28
Cluster Analysis of fMRI Data Using Dendrogram Sharpening L. Stanberry, R. Nandy, and D. Cordes Presenter: Abdullah-Al Mahmood

Cluster Analysis of fMRI Data Using Dendrogram Sharpening L. Stanberry, R. Nandy, and D. Cordes Presenter: Abdullah-Al Mahmood

Embed Size (px)

Citation preview

Page 1: Cluster Analysis of fMRI Data Using Dendrogram Sharpening L. Stanberry, R. Nandy, and D. Cordes Presenter: Abdullah-Al Mahmood

Cluster Analysis of fMRI Data Using Dendrogram

Sharpening

L. Stanberry, R. Nandy, and D. Cordes

Presenter: Abdullah-Al Mahmood

Page 2: Cluster Analysis of fMRI Data Using Dendrogram Sharpening L. Stanberry, R. Nandy, and D. Cordes Presenter: Abdullah-Al Mahmood

Outline

Problem DefinitionThe Solution

Choice of methods, parameters etc.Algorithm – Dendrogram Sharpening

Experiments and ResultsDiscussion

Page 3: Cluster Analysis of fMRI Data Using Dendrogram Sharpening L. Stanberry, R. Nandy, and D. Cordes Presenter: Abdullah-Al Mahmood

The Task

Identify areas of activation in the brain in response to certain stimuli

Page 4: Cluster Analysis of fMRI Data Using Dendrogram Sharpening L. Stanberry, R. Nandy, and D. Cordes Presenter: Abdullah-Al Mahmood

The Task

Identify areas of activation in the brain in response to certain stimuli

Simple case: Single StimulusPaced motor paradigm (finger

tapping)Region of Interest: Motor cortex

(Motion controlling area)

Page 5: Cluster Analysis of fMRI Data Using Dendrogram Sharpening L. Stanberry, R. Nandy, and D. Cordes Presenter: Abdullah-Al Mahmood

The Task

Identify areas of activation in the brain in response to certain stimuli

Simple case: Single StimulusPaced motor paradigm (finger

tapping)Region of Interest: Motor cortex

(Motion controlling area)Challenges: Noise & Data Volume

Page 6: Cluster Analysis of fMRI Data Using Dendrogram Sharpening L. Stanberry, R. Nandy, and D. Cordes Presenter: Abdullah-Al Mahmood

Basic Algorithm

Hierarchical clustering

Page 7: Cluster Analysis of fMRI Data Using Dendrogram Sharpening L. Stanberry, R. Nandy, and D. Cordes Presenter: Abdullah-Al Mahmood

Basic Algorithm

Hierarchical clusteringFactors to consider

The (dis)similarity measureThe linkage methodThreshold for cutting tree vs. number of nodes

Page 8: Cluster Analysis of fMRI Data Using Dendrogram Sharpening L. Stanberry, R. Nandy, and D. Cordes Presenter: Abdullah-Al Mahmood

Distance Measure

Two voxels are similar if the activation patterns are similarCorrelation coefficient of the time courses measures similarityDistance between voxels i and j

d(i, j ) = 1 – corr. coeff.(T (i ), T ( j ))

Not a metric

Page 9: Cluster Analysis of fMRI Data Using Dendrogram Sharpening L. Stanberry, R. Nandy, and D. Cordes Presenter: Abdullah-Al Mahmood

Linkage Methods

Single – distance between closest pair of points of two clustersAverage – average distance of all pairs of points, one from each clusterComplete – largest distance between two points in two clustersSingle linkage is used in this work

Page 10: Cluster Analysis of fMRI Data Using Dendrogram Sharpening L. Stanberry, R. Nandy, and D. Cordes Presenter: Abdullah-Al Mahmood

Single Linkage Dendrogram (SLD)

ProsCorrectly identifies structure when clusters overlapInvariant under reordering of objectsComputationally simple

Cons“Chaining effect” – highly dissimilar size of children nodes

Page 11: Cluster Analysis of fMRI Data Using Dendrogram Sharpening L. Stanberry, R. Nandy, and D. Cordes Presenter: Abdullah-Al Mahmood

Dendrogram Example - I

Page 12: Cluster Analysis of fMRI Data Using Dendrogram Sharpening L. Stanberry, R. Nandy, and D. Cordes Presenter: Abdullah-Al Mahmood

Dendrogram Example - II

Page 13: Cluster Analysis of fMRI Data Using Dendrogram Sharpening L. Stanberry, R. Nandy, and D. Cordes Presenter: Abdullah-Al Mahmood

Dendrogram Sharpening

Removes chaining effect and reveals “interesting” structureDiscards some points in the process that are attached to clusters laterTwo parameters

ncore for a node/cluster (large value)

nfluff for its children (small value)

Page 14: Cluster Analysis of fMRI Data Using Dendrogram Sharpening L. Stanberry, R. Nandy, and D. Cordes Presenter: Abdullah-Al Mahmood

Dendrogram Sharpening

The Basic AlgorithmForm a queue of nodes (initially containing root cluster only)While not empty(queue) dequeue node

If size(node) < ncore discard all points under it.Else discard child(ren) with size < nfluff and queue the remaining child(ren).

