50
Tumor Scintigraphy Page 1 of 51 http://qawww.aetna.com/cpb/medical/data/100_199/0168_draft.html 03/25/2015 Aetna Better Health® 2000 Market Street, Suite 850 Philadelphia, PA 19103 AETNA BETTER HEALTH® Clinical Policy Bulletin: Tumor Scintigraphy Revised February 2015 Number: 0168 (Replaces CPBs 239, 309, 320) Policy ProstaScint Aetna considers ProstaScint scans medically necessary for either of the following indications: 1. Pre-operative staging of newly diagnosed persons with biopsy-proven prostate cancer that is thought to be clinically localized after standard diagnostic evaluation, but who have a moderate to high probability of occult extra-prostatic metastasis; or 2. Staging of post-prostatectomy persons or persons treated with radiation therapy in whom there is a high suspicion of undetected residual prostate cancer or cancer recurrence. Aetna considers ProstaScint scans experimental and investigational for all other indications because its effectiveness for indications other than the ones lsited above has not been established. Oncoscint Aetna considers monoclonal antibody (MAb) imaging (also known as radioimmunoscintigraphy and Oncoscint immunoscintigraphy) using satumomab pendetide medically necessary for any of the following indications: 1. As an alternative to second-look laparotomy to detect occult colorectal carcinoma in persons with suspected recurrence suggested by an elevated carcino-embryonic antigen (CEA) level, but who have no evidence of disease on conventional imaging modalities (including CT scan); or 2. Detection of occult colorectal carcinoma in persons about to undergo a potentially curative resection of an apparently isolated recurrence located at a single site (e.g., lung or liver) which has been identified on conventional imaging modalities (including CT scan) and for whom the detection of occult lesions elsewhere would alter the surgical management; or

Clinical Policy Bulletin: Tumor Scintigraphy...Tumor Scintigraphy Page 1 of 51 ... cancer that is thought to be clinically localized after standard diagnostic evaluation, but who have

  • Upload
    others

  • View
    12

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Clinical Policy Bulletin: Tumor Scintigraphy...Tumor Scintigraphy Page 1 of 51 ... cancer that is thought to be clinically localized after standard diagnostic evaluation, but who have

Tumor Scintigraphy Page 1 of 51

http://qawww.aetna.com/cpb/medical/data/100_199/0168_draft.html 03/25/2015

Aetna Better Health® 2000 Market Street, Suite 850 Philadelphia, PA 19103

AETNA BETTER HEALTH®

Clinical Policy Bulletin: Tumor Scintigraphy

Revised February 2015

Number: 0168

(Replaces CPBs 239, 309, 320)

Policy

ProstaScint

Aetna considers ProstaScint scans medically necessary for either of the following

indications:

1. Pre-operative staging of newly diagnosed persons with biopsy-proven prostate

cancer that is thought to be clinically localized after standard diagnostic evaluation,

but who have a moderate to high probability of occult extra-prostatic metastasis; or

2. Staging of post-prostatectomy persons or persons treated with radiation therapy in

whom there is a high suspicion of undetected residual prostate cancer or cancer

recurrence.

Aetna considers ProstaScint scans experimental and investigational for all other

indications because its effectiveness for indications other than the ones lsited above has

not been established.

Oncoscint

Aetna considers monoclonal antibody (MAb) imaging (also known as

radioimmunoscintigraphy and Oncoscint immunoscintigraphy) using satumomab

pendetide medically necessary for any of the following indications:

1. As an alternative to second-look laparotomy to detect occult colorectal carcinoma

in persons with suspected recurrence suggested by an elevated carcino-embryonic

antigen (CEA) level, but who have no evidence of disease on conventional imaging

modalities (including CT scan); or

2. Detection of occult colorectal carcinoma in persons about to undergo a potentially

curative resection of an apparently isolated recurrence located at a single site (e.g.,

lung or liver) which has been identified on conventional imaging modalities

(including CT scan) and for whom the detection of occult lesions elsewhere would

alter the surgical management; or

Page 2: Clinical Policy Bulletin: Tumor Scintigraphy...Tumor Scintigraphy Page 1 of 51 ... cancer that is thought to be clinically localized after standard diagnostic evaluation, but who have

Tumor Scintigraphy Page 2 of 51

http://qawww.aetna.com/cpb/medical/data/100_199/0168_draft.html 03/25/2015

3. Detection of occult recurrent ovarian cancer in persons with suspected recurrence

suggested by rising tumor markers, when no other imaging or physical examination

technique can locate the suspected disease.

Aetna considers Oncoscint immunoscintigraphy experimental and investigational for all

other indications such as any of the following because it has not been established to have

a clearly defined role in the management of individuals with these indications:

1. As a screening tool for cancers; or

2. Detection of occult disease in persons who have melanoma, breast cancer,

thrombosis, inflammatory disease, lymphoma, or prostate cancer because there

are insufficient scientific data to document the clinical utility of Oncoscint

immunoscintigraphy in the management of persons with these conditions; or

3. In other colorectal cancer persons not meeting criteria #1 or #2 above (for instance,

post-operative colorectal cancer persons with rising serum CEA levels and

negative standard imaging and other studies.

CEA-Scan

Aetna considers CEA-Scan® using Tc-99m-arcitumomab, a radiodiagnostic agent

produced by Immunomedics, for use in conjunction with computerized tomography (CT)

scans medically necessary for detection of recurrent or metastatic colorectal cancer in the

liver and extra-hepatic abdomen and pelvis. Aetna considers the CEA-scan experimental

and investigational for all other indications because its effectiveness for indications other

than the ones listed above has not been established.

Technetium-99m-Sestamibi Scintigraphy

Aetna considers technetium-99m-sestamibi (Tc-MIBI) scintigraphy medically necessary for

any of the following indications:

1. For assessment malignant bone and soft tissue tumor response to therapy; or

2. For evaluation of metastatic thyroid cancer; or

3. For evaluation of parathyroid adenoma. (Note: Technetium tc-99m pertechnetate

(thallium) subtraction scan with technetium tc-99m sestamibi scan for parathyroid

adenomais is considered medically necessary)

Aetna considers technetium-99m-sestamibi scintigraphy experimental and investigational

for all other indications such as the following because its role for these indications has not

been established:

1. For detection of malignant axillary adenopathy secondary to breast cancer; or

2. For evaluation of central nervous system (CNS) neoplasms; or

3. For imaging of breast cancer (known as Miraluma scan).

OctreoScan

Aetna considers an OctreoScan, using octreotide (Sandostatin) tagged with radiolabeled

111Indium-pentetreotide, medically necessary for the diagnosis and staging of persons

with primary and metastatic neuroendocrine tumors bearing somatostatin receptors. Such

tumors include any of the following:

Carcinoid tumors/carcinoid syndrome

Page 3: Clinical Policy Bulletin: Tumor Scintigraphy...Tumor Scintigraphy Page 1 of 51 ... cancer that is thought to be clinically localized after standard diagnostic evaluation, but who have

Tumor Scintigraphy Page 3 of 51

http://qawww.aetna.com/cpb/medical/data/100_199/0168_draft.html 03/25/2015

Gastrinomas

Glucagonomas

Insulinomas

Islet cell tumors of the pancreas

Medullary thyroid carcinoma (MTC)

Neuroendocrine carcinoma of the rectum

Paragangliomas

Pheochromocytomas

Pituitary adenomas

Tumor-induced osteomalacia (oncogenic osteomalacia) (for diagnosis only)

VIPoma (vasoactive intestinal peptide) -- persons present with Verner-Morrison

syndrome: watery diarrhea, hypokalemia and achlorhydria

Aetna considers 111

In-pentetreotide (OctreoScan) experimental and investigational for all

other indications such as any of the following because the sensitivity and specificity of this

test for the following indications has been demonstrated to be inadequate:

Astrocytomas

Chemodectomas

Hodgkin lymphoma

Meningiomas

Neuroblastoma (olfactory, mediastinal)

Merkel cell tumors

Non-Hodgkin's lymphoma

Ocular melanoma

Sarcoidosis

Small-cell lung cancer, primary or metastatic

Thymoma

Radiolabeled Octreotide for Therapeutic Use

Aetna considers radiolabeled octreotide medically necessary for the treatment of

gastroenteropancreatic neuroendocrine tumors. The gamma emitting imaging

radionuclide (111

In-octreotate) is replaced by a beta imaging therapy radionuclide (90Y-

octreotide). Guidelines from the UKNETwork for Neuroendocrine Tumours (Ramage et al,

2005) state that targeted radionuclide therapy, including 90Y-octreotide (also known as

90Y-DOTATOC), is a useful palliative option for symptomatic individuals with inoperable

or metastatic gastroenteropancreatic neuroendocrine tumors where there is corresponding

abnormally increased uptake of the corresponding radionuclide imaging agent.

Aetna considers radiolabeled octreotide experimental and investigational for the treatment

of incompletely resected meningioma because its effectiveness for this indication has not

been established.

Lymphoscintigraphy and Sentinel Lymph Node Biopsy

Aetna considers lymphoscintigraphy and sentinel lymph node biopsy (SLNB) medically

necessary for persons with malignant melanoma. In addition, Aetna considers radioactive

Page 4: Clinical Policy Bulletin: Tumor Scintigraphy...Tumor Scintigraphy Page 1 of 51 ... cancer that is thought to be clinically localized after standard diagnostic evaluation, but who have

Tumor Scintigraphy Page 4 of 51

http://qawww.aetna.com/cpb/medical/data/100_199/0168_draft.html 03/25/2015

colloid and/or blue dye identification of the sentinel node in the axilla followed by SLNB

medically necessary for persons with breast cancer. Lymphoscintigraphy and SLNB is

considered experimental and investigational for all other indications (e.g., as a screening

test in persons with a BRCA mutation, with or without prophylactic mastectomy) because

its effectiveness for indications other than the ones listed above has not been established.

Meta-Iodobenzylguanidine (MIBG) Imaging

Aetna considers I-131 labeled meta-iodobenzylguanidine (MIBG, also known as

iobenguane I-131) imaging medically necessary for localizing or confirming any of the

following conditions:

Adrenal medulla hyperplasia

Carcinoid tumors

Neuroblastoma

Paraganglioma

Pheochromocytoma

Thyroid carcinoma.

Aetna considers I-123 labeled MIBG imaging experimental and investigational in the

management of all conditions, such as any of the following, because its value for these

indications has not been established:

Arrhythmia

Arrhythmogenic right ventricular cardiomyopathy

Cardiomyopathy

Congestive heart failure (CHF)

Diabetes mellitus

Differentiating Parkinson's disease from multiple system atrophy or progressive

supranuclear palsy

Drug-induced cardiotoxicity

Heart transplantation

Hypertension

Idiopathic ventricular fibrillation

Ischemic heart disease

Tracking response to medications for members with CHF

Aetna considers I-131 labeled MIBG radiotherapy experimental and investigational as

a treatment for neuroblastoma, pheochromocytoma and all other indications because its

effectiveness for these indications has not been established.

AndreView

Aetna considers iobenguane I-123 injection (AdreView, GE Healthcare) medically

necessary for the detection of primary or metastatic pheochromocytoma or neuroblastoma

as an adjunct to other diagnostic tests. Aetna considers iobenguane I-123 injection

experimental and investigational for all other indications because its effectiveness for

indications other than the ones listed above has not been established.

Scintimammography and Breast Specific Gamma Imaging (BSGI)

Aetna considers scintimammography, including breast-specific gamma imaging (BSGI;

also known as molecular breast imaging), experimental and investigational as an adjunct

Page 5: Clinical Policy Bulletin: Tumor Scintigraphy...Tumor Scintigraphy Page 1 of 51 ... cancer that is thought to be clinically localized after standard diagnostic evaluation, but who have

Tumor Scintigraphy Page 5 of 51

http://qawww.aetna.com/cpb/medical/data/100_199/0168_draft.html 03/25/2015

to mammography for imaging of breast tissue, for the detection of axillary metastases,

staging the axillary lymph nodes in members with breast cancer, and to assess response

to adjuvant chemotherapy in members with breast cancer, and for all other indications

because its effectiveness has not been established.

Technetium-Tc 99m Tilmanocept (Lymphoseek)

Aetna considers technetium Tc 99m tilmanocept (Lymphoseek) injection medically

necessary for location of lymph nodes in persons with breast cancer or melanoma who

are undergoing surgery to remove tumor-draining lymph nodes.

Aetna considers technetium Tc 99m tilmanocept injection experimental and

investigational for all other indications (e.g., oral cavity squamous cell carcinoma)

Background

Nuclear imaging is assuming an increasing role in the management of patients with

cancer. Tumor scintigraphy involves the intravenous administration of a radio-

pharmaceutical, defined as an isotope attached to a carrier molecule, which localizes in

certain tumor tissues and the subsequent imaging and computer acquisition of data. The

goal of tumor scintigraphy is to enable the interpreting physician to detect and evaluate

primary, metastatic, or recurrent tumor tissue by producing images of diagnostic quality.

In general, tumor scintigraphy may be used for, but is not limited to, detection of certain

primary, metastatic, and recurrent tumors, evaluation of abnormal imaging and non-

imaging findings in patients with a history of certain tumors, and reassessment of patients

for residual tumor burden after therapy. Specific clinical applications differ depending

upon the specific radiopharmaceutical that is used.

Traditional imaging modalities (CT, MRI) for prostate cancer perform very poorly and bone

scanning, although having a high positive predictive value, is insensitive for metastasis

and is used only in those patients with a reasonable probability of metastatic disease (e.g.,

prostate-specific antigen [PSA] greaetr than 10). The ProstaScint scan uses a

monoclonal antibody-based imaging agent (In111-Capromab Pendetide) and was

approved by the U.S. Food and Drug Administration (FDA) for use in patients with biopsy

proven prostate cancer in whom there is a high clinical suspicion of occult metastatic

disease and who have had a negative or equivocal standard staging evaluation.

Patients with primary colorectal carcinoma undergo an extensive pre-operative staging

work-up. Unfortunately, the accuracy of non-surgical staging techniques (CT or MRI) has

been shown to be poor. Recurrent disease is seen in up to 40 % of patients with Dukes

stage B or C colorectal carcinoma, generally within the first 18 months post-operatively.

Carcinoembryonic antigen (CEA) levels are used to monitor patients for recurrent disease;

however, almost 1/3 of patients with recurrence do not have elevated CEA levels. Both

CT and MRI have been shown to be inadequate in the detection of local or lymph node

recurrence. In regards to ovarian cancer, serum CA-125 levels have been shown to be

useful in predicting the presence of ovarian cancer, but negative titers do not preclude

malignancy. In clinical trials, OncoScint has a sensitivity of 70 % versus 44 % for CT, and

a specificity of 55 % (79 % for CT) in patients with ovarian cancer. Carcinomatosis was

detectable by antibody imaging in 71 % of patients, but in only 45 % by CT.

Page 6: Clinical Policy Bulletin: Tumor Scintigraphy...Tumor Scintigraphy Page 1 of 51 ... cancer that is thought to be clinically localized after standard diagnostic evaluation, but who have

Tumor Scintigraphy Page 6 of 51

http://qawww.aetna.com/cpb/medical/data/100_199/0168_draft.html 03/25/2015

Oncoscint is an IgG murine monoclonal antibody that specifically targets the cell surface

mucin-like glycoprotein antigen TAG-72, which is commonly found on colorectal and

ovarian carcinomas. It is reported to be reactive with 83 % of colorectal carcinomas and

97 % of ovarian carcinomas. According to the available literature, a major advantage of

Oncoscint is that it allows one to survey the entire body, thus permitting the detection of

occult metastases that can have a major impact on tumor staging. Clinical studies have

documented only minimal cross reactivity with other tumors or normal tissues (i.e., the

false-positive rate is very low). Additionally, the results of the Oncoscint exam have been

reported to result in a change in patient management in 25 % of cases, and the

examination also detected sites of occult disease in 10 % of patients. Oncoscint can also

be used to confirm the absence of other sites of disease prior to surgery. This is important

for the patient about to undergo a potentially curative resection of an isolated recurrence

of colorectal carcinoma located in a single site, i.e., lung or liver.

CEA-Scan is a nuclear imaging test which uses a monoclonal antibody fragment

(arcitumomab) labeled with technetium 99 that reacts with CEA, a tumor marker for cancer

of the colon and rectum. CEA-Scan can be used to detect recurrent or metastatic

colorectal carcinoma in conjunction with standard imaging modalities. The agent is not

indicated as a screening tool for colorectal cancer. The sensitivity of CEA-Scan has been

shown to be superior to conventional imaging modalities in evaluation of the extra-hepatic

abdomen (55 % versus 32 %) and pelvis (69 % versus 48 %). The scan findings are not

superior to conventional exams in evaluation of the liver (63 % versus 64 %); however, the

findings are often complementary. Lesion detection is in part related to lesion size, with a

sensitivity of 80 % for lesions over 2 cm. Detection of lesions smaller than 1 cm is 60 %.

CEA-Scan has been shown to have potential clinical benefit in 1/3 of colorectal cancer

patients.

Since its introduction, technetium-99m-sestamibi (also known as technetium-99m-MIBI)

has been shown to be of value in assessing malignant bone and soft tissue tumor

response to therapy. Technetium-99m-sestamibi (Miraluma) has also been proposed as

the radio-pharmaceutical agent for use during scintimammography in the evaluation of

women with dense breast tissue and possibly for women who have had partial

mastectomy, previous biopsies, radiation therapy or silicone implants. Although Miraluma

may be more sensitive than thallium in the evaluation of breast lesions greater than 1.5

cm in size and was approved in May, 1997 by the FDA for use as a nuclear medicine test

to be used in breast imaging, the reported sensitivities and specificities of Miraluma

imaging vary based on size and the palpable nature of the finding. There is a lack of

evidence in the medical literature demonstrating an acceptable level of sensitivity and

specificity in detecting small, non-palpable breast lesions less than 1.2 cm, with or without

microcalcification. Overall, Miraluma has a sensitivity of 83 to 96 % (average 85 %) and a

specificity of 72 to 100 % (average 81 %) for malignancy. The negative predictive value

has been reported to be between 88 to 97 %. False-positive examinations have been

described with fibroadenomas, papillomas, epithelial hyperplasia, and fibrocystic breast

disease. Patients with fibrocystic disease are more likely to have false-positive

examinations even though the Miraluma exam has been reported to be unaffected by the

density of the breast. Most false-negative examinations occur with lesions smaller than 1

cm in size or in lesions not palpable. Studies now indicate that the examinations

sensitivity drops to 51 % to 72 % for non-palpable lesions. And lastly, the available

literature shows that Miraluma is not competitive with mammography on either a cost-

effective or sensitivity basis in the screening of patients for breast cancer.

