25
CMx Charges for SCC- DFTB and Some GaN Vignettes Christopher J. Cramer University of Minnesota

CM x Charges for SCC-DFTB and Some GaN Vignettes

  • Upload
    jessie

  • View
    47

  • Download
    0

Embed Size (px)

DESCRIPTION

CM x Charges for SCC-DFTB and Some GaN Vignettes. Christopher J. Cramer University of Minnesota. DFTB Energy Functional. SCC-DFTB Energy Functional. Class II Partial Charges (Population Analysis). L öwdin. Mulliken. Class IV Partial Charges (CM2 and CM3). Mayer bond order. empirical - PowerPoint PPT Presentation

Citation preview

Page 1: CM x  Charges for SCC-DFTB and Some GaN Vignettes

CMx Charges for SCC-DFTB and Some GaN

Vignettes

Christopher J. Cramer

University of Minnesota

Page 2: CM x  Charges for SCC-DFTB and Some GaN Vignettes

DFTB Energy Functional

E ρ0 r( )[ ] = ψ i r( )hiKS ρ0 r( )[ ] ψ i r( )

i

occupied

∑ −12

ρ0 r1( )ρ0 r2( )r1 − r2

dr1dr2∫∫+ Exc ρ0 r( )[ ] − Vxc ρ0 r( )[ ]∫ ρ0 r( )dr + EN

μ hKS ν =εμ , μ = ν

μ T + veff ρ0, A r( ) + ρ0, B r( )[ ] ν , μ ∈ A, ν ∈ B

⎧ ⎨ ⎪

⎩ ⎪

Erep ρ0 r( )[ ] = Erep ρ0, A r( )[ ]A

atoms

∑ + Erep2( )

A<B

atoms

∑ ρ0, A r( ),ρ0, B r( )[ ]

Page 3: CM x  Charges for SCC-DFTB and Some GaN Vignettes

SCC-DFTB Energy Functional

E ρ0 r( ) + δρ r( )[ ] = E ρ0 r( )[ ]

+12

1r1 − r2

+δ 2Exc

δρ r1( )δρ r2( )ρ0

⎝ ⎜ ⎜

⎠ ⎟ ⎟δρ r1( )δρ r2( )

⎢ ⎢

⎥ ⎥∫∫ dr1dr2

δρ r( ) = ΔqAδ r − rA( )A

atoms

12

1r1 − r2

+δ 2Exc

δρ r1( )δρ r2( )ρ0

⎝ ⎜ ⎜

⎠ ⎟ ⎟δρ r1( )δρ r2( )

⎢ ⎢

⎥ ⎥∫∫ dr1dr2 =

12

ΔqAΔqBγABA, B

atoms

γAB =2ηA, A = B

aa bb( ), A ≠ B

⎧ ⎨ ⎪

⎩ ⎪

Page 4: CM x  Charges for SCC-DFTB and Some GaN Vignettes

Class II Partial Charges (Population Analysis)

Pμν = 2 cμii

occ

∑ cνi

Sμν = φμφν∫ dr

N = tr PS( ) = tr SP( ) = tr S1/ 2PS1/ 2( )

N k = PS( )μμμ∈k∑

qk = Zk − N k

N k = S1/ 2PS1/ 2( )μμ

μ∈k∑

Mulliken Löwdin

Page 5: CM x  Charges for SCC-DFTB and Some GaN Vignettes

Class IV Partial Charges (CM2 and CM3)

qkCMx = qk

(II) + Bk ′ k Ck ′ k Bk ′ k + Dk ′ k ( )′ k ≠k∑

Bkk' = PS( )μλ PS( )λνλ∑

ν ∈k'∑

μ∈k∑

Mayerbondorder

Ckk ′=−Ck′k, Dkk′ =−Dk′k

empiricallinear and quadratic

parameters

x = 2, Li et al. J. Phys. Chem. A, 1998, 102, 1820.

x = 3, Winget et al. J. Phys. Chem. A 2002, 106, 10707Thompson et al. J. Comput. Chem. 2003, 24, 1291

Page 6: CM x  Charges for SCC-DFTB and Some GaN Vignettes

Training Set and Error Functions

• Training set roughly 400 neutral and 25 ionic molecules

• Compare point-charge derived dipole moments to experimental values

• For ions, compare point-charge-derived moments to <|μ|> (MP2/cc-pVTZ, center of mass) and compare partial atomic charges to those determined from CHELPG fit to MP2/cc-pVTZ electrostatic potential

