44
Matthias Hempel, Basel University HISS Dubna „Dense Matter“, 29.6.2015 Clusters and phase transitions in supernova equations of state — part I

Clusters and phase transitions in supernova equations of state — …theor.jinr.ru/~diastp/dm15/talks/Hempel_L1.pdf · 2015. 6. 30. · Classification of supernovae •type Ia: thermonuclear

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Clusters and phase transitions in supernova equations of state — …theor.jinr.ru/~diastp/dm15/talks/Hempel_L1.pdf · 2015. 6. 30. · Classification of supernovae •type Ia: thermonuclear

Matthias Hempel, Basel University HISS Dubna „Dense Matter“, 29.6.2015

Clusters and phase transitions in supernova equations of state — part I

Page 2: Clusters and phase transitions in supernova equations of state — …theor.jinr.ru/~diastp/dm15/talks/Hempel_L1.pdf · 2015. 6. 30. · Classification of supernovae •type Ia: thermonuclear

RXJ1856-3754, Chandra

Cou

ch 2

013

My research interests: core-collapse supernovae & neutron stars

astrophysical equation of state

nuclear experimentsIsoltrap@CERN

phase transitions cluster formation

104

105

106

107

108

109

1010

1011

K c[](fm

9 )

4 5 6 7 8 9 10 11 12 13 14T (MeV)

Exp. (Qin et al. 2012)ideal gasHS(DD2), no CS, A 4SFHo, no CS, A 4LS220, HIC mod., cor. BSTOS, HIC mod.SHT(NL3)SHO(FSU2.1)gRDFQS

Page 3: Clusters and phase transitions in supernova equations of state — …theor.jinr.ru/~diastp/dm15/talks/Hempel_L1.pdf · 2015. 6. 30. · Classification of supernovae •type Ia: thermonuclear

Matthias Hempel Dubna, 29.6.2015

Outline

3

Monday • brief astrophysical introduction • matter in supernovae, comparison with HICs • QCD phase transition in supernovae

Tuesday • comparison liquid-gas with QCD phase transition, non-congruence

• cluster in supernovae • cluster formation in nuclear matter, experimental probes

Page 4: Clusters and phase transitions in supernova equations of state — …theor.jinr.ru/~diastp/dm15/talks/Hempel_L1.pdf · 2015. 6. 30. · Classification of supernovae •type Ia: thermonuclear

astrophysical background: core-collapse supernovae

4

Page 5: Clusters and phase transitions in supernova equations of state — …theor.jinr.ru/~diastp/dm15/talks/Hempel_L1.pdf · 2015. 6. 30. · Classification of supernovae •type Ia: thermonuclear

Classification of supernovae• type Ia: thermonuclear explosions of white dwarfs • silicon formed in explosive burning of the white dwarf

• all others: core-collapse • Ib, Ic, II, IIp, IIn, ...: astronomical classification by spectra

mechanism

observations (elemental lines in spectra)

• thermonuclear explosions of white dwarfs

• no remnant

• core collapse of massive progenitor stars

• remnant: neutron stars or black holes

Page 6: Clusters and phase transitions in supernova equations of state — …theor.jinr.ru/~diastp/dm15/talks/Hempel_L1.pdf · 2015. 6. 30. · Classification of supernovae •type Ia: thermonuclear

SN1987A• 24.2.1987: last close-by CCSN

• distance: 150,000 light years in Large Magellanic Cloud

• explosion energy: ~1051erg

• 20 neutrinos observed

after before

• galactic SN-rate: ~ 3/100 years

• thousands of observations of extragalactic SN

• observable in: – electro-magnetic – neutrinos – gravitational waves

(?)1 erg = 10-7 J = 6.2x105 MeV

Page 7: Clusters and phase transitions in supernova equations of state — …theor.jinr.ru/~diastp/dm15/talks/Hempel_L1.pdf · 2015. 6. 30. · Classification of supernovae •type Ia: thermonuclear

Matthias Hempel Dubna, 29.6.2015

Supernova remnant

• Supernova of 1054 AD • 6,000 light years distance

• neutron star in center

• CCSNe are birth places of neutron stars

7

Crab nebula, HST image

Crab pulsar, Chandra X-ray image

Page 8: Clusters and phase transitions in supernova equations of state — …theor.jinr.ru/~diastp/dm15/talks/Hempel_L1.pdf · 2015. 6. 30. · Classification of supernovae •type Ia: thermonuclear

Stellar evolution

0.01-0.08 Msun

0.08-0.4 Msun

0.4-8 Msun

8-25 Msun ?