Page 7: Clinical Policy Bulletin: Tumor Scintigraphy...Tumor Scintigraphy Page 1 of 51 ... cancer that is thought to be clinically localized after standard diagnostic evaluation, but who have

Tumor Scintigraphy Page 7 of 51

http://qawww.aetna.com/cpb/medical/data/100_199/0168_draft.html 03/25/2015

All articles regarding Tc-MIBI in the evaluation of breast masses suffer from 2 major

drawbacks: (i) the reported results for these studies focuses on a pre-selected patient

population resulting in a very high incidence of cancer in the patients sent for the

examination. This suggests a selection bias and sensitivity of the examination is likely

over-estimated; and (ii) the mean lesion size is generally over 1.0 to 1.5 cm where

mammographic findings can aid in differentiating a benign from a malignant lesion. Other

drawbacks include the lack of an adequately high negative predictive value, which means

malignant lesions may be missed, and false positive exams occur in benign lesions such

as fibroadenomas. Since the implications of a missed diagnosis of breast cancer can be

disastrous to patient outcome, the available literature states that Miraluma has no role in

breast cancer screening to confirm the presence or absence of malignancy (particularly

clinically occult abnormalities), and it is not an alternative to biopsy. Stereotactic and

ultrasound guided biopsies of breast lesions are minimally invasive and can provide a

definitive diagnosis. Despite optimism in the nuclear medicine literature, the literature on

balance states that this examination probably has no role in the evaluation of patients with

suspected breast malignancy. Determining a subset of women that would benefit from

this procedure will be difficult until larger prospective studies have been performed.

Mammography remains the generally accepted standard for screening. Continued

evaluation with diagnostic mammography, ultrasound and surgical biopsy remains the

diagnostic work-up that is most frequently recommended. The Institute of Medicine of the

National Academy of Science recently concluded that “scintimammography has shown

diagnostic potential as an adjunct to mammography, but the technical limitations such as

resolution have precluded it from becoming more widely used. Although it has FDA

approval, the current data do not justify its implementation on a standard basis.

Technological improvements and novel radioactive compounds could potentially improve

its utility, but at the moment its future is uncertain. The method also has potential for use

in functional imaging applications, but further study and development are needed.”

An assessment prepared for the Agency for Healthcare Research and Quality (Bruening

et al, 2006) concluded that scintimammography is not sufficiently accurate to rule out

breast cancer in women with abnormal mammograms or physical findings suggestive of

breast cancer. The report found that, for every 1,000 women with negative

scintimammogram results, about 907 women would avoid an unnecessary biopsy but 93

women would have missed cancers.

Scintimammography utilizing high-resolution gamma cameras (e.g., Dilon Scan/Dilon

6800 camera, Dilon Technologies, LLC, Newport News, VA), also known as breast-

specific gamma imaging (BSGI), has a spatial resolution of less than 4 mm and is being

marketed to help identify cancerous breast tissue that is undetected by mammography.

Proponents believe this technology is useful as a complementary tool in the detection of

breast cancer in women with difficult to read mammograms, such as those with dense

breast tissue, breast implants or scar tissue from previous breast surgery. According to

the advocates of this technology, by operating on a cellular or molecular level, BSGI is not

affected by tissue density and can help detect cancers at very early stages and allow for

optimal intervention and treatment. Its ability to accurately detect breast cancer has the

potential to significantly reduce the number of unnecessary, invasive biopsies.

Brem and colleagues have published several comparative studies on the use of BSGI for

the diagnosis of breast cancer. In one comparative study, Brem et al (2007) compared

the sensitivity of BSGI for the detection of ductal carcinoma in situ (DCIS) with the results

Page 8: Clinical Policy Bulletin: Tumor Scintigraphy...Tumor Scintigraphy Page 1 of 51 ... cancer that is thought to be clinically localized after standard diagnostic evaluation, but who have

Tumor Scintigraphy Page 8 of 51

http://qawww.aetna.com/cpb/medical/data/100_199/0168_draft.html 03/25/2015

obtained with mammography and magnetic resonance imaging (MRI) based on the

histopathology of biopsy-proven DCIS. After injection of technetium 99m-sestamibi,

patients had BSGI in craniocaudal and mediolateral oblique projections. Imaging findings

were compared to findings at biopsy or surgical excision. Breast MRI was performed on 7

patients with 8 biopsy-proven foci. Pathologic tumor size of the DCIS ranged from 2 to 21

mm (mean of 9.9 mm). Of 22 cases of biopsy-proven DCIS in 20 women, 91 % were

detected with BSGI, 82 % were detected with mammography, and 88 % were detected

with MRI. The authors reported that BSGI had the highest sensitivity for the detection of

DCIS, although the small sample size did not demonstrate a statistically significant

difference. Two cases of DCIS (9 %) were diagnosed only after BSGI demonstrated an

occult focus of radiotracer uptake in the contralateral breast, previously undetected by

mammography and there were 2 false-negative BSGI studies. In another study, Brem and

colleagues (2008) reported the sensitivity and specificity of BSGI for the detection of

breast cancer using pathologic results as a reference standard as 96.4 % and 59.5 %,

respectively, a positive predictive value of 68 %, and a negative predictive value of 94 %

for non-malignant lesions. The smallest invasive cancer and DCIS detected by BSGI was

reported to be 1 mm.

In a retrospective review, Zhou et al (2008) reported the results of BSGI on 176 patients

who underwent BSGI evaluation. A total of 128 patients underwent BSGI because of

suspicious imaging, abnormal physical examination, or were considered high risk for

breast cancer with dense breasts. BSGI was positive in 12 of 107 patients with breast

imaging reporting and data system (BI-RADS) 1, 2, or 3. Two of these were cancer. Of

the 21 patients with BI-RADS 4, 18 were BSGI-negative (11 with benign biopsy, 7

observed), and 3 were BSGI-positive with 2 being cancerous. Forty-eight patients with a

new diagnosis of cancer obtained BSGI for further work-up. It was positive at a new

location in 6 cases: 2 cases were new cancers in the contralateral breast, 1 was in the

ipsilateral breast, and the remaining 3 had benign pathology. The authors reported that

clinical management was changed significantly in 14.2 % of the 176 patients, with another

6.3 % in whom a negative BSGI could have prevented a biopsy. The authors concluded,

"Potential roles for BSGI in the current paradigm of breast imaging include screening and

diagnosis. BSGI has the ability to pick up mammography occult breast cancers and can

be especially useful in high-risk patients with dense breasts in whom the sensitivity and

specificity of mammography suffers significantly. Another promising use of BSGI could be

further evaluation of BI-RADS 4 patients to see if invasive biopsy can be avoided. A

larger series of patients is needed to confirm this hypothesis."

Recent studies of scintimammography utilizing BSIG are promising; however, patient

populations were small and focused on a pre-selected patient population resulting in a

very high incidence of cancer in the patients sent for examination. This suggests a

selection bias and sensitivity of the examination is likely over-estimated. In addition, there

are no studies that evaluate change in clinical practice if the breast-specific gamma

camera was used in stead of, or in addition to, MRI or ultrasound, and its impact on

clinical outcomes. The effectiveness of scintimammography in screening or diagnostic

strategies needs to be evaluated in large-scale clinical trials.

The American College of Radiology (ACR) and Society for Pediatric Radiology (SPR)'s

practice guideline for the performance of tumor scintigraphy (with gamma cameras) (2010)

stated that "[m]ore recently, breast-specific gamma imaging (BSGI) which uses a high-

resolution, small-field-of-view gamma camera optimized to image breast tumors has been

developed. Areas of active investigation concerning potential indications include

Page 9: Clinical Policy Bulletin: Tumor Scintigraphy...Tumor Scintigraphy Page 1 of 51 ... cancer that is thought to be clinically localized after standard diagnostic evaluation, but who have

Tumor Scintigraphy Page 9 of 51

http://qawww.aetna.com/cpb/medical/data/100_199/0168_draft.html 03/25/2015

determination of extent of disease in women with newly diagnosed breast cancer, and

evaluation of patients with dense breasts. Additional clinical evidence is needed to assess

where BSGI will fit in the imaging algorithm of breast cancer. When BSGI is performed,

the ability to correlate BSGI findings with other breast imaging techniques and a defined

protocol for evaluation of abnormalities seen only on BSGI should be in place".

O'Connor and asociates (2010) noted that recent studies have raised concerns about

exposure to low-dose ionizing radiation from medical imaging procedures. Little has been

published regarding the relative exposure and risks associated with breast imaging

techniques such as BSGI, molecular breast imaging (MBI), or positron emission

mammography (PEM). The purpose of this article was to estimate and compare the risks

of radiation-induced cancer from mammography and techniques such as PEM, BSGI, and

MBI in a screening environment. The authors used a common scheme for all estimates of

cancer incidence and mortality based on the excess absolute risk model from the BEIR VII

report. The lifetime attributable risk model was used to estimate the lifetime risk of

radiation-induced breast cancer incidence and mortality. All estimates of cancer incidence

and mortality were based on a population of 100,000 females followed from birth to age 80

and adjusted for the fraction that survives to various ages between 0 and 80. Assuming

annual screening from ages 40 to 80 and from ages 50 to 80, the cumulative cancer

incidence and mortality attributed to digital mammography, screen-film mammography,

MBI, BSGI, and PEM was calculated. The corresponding cancer incidence and mortality

from natural background radiation was calculated as a useful reference. Assuming a 15

% to 32 % reduction in mortality from screening, the benefit/risk ratio for the different

imaging modalities was evaluated. Using conventional doses of 925 MBq Tc-99m

sestamibi for MBI and BSGI and 370 MBq F-18 FDG for PEM, the cumulative cancer

incidence and mortality were found to be 15 to 30 times higher than digital mammography.

The benefit/risk ratio for annual digital mammography was greater than 50:1 for both the

40 to 80 and 50 to 80 screening groups, but dropped to 3:1 for the 40 to 49 age group. If

the primary use of MBI, BSGI, and PEM is in women with dense breast tissue, then the

administered doses need to be in the range 75 to 150 MBq for Tc-99m sestamibi and 35

MBq to 70 MBq for F-18 FDG in order to obtain benefit/risk ratios comparable to those of

mammography in these age groups. These dose ranges should be achievable with

enhancements to current technology while maintaining a reasonable examination time.

The authors concluded that the results of the dose estimates in this study clearly indicate

that if molecular imaging techniques are to be of value in screening for breast cancer, then

the administered doses need to be substantially reduced to better match the effective

doses of mammography.

Kim (2012) evaluated the adjunctive benefits of BSGI versus MRI in breast cancer

patients with dense breasts. This study included a total of 66 patients (44.1 +/- 8.2 years)

with dense breasts (breast density greater than 50 %) and already biopsy-confirmed

breast cancer. All of the patients underwent BSGI and MRI as part of an adjunct modality

before the initial therapy. Of 66 patients, the 97 undetermined breast lesions were newly

detected and correlated with the biopsy results. Twenty-six of the 97 breast lesions

proved to be malignant tumors (invasive ductal cancer, n = 16; DCIS, n = 6; mixed or

other malignancies, n = 4); the remaining 71 lesions were diagnosed as benign tumors.

The sensitivity and specificity of BSGI were 88.8 % (confidence interval (CI): 69.8 to 97.6

%) and 90.1 % (CI: 80.7 to 95.9 %), respectively, while the sensitivity and specificity of

MRI were 92.3 % (CI: 74.9 to 99.1 %) and 39.4 % (CI: 28.0 to 51.7 %), respectively (p <

0.0001). MRI detected 43 false-positive breast lesions, 37 (86.0 %) of which were

correctly diagnosed as benign lesions using BSGI. In 12 malignant lesions less than 1

Page 10: Clinical Policy Bulletin: Tumor Scintigraphy...Tumor Scintigraphy Page 1 of 51 ... cancer that is thought to be clinically localized after standard diagnostic evaluation, but who have

Tumor Scintigraphy Page 10 of 51

http://qawww.aetna.com/cpb/medical/data/100_199/0168_draft.html 03/25/2015

cm, the sensitivities of BSGI and MR imaging were 83.3 % (CI: 51.6 to 97.9 %) and 91.7

% (CI: 61.5 to 99.8 %), respectively. The author concluded that BSGI showed an

equivocal sensitivity and a high specificity compared to MRI in the diagnosis of breast

lesions. In addition, BSGI had a good sensitivity in discriminating breast cancers less than

or equal to 1 cm. The results of this study suggested that BSGI could play a crucial role

as an adjunctive imaging modality which can be used to evaluate breast cancer patients

with dense breasts.

Keto et al (2012) prospectively compared the sensitivity of BSGI to MRI in newly

diagnosed ductal carcinoma-in-situ (DCIS) patients. Patients with newly diagnosed DCIS

from June 1, 2009, through May 31, 2010, underwent a protocol with both breast MRI and

BSGI. Each imaging study was read by a separate dedicated breast radiologist. Patients

were excluded if excisional biopsy was performed for diagnosis, if their MRI was

performed at an outside facility, or if final pathology revealed invasive carcinoma. There

were 18 patients enrolled onto the study that had both MRI and BSGI for newly diagnosed

DCIS. The sensitivity for MRI was 94 % and for BSGI was 89 % (p > 0.5, NS). There was

1 index tumor not seen on either MRI or BSGI, and 1 index tumor seen on MRI but not

visualized on BSGI. The authors concluded that although BSGI has previously been

shown to be as sensitive as MRI for detecting known invasive breast carcinoma, this study

shows that BSGI is equally as sensitive as MRI at detecting newly diagnosed DCIS. They

stated that as a result of the limited number of patients enrolled onto the study, larger

prospective studies are needed to determine the true sensitivity and specificity of BSGI.

Spanu et al (2012) investigated the clinical impact of breast scintigraphy acquired with a

breast specific γ-camera (BSGC) in the diagnosis of breast cancer (BC) and assessed its

incremental value over mammography (Mx). A consecutive series of 467 patients

underwent BSGC scintigraphy for different indications: suspicious lesions on physical

examination and/or on US/MRI negative at Mx (BI-RADS 1 or 3), characterization of

lesions suspicious at Mx (BI-RADS 4), pre-operative staging in lesions highly suggestive

of malignancy at Mx (BI-RADS 5). Definitive histopathological findings were obtained in

all cases after scintigraphy: 420/467 patients had BC, while 47/467 patients had benign

lesions. The scintigraphic data were correlated to Mx BI-RADS category findings and to

histology. The incremental value of scintigraphy over Mx was calculated. Scintigraphy

was true-positive in 97.1 % BC patients, detecting 96.2 % of overall tumor foci, including

91.5 % of carcinomas less than or equal to 10 mm, and it was true-negative in 85.1 % of

patients with benign lesions. Scintigraphy gave an additional value over Mx in 141/467

cases (30.2 %). In particular, scintigraphy ascertained BC missed at Mx in 31 patients with

BI-RADS 1 or 3, including 26 patients with heterogeneously/high dense breast (19/26 with

tumors less than or equal to 10 mm) and detected additional clinically occult

ipsilateral or contralateral tumor foci (all less than 10 mm) or the in-situ component sited

around invasive tumors in 77 BC patients with BI-RADS 4 or 5, changing surgical

management in 18.2 % of these cases; moreover, scintigraphy ruled out malignancy in 33

patients with BI-RADS 4. BSGC scintigraphy proved a highly sensitive diagnostic tool,

even in small size carcinoma detection, while maintaining a high specificity. The

procedure increased the sensitivity of Mx, especially in dense breast and in multi-

focal/multi-centric disease, as well as the specificity. It better defined local tumor

extension, thus guiding the surgeon to a more appropriate surgical treatment. Moreover,

these researchers stated that “However, also this scintigraphic procedure presents some

limitations, such as radiation exposure that could limit its routine use, especially in

screening programs. Tumor size seemed to represent the most important factor affecting

the performance of scintigraphy, since the majority of false-negative findings were related

Page 11: Clinical Policy Bulletin: Tumor Scintigraphy...Tumor Scintigraphy Page 1 of 51 ... cancer that is thought to be clinically localized after standard diagnostic evaluation, but who have

Tumor Scintigraphy Page 11 of 51

http://qawww.aetna.com/cpb/medical/data/100_199/0168_draft.html 03/25/2015

to sub-centimetric carcinomas. Moreover, lesion site may also affect sensitivity, since a

high percentage of small tumors negative at breast scintigraphy in our series were located

in internal quadrants or were excluded from the field of view of the device as happened in

two cases …. A larger clinical application of BSGC scintigraphy is thus suggested

although many prospective trials are needed, particularly with the aim of identifying those

subgroups of patients who would more benefit from scintigraphy employment ….

However, cost-benefit analysis is needed to justify the use of BSGC scintigraphy in

combination with conventional diagnostic imaging methods as an adjunctive tool”.

Mitchell et al (2013) determined the ability of breast imaging with 99mTc-sestamibi and a

direct conversion- MBI system to predict early response to neoadjuvant chemotherapy

(NAC). Patients undergoing NAC for breast cancer were imaged with a direct conversion-

MBI system before (baseline), at 3 to 5 weeks after onset, and after completion of NAC.

Tumor size and tumor-to-background (T/B) uptake ratio measured from MBI images were

compared with extent of residual disease at surgery using the residual cancer burden. A

total of 19 patients completed imaging and proceeded to surgical resection after NAC.