μ =± qk xkk∑ ⎛

⎝ ⎜ ⎜

⎠ ⎟ ⎟

2

+ qk ykk

∑ ⎛

⎝ ⎜ ⎜

⎠ ⎟ ⎟

2

+ qkzkk∑ ⎛

⎝ ⎜ ⎜

⎠ ⎟ ⎟

2 ⎡

⎢ ⎢

⎥ ⎥

1/ 2

Page 7: CM x  Charges for SCC-DFTB and Some GaN Vignettes

Performance Example

O

OMe

H

O

HH

O

MeMe

OO

O

O

NH2H

O

NH2Me

S

HH

CH3CO2HH2O

MeOH MeNH2Me2O

NH3

NCNH2

HCN

MeCN

CH3F CH3SHCH3SiH3 H2S

CH3Cl

Page 8: CM x  Charges for SCC-DFTB and Some GaN Vignettes

Performance Example 2

Mode l RMS Erro r (D) CM2/ any level <0.20 MP2/6 -31G* < | | > 0.21 HF/ 6-31G* < | | > 0.31 HF/ 6-31G* CHELPG 0.33 PM3 < | | > 0.43 AM 1 < | | > 0.44 AM 1 Mullik en 0.89 HF/ 6-31G* Mul liken 0.93 PM3 Mullike n 1.00 HF/ 6-31G* NPA 1.05

Page 9: CM x  Charges for SCC-DFTB and Some GaN Vignettes

Accurate, Density, and CM3 Dipole Moments

N NO

OH

H N NH

HO

ON N

HH

O

ON N

HH

O

O

3.943.593.84

4.313.93 4.19

2.972.71 2.89

3.283.07 3.27

nitramide

MUE (density) = 0.30 debyes MUE (CM3) = 0.08 debyes

Accurate: mPW0/MG3S density dipole

MUE mean unsigned error:

Cs C2v Cs C2v

from mPW0/MIDI!

Approximate dipoles

Page 10: CM x  Charges for SCC-DFTB and Some GaN Vignettes

Accurate, Density, and CM3 Dipole Moments

4.814.21 4.67

5.044.43 4.87

3.432.99 3.33

3.693.38 3.77

dimethylnitramine

MUE (density) = 0.49 debyes MUE (CM3) = 0.12 debyes

Accurate: mPW0/MG3S density dipole

N NO

OMe

Me N NMe

MeO

ON N

MeMe

O

ON N

MeMe

O

O

MUE mean unsigned error:

Page 11: CM x  Charges for SCC-DFTB and Some GaN Vignettes

Accurate, Density, and CM3 Dipole Moments

5.975.22 6.20

7.196.227.34

: RDX

MUE (density) = 0.86 debyes MUE (CM3) = 0.19 debyes

Accurate: mPW0/MG3S density dipole

N N

NNO2

O2N NO2

MUE mean unsigned error;

Page 12: CM x  Charges for SCC-DFTB and Some GaN Vignettes

Accurate, Density, and CM3 Dipole Moments

1.561.321.80

0.310.42 0.79

: HNIW; CL-20

MUE (density) = 0.32 debyes MUE (CM3) = 0.29 debyes

Accurate: mPW1PW91/MG3S density dipole

2.561.95 2.41

N N

N N

NNNO2O2N

NO2

NO2O2N

O2N

γ

MUE mean unsigned error:

[hexa-nitrohexaaza-iso-wurtzitane]

Page 13: CM x  Charges for SCC-DFTB and Some GaN Vignettes

CM3 Delivers Consistent Partial Atomic Charges

Conformer CM3 ChElPG CM3 ChElPGγ-HNIW -12.6 -13.4 -12.4 -19.1-HNIW -13.2 -13.6 -13.0 -19.2-HNIW -13.7 -13.9 -13.7 -19.6

μPW1PW91/MIDI! HF/MIDI!

Polarization energies (in nitromethane) calculated using different charge schemes by wave function (kcal/mole):

MUD (CM3) = 0.1MUD (ChElPG) = 5.7

All 14 nitramines(0.2)(2.8)

MUD (Löwdin) = 5.9 (2.9)

MUD mean unsigned deviation:

GP =− 12−1

ε⎛ ⎝ ⎜ ⎞

⎠ ⎟ qkq ′ k γk ′ k k, ′ k ∑

electrostatic fitting

population analysis

Page 14: CM x  Charges for SCC-DFTB and Some GaN Vignettes

SCC-DFTB Results — Before

Signed errors O(0.4 D), RMSE O(0.7 D)

Page 15: CM x  Charges for SCC-DFTB and Some GaN Vignettes

Optimized Parameters (Mulliken mapping)

Linear (in B.O.)parameters

quadraticparameters

Page 16: CM x  Charges for SCC-DFTB and Some GaN Vignettes

SCC-DFTB Results — After

Page 17: CM x  Charges for SCC-DFTB and Some GaN Vignettes

CM3 Improvement

+ Mullikeno CM3

Page 18: CM x  Charges for SCC-DFTB and Some GaN Vignettes

Gallium Nitride from Cyclotrigallazane

Kormos et al. JACS, 2005, 127, 1493

NH3

150° C[HGaNH]n GaN

substantial cubicform in addition

to wurtzite

Page 19: CM x  Charges for SCC-DFTB and Some GaN Vignettes

What is Nature of [HGaNH]n?