25-40 Msun ?

> 40 Msun

birth life death

core-collapse supernovae

Page 9: Clusters and phase transitions in supernova equations of state — …theor.jinr.ru/~diastp/dm15/talks/Hempel_L1.pdf · 2015. 6. 30. · Classification of supernovae •type Ia: thermonuclear

Shell burning of massive stars at the end of their evolution• mass > 8-10 Msun

• shell burning in outer layers

• formation of an iron core • progenitor of a core-collapse supernova

• gravitational collapse when Chandrasekhar mass limit of ~ 1.4 Msun is reached

• after collapse: explosion as a core-collapse supernova

• how does it work? → supernova mechanism

• still not completely understood

solar mass: 1 Msun = 2x1033 g = 1.4x1057 baryons

Page 10: Clusters and phase transitions in supernova equations of state — …theor.jinr.ru/~diastp/dm15/talks/Hempel_L1.pdf · 2015. 6. 30. · Classification of supernovae •type Ia: thermonuclear

Matthias Hempel Dubna, 29.6.2015

cosmic gold

supernova

nucleosynthesis of heavy elements (r-process)

10

~50% of elements (neutron-rich) formed in r-process

→ still open questions in r-process nucleosynthesis

• paradigm: r-process occurs in core-collapse supernovae

• not supported by simulations (!)

• neutron star mergers: r-process possible, but: early/fast enough to explain old stars?

Page 11: Clusters and phase transitions in supernova equations of state — …theor.jinr.ru/~diastp/dm15/talks/Hempel_L1.pdf · 2015. 6. 30. · Classification of supernovae •type Ia: thermonuclear

Matthias Hempel Dubna, 29.6.2015

Supernova energetics

11

Slide from R. Käppeli

→ only 1% of the available energy required → “surface problem“, delicate numerics

• 1041 erg: visible spectrum • 1048 erg: entire em-spectrum • 1051 erg: kinetic energy • 1053 erg: neutrinos

comparison: • sun: 1041 erg/y • worldwide energy consumption: 1027 erg/y

1 erg = 10-7 J = 6.2x105 MeV

Page 12: Clusters and phase transitions in supernova equations of state — …theor.jinr.ru/~diastp/dm15/talks/Hempel_L1.pdf · 2015. 6. 30. · Classification of supernovae •type Ia: thermonuclear

Matthias Hempel Dubna, 29.6.2015

Supernova simulations in spherical symmetry• detailed 1D simulations with realistic microphysics: no explosions!

• shock expansion stalls, “standing accretion shock“

• energy loss of shock: – dissociation of heavy

nuclei – neutrino emission

12

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.420

40

60

80

100

120

140

SFHoSFHxHS(TM1)LS(180)STOSQ155a03

Time after bounce (s)

shock radius

sphere radius

km

PNS collapse

different EOS

A. Steiner, MH, T. Fischer; ApJ 774 (2013) 17

bounce: moment of highest density, end of collapse

Page 13: Clusters and phase transitions in supernova equations of state — …theor.jinr.ru/~diastp/dm15/talks/Hempel_L1.pdf · 2015. 6. 30. · Classification of supernovae •type Ia: thermonuclear

Matthias Hempel Dubna, 29.6.2015

ν

central proto-neutron star

standing accretion shock

entropy

ν

ν

Neutrino-driven supernova mechanism

• snapshot of a 3D simulation by M. Liebendörfer

• trapped neutrinos inside the PNS

• neutrino-driven SN: • neutrinos revive the shock

• sufficient neutrino heating requires hydrodynamic instabilities → multi-D

13

magnetic field

100 km

→ multi-D simulations (can) lead to explosions but: no consistent answers yet, remaining open questions

Page 14: Clusters and phase transitions in supernova equations of state — …theor.jinr.ru/~diastp/dm15/talks/Hempel_L1.pdf · 2015. 6. 30. · Classification of supernovae •type Ia: thermonuclear
Page 15: Clusters and phase transitions in supernova equations of state — …theor.jinr.ru/~diastp/dm15/talks/Hempel_L1.pdf · 2015. 6. 30. · Classification of supernovae •type Ia: thermonuclear

neutron stars

15

Page 16: Clusters and phase transitions in supernova equations of state — …theor.jinr.ru/~diastp/dm15/talks/Hempel_L1.pdf · 2015. 6. 30. · Classification of supernovae •type Ia: thermonuclear

Matthias Hempel Dubna, 29.6.2015

Neutron stars: giant atomic nuclei

16

• M = 3x1033 g •ρ ~ 5x1014 g/cm3 • ~1057 neutrons and protons • nuclear interactions repulsive • bound by (self-)gravity (general relativity)