Mean reduction in T/B ratio from baseline to 3 to 5 weeks for patients classified as RCB-0

(no residual disease), RCB-1 and RCB-2 combined, and RCB-3 (extensive residual

disease) was 56 % (SD, 0.20), 28 % (SD, 0.20), and 4 % (SD, 0.15), respectively. The

reduction in the RCB-0 group was significantly greater than in RCB-1/2 (p = 0.036) and

RCB-3 (p = 0.001) groups. The area under the receiver operator characteristic curve for

determining the presence or absence of residual disease was 0.88. Using a threshold of

50 % reduction in T/B ratio at 3 to 5 weeks, MBI predicted presence of residual disease at

surgery with a diagnostic accuracy of 89.5 % (95 % confidence interval [CI]: 0.64 % to

0.99 %), sensitivity of 92.3 % (95 % CI: 0.74 % to 0.99 %), and specificity of 83.3 % (95 %

CI: 0.44 % to 0.99 %). The reduction in tumor size at 3 to 5 weeks was not statistically

different between RCB groups. The authors concluded that changes in T/B ratio on MBI

images performed at 3 to 5 weeks following initiation of NAC were accurate at predicting

the presence or absence of residual disease at NAC completion. They stated that “A

limitation of MBI is its inability to depict axillary node involvement and potentially to

visualize tumors close to the chest wall …. Our results are promising, but larger studies

evaluating the use of 99mTc-sestamibi and dedicated gamma cameras are needed to

support these findings”.

Hruska and colleagues (2014) compared diagnostic performance of MBI performed with

standard 10-min-per-view acquisitions and half-time 5-min-per-view acquisitions, with and

without wide beam reconstruction (WBR) processing. A total of 82 bilateral, 2-view MBI

studies were reviewed. Studies were performed with 300 MBq Tc-99 m sestamibi and a

direct conversion MBI (DC-MBI) system. Acquisitions were 10 min-per-view; the first half

of each was extracted to create 5-min-per-view datasets, and WBR processing was

applied. The 10-min-, 5-min-, and 5-min-per-view WBR studies were independently

interpreted in a randomized, blinded fashion by 2 radiologists. Assessments of 1 to 5

were assigned; 4 and 5 were considered test positive. Background parenchymal uptake,

lesion type, distribution of non-mass lesions, lesion intensity, and image quality were

described. Considering detection of all malignant and benign lesions, 5 min-per-view MBI

had lower sensitivity (mean of 70 % versus 85 % (p ≤ 0.04) for 2 readers) and lower area

under curve (AUC) (mean of 92.7 versus 99.6, p ≤ 0.01) but had similar specificity (p =

1.0). WBR processing did not alter sensitivity, specificity, or AUC obtained at 5 min-per-

view. Overall agreement in final assessment between 5-min-per-view and 10-min-per-

view acquisition types was near perfect (κ = 0.82 to 0.89); however, fair-to-moderate

agreement was observed for assessment category 3 (probably benign) (κ = 0.24 to 0.48).

Page 12: Clinical Policy Bulletin: Tumor Scintigraphy...Tumor Scintigraphy Page 1 of 51 ... cancer that is thought to be clinically localized after standard diagnostic evaluation, but who have

Tumor Scintigraphy Page 12 of 51

http://qawww.aetna.com/cpb/medical/data/100_199/0168_draft.html 03/25/2015

Of 33 malignant lesions, 6 (18 %) were changed from assessment of 4 or 5 with 10-min-

per-view MBI to assessment of 3 with 5-min-per-view MBI. Image quality of 5-min-per-

view studies was reduced compared to 10-min-per-view studies for both readers (3.24

versus 3.98, p < 0.0001 and 3.60 versus 3.91, p < 0.0001). WBR processing improved

image quality for 1 reader (3.85 versus 3.24, p < 0.0001). The authors concluded that

although similar radiologic interpretations were obtained with 10-min- and 5-min-per-view

DC-MBI, resulting in substantial agreement in final assessment, notable exceptions were

found: (i) perceived image quality at 5 min-per-view was lower than that for 10-min-per-

view studies and (ii) in a number of cases, assessment was down-graded from a

recommendation of biopsy to that of short interval follow-up. These investigators stated

that “A limitation of this study was that most patients had either photopenic or mild

background uptake; only 4 patients (8 breasts) were assigned moderate or marked

background uptake. All lesions downgraded at 5 min-per-view were in patients with

photopenic or mild background uptake. Hence, the effect of moderate or marked

background parenchymal uptake on lesion detection at 5 min-view could not be assessed

in this study. An additional limitation was that the detection task was a combined detection

and characterization process. Lesions, when identified, were done so using the BI-

RADSlike assessment scale at the breast level. A subtlety of this analysis is that breasts

characterized as 3 were treated as screen failures (MBI negative as a test result with a

binary decision)”.

Neuroendocrine tumors generally are small and slow-growing in nature, which makes

them difficult to detect and localize using conventional imaging techniques such as CT

and MRI. Octreotide (Pentetreotide In-111) is a synthetic octapeptide analog of

somatostatin that binds to somatostatin receptors on cell surfaces throughout the body.

The OctreoScan, which uses this radiopharmaceutical, can assist in staging the patient's

disease more accurately by offering highly sensitive, whole-body detection and

localization of primary and metastatic receptor-bearing neuroendocrine tumors, especially

if they are small. Octreotide has been shown to have an overall sensitivity of about 96 %

in the detection of carcinoid tumors. The literature indicates that, before consideration of

aggressive cytoreductive hepatic surgery, an OctreoScan can be used for ruling out

extrahepatic metastases. As a consequence of the ability of OctreoScan to demonstrate

somatostatin receptor-positive tumors, it can be used to select those patients who are

likely to respond favorably to octreotide treatment. Finally, the literature states that a

negative OctreoScan implies that the tumors are not expressing somatostatin receptors;

this is often associated with a more anaplastic histology.

There is currently insufficient evidence to support the use of Octreoscan for patients with

granulomatous diseases (e.g., sarcoidosis). In particular, guidelines from the Society for

Nuclear Medicine (2004) stated that gallium scintigraphy is used to localize inflammation

in sarcoidosis.

Carbone and colleagues (2003) examined Octreoscan scintigraphy as a tool for classifying

and assessing disease activity in sarcoidosis and idiopathic interstitial pneumonia (IIP), in

comparison of the radiological imaging and dyspnea symptom scores. A total of 33

patients of which 16 with sarcoidosis (mean age of 43.6 years, range of 30 to

58 years) and 17 with histologically diagnosed IIP (mean age of 62.2 years, range of 35 to

79 years) were enrolled in the study. Clinical history was taken as well as physical

examination, chest X-ray, and pulmonary function tests were assessed. A high-resolution

computed tomography scan (HRCT) was carried out in patients affected by sarcoidosis,

who had a normal chest X-ray, and in IIP patients. Both groups were evaluated with the

Page 13: Clinical Policy Bulletin: Tumor Scintigraphy...Tumor Scintigraphy Page 1 of 51 ... cancer that is thought to be clinically localized after standard diagnostic evaluation, but who have

Tumor Scintigraphy Page 13 of 51

http://qawww.aetna.com/cpb/medical/data/100_199/0168_draft.html 03/25/2015

Octreoscan uptake index (UI; normal value: less than or equal to 10). In patients affected

with sarcoidosis, the Octreoscan UI was significantly higher than in patients with IIP (16.35

+/- 3.1 and 10.06 +/- 0.8, respectively; p < 0.01) and was correlated with the

radiographical staging (p < 0.01) and with the degree of dyspnea (p < 0.01). In patients

with IIP, the Octreoscan UI was slightly above the normal limit (range of 10.3 to 11.7) in

non-specific interstitial pneumonia (NSIP) and desquamative interstitial pneumonia (DIP),

whereas in usual interstitial pneumonia (UIP) Octreoscan UI was always within normal

limit (less than or equal to 10 UI). A negative correlation was observed with histological

findings (p < 0.01) and with HRCT appearance (p < 0.01). The authors concluded that

Octreoscan UI is correlated with the degree of dyspnea in patients affected by sarcoidosis

and can quantify more accurately the degree of pulmonary involvement, as compared to

radiological assessment. Moreover, they stated that further studies are needed to

evaluate Octreoscan as an early test for predicting disease progression.

Kroot et al (2006) reported on a case in which sarcoidosis in a clinically unaffected joint

was demonstrated by somatostatin receptor scintigraphy. The patient presented with

decreased hearing, secondary amenorrhea, vertigo, dry eyes, and progressive loss of

vision. Because the differential diagnosis consisted of sarcoidosis and lymphoma,

somatostatin receptor scintigraphy with indium-111-DTPA octreotide was performed.

Increased uptake was observed in the parotid gland, bilateral orbits, nose, and the right

knee. Remarkably, on clinical examination, no signs of arthritis of the right knee were

observed. Additional tissue analysis of the right knee revealed the diagnosis of

sarcoidosis leading to successful treatment with prednisolone, anti-malarials, and

azathioprine. This case underlines the diagnostic potential of somatostatin receptor

scintigraphy in patients with sarcoidosis, even in clinically unaffected tissue.

Radiolabeled octreotide is also being studied for the treatment of radio-resistant solid

tumors especially small tumors (a few millimeters in diameter) whose uptake is maximal,

allowing more homogeneous distribution than that achieved with large tumors. The

gamma emitting imaging radionuclide (111In-octreotate) is replaced by a beta emitting

therapeutic radionuclide (90Y-ostreotide) (OctreoTher). Guidelines from the UKNETwork

for Neuroendocrine Tumours (Ramage et al, 2005) state that targeted radionuclide

therapy is a useful palliative option for symptomatic patients with inoperable or metastatic

neuroendocrine tumors where there is corresponding abnormally increased uptake of the

corresponding radionuclide imaging agent.

There are no randomized controlled clinical trials of targeted radionuclide therapy of

neuroendocrine tumors. In a retrospective study (n = 21), Bodei and colleagues (2004)

assessed the effectiveness of Yttrium-90 [90Y]-DOTA-Phe1-Tyr3-octreotide (90Y-

DOTATOC) therapy in metastatic medullary thyroid cancer (MTC) patients with positive

OctreoScan, progressing after conventional treatments. Two patients (10 %) obtained a

complete response (CR), as evaluated by CT, MRI and/or ultrasound, while a stabilization

of disease (SD) was observed in 12 patients (57 %); 7 patients (33 %) did not respond to

therapy. The duration of the response ranged between 3 to 40 months. Using

biochemical parameters (calcitonin and CEA), CR was observed in 1 patient (5 %), while

partial response was observed in 5 patients (24 %) and stabilization in 3 patients (14 %).

Twelve patients had progression (57 %); and CR was observed in patients with lower

tumor burden and calcitonin values at the time of the enrollment. These investigators

concluded that this retrospective analysis is consistent with the literature, regarding a low

response rate in MTC treated with 90Y-DOTATOC. Patients with smaller tumors and

higher uptake of the radiopeptide tended to respond better. Studies with 90Y-DOTATOC

Page 14: Clinical Policy Bulletin: Tumor Scintigraphy...Tumor Scintigraphy Page 1 of 51 ... cancer that is thought to be clinically localized after standard diagnostic evaluation, but who have

Tumor Scintigraphy Page 14 of 51

http://qawww.aetna.com/cpb/medical/data/100_199/0168_draft.html 03/25/2015

administered in earlier phases of the disease will help to evaluate the ability of this

treatment to enhance survival.

Waldherr et al (2002) reported on a prospective phase II study to evaluate the tumor

response of neuroendocrine tumors to high-dose targeted irradiation with 90Y-

DOTATOC. A total of 39 patients with progressive neuroendocrine gastroentero-

pancreatic and bronchial tumors were treated with 4 intravenous injections of 90Y-

DOTATOC, administered at intervals of 6 weeks, and were followed for a median duration

of 6 months (range of 2 to12 months). T he investigators reported an objective response

rate of 23 %. For endocrine pancreatic tumors (13 patients), the objective response rate

was 38 %. Complete remissions were found in 5 % (2/39), partial remissions in 18 %

(7/39), stable disease in 69 % (27/39), and progressive disease in 8 % (3/39). The

investigators reported that a significant reduction of clinical symptoms could be found in

83 % of patients with diarrhea, in 46 % of patients with flushing, in 63 % of patients with

wheezing, and in 75 % of patients with pellagra. Side effects were grade 3 or 4

lymphocytopenia in 23 %, grade 3 anemia in 3 %, and grade 2 renal insufficiency in 3 %.

Paganelli et al (2002) reported on a study fo 90Y-DOTATOC in 87 patients with

neuroendocrine tumors. The investigators stated that most patients responded with

stabilization of disease (48 %); however, objective responses were observed in 28 % of

patients, including 5 % of patients showing a complete response. The median duration of

response was 24 months. The investigators reported that gastrointestinal side effects

were mild and included nausea and vomiting, which occurred in approximately 50 % of

patients.

Weiner and Thakur (2005) noted that radiolabeled peptide therapy is usually indicated for

patients with widespread disease that is not amenable to focused radiation therapy or is

refractory to chemotherapy. Phase I and phase II studies using various radiolabeled

peptides (including (111)In-pentetreotide, 90Y-DOTATOC, 90Y-DOTA-lanreotide, and

Lutetium-177 [177Lu]-DOTA-octreotate) for the treatment of patients with neuroendocrine

malignancy are in progress. This is in agreement with the observations of Oberg and

Eriksson (2005) as well as Kwekkeboom and colleagues (2005). Oberg and Eriksson

stated that tumor-targeted treatment for malignant carcinoid tumor is still investigational,

but has become of significant interest with the use of radiolabeled somatostatin analogs.

(111)Indium-DTPA-octreotide has been used as the first tumor-targeted treatment, with

rather low response rates (in the order of 10 to 20 %) and no significant tumor shrinkage.

The second radioactive analog which has been applied in the clinic is 90Y-DOTATOC

(OctreoTher), which has given partial and complete remissions in 20 to 30 % of patients.

The most significant side effects have been kidney dysfunction, thrombocytopenia and

liver toxicity. Kwekkeboom et al noted that treatment with radiolabeled somatostatin

analogs is a promising new tool in the management of patients with inoperable or

metastasized neuroendocrine tumors. In a review of the literature on somatostatin

analogues in the treatment of gastroentero-pancreatic neuroendocrine tumors, Delaunoit

et al (2005) stated that overall, radiolabeled somatostatin analogues have shown some

activities in controlling tumor growth and clinical symptoms have been reduced

significantly. Toxic effects encountered have been manageable with adequate supportive

care. Delaunoit et al (2005) concluded that radiolabeled somatostatin analogues

“constitute a promising alternative for treating patients with progressive and symptomatic

disease” and that “[t]he results of larger ongoing studies are eagerly awaited.”

Page 15: Clinical Policy Bulletin: Tumor Scintigraphy...Tumor Scintigraphy Page 1 of 51 ... cancer that is thought to be clinically localized after standard diagnostic evaluation, but who have

Tumor Scintigraphy Page 15 of 51

http://qawww.aetna.com/cpb/medical/data/100_199/0168_draft.html 03/25/2015

In a phase II study, Johnson and colleagues (2011) evaluated the efficacy and safety of

subcutaneous octreotide therapy for the treatment of recurrent meningioma and

meningeal hemangiopericytoma. Octreotide is an agonist of somatostatin receptors,

which are frequently expressed in meningioma, and reports have suggested that

treatment with somatostatin agonists may lead to objective response in meningioma.

Patients with recurrent/progressive meningioma or meningeal hemangiopericytoma were

eligible for enrollment; those with atypical/anaplastic meningioma or hemangiopericytoma

must have experienced disease progression despite radiotherapy or have had a

contraindication to radiation. Patients received subcutaneous octreotide with a goal dose

of 500 μg 3 times per day, as tolerated. Imaging was performed every 3 months during

therapy. The primary outcome measure was radiographic response rate. Eleven patients

with meningioma and 1 with meningeal hemangiopericytoma were enrolled during the

period 1992 to 1998. Side effects included diarrhea (grade 1 in 4 patients and grade 2 in

2), nausea or anorexia (grade 1 in 4 patients), and transaminitis (grade 1 in 1 patient). One

patient developed extra hepatic cholangiocarcinoma, which was likely unrelated to

octreotide therapy. No radiographic responses were observed. Eleven of the 12 patients

experienced progression, with a median time to progression of 17 weeks. Two patients

experienced long progression-free intervals (30 months and greater than or equal to 18

years). Eleven patients have died. Median duration of survival was 2.7 years.

Immunohistochemical staining of somatostatin receptor Sstr2a expression in a subset of

patients did not reveal a correlation between level of expression and length of progression

-free survival. Octreotide was well-tolerated but failed to produce objective tumor

response, although 2 patients experienced prolonged stability of previously progressive

tumors.

Schulz et al (2011) stated that the standard surgical treatment for meningiomas is total

resection, but the complete removal of skull base meningiomas can be difficult for several

reasons. Thus, the management of certain meningiomas of the skull base -- for example,

those involving basal vessels and cranial nerves -- remains a challenge. In recent reports

it has been suggested that somatostatin (SST) administration can cause growth inhibition

of unresectable and recurrent meningiomas. The application of SST and its analogs is not

routinely integrated into standard treatment strategies for meningiomas, and clinical

studies proving growth-inhibiting effects do not exist. The authors reported on their

experience using octreotide in patients with recurrent or unresectable meningiomas of the

skull base. Between January 1996 and December 2010, 13 patients harboring a

progressive residual meningioma (as indicated by MR imaging criteria) following operative

therapy were treated with a monthly injection of the SST analog octreotide (Sandostatin

LAR [long-acting repeatable] 30 mg, Novartis). Eight of 13 patients had a meningioma of

the skull base and were analyzed in the present study. Post-operative tumor enlargement

was documented in all patients on MR images obtained before the initiation of SST

therapy. All tumors were benign. No patient received radiation or chemotherapy before

treatment with SST. The growth of residual tumor was monitored by MR imaging every 12

months. Three of the 8 patients had undergone surgical treatment once; 3, 2 times; and

2, 3 times. The mean time after the last meningioma operation (before starting SST

treatment) and tumor enlargement as indicated by MR imaging criteria was 24 months. A

total of 643 monthly cycles of Sandostatin LAR were administered. Five of the 8 patients

were on SST continuously and stabilized disease was documented on MR images

obtained in these patients during treatment (median 115 months, range of 48 to 180

months). Three of the 8 patients interrupted treatment: after 60 months in 1 case because

of tumor progression, after 36 months in 1 case because of side effects, and after 36

Page 16: Clinical Policy Bulletin: Tumor Scintigraphy...Tumor Scintigraphy Page 1 of 51 ... cancer that is thought to be clinically localized after standard diagnostic evaluation, but who have

Tumor Scintigraphy Page 16 of 51

http://qawww.aetna.com/cpb/medical/data/100_199/0168_draft.html 03/25/2015

months in 1 case because the health insurance company denied cost absorption. The

authors concluded that although no case of tumor regression was detected on MR

imaging, the study results indicated that SST analogs can arrest the progression of

unresectable or recurrent benign meningiomas of the skull base in some patients. It

remains to be determined whether a controlled prospective clinical trial would be useful.

