PDN

DepletionLoad

PMOSLoad

depletion load NMOS pseudo-NMOS

VT < 0

EE14136

PseudoPseudo--NMOS Inverter VTCNMOS Inverter VTC

0.0 0.5 1.0 1.5 2.0 2.50.0

0.5

1.0

1.5

2.0

2.5

3.0

Vin [V]

Vou

t[V

]

W/Lp = 4

W/Lp = 2

W/Lp = 1

W/Lp = 0.25

W/Lp = 0.5

EE14137

EE14138

FourFour--input pseudoinput pseudo--NMOS NORNMOS NOR

EE14139

Improved LoadsImproved Loads

A B C D

F

CL

M1M2 M1 >> M2Enable

VDD

Adaptive Load

EE14140

Improved Loads (2)Improved Loads (2)VDD

VSS

PDN1

Out

VDD

VSS

PDN2

Out

AABB

M1 M2

Differential Cascode Voltage Switch Logic (DCVSL)

EE14141

0 0.2 0.4 0.6 0.8 1.0-0.5

0.5

1.5

2.5

Time [ns]

Vol

tage

[V] A B

A B

A,BA, B

DCVSL AND/NAND Transient ResponseDCVSL AND/NAND Transient Response

EE14142

PassPass--Transistor LogicTransistor LogicIn

puts Switch

Network

OutOut

A

B

B

B

• N transistors• No static consumption

EE14143

Example: AND GateExample: AND Gate

B

B

A

F = AB

0

EE14144

NMOSNMOS--only Switchonly Switch

A = 2.5 V

X

C = 2.5 V

CL

A = 2.5 V

C = 2.5 V

XM2

M1

Mn

Threshold voltage loss causesstatic power consumption

VB does not pull up to 2.5V, but 2.5V -VTN

NMOS has higher threshold than PMOS (body effect)

EE14145

NMOSNMOS--Only LogicOnly Logic

VDD

In

Outx

0.5μm/0.25μm0.5μm/0.25μm

1.5μm/0.25μm

0 0.5 1 1.5 20.0

1.0

2.0

3.0

Time [ns]

Volta

ge[V

] xOut

In

EE14146

Pass-transistor output (drain-source) terminal should not drive other terminals to avoid multiple threshold drops

EE14147

PassPass--Transistor AND Gate VTCTransistor AND Gate VTC

EE14148

NMOS Only Logic: NMOS Only Logic: Level Restoring TransistorLevel Restoring Transistor

M2

M1

Mn

Mr

OutA

B

VDDVDDLevel Restorer

X

• Advantage: Full Swing• Restorer adds capacitance, takes away pull down current at X• Ratio problem

EE14149

Restorer SizingRestorer Sizing

0 100 200 300 400 5000.0

1.0

2.0

W / Lr

=1.0/0.25 W /L r =1.25/0.25

W /Lr

=1.50/0.25

W /L r =1.75/0.25

Vo l

tag e

[V]

Time [ps]

3.0

W/Ln= 0.5/0.25

Upper limit on restorer size

EE14150

Transmission GateTransmission Gate

A B

C

C

A B

C

C

BCL

C = 0 V

A = 2.5 V

C = 2.5 V

EE14151

Transmission Gate XORTransmission Gate XOR

A

B

F

B

A

B

BM1

M2

M3/M4

EE14152

Resistance of Transmission GateResistance of Transmission Gate

Vout

0 V

2.5 V

2.5 VRn

Rp

0.0 1.0 2.00

10

20

30

Vout, V

Res

ista

nce,

ohm

s

Rn

Rp

Rn || RpRes

ista

nce,

Koh

ms

Vou t

0 V

2.5 V

2.5 VRn

Rp

0.0 1.0 2.00

10

20

30

Vout, V

Res

ista

nce,

ohm

s

Rn

Rp

Rn || Rp

Vout

0 V

2.5 V

2.5 VRn

Rp

0.0 1.0 2.00

10

20

30

Vout, V

Res

ista

nce,

ohm

s

Rn

Rp

Rn || RpRes

ista

nce,

Koh

ms

(W/L)p = (W/L)n = 0.5/0.25

EE14153

Delay in Transmission Gate NetworksDelay in Transmission Gate NetworksV 1 V i-1

C

2.5 2.5

0 0

V i V i+1

CC

2.5

0

V n-1 V n

CC

2.5

0

In

V 1 V i V i+1

C

V n-1 V n

CC

In

R eqR eq R eq R eq

CC

(a)

(b)

C

R eq R eq

C C

R eq

C C

R eq R eq

C C

R eq

C

In

m

(c)

EE14154

Delay OptimizationDelay Optimization