• M = 10-22 g •ρ = ρ0 ~ 3x1014 g/cm3 • ~ 102 neutrons and protons • nuclear interactions attractive • self-gravity = 0

10-17 km

atomic nucleus

Page 17: Clusters and phase transitions in supernova equations of state — …theor.jinr.ru/~diastp/dm15/talks/Hempel_L1.pdf · 2015. 6. 30. · Classification of supernovae •type Ia: thermonuclear

Matthias Hempel Dubna, 29.6.2015

Exotic matter in neutron stars

17

Hydrogen/Heatmosphere

R ~ 10 km

n,p,e, µ

neutron star withpion condensate

quark−hybridstar

hyperon star

g/cm 310 11g/cm 3106

g/cm 31014

Fe−π

K−

s ue r c n d c t

gpo

niu

pr o t on

s

color−superconductingstrange quark matter(u,d,s quarks)

CFL−K+CFL−K0CFL− 0π

n,p,e, µquarks

u,d,s

2SCCSLgCFLLOFF

crust

N+e

H

traditional neutron star

strange star

N+e+n

Σ,Λ,Ξ,∆

n superfluid

nucleon star

CFL

CFL

2SC

F. Weber, Prog. Theor. Phys. 2005

Page 18: Clusters and phase transitions in supernova equations of state — …theor.jinr.ru/~diastp/dm15/talks/Hempel_L1.pdf · 2015. 6. 30. · Classification of supernovae •type Ia: thermonuclear

Neutron star masses from observations

Hulse-Taylor Pulsar • discovered 1974 • 21,000 light years distance • M = 1.4411 ± 0.0007 Msun

• Nobel price 1993, test of general relativity

Demorest Pulsar • discovered 2006 • 4,000 light years distance • M = 1.97 ± 0.04 Msun

• 2nd heaviest known NS, heaviest: M = 2.01 ± 0.04 Msun

• mass measurements in binary systems

• most accurate: double-neutron star binaries

Page 19: Clusters and phase transitions in supernova equations of state — …theor.jinr.ru/~diastp/dm15/talks/Hempel_L1.pdf · 2015. 6. 30. · Classification of supernovae •type Ia: thermonuclear

Matthias Hempel Dubna, 29.6.2015

The mass-radius relation of neutron stars

19

maximum mass

black holes

possible configurations

• model for nuclear matter → equation of state (pressure vs. energy density)

• general relativity: Tolman-Oppenheimer-Volkoff equations for structure of neutron stars

unstable

stable

example: non-interacting neutron gas

masses and radii in hydrostatic equilibrium

Page 20: Clusters and phase transitions in supernova equations of state — …theor.jinr.ru/~diastp/dm15/talks/Hempel_L1.pdf · 2015. 6. 30. · Classification of supernovae •type Ia: thermonuclear

Matthias Hempel Dubna, 29.6.2015

Mass-radius relations of hadronic EOS

20

[T. Fischer, MH, et al.; EPJA50 (2014)][S. Banik, MH, D. Bandyophadyay; APJS214 (2014)]

• PSR J0348+0432: Antoniadis et al. Science 2013

• Steiner et al. ApJ 2010, Steiner et al. ApJ 2013: bayesian analysis of NS observations

• EOS shown here: „supernova“ EOS, only hadronic matter

Page 21: Clusters and phase transitions in supernova equations of state — …theor.jinr.ru/~diastp/dm15/talks/Hempel_L1.pdf · 2015. 6. 30. · Classification of supernovae •type Ia: thermonuclear

Matthias Hempel Dubna, 29.6.2015

Mass-radius relations of hybrid EOS

21

Check: Mass-Radius Diagram of Cold Neutron Stars

0

0.5

1

1.5

2

8 10 12 14 16 18

Mas

s [s

olar

mas

s]

Radius [km]

B1/4=165 MeV

B1/4=155 MeV, αs=0.3B1/4=162 MeV

B1/4=139 MeV, αs=0.7B1/4=145 MeV, αs=0.7

TM1PSR J1614-2230

PSR J1903-0327

PSR B1913+16

(Sagert, Fischer, Hempel, Pagliara, JSB, Thielemann, Liebendörfer 2011)

presence of quark matter can change drastically the mass-radius diagram

maximum mass: 1.56M⊙ (B1/4 = 162 MeV), 1.5M⊙ (B1/4 = 165 MeV)→ too low! need αs corrections!