In patients with primary cutaneous malignant melanoma, accurate staging of the primary

tumor and detection of any occult micro-metastases in the regional lymph node basin is

most important in determining survival and successful outcome of treatment. According to

accepted guidelines, preoperative cutaneous lymphoscintigraphy can be used to visualize

the lymphatic drainage patterns from primary tumors and intraoperative lymphatic

mapping can be used to identify the first sentinel lymph node in direct communication with

the primary tumor. Only individuals with histologically confirmed sentinel node metastases

are selected to undergo radical node dissection and eventually receive adjuvant

treatments, sparing those with tumor-free sentinel node the morbidity of these therapies.

In the past, it was routine practice to carry out axillary lymph node dissection at the time of

surgical removal of a primary, malignant breast tumor. As breast cancer is being

diagnosed at an earlier stage in a growing percentage of cases, this procedure has proven

to be unnecessary in a demonstrable proportion of patients. As an alternative

management strategy, several authorities have recommended identification of the sentinel

node to predict the disease status of the axilla and consequently determine whether

axillary lymph node dissection is indicated. This can be accomplished using

lymphoscintigraphy or injection of isosulfan blue, or both, followed by biopsy. The sentinel

node can be identified in 80 % of patients and accurately predicts the status of the

remainder of the axillary nodes in 95 % to 98 % of patients. If the node is negative by

frozen section nothing more is done. If it is positive, a standard axillary dissection is

done. By limiting the number of lymph nodes removed, the injury to the circulatory system

is minimized, and the risk of arm swelling (lymphedema) following treatment for breast

cancer may be reduced.

Pheochromocytoma is a rare tumor of catecholamine-secreting chromaffin cells. Several

conventional and nuclear imaging modalities are currently available to localize

pheochromocytoma. Computed tomography (CT) and magnetic resonance imaging (MRI)

have good sensitivity but poor specificity for detecting pheochromocytoma.

I-131 meta-Iodobenzylguanidine (MIBG) is a compound that is actively accumulated in

neuroendocrine tumors and thyroid tumors, which express the noradrenaline transporter.

While nuclear imaging approaches such as I-131 MIBG imaging have limited sensitivity,

the specificity of I-131 MIBG scintigraphy is very good. According to the NCI PDQ

Database, CT and MRI scans are about equally sensitive (98 to 100 %) for

pheochromocytoma, while MIBG scanning has a sensitivity of only 80 %. However, MIBG

scanning has a specificity of 100 %, compared to specificity of 70 % for CT and MRI.

Thus, I-131 MIBG imaging provides a method for confirming that a tumor is a

pheochromocytoma and rules out metastatic disease. Currently, I-131 MIBG is approved

as an adjunctive diagnostic agent in the localization of primary or metastatic

pheochromocytoma and neuroblastoma. According to the National Cancer Institute’s

PDQ Database, for staging of neuroblastoma, bone should be assessed by MIBG scan

(applicable to all sites of disease) and by technetium-99 scan if the results of the MIBG

imaging are negative or unavailable. MIBG has also been used for detection of other

neural crest tumors.

Page 17: Clinical Policy Bulletin: Tumor Scintigraphy...Tumor Scintigraphy Page 1 of 51 ... cancer that is thought to be clinically localized after standard diagnostic evaluation, but who have

Tumor Scintigraphy Page 17 of 51

http://qawww.aetna.com/cpb/medical/data/100_199/0168_draft.html 03/25/2015

Adrenomedullary imaging can also be performed with I-123 MIBG. Furthermore, I-123

MIBG scintigraphy is also used for characterization of the cardiac nervous system.

Cardiac I-123 MIBG imaging, which reflects cardiac adrenergic nerve activity, may provide

prognostic information on patients with congestive heart failure. It is also used in the

diagnosis of other cardiac diseases such as cardiomyopathy and idiopathic ventricular

fibrillation. Prospective randomized controlled studies are needed to ascertain the

prognostic value of I-123 MIBG imaging in patients with heart failure and patients at risk

for arrhythmia, and how I-123 MIBG imaging may affect management strategy.

Furthermore, the FDA has not approved the use of I-123 MIBG for these purposes.

Tamaki et al (2009) compared the predictive value of cardiac I-123 MIBG imaging for

sudden cardiac death (SCD) with that of the signal-averaged electrocardiogram (SAECG),

heart rate variability (HRV), and QT dispersion in patients with chronic heart failure

(CHF). Cardiac MIBG imaging, SAECG, 24-hr Holter monitoring, and standard 12-lead

electrocardiography (ECG) were performed in 106 consecutive stable CHF outpatients

with a radionuclide left ventricular ejection fraction (LVEF) less than 40 %. The cardiac

MIBG washout rate (WR) was obtained from MIBG imaging. Furthermore, the time and

frequency domain HRV parameters were calculated from 24-hr Holter recordings, and QT

dispersion was measured from the 12-lead ECG. During a follow-up period of 65 ± 31

months, 18 of 106 patients died suddenly. A multi-variate Cox analysis revealed that WR

and LVEF were significantly and independently associated with SCD, whereas the

SAECG, HRV parameters, or QT dispersion were not. Patients with an abnormal WR

(greater than 27 %) had a significantly higher risk of SCD (adjusted hazard ratio: 4.79, 95

% confidence interval: 1.55 to 14.76). Even when confined to the patients with LVEF

greater than 35 %, SCD was significantly more frequently observed in the patients with

than without an abnormal WR (p = 0.02). The authors concluded that cardiac MIBG WR,

but not SAECG, HRV, or QT dispersion, is a powerful predictor of SCD in patients with

mild-to-moderate CHF, independently of LVEF. This study has several drawbacks: (i)

small and empirically chosen study population sample size and empirically chosen follow-

up period length, (ii) single-center study, (iii) patients NYHA functional class IV were not

included in the study, and (iv) failure to include data from T-wave alternans testing, which

has recently been shown to be useful for the risk stratification of SCD in CHF patients.

On September 19, 2008, the FDA approved iobenguane I-123 injection (AdreView) for the

detection of primary or metastatic pheochromocytoma or neuroblastoma as an adjunct to

other diagnostic tests. Iobenguane accumulates in adrenergically innervated tissues as

well as tumors derived from the neural crest. The uptake of iobenguane I-123 by

metabolically active neuroblastoma or pheochromocytoma allows scintigraphic

visualization of these tumors. The safety and effectiveness of iobenguane I-123 were

assessed in a single-arm clinical study of patients with known or suspected

neuroblastoma or pheochromocytoma. Diagnostic effectiveness was determined for 211

patients by comparison of focal increased radionuclide uptake on planar scintigraphy at 24

± 6 hours post-administration of iobenguane I-123 injection against the definitive diagnosis

(standard of truth). The standard of truth was a diagnosis of presence or absence of

pheochromocytoma in 127 patients and neuroblastoma in 84 patients. The diagnosis was

determined by histopathology or, when histopathology was unavailable, a composite of

imaging, plasma/urine catecholamine and/or catecholamine metabolite measurements

and clinical follow-up. In the detection of either neuroblastoma or pheochromocytoma, the

iobenguane I-123's sensitivity and specificity were determined independently based upon

results of 3 image-readers who were fully masked to clinical information. The sensitivity

Page 18: Clinical Policy Bulletin: Tumor Scintigraphy...Tumor Scintigraphy Page 1 of 51 ... cancer that is thought to be clinically localized after standard diagnostic evaluation, but who have

Tumor Scintigraphy Page 18 of 51

http://qawww.aetna.com/cpb/medical/data/100_199/0168_draft.html 03/25/2015

ranged from 77 % to 80 % and the specificity ranged from 69 % to 77 %. Performance

characteristics were similar between the groups of patients who had either a

pheochromocytoma or neuroblastoma truth standard.

The American Academy of Neurology's practice parameter on the diagnosis and

prognosis of new onset Parkinson disease (Suchowersky et al, 2006) stated that there is

insufficient evidence to determine if I-123 labeled MIBG cardiac imaging is useful in

differentiating Parkinson's disease from multiple system atrophy or progressive

supranuclear palsy.

According to available guidelines, surgical ablation is the treatment of choice for

pheochromocytoma (Sweeney and Blake, 2002). Radiopharmaceutical ablation with

MIBG has met with only "limited success" (NCI, 2003). The National Cancer Institute

PDQ on pheochromocytoma stated that “treatment with targeted radiation therapy using

I131meta-iodobenzylguanidine (I131 MIBG) has met with limited success. In

approximately 35 % of patients screened, the tumor has sufficient uptake of the

radioisotope to allow for a therapeutic dose. In a group of 28 patients shown to have

sufficient uptake of I131 MIBG, objective partial responses were observed in 29 % and

biochemical improvement was noted in 43 %”. According to guidelines from the National

Comprehensive Cancer Network (2003) on pheochromocytoma, MIBG may be used as an

alternative to surgical debulking and medical therapy for persons with distant metastases

who are enrolled in a clinical trial (NCCN, 2003).

Quach and colleagues (2011) analyzed the effects of (131) I-MIBG therapy on thyroid and

liver function in patients with neuroblastoma. Pre- and post-therapy thyroid and liver

functions were reviewed in a total of 194 neuroblastoma patients treated with (131) I-

MIBG therapy. The cumulative incidence over time was estimated for both thyroid and

liver toxicities. The relationship to cumulative dose/kg of body weight, number of

treatments, time from treatment to follow-up, sex, and patient age was examined. In

patients who presented with grade 0 or 1 thyroid toxicity at baseline, 12 +/- 4 %

experienced onset of or worsening to grade 2 hypo-thyroidism and 1 patient developed

grade 2 hyper-thyroidism by 2 years after (131) I-MIBG therapy. At 2 years post-(131) I-

MIBG therapy, 76 +/- 4 % patients experienced onset or worsening of hepatic toxicity to

any grade, and 23 +/- 5 % experienced onset of or worsening to grade 3 or 4 liver toxicity.

Liver toxicity was usually transient asymptomatic transaminase elevation, frequently

confounded by disease progression and other therapies. The authors concluded that

prophylactic regimen of potassium iodide and potassium perchlorate with (131) I-MIBG

therapy resulted in a low rate of significant hypo-thyroidism. Liver abnormalities following

(131) I-MIBG therapy were primarily reversible and did not result in late toxicity. They

stated that (131) I-MIBG therapy is a promising treatment for children with relapsed

neuroblastoma with a relatively low rate of symptomatic thyroid or hepatic dysfunction.

Lin et al (1999) discussed the potential diagnostic and therapeutic utility of somatostatin

receptor scintigraphy and therapy with somatostatin. In-111 pentetreotide (In-111

octreotide), a somatostatin analog, was used to define the receptor status and the extent

of disease in a case of malignant thymoma. Subsequent treatment with non-radioactive

somatostatin inhibited tumor growth. The authors concluded that In-111 octreotide may

be useful to define tumor receptor status and may provide prognostic information useful in

determining subsequent therapy.

In a phase II study, Loehrer et al (2004) examined the objective response rate, duration of

remission and toxicity of octreotide alone or with the later addition of prednisone in

Page 19: Clinical Policy Bulletin: Tumor Scintigraphy...Tumor Scintigraphy Page 1 of 51 ... cancer that is thought to be clinically localized after standard diagnostic evaluation, but who have

Tumor Scintigraphy Page 19 of 51

http://qawww.aetna.com/cpb/medical/data/100_199/0168_draft.html 03/25/2015

patients with unresectable, advanced thymic malignancies in whom the pre-treatment

octreotide scan was positive. A total of 42 patients with advanced thymoma or thymic

carcinoma were entered onto the trial, of whom 38 were fully assessable (1 patient had

inconclusive histology; 3 patients had negative octreotide scan). Patients received

octreotide 0.5 mg subcutaneously 3 times a day. At 2 months, patients were evaluated.

Responding patients continued to receive octreotide alone; patients with progressive

disease were removed from the study. All others received prednisone 0.6 mg/kg orally 4

times a day for a maximum of 1 year. Two complete responses ([CR]; 5.3 %) and 10

partial responses ([PR]; 25 %) were observed (4 PR with octreotide alone; the remainder

with octreotide plus prednisone). None of the 6 patients without pure thymoma

responded. The 1- and 2-year survival rates were 86.6 % and 75.7 %, respectively.

Patients with an Eastern Cooperative Oncology Group performance status of 0 lived

significantly longer than did those with a performance status of 1 (p = 0.031). The authors

concluded that octreotide alone has modest activity in patients with octreotide scan-

positive thymoma. Prednisone improves the overall response rate but is associated with

increased toxicity. They stated that additional studies with the agent are warranted.

Ozkan et al (2011) evaluated the outcome of high-dose In-111 octreotide treatment and

efficacy of long-acting release (LAR) sandostatin in patients with disseminated

neuroendocrine tumors. A total of 14 patients (mean age of 51.8 +/- 13.2 years; 4 males

and 10 females) receiving high-dose In-111 octreotide for the treatment of neuroendocrine

tumors were included in the study. Monthly treatment with long-acting somatostatin

analog (sandostatin LAR) was continued in 9 cases. During a 3-year period, a total of 45

courses of high-dose In-111 octreotide treatment were delivered to 14 patients. In 7

patients receiving an average of 4 treatment courses (6 carcinoid tumors, 1 thymoma,

patients: 2, 4, 5, 11 to 14) stable disease was achieved (50 %). In 2 patients with

carcinoid tumors (patients 1 and 3) who received 4 treatment courses, PR was observed

(14 %). Five patients (36 %; 4 NET, 1 gastrinoma; patients 6 to 10) died due to

progressive disease following on average 2 treatment courses. On average, deaths

occurred 2 months after the last treatment dose. No CR was seen; PR was achieved in 2

of the 9 patients receiving sandostatin LAR, while 4 had stable disease. Both treatments

were associated with acceptable tolerability. The authors concluded that high-dose In-111

octreotide can be safely administered in conjunction with somatostatin analog in patients

with disseminated NET and this treatment may help to stabilize the disease.

Gubens (2012) noted that thymomas and thymic carcinomas are rare diseases of the

anterior mediastinum. Although some thymomas are quite indolent and able to be

resected in a curative fashion, the treatment of metastatic disease remains a challenge,

especially for the more aggressive thymic carcinoma histology. Based on the results of

single-arm trials, combination chemotherapy is the standard of care in the first-line, and

anthracycline-based treatments should be used if patients are reasonably fit. Several

single-agent cytotoxic chemotherapy agents have some effectiveness in subsequent lines

of therapy, especially pemetrexed and, in octreotide scan-positive patients, octreotide.

The author stated that prospective trials of new agents are difficult to conduct given the

rarity of thymoma, but various targeted therapies do show promise. Greater international

research collaboration, as well as modern techniques in molecular and genomic

characterization, should help to advance the treatment of thymic malignancies in the near

future.

The NCCN clinical practice guideline on “Thymomas and thymic carcinomas” (Version

2.2013) lists etoposide, ifosfamide, pemetrexed, octreotide (LAR; with or without

Page 20: Clinical Policy Bulletin: Tumor Scintigraphy...Tumor Scintigraphy Page 1 of 51 ... cancer that is thought to be clinically localized after standard diagnostic evaluation, but who have

Tumor Scintigraphy Page 20 of 51

http://qawww.aetna.com/cpb/medical/data/100_199/0168_draft.html 03/25/2015

prednisone), 5-fluorouracil, gemcitabine, and paclitaxel as a second line chemotherapy. It

also states that “None of these agents have been assessed in randomized trials.

Octreotide may be useful in patients with thymoma who have a positive octreotide scan or

symptoms of carcinoid syndrome …. Patients with thymoma also have an increased risk

for second malignancies, although no particular screening studies are recommended”.

In a prospective study, Berczi and associates (2002) evaluated the effectiveness of

technetium-99m-sestamibi and technetium-99m-pertechnetate subtraction scanning and

ultrasonography (US) for imaging parathyroid glands in primary hyper-parathyroidism

(pHPT). A total of 63 patients were surgically treated for pHPT. Pre-operative

scintigraphy and US were performed in all cases. Bilateral neck exploration was carried

out on each patient. Results of radionuclide studies and US were compared with surgical

and histological findings. In 57 patients with pHPT the radionuclide scanning gave true-

positive results. Four false-negative and 2 false-positive scintigrams were obtained. The

sensitivity and the positive-predictive value (PPV) of scintigraphy were 93 % and 97 %,

respectively. Forty-one cases were correctly localized by the US. A total of 17 US results

were false-negative and 5 were false-positive. The sensitivity and the PPV for US were

71 and 89 %, respectively. There was a statistically significant difference between the

sensitivity of the scintigraphy compared with the US (p = 0.001). Sensitivities of

radionuclide scans and US were higher for adenomas (100 and 83 %) than for

hyperplastic glands (75 and 40%). The sensitivity of technetium-99m-sestamibi and

technetium-99m-pertechnetate subtraction scintigraphy (SS) was significantly higher

compared with US. This sensitive method could help surgeons in performing a rapid and

directed parathyroidectomy.