Kormos et al. JPC A, 2006, 110, 494

X Y X Y

X YY

X YXY

X Y

X YX YY

X Y

X Y X YY

X Y

X Y

X

Y

X YY

XX YY

X Y X

YY

Y

XX

XY

XX

X

X

X

Y

XY

YY

XXY

YYX

X YYX

X Y

flat-chair (FC)

rolling-chair (RC) flat-boat (FB)

Page 20: CM x  Charges for SCC-DFTB and Some GaN Vignettes

What is Nature of [HGaNH]n?

Kormos et al. JPC A, 2006, 110, 494

FC FB

RC

Page 21: CM x  Charges for SCC-DFTB and Some GaN Vignettes

[HGaNH]n Is a Mixture of Nanorods

Kormos et al. JACS, 2005, 127, 1493

+etc.n GaN GeC

1 2.7 1.02 9.0 1.13 15.5 0.94 23.0 0.55 31.3 0.16 40.3 -0.47 49.7 -0.98 59.4 -1.59 69.3 -2.1

Dipole moment (D)

Page 22: CM x  Charges for SCC-DFTB and Some GaN Vignettes

Error compared to DFT and MP2 • Data set included small molecules containing Ga, N, and H atoms• B3LYP and MP2 with 6-311+G(2df, p) basis set on N and H and

CEP-31G ECP and basis set on Ga• Data set included six dimers for binding energies and intermolecular

distances, seven reaction energies, and nine molecules for bond lengths and angles

mean unsigned error of SCC-DFTB

B3LYP MP2bond lengths 0.049 0.038

angles 3.86 4.03intermolecular distances 0.43 0.43

reaction energy 21.21binding energy 3.21 3.65

bond lengths in Åangles in degreesenergies in kcal/mol

Page 23: CM x  Charges for SCC-DFTB and Some GaN Vignettes

[H2GaNH2]3 Binding Energy and Rod Growth

Dimer A

DEn(kcal/mol)n SCC-DFTB B3LYP2 63.8 2.23 57.6 -4.34 55.3 -3.85 53.8 -5.26 52.6 -6.27 51.8 -7.18 51.1 -7.69 50.6 -8.3

Binding Energies (kcal/mol)

Dimer MP2//RHF SCC-DFTBA -7.4 -3.08B -3.8 -1.41C -7.8 0.13D -4.1 -1.64

H3[(HGaNH)3]n–1H3 + H3[(HGaNH)3]H3

H3[(HGaNH)3]nH3 + 3H2

Page 24: CM x  Charges for SCC-DFTB and Some GaN Vignettes

Future Plans

• Reparameterize SCC-DFTB to get better agreement with higher levels of theory– Hardness was not found to have sufficient

influence– Reoptimize Erep to B3LYP data

• Add empirical dispersion term to get better binding energies and distances

Page 25: CM x  Charges for SCC-DFTB and Some GaN Vignettes

Acknowledgments Biradicals, Diradicals, Ilk tRNA Dynamics Senior Collaborators

Dr. Benjamin Gherman Dr. Maria Nagan Prof. Dan Falvey (Maryland) Dr. Mark Seierstad Dr. Ed Sherer Prof. Laura Gagliardi (Genève) Dr. William T. G. Johnson Stephanie Kerimo Prof. Wayne Gladfelter (Minn) Dr. Youngshang Pak Prof. Shinobu Itoh (Osaka) Dr. Michael Sullivan Solvation Prof. Jaroslaw Kalinowski Dr. Stefan Debbert Dr. Candee Chambers (Warsaw) Dr. Bethany Kormos Dr. Jiabo Li Prof. Hilkka Kenttämaa (Purdue) Dr. Chris Kinsinger Dr. Tianhai Zhu Prof. Bogdan Lesyng (Warsaw) John Lewin Dr. David Giesen Prof. Eric Patterson David Heppner Dr. Gregory Hawkins (Truman State)

Dr. Paul Winget Prof. Piotr Piecuch Gallium Nitride Dr. James Xidos (Michigan St.)

Dr. Bethany Kormos Dr. Jason Thompson Prof. Bill Tolman (Minnesota) Joseph Scanlon Casey Kelly Prof. Don Truhlar (Minnesota) Adam Chamberlin Dr. Eric Weber (US EPA)

Support from: US ARO, NSF, EPA, Minnesota Supercomputing Institute

AMSOL, SMxPAC, GAMESSPLUS, HONDOPLUS, OMNISOL, etc. available from various sources (see http://comp.chem.umn.edu/mccdir/software.htm)