– p.34

• typical features: lower maximum mass, lower radii

• with interactions: quark matter behaves similarly as hadronic matter, „masquerade“

hadronic

[Sagert, et al. 2012]

bag model: ideal gas of quarks with confining bag pressure

ideal bag models

bag models with strong interactions

Page 22: Clusters and phase transitions in supernova equations of state — …theor.jinr.ru/~diastp/dm15/talks/Hempel_L1.pdf · 2015. 6. 30. · Classification of supernovae •type Ia: thermonuclear

Matthias Hempel Dubna, 29.6.2015

Quark matter in neutron stars ruled out?

22

[Weissenborn et al., ApJL 740 (2011)]

no!

Page 23: Clusters and phase transitions in supernova equations of state — …theor.jinr.ru/~diastp/dm15/talks/Hempel_L1.pdf · 2015. 6. 30. · Classification of supernovae •type Ia: thermonuclear

Supernova EOS

23

Page 24: Clusters and phase transitions in supernova equations of state — …theor.jinr.ru/~diastp/dm15/talks/Hempel_L1.pdf · 2015. 6. 30. · Classification of supernovae •type Ia: thermonuclear

Matthias Hempel Dubna, 29.6.2015

Equation of State for Compact Stars

RX J1856-3754, Chandra

Crab nebula, Hubble Space Telescope

core-collapse supernova explosionsneutron stars

24

progenitor star at onset of collapse

neutron star mergersLi

eben

dörfe

r

Ruf

fert

and

Jank

a

Wik

imed

ia

MH

Page 25: Clusters and phase transitions in supernova equations of state — …theor.jinr.ru/~diastp/dm15/talks/Hempel_L1.pdf · 2015. 6. 30. · Classification of supernovae •type Ia: thermonuclear

Matthias Hempel Dubna, 29.6.2015

„Supernova“ EOS – Introduction• EOS provides the crucial nuclear physics input for astrophysical simulations: thermodynamic quantities and nuclear composition

• plenty of EOSs for cold neutron stars

25

• „supernova“ EOS: general-purpose EOS, at present only ~30 available • challenge of the „supernova“ EOS:

– finite temperature, T = 0 – 100 MeV – no weak equilibrium, fixed isospin, resp. charge fraction, YQ = 0 – 0.6 – huge range in density, ρ = 104 – 1015 g/cm3

– EOS in tabular form, ~1 million configurations (T, YQ, ρ)

YQ = ΣniQi/nB

nB = ΣniBi

ni: density of hadron/quark species i

Page 26: Clusters and phase transitions in supernova equations of state — …theor.jinr.ru/~diastp/dm15/talks/Hempel_L1.pdf · 2015. 6. 30. · Classification of supernovae •type Ia: thermonuclear

Matthias Hempel Dubna, 29.6.2015

General composition of matter in SN• photons (trivial)

• neutrons and protons • light and heavy nuclei, thermal ensemble • hyperons, quark matter, ... (not considered as standard)

• electrons, positrons, (muons) • neutrinos: all flavors

– not always in equilibrium with matter –→ not part of the EOS, but of (Boltzmann) transport

26

Page 27: Clusters and phase transitions in supernova equations of state — …theor.jinr.ru/~diastp/dm15/talks/Hempel_L1.pdf · 2015. 6. 30. · Classification of supernovae •type Ia: thermonuclear

Matthias Hempel Dubna, 29.6.2015

Comparison of conditions in NS, SN, and HIC

27

• matter in SN: no weak equilibrium, finite temperature → somewhere between cold neutron stars and heavy-ion collisions

neutron stars supernovae heavy ion collisionsdynamic timescales (d - yrs) ms fm/cequilibrium full weak eq. only partly only strong eq.temperatures 0 0 - 100 MeV 10 - 200 MeVcharge neutrality yes yes noasymmetry high moderate lowhighest densities < 9 ρ0 < 2-4 ρ0 < 4-5 ρ0

charge neutrality: YQ = Ye+Yµ ⇔ nQ = ne+nµ

weak equilibrium µi = BiµB + QiµQ + LiµL ; µS=0

Page 28: Clusters and phase transitions in supernova equations of state — …theor.jinr.ru/~diastp/dm15/talks/Hempel_L1.pdf · 2015. 6. 30. · Classification of supernovae •type Ia: thermonuclear

Matthias Hempel Dubna, 29.6.2015

10−9 10−8 10−7 10−6 10−5 10−4 10−3 10−2 10−1 10010−1

100

101

102

Baryon density, nB [fm−3]

Tem

pera

ture

, T [M

eV]