Barczynski and colleagues (2006) determined the sensitivity and PPV of SS versus US of

the neck combined with rapid intact parathyroid hormone (iPTH) assay in US-guided fine-

needle parathyroid aspirates in pre-operative localization of parathyroid adenomas and in

directing surgical approach. The results of SS for localization of parathyroid adenoma

were determined in 121 patients with pHPT and compared with findings at surgery and

with the results of US alone (in patients without nodular goiter) and US in combination with

the iPTH assay in US-guided fine-needle aspirates (FNAs) of suspicious parathyroid

lesions (in patients with concomitant nodular goiter). All 121 patients had biochemically

documented pHPT; all were referred for first-time surgery. Subtraction scintigraphy was

performed with 99mTc-sestamibi and 99mTc-pertechnetate. High-resolution US of the

neck was performed by a single endocrine surgeon and combined with US-guided FNAs

of suspicious parathyroid lesions in all patients with nodular goiter (n = 43). The sensitivity

and PPV of SS were significantly higher in patients without versus with goiter (89.3 % and

95.7 % versus 74.3 % and 76.5 %, respectively; p < 0.001). The sensitivity and PPV of

US were significantly higher in patients without versus with goiter (96 % and 97.3 %

versus 67.7 % and 71.9 %, respectively; p < 0.001). The iPTH assay of US-guided FNAs

of suspicious parathyroid lesions in patients with nodular goiter significantly improved both

the sensitivity and PPV of US imaging (90.7 % and 100 %, respectively), allowing for an

accurate choice of surgical approach in 118 (97.5 %) of 121 patients. Subtraction

scintigraphy was more accurate than US alone in detection of ectopic parathyroid

adenomas. However, US alone was characterized by a higher sensitivity in detection of

small parathyroid adenomas (less than 500 mg) at typical sites (p < 0.01). The authors

concluded that both the sensitivity and PPV of SS and US alone are comparable, with

significantly less accurate results obtained in patients with goiter. In cases of equivocal

results of US and/or in patients with concomitant goiter, an iPTH assay in US-guided

FNAs of suspicious parathyroid lesions may be used to establish the nature of the mass,

Page 21: Clinical Policy Bulletin: Tumor Scintigraphy...Tumor Scintigraphy Page 1 of 51 ... cancer that is thought to be clinically localized after standard diagnostic evaluation, but who have

Tumor Scintigraphy Page 21 of 51

http://qawww.aetna.com/cpb/medical/data/100_199/0168_draft.html 03/25/2015

distinguish between parathyroid and non-parathyroid tissue (goiter, lymph nodes) and

improve the accuracy of US parathyroid imaging, allowing for successful directing of

surgical approach in a majority of patients.

Powell et al (2013) evaluated the benefit of adding a pertechnetate parathyroid scan (dual-

isotope imaging) in the interpretation of sestamibi dual-phase parathyroid scintigraphy. A

total of 116 dual Tc-99m sestamibi (MIBI) and Tc-99m pertechnetate subtraction

parathyroid studies, performed between January 2000 and February 2006, were

retrospectively reviewed. Dual-phase technetium sestamibi examinations were initially

interpreted, with blinding to the technetium pertechnetate findings. Subsequently,

technetium pertechnetate scan findings were added, and changes in interpretation were

recorded. By adding Tc-99m pertechnetate imaging, the interpretation of 17 scans

(17/116 = 14.6 %) was substantially altered. This included 5 scans (4 %) that changed

from negative to positive and 9 scans (8 %) that changed from equivocal to positive,

excluding ectopic tissue and directing minimally invasive surgery, without the need for

further imaging, such as ultrasound, in 12 % of cases. One examination changed from

positive to negative. In addition, 2 scans changed from equivocal to negative,

necessitating further pre-operative imaging for the evaluation of additional pathology such

as thyroid nodules and lymph nodes and the consideration of hyperplasia. Among the

remaining 99 patients, Tc-99m pertechnetate scans may also have contributed to the

diagnosis in the 66 positive Tc-99m MIBI scans by increasing confidence in the

interpretation and obviating additional imaging; 10 cases remained equivocal. The

authors concluded that by adding Tc-99m pertechnetate imaging, scan interpretation was

changed in 14.6 % of cases, and interpretation confidence was enhanced in all but 10

remaining equivocal cases. The addition of a dual-isotope subtraction also eliminated the

need for additional testing, such as ultrasound, in 12 % of our cases. Increased

confidence in interpretation that comes with dual-isotope subtraction may come at the cost

of slight lengthening of imaging time but likely simplifies pre-operative localization and

decreases intraoperative time for many patients with primary hyperparathyroidism.

Also, an UpToDate review on “Preoperative localization for parathyroid surgery in patients

with primary hyperparathyroidism” (Yip et al, 2013) states that “Subtraction thyroid scan --

Even with the addition of SPECT, distinguishing abnormal parathyroid glands from thyroid

pathology can be difficult. If necessary, a subtraction thyroid scan can be obtained by

using two radiotracers (dual isotope scintigraphy). The use of technetium plus a second

radiotracer such as 123I or 99mTc pertechnetate (thallium) permits selective imaging of

the thyroid gland”.

Moran and Paul (2002) noted that oncogenic hypophosphatemic osteomalacia is a rare

condition. The causative tumor is often difficult to locate. Primary tumors have been

reported in the head and neck, skeleton, and soft tissue. Octreotide scanning was used in

this case and detected a mesenchymal tumor in the pubic symphysis.

Takahashi et al (2008) reported the case of a 31-year old woman with tumor-induced

osteomalacia suffering from slowly progressive bilateral muscle weakness predominantly

in the proximal muscles and multiple bone pains for the past 2 years. She was unable to

walk or raise her arms above the shoulder. These investigators suspected tumor-induced

osteomalacia due to decreased serum phosphate and 1alpha, 25 (OH),-vitamin D3 levels,

low percentage of tubular reabsorption of phosphate (%TRP), adult onset, and no family

history of osteomalacia. Regular imaging examinations could not detect the location of

the primary tumor: however, indium-111 octreotide scintigraphy detected the causative

Page 22: Clinical Policy Bulletin: Tumor Scintigraphy...Tumor Scintigraphy Page 1 of 51 ... cancer that is thought to be clinically localized after standard diagnostic evaluation, but who have

Tumor Scintigraphy Page 22 of 51

http://qawww.aetna.com/cpb/medical/data/100_199/0168_draft.html 03/25/2015

primary mesenchymal tumor in the right sole. Pain and muscle weakness improved

promptly after tumor resection, and she was able to walk 6 days post-operatively. This

was the first case report in Japan describing the detection of the primary tumor site by

indium-111 octreotide scintigraphy.

Seijas et al (2009) noted that oncogenic osteomalacia is a rare paraneoplastic syndrome

of acquired hypophosphatemic osteomalacia, resulting from a deficit in renal tubular

phosphate reabsorption, in which fibroblast growth factor 23 (FGF23) seems to be

implicated. This condition is usually associated with a phosphaturic mesenchymal tumor

of mixed connective tissue located in the bone or soft tissue. The clinical and the

radiologic findings are the same as those seen in osteomalacia, and the biochemical

features include renal phosphate loss, low serum phosphate and 1,25-(OH)(2) vitD(3)

levels, increased alkaline phosphatase, and normal calcium, PTH, calcitonin, 25-OH-vitD

(3) and 25,25-(OH)(2) vitD(3). These investigators presented 2 cases of oncogenic

osteomalacia associated with phosphaturic mesenchymal tumors, which were

histologically similar, but presented a completely different evolution. In the first patient,

the tumor developed on the sole of the foot. Following removal of the mass, the

symptoms resolved and biochemical and radiological parameters returned to normal.

However, in the second patient, a liver tumor developed and resection did not resolve the

disease. Multiple lesions appeared in several locations during follow-up. This disease

usually remits with complete tumor resection. Nevertheless, if this is not possible, oral

treatment with phosphate, calcium and calcitriol can improve the symptoms. If

scintigraphy of the tumor shows octreotide receptors, patients may respond partially to

therapy with somatostatin analogs, with stabilization of the lesion.

Hu et al (2011) stated that tumor-induced osteomalacia (TIO), or oncogenic osteomalacia

(OOM), is a rare acquired paraneoplastic disease characterized by renal phosphate

wasting and hypophosphatemia. Recent evidence shows that tumor-over-expressed

fibroblast growth factor 23 (FGF23) is responsible for the hypophosphatemia and

osteomalacia. The tumors associated with TIO are usually phosphaturic mesenchymal

tumor mixed connective tissue variants (PMTMCT). Surgical removal of the responsible

tumors is clinically essential for the treatment of TIO. However, identifying the responsible

tumors is often difficult. These researchers reported a case of a TIO patient with elevated

serum FGF23 levels suffering from bone pain and hypophosphatemia for more than 3

years. A tumor was finally located in first metacarpal bone by octreotide scintigraphy and

she was cured by surgery. After complete excision of the tumor, serum FGF23 levels

rapidly decreased, dropping to 54.7 % of the pre-operative level 1 hour after surgery and

eventually to a little below normal. The patient's serum phosphate level rapidly improved

and returned to normal level in 4 days. Accordingly, her clinical symptoms were greatly

improved within 1 month after surgery. There was no sign of tumor recurrence during an

18-month period of follow-up. According to pathology, the tumor was originally diagnosed

as "lomangioma" based upon a biopsy sample, "proliferative giant cell tumor of tendon

sheath" based upon sections of tumor, and finally diagnosed as PMTMCT by consultation

1 year after surgery. The authors concluded that although an extremely rare disease,

clinicians and pathologists should be aware of the existence of TIO and PMTMCT,

respectively.

Jiang et al (2012) noted that TIO is an acquired form of hypophosphatemia. Tumor

resection leads to cure. These researchers investigated the clinical characteristics of TIO,

diagnostic methods, and course after tumor resection in Beijing, China, and compared

them with 269 previous published reports of TIO. A total of 94 patients with adult-onset

Page 23: Clinical Policy Bulletin: Tumor Scintigraphy...Tumor Scintigraphy Page 1 of 51 ... cancer that is thought to be clinically localized after standard diagnostic evaluation, but who have

Tumor Scintigraphy Page 23 of 51

http://qawww.aetna.com/cpb/medical/data/100_199/0168_draft.html 03/25/2015

hypophosphatemic osteomalacia were seen over a 6-year period (January, 2004 to May,

2010) in Peking Union Medical College Hospital. After physical examination (PE), all

patients underwent technetium-99m octreotide scintigraphy ((99) Tc(m)-OCT). Tumors

were removed after localization. The results demonstrated that 46 of 94

hypophosphatemic osteomalacia patients had high uptake in (99) Tc(m) -OCT imaging.

Forty of them underwent tumor resection with the TIO diagnosis established in 37

patients. In 2 patients, the tumor was discovered on PE but not by (99) Tc(m) -OCT. The

gender distribution was equal (M/F = 19/20). Average age was 42 ± 14 years. In 35

patients (90 %), the serum phosphorus concentration returned to normal in 5.5 ± 3.0 days

after tumor resection. Most of the tumors (85 %) were classified as phosphaturic

mesenchymal tumor (PMT) or mixed connective tissue variant (PMTMCT). Recurrence of

disease was suggested in 3 patients (9 %). When combined with the 269 cases reported

in the literature, the mean age and sex distribution were similar. The tumors were of bone

(40 %) and soft tissue (55 %) origins, with 42 % of the tumors being found in the lower

extremities. The authors concluded that TIO is an important cause of adult-onset

hypophosphatemia in China; (99) Tc(m)-OCT imaging successfully localized the tumor in

the over-whelming majority of patients. Successful removal of tumors leads to cure in

most cases, but recurrence should be sought by long-term follow-up.

Sanchez et al (2013) reported the case of an oncogenic osteomalacia in a 50-yearold

male. He suffered severe bone pain and marked muscular weakness of 4 years'

duration. There were several vertebral deformities in the thoracic spine, bilateral fractures

of the ilio-pubic branches, another fracture in the left ischio-pubic branch, and a Looser's

zone in the right proximal tibia. An octreotide-Tc scan allowed to identify a small tumor in

the posterior aspect of the right knee. It was surgically removed. Microscopically, it was a

phosphaturic mesenchymal tumor-mixed connective tissue (PMT-MCT). Expression of

FGF-23 was documented by immune-peroxidase staining. There was rapid improvement,

with consolidation of the pelvic fractures and the tibial pseudo-fracture. The laboratory

values returned to normal.

Jing et al (2013) stated that TIO is an endocrine disorder caused by tumors producing

excessive fibroblast growth factor-23 (FGF-23). The causative tumors are generally small,

slow-growing benign mesenchymal tumors. The only cure of the disease depends on

resection of the tumors, which are extremely difficult to localize due to their small sizes

and rare locations. Since these tumors are known to express somatostatin receptors, this

research was undertaken to evaluate efficacy of [Tc-99m]-HYNIC-octreotide (99mTc-

HYNIC-TOC) whole body imaging in this clinical setting. Images of 99mTc-HYNIC-TOC

scans and clinical chart from 183 patients with hypophosphatemia and clinically suspected

TIO were retrospectively reviewed. The scan findings were compared to the results of

histopathologic examinations and clinical follow-ups. Among 183 patients, 72 were

confirmed to have TIO while 103 patients were found to have other causes of

hypophosphatemia. The possibility of TIO could not be either diagnosed or excluded in

the remaining 8 patients. For analytical purposes, these 8 patients who could neither be

diagnosed nor excluded as having TIO were regarded as having the disease, bringing the

total of TIO patients to 80. The 99mTc-HYNIC-TOC scan identified 69 tumors in 80

patients with TIO, which rendered a sensitivity of 86.3 % (69/80). 99mTc-HYNIC-TOC

scintigraphy excluded 102 patients without TIO with a specificity of 99.1 % (102/103). The

overall accuracy of 99mTc-HYNIC-TOC whole body scan in the localization of tumors

responsible for osteomalacia is 93.4 % (171/183). The authors concluded that whole body

99mTc-HYNIC-TOC imaging is effective in the localization of occult tumors causing TIO.

Page 24: Clinical Policy Bulletin: Tumor Scintigraphy...Tumor Scintigraphy Page 1 of 51 ... cancer that is thought to be clinically localized after standard diagnostic evaluation, but who have

Tumor Scintigraphy Page 24 of 51

http://qawww.aetna.com/cpb/medical/data/100_199/0168_draft.html 03/25/2015

Furthermore, an UpToDate review on “Hereditary hypophosphatemic rickets and tumor-

induced osteomalacia” (Scheinman and Drezner, 2013) states that “The diagnosis of

tumor-induced osteomalacia should be suspected from the clinical constellation of

acquired hypophosphatemia and osteomalacia or rickets in association with renal

phosphate wasting (but no other proximal tubular defects) and an inappropriately low

plasma calcitriol concentration. The phenotype is similar to X-linked and autosomal

dominant hypophosphatemic rickets but the family history is negative and the disorder is

acquired. Finding the tumors can be a major diagnostic challenge, and may involve total

body magnetic resonance imaging (MRI), scintigraphy using octreotide labeled with

indium-111 (because the tumors typically express somatostatin receptors), or scintigraphy

combined with positron emission tomography/computerized tomography (PET/CT)”.

Leong et al (2011) noted that a new low-molecular-weight mannose receptor-based,

reticuloendothelial cell-directed, (99m)Tc-labeled lymphatic imaging agent, (99m)Tc-

tilmanocept, was used for lymphatic mapping of sentinel lymph nodes (SLNs) from

patients with primary breast cancer or melanoma malignancies. This novel molecular

species provided the basis for potentially enhanced SLN mapping reliability. In a

prospectively planned, open-label phase II clinical trial, (99m)Tc-tilmanocept was injected

into breast cancer and cutaneous melanoma patients before intra-operative lymphatic

mapping. Injection technique, pre-operative lympho-scintigraphy (LS), and intra-operative

lymphatic mapping with a hand-held gamma detection probe were performed by

investigators per standard practice. A total of 78 patients underwent (99m)Tc-tilmanocept

injection and were evaluated (47 melanoma, 31 breast cancer). For those whom LS was

performed (55 patients, 70.5 %), a (99m)Tc-tilmanocept hot spot was identified in 94.5 %

of LS patients before surgery. Intra-operatively, (99m)Tc-tilmanocept identified at least 1

regional SLN in 75 (96.2 %) of 78 patients: 46 (97.9 %) of 47 in melanoma and 29 (93.5

%) of 31 in breast cancer cases. Tissue specificity of (99m)Tc-tilmanocept for lymph

nodes was 100 %, displaying 95.1 % mapping sensitivity by localizing in 173 of 182 nodes

removed during surgery. The overall proportion of (99m)Tc-tilmanocept-identified nodes

that contained metastatic disease was 13.7 %. Five procedure-related serious adverse

events occurred, none related to (99m)Tc-tilmanocept. The authors concluded that these

findings demonstrated the safety and effectiveness of (99m)Tc-tilmanocept for use in intra

-operative lymphatic mapping. The high intra-operative localization and lymph node

specificity of (99m)Tc-tilmanocept and the identification of metastatic disease within the

nodes suggested SLNs are effectively identified by this novel mannose receptor-targeted

molecule.

Tokin et al (2012) stated that SLN mapping is common, however question remains as to

what the ideal imaging agent is and how such an agent might provide reliable and stable

localization of SLNs. (99m)Tc-labeled nanocolloid human serum albumin (Nanocoll) is the

most commonly used radio-labeled colloid in Europe and remains the standard of care

(SOC). It is used in conjunction with vital blue dyes (VBDs) that relies on simple lymphatic

drainage for localization. Although the exact mechanism of Nanocoll SLN localization is

unknown, there is general agreement that Nanocoll exhibits the optimal size distribution

and radiolabeling properties of the commercially available radiolabel colloids. [(99m)Tc]

Tilmanocept is a novel radiopharmaceutical designed to address these deficiencies.

These researchers compared [(99m)Tc]Tilmanocept to Nanocoll for SLN mapping in

breast cancer. Data from the phase III clinical trials of [(99m)Tc]tilmanocept's

concordance with VBD was compared to a meta-analysis of a review of the literature to

identify a (99m)Tc albumin colloid SOC. The primary end-points were SLN localization

rate and degree of localization. A total of 6 studies were used for a meta-analysis to

identify the colloid-based SOC; 5 studies (6,134 patients) were used to calculate the SOC

Page 25: Clinical Policy Bulletin: Tumor Scintigraphy...Tumor Scintigraphy Page 1 of 51 ... cancer that is thought to be clinically localized after standard diagnostic evaluation, but who have

Tumor Scintigraphy Page 25 of 51

http://qawww.aetna.com/cpb/medical/data/100_199/0168_draft.html 03/25/2015

localization rate of 95.91 % (CI: 0.9428 to 0.9754) and 3 studies (1,380 patients) were

used for the SOC SLN degree of localization of 1.6683 (CI: 1.5136 to 1.8230). The lower

bound of the confidence interval was used for comparison to Tilmanocept. Tilmanocept

data included 148 patients, and pooled analysis revealed a 99.99 % (CI: 0.9977 to 1.0000)

localization rate and degree of localization of 2.16 (CI: 1.964 to 2.3600). The authors

concluded that Tilmanocept was superior to the Nanocoll SOC for both end-points (p <

0.0001).