Page 15: Cluster Analysis of fMRI Data Using Dendrogram Sharpening L. Stanberry, R. Nandy, and D. Cordes Presenter: Abdullah-Al Mahmood

Sharpening Example - I

Page 16: Cluster Analysis of fMRI Data Using Dendrogram Sharpening L. Stanberry, R. Nandy, and D. Cordes Presenter: Abdullah-Al Mahmood

Sharpening Example - II

Page 17: Cluster Analysis of fMRI Data Using Dendrogram Sharpening L. Stanberry, R. Nandy, and D. Cordes Presenter: Abdullah-Al Mahmood

Cluster Identification

Method of inconsistent edgesMeasure of inconsistencyThreshold = Median + 2(Upper-hinge

value – Lower-hinge value)

Upper and lower values correspond to first and third quartile values (ascending order sort for distance)

Page 18: Cluster Analysis of fMRI Data Using Dendrogram Sharpening L. Stanberry, R. Nandy, and D. Cordes Presenter: Abdullah-Al Mahmood

Experimental Parameters

Paradigm I4 slices, each of 6464 resolution, 750 time points

Paradigm 220 slices, each of 6464 resolution, 165 time points

Activity and rest period alternated

Page 19: Cluster Analysis of fMRI Data Using Dendrogram Sharpening L. Stanberry, R. Nandy, and D. Cordes Presenter: Abdullah-Al Mahmood

Data reduction

Discard voxels with SNR value (= mean signal intensity standard deviation) in the first decileDiscard voxels with correlation value below 0.5 (normalized series with mean 0 and std. dev. = 1) or having less than 5 significant correlations

Page 20: Cluster Analysis of fMRI Data Using Dendrogram Sharpening L. Stanberry, R. Nandy, and D. Cordes Presenter: Abdullah-Al Mahmood

Once Sharpened Data (P – I)

Page 21: Cluster Analysis of fMRI Data Using Dendrogram Sharpening L. Stanberry, R. Nandy, and D. Cordes Presenter: Abdullah-Al Mahmood

Twice Sharpened Data (P – I)

Page 22: Cluster Analysis of fMRI Data Using Dendrogram Sharpening L. Stanberry, R. Nandy, and D. Cordes Presenter: Abdullah-Al Mahmood

Final classification (P – I)

Page 23: Cluster Analysis of fMRI Data Using Dendrogram Sharpening L. Stanberry, R. Nandy, and D. Cordes Presenter: Abdullah-Al Mahmood

Map from SPM analysis

Page 24: Cluster Analysis of fMRI Data Using Dendrogram Sharpening L. Stanberry, R. Nandy, and D. Cordes Presenter: Abdullah-Al Mahmood

A cluster from Paradigm II

Page 25: Cluster Analysis of fMRI Data Using Dendrogram Sharpening L. Stanberry, R. Nandy, and D. Cordes Presenter: Abdullah-Al Mahmood

Numerical Comparison

Page 26: Cluster Analysis of fMRI Data Using Dendrogram Sharpening L. Stanberry, R. Nandy, and D. Cordes Presenter: Abdullah-Al Mahmood

Discussion

Dendrogram sharpening can help in identifying clusters quite wellCan be applied to raw data as well as preprocessed dataNot tested for weak/multiple stimuliNeeds parameter tuning for sharpening algorithm

Page 27: Cluster Analysis of fMRI Data Using Dendrogram Sharpening L. Stanberry, R. Nandy, and D. Cordes Presenter: Abdullah-Al Mahmood

Reference

L. Stanberry, R. Nandy and D. Cordes Cluster Analysis of fMRI Data Using Dendrogram Sharpening. Human Brain Mapping, 20:201-219, 2003.

N.B. All figures and tables are taken from the original work

Page 28: Cluster Analysis of fMRI Data Using Dendrogram Sharpening L. Stanberry, R. Nandy, and D. Cordes Presenter: Abdullah-Al Mahmood

Questions?