Ye

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.56 7 8 9 10 11 12 13 14 15

Baryon density, log10(ρ [g/cm3])

State of matter in core-collapse supernovae I

phase coexistence

region

based on: [Fischer et al., ApJS 2010]

• without Coulomb, „bulk“: first order liquid-gas phase transition

• with finite size effects: → non-uniform nuclear matter, formation of nuclei

28

•ρ ~109 – 1012 g/cm³: crucial for supernova explosion mechanism

Page 29: Clusters and phase transitions in supernova equations of state — …theor.jinr.ru/~diastp/dm15/talks/Hempel_L1.pdf · 2015. 6. 30. · Classification of supernovae •type Ia: thermonuclear

Matthias Hempel Dubna, 29.6.2015

State of matter in core-collapse supernovae II

• multi-fragmentation reactions: heavy-ion collisions from several 10 to 100 MeV/A

• BB: before bounce • CB: core bounce • PB: post bounce

29

Page 30: Clusters and phase transitions in supernova equations of state — …theor.jinr.ru/~diastp/dm15/talks/Hempel_L1.pdf · 2015. 6. 30. · Classification of supernovae •type Ia: thermonuclear

core-collapse supernova explosions induced by the QCD phase transition

30

Page 31: Clusters and phase transitions in supernova equations of state — …theor.jinr.ru/~diastp/dm15/talks/Hempel_L1.pdf · 2015. 6. 30. · Classification of supernovae •type Ia: thermonuclear

Matthias Hempel Dubna, 29.6.2015

Quark-hadron hybrid EOS for supernovae• 2009/2011: Sagert, Pagliara, Schaffner-Bielich, MH • simple bag model for quark matter • STOS EOS from Shen et al. for hadronic matter • low phase transition density for supernova matter

31

0.1 0.2 0.3 0.4 0.5 0.60

10

20

30

40

50

60

Baryon Density, nB [1/fm3]

Tem

pera

ture

[MeV

]

1 2 3 4 5 6 7 8 9 10Baryon Density, ρ [1014 g/cm3]

Yp = 0.1Yp = 0.3Yp = 0.5

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.10

10

20

30

40

50

60

Baryon Density, nB [1/fm3]

Tem

pera

ture

[MeV

]

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18Baryon Density, ρ [1014 g/cm3]

Yp = 0.3 (u,d,s)Yp = 0.4 (u,d)Yp = 0.5 (u,d)

u,d,s

end of phase transition

beginning of phase transition → not in conflict with heavy-ion data

Page 32: Clusters and phase transitions in supernova equations of state — …theor.jinr.ru/~diastp/dm15/talks/Hempel_L1.pdf · 2015. 6. 30. · Classification of supernovae •type Ia: thermonuclear

Matthias Hempel Dubna, 29.6.2015

Implications for supernovae: explosions!

32

tpb= 240.5 ms tpb= 255.2 ms tpb= 255.4 ms

• phase transition induces collapse of the proto-neutron star • once pure quark matter is reached, collapse halts • formation of an accretion shock

[Sagert, et al. PRL 2009]

Page 33: Clusters and phase transitions in supernova equations of state — …theor.jinr.ru/~diastp/dm15/talks/Hempel_L1.pdf · 2015. 6. 30. · Classification of supernovae •type Ia: thermonuclear

Matthias Hempel Dubna, 29.6.2015

Implications for supernovae: explosions!

33

tpb= 240.5 ms tpb= 255.2 ms tpb= 255.4 ms tpb= 255.4 ms

• phase transition induces collapse of the proto-neutron star • once pure quark matter is reached, collapse halts • formation of a second shock • higher temperatures, increased neutrino heating → positive velocities

[Sagert, et al. PRL 2009]

Page 34: Clusters and phase transitions in supernova equations of state — …theor.jinr.ru/~diastp/dm15/talks/Hempel_L1.pdf · 2015. 6. 30. · Classification of supernovae •type Ia: thermonuclear

Matthias Hempel Dubna, 29.6.2015

Implications for supernovae: explosions!

34

tpb= 240.5 ms tpb= 255.2 ms tpb= 255.4 ms tpb= 255.4 ms tpb= 255.4 ms tpb= 255.4 ms

• phase transition induces collapse of the proto-neutron star • once pure quark matter is reached, collapse halts • formation of a second shock • higher temperatures, increased neutrino heating → positive velocities • shock merges with standing accretion shock • explosion

[Sagert, et al. PRL 2009]

Page 35: Clusters and phase transitions in supernova equations of state — …theor.jinr.ru/~diastp/dm15/talks/Hempel_L1.pdf · 2015. 6. 30. · Classification of supernovae •type Ia: thermonuclear

Matthias Hempel Dubna, 29.6.2015

Neutrino signal

35

Implications for Supernova – Neutrino-Signal!