Sondak et al (2013) stated that [(99m)Tc]Tilmanocept is a CD206 receptor-targeted

radiopharmaceutical designed for SLN identification. Two nearly identical non-

randomized phase III trials compared [(99m)Tc]tilmanocept to VBD. Patients received

[(99m)Tc]tilmanocept and blue dye. Sentinel lymph nodes identified intra-operatively as

radioactive and/or blue were excised and histologically examined. The primary end-point,

concordance, was the proportion of blue nodes detected by [(99m)Tc]tilmanocept; 90 %

concordance was the pre-specified minimum concordance level. Reverse concordance,

the proportion of radioactive nodes detected by blue dye, was also calculated. The

prospective statistical plan combined the data from both trials. A total of 15 centers

contributed 154 melanoma patients who were injected with both agents and were intra-

operatively evaluated. Intra-operatively, 232 of 235 blue nodes were detected by [(99m)

Tc]tilmanocept, for 98.7 % concordance (p < 0.001). [(99m)Tc]Tilmanocept detected 364

nodes, for 63.7 % reverse concordance (232 of 364 nodes). [(99m)Tc]Tilmanocept

detected at least 1 node in more patients (n = 150) than blue dye (n = 138, p = 0.002). In

135 of 138 patients with at least 1 blue node, all blue nodes were radioactive. Melanoma

was identified in the SLNs of 22.1 % of patients; all 45 melanoma-positive SLNs were

detected by [(99m)Tc]tilmanocept, whereas blue dye detected only 36 (80 %) of 45 (p =

0.004). No positive SLNs were detected exclusively by blue dye. Four of 34 node-

positive patients were identified only by [(99m)Tc]tilmanocept, so 4 (2.6 %) of 154 patients

were correctly staged only by [(99m)Tc]tilmanocept. No serious adverse events were

attributed to [(99m)Tc]tilmanocept. The authors concluded that [(99m)Tc]Tilmanocept met

the pre-specified concordance primary end-point, identifying 98.7 % of blue nodes. It

identified more SLNs in more patients, and identified more melanoma-containing nodes

than blue dye.

Wallace et al (2013) stated that SLN surgery is used world-wide for staging breast cancer

patients and helps limit axillary lymph node dissection. In 2 open-label, non-randomized,

within-patient, phase III clinical trials, [(99m)Tc]Tilmanocept was evaluated to assess the

lymphatic mapping performance. A total of 13 centers contributed 148 patients with

breast cancer. Each patient received [(99m)Tc]tilmanocept and VBD. Lymph nodes

identified intra-operatively as radioactive and/or blue stained were excised and

histologically examined. The primary end-point, concordance (lower boundary set point at

90 %), was the proportion of nodes detected by VBD and [(99m)Tc]tilmanocept. A total of

13 centers contributed 148 patients who were injected with both agents. Intra-operatively,

207 of 209 nodes detected by VBD were also detected by [(99m)Tc]tilmanocept for a

concordance rate of 99.04 % (p < 0.0001). [(99m)Tc]tilmanocept detected a total of 320

nodes, of which 207 (64.7 %) were detected by VBD. [(99m)Tc]Tilmanocept detected at

least 1 SLN in more patients (146) than did VBD (131, p < 0.0001). In 129 of 131 patients

with greater than or equal to 1 blue node, all blue nodes were radioactive. Of 33

pathology-positive nodes (18.2 % patient pathology rate), [(99m)Tc]tilmanocept detected

31 of 33, whereas VBD detected only 25 of 33 (p = 0.0312). No pathology-positive SLNs

were detected exclusively by VBD. No serious adverse events were attributed to [(99m)

Tc]tilmanocept. The authors concluded that [(99m)Tc]Tilmanocept demonstrated success

in detecting a SLN while meeting the primary end-point. Interestingly, [(99m)Tc]

tilmanocept was additionally noted to identify more SLNs in more patients. This

localization represented a higher number of metastatic breast cancer lymph nodes than

that of VBD.

On March 13, 2013, The FDA approved Lymphoseek (technetium Tc 99m tilmanocept)

Page 26: Clinical Policy Bulletin: Tumor Scintigraphy...Tumor Scintigraphy Page 1 of 51 ... cancer that is thought to be clinically localized after standard diagnostic evaluation, but who have

Tumor Scintigraphy Page 26 of 51

http://qawww.aetna.com/cpb/medical/data/100_199/0168_draft.html 03/25/2015

Injection for location of lymph nodes in patients with breast cancer or melanoma who are

undergoing surgery to remove tumor-draining lymph nodes. The most common side

effects identified in clinical trials was pain or irritation at the injection site.

In a prospective, non-randomized, single-arm, part of an ongoing phase III clinical trial,

Marcinow et al (2013) evaluated the preliminary utility of technetium Tc 99m (99mTc)-

tilmanocept in patients with oral cavity squamous cell carcinoma (OSCC). Patients had

previously untreated, clinically and radiographically node-negative OSCC (T1-4aN0M0) at

an academic tertiary referral center. Patients received a single dose of 50 µg 99mTc-

tilmanocept injected peri-tumorally followed by dynamic planar LS and fused single-photon

emission computed tomography/computed tomography (SPECT/CT) prior to surgery.

Surgical intervention consisted of excision of the primary tumor and radio-guided SLN

dissection followed by planned elective neck dissection (END). The excised lymph nodes

(SLNs and non-SLNs) underwent histopathologic evaluation for presence of metastatic

disease. Main outcome measures were false-negative rate and negative-predictive value

of SLNB using 99mTc-tilmanocept and comparison of planar LS with SPECT/CT in SLN

localization. Twelve of 20 patients (60 %) had metastatic neck disease on pathologic

examination. All 12 had at least 1 SLN positive for metastases. No patients had a

positive END node who did not have at least 1 positive SLN. These data yielded a false-

negative rate of 0 % and negative-predictive value of 100 % using 99mTc-tilmanocept in

this setting. Dynamic planar LS and SPECT/CT revealed a mean (range) number of hot

spots per patient of 2.9 (1-7) and 3.7 (1-12), respectively. Compared with planar LS,

SPECT/CT identified additional putative SLNs in 11 of 20 cases (55 %). The authors

concluded that the high negative-predictive value and low false-negative rate in

identification of occult metastases shows 99mTc-tilmanocept to be a promising agent in

SLN identification in patients with OSCC. Use of SPECT/CT improved pre-operative SLN

localization including delineation of SLN locations near the primary tumor when compared

with planar LS imaging.

Ma and colleagues (2014) compared the potential application of (99m)Tc-3P-Arg-Gly-Asp

((99m)Tc-3P4-RGD2) scintimammography (SMM) and (99m)Tc-methoxyisobutylisonitrile

((99m)Tc-MIBI) SMM for the differentiation of malignant from benign breast lesions. A

total of 36 patients with breast masses on physical examination and/or suspicious

mammography results that required fine needle aspiration cytology biopsy (FNAB) were

included in the study. (99m)Tc-3P4-RGD2 and (99m)Tc-MIBI SMM were performed with

SPECT at 60 mins and 20 mins, respectively, after intravenous injection of 738 ± 86 MBq

radiotracers on a separate day. Images were evaluated by the tumor to non-tumor

localization ratios (T/NT). Receiver operating characteristic (ROC) curve analysis was

performed on each radiotracer to calculate the cut-off values of quantitative indices and to

compare the diagnostic performance for the ability to differentiate malignant from benign

diseases. The mean T/NT ratio of (99m)Tc-3P4-RGD2 in malignant lesions was

significantly higher than that in benign lesions (3.54 ± 1.51 versus 1.83 ± 0.98, p < 0.001).

The sensitivity, specificity, and accuracy of (99m)Tc-3P4-RGD2 SMM were 89.3 %, 90.9

% and 89.7 %, respectively, with a T/NT cut-off value of 2.40. The mean T/NT ratio of

(99m)Tc-MIBI in malignant lesions was also significantly higher than that in benign lesions

(2.86 ± 0.99 versus 1.51 ± 0.61, p < 0.001). The sensitivity, specificity and accuracy of

(99m)Tc-MIBI SMM were 87.5 %, 72.7 % and 82.1 %, respectively, with a T/NT cut-off

value of 1.45. According to the ROC analysis, the area under the curve for (99m)Tc-3P4-

RGD2 SMM (area = 0.851) was higher than that for (99m)Tc-MIBI SMM (area = 0.781),

but the statistical difference was not significant. The authors concluded that (99m)Tc-3P4-

RGD2 SMM does not provide any significant advantage over the established (99m)Tc-

MIBI SMM for the detection of primary breast cancer. The T/NT ratio of (99m)Tc-3P4-

RGD2 SMM was significantly higher than that of (99m)Tc-MIBI SMM. Both tracers could

offer an alternative method for elucidating non-diagnostic mammograms.

Page 27: Clinical Policy Bulletin: Tumor Scintigraphy...Tumor Scintigraphy Page 1 of 51 ... cancer that is thought to be clinically localized after standard diagnostic evaluation, but who have

Tumor Scintigraphy Page 27 of 51

http://qawww.aetna.com/cpb/medical/data/100_199/0168_draft.html 03/25/2015

Sharma et al (2014) evaluated the diagnostic utility of a single vial ready to label with

[99m]Tc kit preparation of DTPA-bis-methionine (DTPA-bis-MET) for the detection of

primary breast cancer. The conjugate (DTPA-bis-MET) was synthesized by covalently

conjugating 2 molecules of methionine to DTPA and formulated as a single vial ready to

label with [99m]Tc lyophilized kit preparations. A total of 30 female patients (mean age of

47.5 ± 11.8 years; range of 21 to 69 years) with radiological/clinical evidence of having

primary breast carcinoma were subjected to [99m]Tc-methionine scintigraphy. The whole

body (anterior and posterior) imaging was performed on all the patients at 5 mins, 10

mins, 1 hr, 2 hrs, and 4 hrs following an intravenous administration of 555 to 740 MBq

radioactivity of [99m]Tc-methionine. In addition, scintimammography (static images; 256

× 256 matrix) at 1, 2, and 4 hrs was also performed on all the patients. The resultant

radiolabel, that is, [99m]Tc-DTPA-bis-MET, yielded high radiolabeling efficiency (greater

than 97.0%), radiochemical purity (166 to 296 MBq/μmol), and shelf-life (greater than 3

months). The radiotracer primarily was excreted through the kidneys and localized in the

breast cancer lesions with high target-to-nontarget ratios. The mean ± SD ratios on the

scan-positive lesions acquired at 1, 2, and 4 hrs post-injection were 3.6 ± 0.48, 3.10 ±

0.24, and 2.5 ± 0.4, respectively. [99m]Tc-methionine scintimammography demonstrated

an excellent sensitivity and positive predictive value of 96.0 % each for the detection of

primary breast cancer. The authors concluded that ready to label single vial kit

formulations of DTPA-bis-MET can be easily synthesized as in-house production and

conveniently used for the scintigraphic detection of breast cancer and other methionine-

dependent tumors expressing the L-type amino acid transporter-1 receptor. The imaging

technique thus could be a potential substitute for the conventional SPECT-based tumor

imaging agents, especially for tracers with non-specific mitochondrial uptake. However,

they stated that the diagnostic efficacy of [99m]Tc-methionine needs to be evaluated in a

large cohort of patients through further multi-centric trials.

Liu et al (2014) explored the diagnostic performance of 99mTc-3(poly-(ethylene

glycol),PEG)4-RGD2 (99mTc-3PRGD2) SMM in patients with either palpable or non-

palpable breast lesions and compared SMM to mammography to assess the possible

incremental value of SMM in breast cancer detection. These researchers also

investigated the αvβ3 expression in malignant and benign breast lesions. A total of 94

patients with 110 lesions were included in this study. Mammograms were evaluated

according to the Breast Imaging Reporting and Data System (BI-RADS) by a specialized

imaging radiologist. Prone SMM was performed 1 hour after injection of 99mTc-

3PRGD2. Scintigraphic images were interpreted independently by 2 experienced nuclear

medicine physicians using a 3-point system, and the kappa value was calculated to

determine the inter-reader agreement. The McNemar test was used to compare SMM

and mammography with respect to sensitivity, specificity, and accuracy. Diagnostic

values for breast cancer detection were evaluated for each lesion. Immunohistochemistry

was performed to evaluate integrin αvβ3 expression. Histopathology revealed 46

malignant lesions and 64 benign lesions. The overall sensitivity, specificity, accuracy,

PPV, and negative-predictive value (NPV) of SMM were 83 %, 73 %, 77 %, 69 %, and 85

%, respectively. The kappa value between the 2 reviewers was 0.63. The diagnostic

values of SMM were higher than those of mammography in evaluating overall breast

lesions. A sensitivity of 91 % was achieved when SMM and mammography results were

combined with 60 % of all false-negative mammography findings classified as true-positive

results by SMM. Integrin αvβ3 expression was positively identified using SMM imaging.

The authors concluded that SMM is a promising tool to avoid unnecessary biopsies when

used in addition to mammography and can be used to image αvβ3 expression in breast

cancer with good image quality.

CPT Codes / HCPCS Codes / ICD-9 Codes

Page 28: Clinical Policy Bulletin: Tumor Scintigraphy...Tumor Scintigraphy Page 1 of 51 ... cancer that is thought to be clinically localized after standard diagnostic evaluation, but who have

Tumor Scintigraphy Page 28 of 51

http://qawww.aetna.com/cpb/medical/data/100_199/0168_draft.html 03/25/2015

Tumor Scintigraphy:

CPT codes covered if selection criteria are met for ProstaScint, Oncoscint, CEA-

Scan, Technetium-99m-Sestamibi Scintigraphy, OctreoScan, Radiolabeled

Octreotide, Meta-Iodobenzylguanidine (MIBG), and Breast Specific Gamma

imaging:

78800 Radiopharmaceutical localization of tumor or distribution of

radiopharmaceutical agent(s); limited area

78801 multiple areas

78802 whole body, single day imaging

78803 tomographic (SPECT)

78804 whole body, requiring 2 or more days imaging

ProstaScint:

HCPCS codes covered if selection criteria are met:

A9507 Indium In-111 capromab pendetide, diagnostic, per study dose, up to

10 millicuries

ICD-9 codes covered if selection criteria are met:

185 Malignant neoplasm of prostate

V10.46 Personal history of malignant neoplasm of prostate

Oncoscint:

HCPCS codes covered if selection criteria are met:

A4642 Indium In-111 satumomab pendetide, diagnostic, per study dose, up

to 6 millicuries

ICD-9 codes covered if selection criteria are met:

153.0 - 153.9 Malignant neoplasm of colon

154.0 - 154.8 Malignant neoplasm of rectum, rectosigmoid junction, and anus

183.0 Malignant neoplasm of ovary

V10.05 Personal history of malignant neoplasm of large intestine

V10.06 Personal history of malignant neoplasm of rectum, rectosigmoid

junction, and anus

V10.43 Personal history of malignant neoplasm of ovary

ICD-9 codes not covered for indications listed in the CPB (not all-inclusive):

172.0 - 172.9 Malignant melanoma of skin

174.0 - 175.9 Malignant neoplasm of breast

185 Malignant neoplasm of prostate

200.00 - 202.88 Lymphosarcoma and reticulosarcoma

Page 29: Clinical Policy Bulletin: Tumor Scintigraphy...Tumor Scintigraphy Page 1 of 51 ... cancer that is thought to be clinically localized after standard diagnostic evaluation, but who have

Tumor Scintigraphy Page 29 of 51

http://qawww.aetna.com/cpb/medical/data/100_199/0168_draft.html 03/25/2015

340 Multiple sclerosis

429.2 Cardiovascular disease, unspecified

453.0 - 453.9 Other venous embolism and thrombosis

490 - 496 Chronic obstructive pulmonary disease and allied conditions

555.0 - 556.9 Regional enteritis and ulcerative colitis

714.0 - 714.9 Rheumatoid arthritis and other inflammatory polyarthropathies

V76.0 - V76.9 Special screening for malignant neoplasms

Other ICD-9 codes related to the CPB:

795.79 Other and unspecified nonspecific immunological findings

CEA-Scan:

HCPCS codes covered if selection criteria are met:

A9568 Technetium Tc-99m arcitumomab, diagnostic, per study dose, up to

45 millicuries

ICD-9 codes covered if selection criteria are met:

153.0 - 153.9 Malignant neoplasm of colon

154.0 - 154.8 Malignant neoplasm of rectum, rectosigmoid junction, and anus

V10.05 Personal history of malignant neoplasm of large intestine

V10.06 Personal history of malignant neoplasm of rectum, rectosigmoid

junction, and anus

Technetium-99m-Sestamibi Scintigraphy:

HCPCS codes covered if selection criteria are met:

A9500 Technetium Tc-99m sestamibi, diagnostic, per study dose, up to 40

millicuries

A9512 Technetium tc-99m pertechnetate (thallium) subtraction scan

HCPCS codes not covered for indications listed in the CPB:

S8080 Scintimammography (radioimmunoscintigraphy of the breast),

unilateral, including supply of radiopharmaceutical

ICD-9 codes covered if selection criteria are met:

170.0 - 170.9 Malignant neoplasm of bone and articular cartilage

171.0 - 171.9 Malignant neoplasm of connective and other soft tissue

193 Malignant neoplasm of thyroid gland

226 Benign neoplasm of thyroid glands

Page 30: Clinical Policy Bulletin: Tumor Scintigraphy...Tumor Scintigraphy Page 1 of 51 ... cancer that is thought to be clinically localized after standard diagnostic evaluation, but who have

Tumor Scintigraphy Page 30 of 51

http://qawww.aetna.com/cpb/medical/data/100_199/0168_draft.html 03/25/2015

227.1 Benign neoplasm of other endocrine glands and related structures,

parathyroid gland

V10.87 Personal history of malignant neoplasm of thyroid

ICD-9 codes not covered for indications listed in the CPB:

174.0 - 175.9 Malignant neoplasm of breast

191.0 - 192.9 Malignant neoplasm of brain and other and unspecified parts of

nervous system

196.3 Secondary and unspecified malignant neoplasm of lymph nodes of

axilla and upper limb

198.3 Secondary malignant neoplasm of brain and spinal cord

198.4 Secondary malignant neoplasm of other parts of nervous system

198.81 Secondary malignant neoplasm of breast

225.0 - 225.9 Benign neoplasm of brain and other parts of nervous system

233.0 Carcinoma in-situ of breast

237.0 - 237.6 Neoplasm of uncertain behavior of endocrine glands and nervous

system

OctreoScan:

HCPCS codes covered if selection criteria are met:

A9572 Indium In-111 pentetrotide, diagnostic, per study dose, up to 6

millicuries

ICD-9 codes covered if selection criteria are met:

157.0 - 157.9 Malignant neoplasm of pancreas [VIPoma, Islet cell tumors]

192.1 Malignant neoplasm of cerebral meninges [meningioma]

193 Malignant neoplasm of thyroid gland

194.0 Malignant neoplasm of adrenal gland [paragangliomas,

pheochromocytomas]

194.3 Malignant neoplasm of pituitary gland and craniopharyngeal duct

194.6 Malignant neoplasm of aortic body and other paraganglia

201.00 - 201.98 Hodgkin's disease

209.00 - 209.16 Malignant carcinoid tumor of small intestine

209.20 - 209.29 Malignant carcinoid tumor of other and unspecified sites

Page 31: Clinical Policy Bulletin: Tumor Scintigraphy...Tumor Scintigraphy Page 1 of 51 ... cancer that is thought to be clinically localized after standard diagnostic evaluation, but who have

Tumor Scintigraphy Page 31 of 51

http://qawww.aetna.com/cpb/medical/data/100_199/0168_draft.html 03/25/2015

209.30 Malignant poorly differentiated neuroendocrine tumors

209.40 - 209.69 Benign carcinoid tumor

211.1 Benign neoplasm of stomach

211.6 Benign neoplasm of pancreas, except islets of Langerhans

211.7 Benign neoplasm of Islets of Langerhans [gastrinomas,

glucagonomas, Islet cell tumors]

225.2 Benign neoplasm of cerebral meninges [meningioma]

225.4 Benign neoplasm of spinal meninges

227.0 Benign neoplasm of adrenal gland [paragangliomas,

pheochromocytomas]

227.3 Benign neoplasm of pituitary gland and craniopharyngeal duct

(pouch)

227.6 Benign neoplasm of aortic body and other paraganglia

235.2 Neoplasm of uncertain behavior of stomach, intestines, and rectum

235.5 Neoplasm of uncertain behavior of other and unspecified digestive

organs

235.7 Neoplasm of uncertain behavior of trachea, bronchus, and lung

237.0 Neoplasm of uncertain behavior of pituitary gland and

craniopharyngeal duct

237.2 Neoplasm of uncertain behavior of adrenal gland

237.3 Neoplasm of uncertain behavior of paraganglia

237.4 Neoplasm of uncertain behavior of other and unspecified endocrine

glands

237.6 Neoplasm of uncertain behavior of meninges

259.2 Carcinoid syndrome

275.8 Disorders of calcium metabolism, other specified disorders of mineral

metabolism [tumor-induced osteomalacia TIO (oncogenic

osteomalacia)]

ICD-9 codes not covered for indications listed in the CPB (not all-inclusive):

135 Sarcoidosis

160.0 Malignant neoplasm of nasal cavities [neuroblastoma]

162.2 - 162.9 Malignant neoplasm of bronchus and lung [small-cell lung cancer]

Page 32: Clinical Policy Bulletin: Tumor Scintigraphy...Tumor Scintigraphy Page 1 of 51 ... cancer that is thought to be clinically localized after standard diagnostic evaluation, but who have

Tumor Scintigraphy Page 32 of 51

http://qawww.aetna.com/cpb/medical/data/100_199/0168_draft.html 03/25/2015

164.0 Malignant neoplasm of thymus [thymoma]

164.2 - 164.9 Malignant neoplasm of mediastinum [neuroblastoma]

173.0 - 173.9 Malignant neoplasm of skin [Merkel cell tumors]

190.0 - 190.9 Malignant neoplasm of eye [ocular melanoma]

191.0 - 191.9 Malignant neoplasm of brain [astrocytoma]

192.0 Malignant neoplasm of cranial nerves [neuroblastoma, olfactory]

194.0 Malignant neoplasm of adrenal gland [neuroblastoma]

194.6 Malignant neoplasm of aortic body and other paraganglia

[chemodectomas]

197.0 Secondary malignant neoplasm of lung

197.1 Secondary malignant neoplasm of mediastinum

197.3 Secondary malignant neoplasm of other respiratory organs

197.8 Secondary malignant neoplasm of other digestive organs and spleen

198.2 Secondary malignant neoplasm of skin

198.3 Secondary malignant neoplasm of brain and spinal cord

198.4 Secondary malignant neoplasm of other parts of nervous system

198.7 Secondary malignant neoplasm of adrenal gland

200.00 -

200.88, 202.00

- 208.92

Malignant neoplasm of lymphatic and hematopoietic tissue [except

Hodgkin's]

209.17 Malignant carcinoid tumor of the rectum [neuroendocrine carcinoma

of the rectum]

211.7 Benign neoplasm of Islets of Langerhans [insulinomas]

212.6 Benign neoplasm of thymus [thymoma]

227.6 Benign neoplasm of aortic body and other paraganglia

[chemodectomas]

Radiolabeled Ocreotide:

There is no specific code for radiolabeled octreotide:

ICD-9 codes covered if selection criteria are met :

209.00 - 209.30 Malignant carcinoid tumor

209.40 - 209.69 Benign carcinoid tumor

Page 33: Clinical Policy Bulletin: Tumor Scintigraphy...Tumor Scintigraphy Page 1 of 51 ... cancer that is thought to be clinically localized after standard diagnostic evaluation, but who have

Tumor Scintigraphy Page 33 of 51

http://qawww.aetna.com/cpb/medical/data/100_199/0168_draft.html 03/25/2015

ICD-9 codes not covered for indications listed in the CPB (not all-inclusive):

192.1 Malignant neoplasm of cerebral meninges [meningioma]

225.2 Benign neoplasm of cerebral meninges [meningioma]

Lymphoscintigraphy and Sentinel Lymph Node Biopsy:

CPT codes covered if selection criteria are met:

38500 - 38530 Biopsy or excision of lymph node(s)

38792 Injection procedure; radioactive tracer for identification of sentinel

node

+38900 Intraoperative identification (eg, mapping) of sentinel lymph node(s),

includes injection of non-radioactive dye, when performed

78195 Lymphatics and lymph nodes imaging

ICD-9 codes covered if selection criteria are met:

172.0 - 172.9 Malignant melanoma of skin

174.0 - 175.9 Malignant neoplasm of breast

198.81 Secondary malignant neoplasm of breast

233.0 Carcinoma in-situ of breast

ICD-9 codes not covered for indications listed in the CPB (not all-inclusive):

V84.01 Genetic susceptibility to malignant neoplasm of breast [BRCA1 or

BRCA2 mutations confirmed by molecular susceptibility testing for

breast cancer]

I-131 labeled Meta-Iodobenzylguanidine (MIBG) Imaging:

HCPCS codes covered if selection criteria are met:

A9508 Iodine I-131 iobenguane sulfate, diagnostic, per 0.5 millicurie

ICD-9 codes covered if selection criteria are met:

192.0 Malignant neoplasm of cranial nerves [neuroblastoma]

193 Malignant neoplasm of thyroid gland

194.0 Malignant neoplasm of adrenal gland [localizing or confirming

neuroblastoma or pheochromocytoma] [paraganglioma]

194.5 Malignant neoplasm of carotid body [paragangliomas]

194.6 Malignant neoplasm of aortic body and other paraganglia

[paragangliomas]

Page 34: Clinical Policy Bulletin: Tumor Scintigraphy...Tumor Scintigraphy Page 1 of 51 ... cancer that is thought to be clinically localized after standard diagnostic evaluation, but who have

Tumor Scintigraphy Page 34 of 51

http://qawww.aetna.com/cpb/medical/data/100_199/0168_draft.html 03/25/2015

209.00 - 209.30 Malignant carcinoid tumor

209.40 - 209.69 Benign carcinoid tumor

227.0 Benign neoplasm of adrenal gland [pheochromocytomas]

[paraganglioma]

227.5 Benign neoplasm of carotid body [paragangliomas]

227.6 Benign neoplasm of aortic body and other paraganglia

[paragangliomas]

235.2 Neoplasm of uncertain behavior of stomach, intestines, and rectum

235.5 Neoplasm of uncertain behavior of other and unspecified digestive

organs

237.2 Neoplasm of uncertain behavior of adrenal gland

237.3 Neoplasm of uncertain behavior of paraganglia

237.4 Neoplasm of uncertain behavior of other and unspecified endocrine

glands

255.8 Other specified disorders of adrenal glands [adrenal medulla

hyperplasia]

259.2 Carcinoid syndrome

I-131 labeled Meta-lodobenzylquanidine (MIBG) Radiotherapy:

CPT codes not covered for indications listed in the CPB:

79005 Radiopharmaceutical therapy, by oral administration

79101 Radiopharmaceutical therapy, by intravenous administration

79300 Radiopharmaceutical therapy, by interstitial radioactive colloid

administration

79403 Radiopharmaceutical therapy, radiolabeled monoclonal antibody by

intravenous infusion

79445 Radiopharmaceutical therapy, by intra=arterial particulate

administration

ICD-9 codes not covered for indications listed in the CPB (not all-inclusive):

194.0 Malignant neoplasm of adrenal gland [neuroblastoma,

pheochtomocytoma]

227.0 Benign neoplasm of adrenal gland [pheochromocytoma]

I-123 Injection for Imaging:

HCPCS codes covered if selection criteria are met:

Page 35: Clinical Policy Bulletin: Tumor Scintigraphy...Tumor Scintigraphy Page 1 of 51 ... cancer that is thought to be clinically localized after standard diagnostic evaluation, but who have

Tumor Scintigraphy Page 35 of 51

http://qawww.aetna.com/cpb/medical/data/100_199/0168_draft.html 03/25/2015

A9582 Iodine I-123 iobenguane, diagnostic, per study dose, up to 15

millicuries

ICD-9 codes covered if selection criteria are met (not all-inclusive):

194.0 Malignant neoplasm of adrenal gland [for the detection of primary or

metastatic pheochromocytoma or neuroblastoma as an adjunct to

other diagnostic tests]

ICD-9 codes not covered for indications listed in the CPB (not all-inclusive):

249.00 - 249.91 Secondary diabetes mellitus

250.00 - 250.93 Diabetes mellitus

332.0 - 332.1 Parkinson's disease

333.0 Other degenerative diseases of the basal ganglia [progressive

supranuclear palsy]

357.2 Polyneuropathy in diabetes

362.01 - 362.07 Anterior and posterior subcapsular polar cataract

366.41 Diabetic cataract

401.0 - 405.99 Hypertensive disease

410.00 - 414.9 Ischemic heart disease

425.4 Other primary cardiomyopathies

427.0 - 427.9 Cardiac dysrhythmias

428.0 Congestive heart failure

V42.1 Heart replaced by transplant

V58.69 Long-term (current) use of other medications

Scintimammography and Breast Specific Gamma Imaging (BSGI):

CPT codes not covered for indications listed in the CPB:

78195 Lymphatics and lymph nodes imaging

78800 Radiopharmaceutical localization of tumor or distribution of

radiopharmaceutical agent(s); limited area

78801 multiple areas

78803 tomographic (SPECT)

HCPCS codes not covered for indications listed in the CPB:

Page 36: Clinical Policy Bulletin: Tumor Scintigraphy...Tumor Scintigraphy Page 1 of 51 ... cancer that is thought to be clinically localized after standard diagnostic evaluation, but who have

Tumor Scintigraphy Page 36 of 51

http://qawww.aetna.com/cpb/medical/data/100_199/0168_draft.html 03/25/2015

A9500 Technetium Tc-99m sestamibi, diagnostic, per study dose, up to 40

millicuries

S8080 Scintimammography (radioimmunoscintigraphy of the breast),

unilateral, including supply of radiopharmaceutical

ICD-9 codes not covered for indications listed in the CPB (not all-inclusive):

174.0 - 175.9 Malignant neoplasm of the breast

195.1 Malignant neoplasm of thorax [axilla]

198.81 Secondary malignant neoplasm of the breast

198.89 Secondary malignant neoplasm of other specific sites [axillary

metastases]

233.0 Carcinoma in situ of breast

234.8 Carcinoma in situ of other specified sites [axilla]

V76.10 -

V76.19

Special screening examination for malignant neoplasms of breast

Technetium-Tc 99m Tilmanocept (Lymphoseek):

HCPCS codes covered if selection criteria are met:

A9520 Technetium Tc-99m tilmanocept, diagnostic, up to 0.5 millicuries

ICD-9 codes covered if selection criteria are met:

172.0 - 172.9 Malignant melanoma of skin

174.0 - 174.9 Malignant neoplasm of female breast

175.0 - 175.9 Malignant neoplasm of male breast

ICD-9 codes not covered for indications listed in the CPB (not all-inclusive):

141.0 - 145.9 Malignant neoplasm of oral cavity

The above policy is based on the following references:

ProstaScint

1. Howell T, Hailey D. Use of In-111 Capromab Pendetide in detecting metastatic

prostate cancer. HTB-5. Edmonton, AB: Alberta Heritage Foundation for Medical

Research (AHFMR); 1999.

2. Texter JH Jr, Neal CE. The role of monoclonal antibody in the management of

prostate adenocarcinoma. J Urol. 1998;160(6 Pt 2):2393-2395.

3. Sodee DB, Ellis RJ, Samuels MA, et al. Prostate cancer and prostate bed SPECT

imaging with ProstaScint: Semiquantitative correlation with prostatic biopsy results.

Prostate. 1998;37(3):140-148.

Page 37: Clinical Policy Bulletin: Tumor Scintigraphy...Tumor Scintigraphy Page 1 of 51 ... cancer that is thought to be clinically localized after standard diagnostic evaluation, but who have

Tumor Scintigraphy Page 37 of 51

http://qawww.aetna.com/cpb/medical/data/100_199/0168_draft.html 03/25/2015

4.

5.

6.

7.

8.

9.

10.

11.

12.

Petronis JD, Regan F, Lin K. Indium-111 capromab pendetide (ProstaScint)

imaging to detect recurrent and metastatic prostate cancer. Clin Nucl Med. 1998;23

(10):672-677.

Kahn D, Williams RD, Manyak MJ, et al. 111Indium-capromab pendetide in the

evaluation of patients with residual or recurrent prostate cancer after radical

prostatectomy. The ProstaScint Study Group. J Urol. 1998;159(6):2041-2047.

Murphy GP, Maguire RT, Rogers B, et al. Comparison of serum PSMA, PSA levels

with results of Cytogen-356 ProstaScint scanning in prostatic cancer patients.

Prostate. 1997;33(4):281-285.

Sodee DB, Conant R, Chalfant M, et al. Preliminary imaging results using In-111

labeled CYT-356 (Prostascint) in the detection of recurrent prostate cancer. Clin

Nucl Med. 1996;21(10):759-767.

Haseman MK, Reed NL, Rosenthal SA. Monoclonal antibody imaging of occult

prostate cancer in patients with elevated prostate-specific antigen. Positron

emission tomography and biopsy correlation. Clin Nucl Med. 1996;21(9):704-713.

Neal CE, Meis LC. Correlative imaging with monoclonal antibodies in colorectal,

ovarian, and prostate cancer. Semin Nucl Med. 1994;24(4):272-285.

Howell T, Hailey D. Use of In-111 capromab pendetide in detecting metastatic

prostate cancer. HTB-5. Edmonton, AB: Alberta Heritage Foundation for Medical

Research (AHFMR); 1999.

Rosenthal SA, Haseman MK, Polascik TJ. Utility of capromab pendetide

(ProstaScint) imaging in the management of prostate cancer. Tech Urol. 2001;7

(1):27-37.

Raj GV, Partin AW, Polascik TJ. Clinical utility of indium 111-capromab pendetide

immunoscintigraphy in the detection of early, recurrent prostate carcinoma after

radical prostatectomy. Cancer. 2002;94(4):987-996.

OncoScint

1. Pinkas L, Robins PD, Forstrom LA, et al. Clinical experience with radiolabelled

monoclonal antibodies in the detection of colorectal and ovarian carcinoma

recurrence and review of the literature. Nucl Med Commun. 1999;20(8):689-696.

2. Goldenberg DM. Perspectives on oncologic imaging with radiolabeled antibodies.

Cancer. 1997;80(12 Suppl):2431-2435.

3. Raderer M, Becherer A, Kurtaran A, et al. Comparison of iodine-123-vasoactive

intestinal peptide receptor scintigraphy and indium-111-CYT-103

immunoscintigraphy. J Nucl Med. 1996;37(9):1480-1487.

4. Neal CE, Johnson DL, Cornwell VL, et al. Quantitative analysis of In-111

satumomab pendetide immunoscintigraphy. An aid to visual interpretation of

images in patients with suspected carcinomatosis. Clin Nucl Med. 1996;21(8):638-

642.

5. Divgi CR. Status of radiolabeled monoclonal antibodies for diagnosis and therapy

of cancer. Oncology (Huntingt). 1996;10(6):939-954, 957-958.

6. Sharkey RM, Juweid M, Shevitz J, et al. Evaluation of a complementarity-

determining region-grafted (humanized) anti-carcinoembryonic antigen monoclonal

antibody in preclinical and clinical studies. Cancer Res. 1995;55(23 Suppl):5935s-

5945s.

7. Bohdiewicz PJ, Scott GC, Juni JE, et al. Indium-111 OncoScint CR/OV and F-18

FDG in colorectal and ovarian carcinoma recurrences. Early observations. Clin

Nucl Med. 1995;20(3):230-236.

Page 38: Clinical Policy Bulletin: Tumor Scintigraphy...Tumor Scintigraphy Page 1 of 51 ... cancer that is thought to be clinically localized after standard diagnostic evaluation, but who have

Tumor Scintigraphy Page 38 of 51

http://qawww.aetna.com/cpb/medical/data/100_199/0168_draft.html 03/25/2015

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Volpe CM, Abdel-Nabi HH, Kulaylat MN, et al. Results of immunoscintigraphy using

a cocktail of radiolabeled monoclonal antibodies in the detection of colorectal

cancer. Ann Surg Oncol. 1998;5(6):489-494.

Larson SM. Improving the balance between treatment and diagnosis: A role for

radioimmunodetection. Cancer Res. 1995;55(23 Suppl):5756s-5758s.

Harrison KA, Tempero MA. Diagnostic use of radiolabeled antibodies for cancer.

Oncology (Huntingt). 1995;9(7):625-631, 634, 636, 641.