0

0.5

1

Time After Bounce [s]

Lum

inosi

ty [10

53 e

rg/s

]

e Neutrinoe Antineutrino

0

0.5

1

Time After Bounce [s]

Lum

inosi

ty [10

53 e

rg/s

]

µ/τ Neutrino

µ/τ Antineutrino

0 0.1 0.2 0.3 0.410

15

20

25

30

Time After Bounce [s]

rms

Energ

y [M

eV

]

e Neutrinoe Antineutrino

µ/τ Neutrinos

(Sagert, Hempel, Pagliara, JSB, Fischer, Mezza-

cappa, Thielemann, Liebendörfer, 2009)

temporal profile of the emittedneutrinos out of the supernova

thick lines: without, thin lines:with a phase transition

pronounced second peak ofanti-neutrinos due to theformation of quark matter

peak location and height deter-mined by the critical density andstrength of the QCD phase tran-sition

– p.37

• colored lines with phase transition, black without

• second neutrino burst due to quark matter

• peak and height determine density and strength of the phase transition

• measurable with present day neutrino detectors

Page 36: Clusters and phase transitions in supernova equations of state — …theor.jinr.ru/~diastp/dm15/talks/Hempel_L1.pdf · 2015. 6. 30. · Classification of supernovae •type Ia: thermonuclear

Matthias Hempel Dubna, 29.6.2015

Mass-radius relation of tested hybrid EOS

36

Check: Mass-Radius Diagram of Cold Neutron Stars

0

0.5

1

1.5

2

8 10 12 14 16 18

Mas

s [s

olar

mas

s]

Radius [km]

B1/4=165 MeV

B1/4=155 MeV, αs=0.3B1/4=162 MeV

B1/4=139 MeV, αs=0.7B1/4=145 MeV, αs=0.7

TM1PSR J1614-2230

PSR J1903-0327

PSR B1913+16

(Sagert, Fischer, Hempel, Pagliara, JSB, Thielemann, Liebendörfer 2011)

presence of quark matter can change drastically the mass-radius diagram

maximum mass: 1.56M⊙ (B1/4 = 162 MeV), 1.5M⊙ (B1/4 = 165 MeV)→ too low! need αs corrections!

– p.34

explosions in spherical symmetry (T. Fischer et al. ApJS 2011)

• no explosions for sufficiently high maximum mass

• weak phase transition

• quark matter behaves similarly as hadronic matter „masquerade“

• cf.: Fischer, Blaschke, et al. 2012: PNJL hybrid EOS

• only few models tested, mechanism still possible for others?

Page 37: Clusters and phase transitions in supernova equations of state — …theor.jinr.ru/~diastp/dm15/talks/Hempel_L1.pdf · 2015. 6. 30. · Classification of supernovae •type Ia: thermonuclear

failed supernova with black hole formation

37

Page 38: Clusters and phase transitions in supernova equations of state — …theor.jinr.ru/~diastp/dm15/talks/Hempel_L1.pdf · 2015. 6. 30. · Classification of supernovae •type Ia: thermonuclear

Stellar evolution

0.01-0.08 Msun

0.08-0.4 Msun

0.4-8 Msun

8-25 Msun ?

25-40 Msun ?

> 40 Msun

birth life death„failed“ core-collapse supernovae with BH formation

prompt collapse

collapse after weak explosion

Page 39: Clusters and phase transitions in supernova equations of state — …theor.jinr.ru/~diastp/dm15/talks/Hempel_L1.pdf · 2015. 6. 30. · Classification of supernovae •type Ia: thermonuclear

Matthias Hempel Dubna, 29.6.2015

• simulations by Tobias Fischer, GSI/TU Darmstadt – general relativistic radiation hydrodynamics in spherical symmetry – three flavor Boltzmann neutrino transport

• 40 Msun progenitor of Woosley & Weaver ApJS 101 (1995) (blue supergiant) • “failed supernova“: core-collapse to stellar black hole

• neutrinos are emitted from the hot neutron star • after BH formation: neutrino signal ceases

Supernova simulations – signal from black hole formation

39

MH, T. Fischer, J. Schaffner-Bielich, M. Liebendörfer; ApJ (2012) A. Steiner, MH, T. Fischer; ApJ

Page 40: Clusters and phase transitions in supernova equations of state — …theor.jinr.ru/~diastp/dm15/talks/Hempel_L1.pdf · 2015. 6. 30. · Classification of supernovae •type Ia: thermonuclear

Matthias Hempel Dubna, 29.6.2015

State of matter before black hole formation in a failed supernova

40

197Autaken from a talk of J. Cleymans

V. Dexheimer, Chiral SU(3) model

(T. Fischer)

Page 41: Clusters and phase transitions in supernova equations of state — …theor.jinr.ru/~diastp/dm15/talks/Hempel_L1.pdf · 2015. 6. 30. · Classification of supernovae •type Ia: thermonuclear

Matthias Hempel Dubna, 29.6.2015

Neutrino signal — different hadronic EOS

41

• µ/τ-neutrinos most sensitive to EOS because emitted from deeper layers

−15−10 −5 0 5 100

1

2

3

4

5

Lum

inos

ity [1

053 e

rg/s

]

−15−10 −5 0 5 100

0.2

0.4

0.6

0.8

1

1.2

1.4

Lum

inos

ity [1

053 e

rg/s

]

−20−15−10 −5 0 5 100

0.2

0.4

0.6

0.8

Time After Bounce [ms]

Lum

inos

ity [1

053 e

rg/s

]

0.1 0.3 0.5 0.7 0.9 1.10

0.2

0.4

0.6

0.8

1

1.2

1.4

0.1 0.3 0.5 0.7 0.9 1.10

0.2

0.4

0.6

0.8

1

1.2

1.4

0.1 0.3 0.5 0.7 0.9 1.10

0.2

0.4

0.6

0.8

Time After Bounce [s]

STOS (TM1)LS (180)HS (TMA)HS (FSUGold)

νe

ν̄e

νµ/τ

−15−10 −5 0 5 1068

1012141618202224

Mea

n En

ergy

[MeV

]−15−10 −5 0 5 10

68

1012141618202224

Mea

n En

ergy

[MeV

]

−20−15−10 −5 0 5 105

10

15

20

25

30

35

Time After Bounce [ms]

Mea

n En

ergy

[MeV

]

0.1 0.3 0.5 0.7 0.9 1.1681012141618202224

0.1 0.3 0.5 0.7 0.9 1.1681012141618202224

0.1 0.3 0.5 0.7 0.9 1.15

10

15

20

25

30

35

Time After Bounce [s]

STOS (TM1)LS (180)HS (TMA)HS (FSUGold)

νe

ν̄e

νµ/τ

black hole formation

Page 42: Clusters and phase transitions in supernova equations of state — …theor.jinr.ru/~diastp/dm15/talks/Hempel_L1.pdf · 2015. 6. 30. · Classification of supernovae •type Ia: thermonuclear

Matthias Hempel Dubna, 29.6.2015

Reaching the critical point• phase diagrams from chiral effective models, taking into finite isospin chemical potential

42

[Onishi et al., PLB (2011)]

770 MeV. The vector coupling is treated as a free parameter,and we compare the results with r = gv/g = 0 and 0.2 in thelater discussions.P-NJL models with SU(3) f are known to support hybrid neu-

tron star mass of 1.74-2.12M⊙ when combined with a hadronicEOS at low densities [32]. By comparison, an SU(3) f versionof PQM model connected with a hadronic EOS can support thehybrid neutron star mass of 2.0M⊙ [33]. Generally speaking,the EOS becomes softer with larger degrees of freedom, thenSU(2) f versions of these models are expected to give stifferEOS than in SU(3) f . Therefore SU(2) f chiral effective modelsadopted in this work would result in larger maximummasses ofneutron stars, which are consistent with the recently observed1.97 ± 0.04M⊙ neutron star [34].

3. Critical point location and its sweeping

PQMBH (t=0.5, 1.0, 1.344 s)t

0 20

40 60

80 100

120 140

δµ(MeV)800

10001200µB(MeV)

0 50

100T(MeV)

Figure 1: Phase diagram in (T, µB, δµ) space. First order phase boundaries(T, µB) calculated with PQM are shown for several values of the isospin chem-ical potential, δµ. We also show the BH formation profile, (thermodynamicalprofile (T, µB, δµ) during the BH formation) at t = 0.5, 1.0, 1.344 sec after thebounce (double lines).

3.1. Critical point and phase boundary in asymmetric matter

In Fig. 1, we show the isospin chemical potential depen-dence of the first order phase boundary and the critical pointin the PQM model. We find a trend that the first order phaseboundary shrinks at finite isospin chemical potential. Transi-tion temperature at a given baryon chemical potential µB = 3µdecreases, and the transition chemical potential µc at T = 0also decreases. We do not consider here the pion condensedphase, because the s-wave pion condensation will not be real-ized when we include the s-wave πN repulsion [35]. The CPlocation is sensitive to δµ. Compared with the results in sym-metric matter, TCP becomes smaller at finite δµ and reaches zeroat δµ = δµc ≃ (50 − 80) MeV. The downward shift of TCP maybe understood from the density shift. At low T and withoutthe vector interaction, the quark density is proportional to µ3,ρu,d ∝ (µ ∓ δµ)3. Then the sum of u and d quark density in-creases when δµ is finite, and it simulates higher µ, where thetransition temperature is lower.

Table 1: Location of CP, the transition chemical potential at T = 0 (µc), andthe type of the transition to quark matter during the BH formation. All T and µvalues are given in the unit of MeV.

Model r δµ TCP µCP µc BH

NJL0

0 50 993 1095CP sweep50 45 999 1065

65 37 1005 1035

0.2 0 22 1095 1110 Cross over50 10 1073 1074

P-NJL0

0 106 975 1095CP sweep50 92 990 1065

65 86 996 1035

0.2 0 74 1062 1110 Cross over50 39 1068 1086

P-NJL80

0 145 600 1005First order50 125 678 900

65 118 690 870

0.2 0 129 708 1020 First order50 119 720 930

PQM

00 105 964 1046

CP sweep50 87 979 102570 62 989 1007

0.20 91 1006 1057

CP sweep50 69 1016 104070 35 1020 1024

In Table 1, we summarize the CP location (T, µB) for severalvalues of δµ and r = GV/Gσ in NJL, P-NJL, P-NJL8, and PQMmodels. In P-NJL8, our results at r = 0 are in agreement withthose in Ref. [28]. The transition chemical potential at T = 0is in the range of 1000 MeV < µc < 1110 MeV. µc is sensi-tive to the details of the interaction, especially to the strengthof the vector interaction. The temporal component of the vec-tor potential shifts the chemical potential effectively as alreadyintroduced in Eq. (2). In the momentum integral, we find theeffective chemical potential µ̃ f = µ ∓ δµ − Vf appears, whereVf = 4GVρ f represents the vector potential for quarks. The re-pulsive vector potential reduces the effects of the chemical po-tential and consequently leads to an upward shift of µc by about10-15 MeV at r = 0.2. When we increase the vector couplingfrom r = 0 to r = 0.2 in NJL, the first order transition boundaryis shifted upward in µ and TCP is reduced from 50 MeV to 22MeV. At larger vector coupling, the first order phase boundarydisappears, and the QCD phase transition becomes the crossover at any µ. This trend also applies to the P-NJL and PQMmodels; the phase boundary is shifted in the larger µ directionand shrinks in the T direction with finite vector interaction. InP-NJL8, the first order phase transition is robust and surviveswith larger vector interaction such as r = 0.8, while the effectsof the vector interaction is qualitatively the same.

3.2. BH formation profileIn Fig. 2, we show the BH formation profile (T, µB, δµ) [13]

calculated by using the Shen EOS at t = 0.5, 1.0 and 1.344 sec

4

trajectories from supernova simulation

• 1st order PT, critical point, and/or crossover can be reached! „critical point sweep“

Page 43: Clusters and phase transitions in supernova equations of state — …theor.jinr.ru/~diastp/dm15/talks/Hempel_L1.pdf · 2015. 6. 30. · Classification of supernovae •type Ia: thermonuclear

Matthias Hempel Dubna, 29.6.2015

Effect of pions and/or quarks

43

TM1+QuarksTM1+Pions

TM1+Quarks+Pions

TM1

• simple bag model, i.e., no critical point

• quarks reduce maximum mass and thus accelerate the collapse

[Nakazato et al. ApJ 721 (2010)]

Page 44: Clusters and phase transitions in supernova equations of state — …theor.jinr.ru/~diastp/dm15/talks/Hempel_L1.pdf · 2015. 6. 30. · Classification of supernovae •type Ia: thermonuclear

Matthias Hempel Dubna, 29.6.2015

Conclusions• supernova matter: somewhere between matter in neutron stars and heavy-ion collisions, differences can be relevant

• quark matter in neutron stars and supernovae can lead to interesting phenomenology

• an astrophysical „smoking gun“ for quark matter has not been seen (yet)

• astrophysical observations allow to constrain the low temperature/high asymmetry part of the QCD phase diagram

44