Edlin JP, Kahn D. Detection of recurrent colorectal carcinoma with In-111 CYT-103

scintigraphy in a patient with nondiagnostic MRI and CT. Clin Nucl Med. 1994;19

(11):1004-1007.

Kim SL, Goldschmid S. Monoclonal antibody imaging in colon cancer: A transition

from basic science to clinical application. Am J Gastroenterol. 1994;89(10):1910-

1912.

Corman ML, Galandiuk S, Block GE, et al. Immunoscintigraphy with 111In-

satumomab pendetide in patients with colorectal adenocarcinoma: Performance

and impact on clinical management. Dis Colon Rectum. 1994;37(2):129-137.

Markowitz A, Saleemi K, Freeman LM. Role of In-111 labeled CYT-103 immuno-

scintigraphy in the evaluation of patients with recurrent colorectal carcinoma. Clin

Nucl Med. 1993;18(8):685-700.

No authors listed. Oncoscint for detection of disseminated colorectal and ovarian

cancer. Med Lett Drugs Ther. 1993;35(898):52-53.

Galandiuk S. Immunoscintigraphy in the surgical management of colorectal cancer.

J Nucl Med. 1993;34:541-544.

Caretta RF. The role of immunoscintigraphy in cancer diagnosis. New Perspect

Cancer Diagn Manage. 1993;1:24-26.

Caretts RT. Monoclonal antibodies in the diagnosis of colorectal cancer. New

Perspect Cancer Diagn Manage. 1993;1:56-58.

Surwit EA, Childers JM, Krag DN, et al. Clinical assessment of 111- In- CYT- 103

Immunoscintigraphy in ovarian cancer. Gynecol Oncol. 1993;48(3):285-292.

Krag DN. Clinical utility of immunoscintigraphy in managing ovarian cancer. J Nucl

Med. 1993;34:545-548.

Collier BD, Abdel-Nabi H, Doerr RJ, et al. Immunoscintigraphy performed with In-

111- labeled CYT- 103 in the management of colorectal cancer: Comparison with

CT. Radiology. 1992;185(1):179-186.

Doerr RJ, Abdel-Nabi H, Krag D, Mitchell E. Radiolabeled antibody imaging in the

management of colorectal cancer: Results of a multicenter clinical study. Ann Surg.

1991;214(2):118-124.

Su WT, Brachman M, O'Connell TX. Use of OncoScint scan to assess resectability

of hepatic metastases from colorectal cancer. Am Surg. 2001;67(12):1200-1203.

CEA Scan

1. Goldenberg DM, Nabi HA. Breast cancer imaging with radiolabeled antibodies.

Semin Nucl Med. 1999;29(1):41-48.

2. Volpe CM, Abdel-Nabi HH, Kulaylat MN, et al. Results of immunoscintigraphy using

a cocktail of radiolabeled monoclonal antibodies in the detection of colorectal

cancer. Ann Surg Oncol. 1998;5(6):489-494.

3. Hughes K, Pinsky CM, Petrelli NJ, et al. Use of carcinoembryonic antigen

radioimmunodetection and computed tomography for predicting the resectability of

recurrent colorectal cancer. Ann Surg. 1997;226(5):621-631.

Page 39: Clinical Policy Bulletin: Tumor Scintigraphy...Tumor Scintigraphy Page 1 of 51 ... cancer that is thought to be clinically localized after standard diagnostic evaluation, but who have

Tumor Scintigraphy Page 39 of 51

http://qawww.aetna.com/cpb/medical/data/100_199/0168_draft.html 03/25/2015

4.

5.

6.

7.

8.

9.

10.

Behr TM, Goldenberg DM, Scheele JR, et al. Clinical relevance of

immunoscintigraphy with 99mTc-labelled anti-CEA antigen-binding fragments in

the follow-up of patients with colorectal carcinoma. Assessment of surgical

resectability with a combination of conventional imaging methods. Dtsch Med

Wochenschr. 1997;122(15):463-470.

Poshyachinda M, Chaiwatanarat T, Saesow N, et al. Value of

radioimmunoscintigraphy with technetium-99m labelled anti-CEA monoclonal

antibody (BW431/26) in the detection of colorectal cancer. Eur J Nucl Med.

1996;23(6):624-630.

Farouk R, Nelson H, Radice E, et al. Accuracy of computed tomography in

determining resectability for locally advanced primary or recurrent colorectal

cancers. Am J Surg. 1998;175(4):283-287.

Stocchi L, Nelson H. Diagnostic and therapeutic applications of monoclonal

antibodies in colorectal cancer. Dis Colon Rectum. 1998;41(2):232-250.

Patt YZ, Podoloff DA, Curley S, et al. Technetium 99m-labeled IMMU-4, a

monoclonal antibody against carcinoembryonic antigen, for imaging of occult

recurrent colorectal cancer in patients with rising serum carcinoembryonic antigen

levels. J Clin Oncol. 1994;12(3):489-495.

Rodriguez-Bigas MA, Bakshi S, Stomper P, et al. 99mTc-IMMU-4 monoclonal

antibody scan in colorectal cancer. A prospective study. Arch Surg. 1992;127

(11):1321-1324.

Medical Services Advisory Committee (MSAC). CEA-Scan for imaging recurrence

and/or metastases in patients with histologically demonstrated carcinoma of the

colon or rectum. MSAC application 1062. Canberra, ACT: Medical Services

Advisory Committee (MSAC); 2004:1-98.

Scintimammography and Breast Specific Gamma Imaging (BSGI)

1. Mangkharak J. Scintimammography (SMM) in breast cancer patients. J Med Assoc

Thai. 1999;82(3):242-249.

2. Danielsson R, Bone B, Gad A, et al. Sensitivity and specificity of planar

scintimammography with 99mTc- sestamibi. Acta Radiol. 1999;40(4):394-399.

3. Arslan N, Ozturk E, Ilgan S, et al. 99Tcm-MIBI scintimammography in the

evaluation of breast lesions and axillary involvement: A comparison with

mammography and histopathological diagnosis. Nucl Med Commun. 1999;20

(4):317-325.

4. Danielsson R, Bone B, Agren B, et al. Comparison of planar and SPECT

scintimammography with 99mTc-sestamibi in the diagnosis of breast carcinoma.

Acta Radiol. 1999;40(2):176-180.

5. Prats E, Aisa F, Abos MD, et al. Mammography and 99mTc-MIBI

scintimammography in suspected breast cancer. J Nucl Med. 1999;40(2):296-301.

6. Taillefer R. The role of 99mTc-sestamibi and other conventional

radiopharmaceuticals in breast cancer diagnosis. Semin Nucl Med. 1999;29(1):16-

40.

7. Hider P, Nicholas B. The early detection and diagnosis of breast cancer: A

literature review. An update. Christchurch, New Zealand: New Zealand Health

Technology Assessment (NZHTA); 1999;2(2).

8. Newman J. Scintimammography in breast cancer diagnosis. Radiol Technol.

1998;70(2):153-172.

9. Ziewacz JT, Neumann DP, Weiner RE. The difficult breast. Surg Oncol Clin N Am.

1999;8(1):17-33.

Page 40: Clinical Policy Bulletin: Tumor Scintigraphy...Tumor Scintigraphy Page 1 of 51 ... cancer that is thought to be clinically localized after standard diagnostic evaluation, but who have

Tumor Scintigraphy Page 40 of 51

http://qawww.aetna.com/cpb/medical/data/100_199/0168_draft.html 03/25/2015

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Flanagan DA, Gladding SB, Lovell FR. Can scintimammography reduce

“unnecessary” biopsies? Am Surg. 1998;64(7):670-673.

Tolmos J, Cutrone JA, Wang B, et al. Scintimammographic analysis of nonpalpable

breast lesions previously identified by conventional mammography. J Natl Cancer

Inst. 1998;90(11):846-849.

Garcia-Fernandez R, Maravilla A, Pichardo-Romero P, et al. Diagnosis of breast

tumors by scintigraphy versus mammography. Rev Invest Clin. 1998;50(1):53-56.

Alonso JC, Soriano A, Zarca MA, et al. Breast cancer detection with sestamibi-Tc-

99m and Tl-201 radionuclides in patients with non conclusive mammography.

Anticancer Res. 1997;17(3B):1661-1665.

Helbich TH, Becherer A, Trattnig S, et al. Differentiation of benign and malignant

breast lesions: MR imaging versus Tc-99m sestamibi scintimammography.

Radiology. 1997;202(2):421-429.

Tiling R, Khalkhali I, Sommer H, et al. Role of technetium-99m sestamibi

scintimammography and contrast-enhanced magnetic resonance imaging for the

evaluation of indeterminate mammograms. Eur J Nucl Med. 1997;24(10):1221-

1229.

Clifford EJ, Lugo-Zamudio C. Scintimammography in the diagnosis of breast

cancer. Am J Surg. 1996;172(5):483-486.

Schillaci O, Scopinaro F, Danieli R, et al. 99Tcm-sestamibi scintimammography in

patients with suspicious breast lesions: Comparison of SPET and planar images in

the detection of primary tumours and axillary lymph node involvement. Nucl Med

Commun. 1997;18(9):839-845.

Khalkhali I, Iraniha S, Diggles LE, et al. Scintimammography: The new role of

technetium-99m Sestamibi imaging for the diagnosis of breast carcinoma. Q J Nucl

Med. 1997;41(3):231-238.

Carril JM, Gomez-Barquin R, Quirce R, et al. Contribution of 99mTc-MIBI

scintimammography to the diagnosis of non-palpable breast lesions in relation to

mammographic probability of malignancy. Anticancer Res. 1997;17(3B):1677-

1681.

Scopinaro F, Ierardi M, Porfiri LM, et al. 99mTc-MIBI prone scintimammography in

patients with high and intermediate risk mammography. Anticancer Res. 1997;17

(3B):1635-1638.

Scopinaro F, Schillaci O, Ussof W, et al. A three center study on the diagnostic

accuracy of 99mTc-MIBI scintimammography. Anticancer Res. 1997;17(3B):1631-

1634.

Chen SL, Yin YQ, Chen JX, et al. The usefulness of technetium-99m-MIBI

scintimammography in diagnosis of breast cancer: Using surgical histopathologic

diagnosis as the gold standard. Anticancer Res. 1997;17(3B):1695-1698.

Hall FM. Technologic advances in breast imaging. Current and future strategies,

controversies, and opportunities. Surg Oncol Clin N Am. 1997;6(2):403-409.

Maublant J, de Latour M, Mestas D, et al. Technetium-99m-sestamibi uptake in

breast tumor and associated lymph nodes. J Nucl Med. 1996;37(6):922-925.

Mansi L, Rambaldi PF, Procaccini E, et al. Scintimammography with technetium-

99m tetrofosmin in the diagnosis of breast cancer and lymph node metastases. Eur

J Nucl Med. 1996;23(8):932-939.

Taillefer R, Robidoux A, Lambert R, et al. Technetium-99m-sestamibi prone

scintimammography to detect primary breast cancer and axillary lymph node

involvement. J Nucl Med. 1995;36(10):1758-1765.

Page 41: Clinical Policy Bulletin: Tumor Scintigraphy...Tumor Scintigraphy Page 1 of 51 ... cancer that is thought to be clinically localized after standard diagnostic evaluation, but who have

Tumor Scintigraphy Page 41 of 51

http://qawww.aetna.com/cpb/medical/data/100_199/0168_draft.html 03/25/2015

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

Khalkhali I, Cutrone J, Mena I, et al. Technetium-99m-sestamibi

scintimammography of breast lesions: Clinical and pathological follow-up. J Nucl

Med. 1995;36(10):1784-1789.

Villanueva-Meyer J, Leonard MH Jr, Briscoe E, et al. Mammoscintigraphy with

technetium-99m-sestamibi in suspected breast cancer. J Nucl Med. 1996;37(6):926

-930.

Taki J, Sumiya H, Tsuchiya H, et al. Evaluating benign and malignant bone and

soft tissue lesions with technetium-99m-MIBI scintigraphy. J Nucl Med. 1997;38

(4):501-506.

Miyamoto S, Kasagi K, Misaki T, et al. Evaluation of technetium-99m-MIBI

scintigraphy in metastatic differentiated thyroid carcinoma. J Nucl Med. 1997;38

(3):352-356.

National Academy of Sciences, Institute of Medicine, Committee on the Early

Detection of Breast Cancer. Mammography and Beyond: Developing Technologies

for the Early Detection of Breast Cancer. Washington, DC: National Academy

Press; 2001.

Hindie E, de LV, Melliere D, et al. Parathyroid gland radionuclide scanning --

methods and indications. Joint Bone Spine. 2002;69(1):28-36.

Connolly LP, Drubach LA, Ted Treves S. Applications of nuclear medicine in

pediatric oncology. Clin Nucl Med. 2002;27(2):117-125.

Leung JW. New modalities in breast imaging: Digital mammography, positron

emission tomography, and sestamibi scintimammography. Radiol Clin North Am.

2002;40(3):467-482.

Ontario Ministry of Health and Long-Term Care, Medical Advisory Secretariat.

Scintimammography. Health Technology Scientific Literature Review. Toronto, ON:

Ontario Ministry of Health and Long-Term Care; February 2003; 1-35. Available at:

http://www.health.gov.on.ca/english/providers/program/mas/archive.html. Accessed

August 4, 2004.

Liberman M, Sampalis F, Mulder DS, Sampalis JS. Breast cancer diagnosis by

scintimammography: A meta-analysis and review of the literature. Breast Cancer

Res Treat. 2003;80(1):115-126.

Bruening W, Launders J, Pinkney N, et al. Effectiveness of noninvasive diagnostic

tests for breast abnormalities. Comparative Effectiveness Review No. 2. Prepared

by ECRI Evidence-based Practice Center for the Agency for Healthcare Research

and Quality (AHRQ) under Contract No. 290-02-0019. AHRQ Publication No. 06-

EHC005-EF. Rockville, MD: AHRQ; February 2006.

Ontario Ministry of Health and Long-Term Care, Medical Advisory Secretariat

(MAS). Scintimammography as an adjunctive breast imaging technology.

Integrated Health Technology Literature Review. Toronto, ON: MAS; 2007.

O'Connor MK, Phillips SW, Hruska CB, et al. Molecular breast imaging:

Advantages and limitations of a scintimammographic technique in patients with

small breast tumors. Breast J. 2007;13(1):3-11.

Brem RF, Floerke AC, Rapelyea JA, et al. Breast-specific gamma imaging as an

adjunct imaging modality for the diagnosis of breast cancer. Radiology. 2008;247

(3):651-657.

Kieper D, Brem RF, Hoeffer R, et al. Detecting infiltrating lobular carcinoma using

scintimammographic breast specific gamma imaging. Phys Med. 2006;21S1:125-

127.

Page 42: Clinical Policy Bulletin: Tumor Scintigraphy...Tumor Scintigraphy Page 1 of 51 ... cancer that is thought to be clinically localized after standard diagnostic evaluation, but who have

Tumor Scintigraphy Page 42 of 51

http://qawww.aetna.com/cpb/medical/data/100_199/0168_draft.html 03/25/2015

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

Brem RF, Fishman M, Rapelyea JA. Detection of ductal carcinoma in situ with

mammography, breast specific gamma imaging, and magnetic resonance imaging:

a comparative study. Acad Radiol. 2007;14(8):945-950.

Civelek AC, Patel P, Ozalp E, Brem RF. Tc-99m sestamibi uptake in the chest

mimicking a malignant lesion of the breast. Breast. 2006;15(1):111-114.

Brem RF, Rapelyea JA, Zisman G, et al. Occult breast cancer: scintimammography

with high-resolution breast-specific gamma camera in women at high risk for breast

cancer. Radiology. 2005;237(1):274-280.

Brem RF, Schoonjans JM, Kieper DA, et al. High-resolution scintimammography: a

pilot study. J Nucl Med. 2002;43(7):909-915.

Brem RF, Petrovitch I, Rapelyea JA, et al. Breast-specific gamma imaging with

99mTc-Sestamibi and magnetic resonance imaging in the diagnosis of breast

cancer--a comparative study. Breast J. 2007;13(5):465-469.

Brem RF, Ioffe M, Rapelyea JA, et al. Invasive lobular carcinoma: Detection with

mammography, sonography, MRI, and breast-specific gamma imaging. AJR Am J

Roentgenol. 2009;192(2):379-383.

Zhou M, Johnson N, Blanchard D, et al. Real-world application of breast-specific

gamma imaging, initial experience at a community breast center and its potential

impact on clinical care. Am J Surg. 2008;195(5):631-635.

Zhou M, Johnson N, Gruner S, et al. Clinical utility of breast-specific gamma

imaging for evaluating disease extent in the newly diagnosed breast cancer patient.

Am J Surg. 2009;197(2):159-163.

American College of Radiology (ACR), Society for Pediatric Radiology (SPR). ACR

-SPR practice guideline for the performance of tumor scintigraphy (with gamma

cameras). [online publication]. Reston, VA: American College of Radiology (ACR);

2010.

O'Connor MK, Li H, Rhodes DJ, et al. Comparison of radiation exposure and

associated radiation-induced cancer risks from mammography and molecular

imaging of the breast. Med Phys. 2010;37(12):6187-6198.

Kim BS. Usefulness of breast-specific gamma imaging as an adjunct modality in

breast cancer patients with dense breast: A comparative study with MRI. Ann Nucl

Med. 2012;26(2):131-137.

Keto JL, Kirstein L, Sanchez DP, et al. MRI Versus breast-specific gamma imaging

(BSGI) in newly diagnosed ductal cell carcinoma-in-situ: A prospective head-to-

head trial. Ann Surg Oncol. 2012;19(1):249-252.

Berczi C, Mezosi E, Galuska L, et al. Technetium-99m-sestamibi/pertechnetate

subtraction scintigraphy vs ultrasonography for preoperative localization in primary

hyperparathyroidism. Eur Radiol. 2002;12(3):605-609.

Barczynski M, Golkowski F, Konturek A, et al. Technetium-99m-sestamibi

subtraction scintigraphy vs. ultrasonography combined with a rapid parathyroid

hormone assay in parathyroid aspirates in preoperative localization of parathyroid

adenomas and in directing surgical approach. Clin Endocrinol (Oxf). 2006;65

(1):106-113.

Powell DK, Nwoke F, Goldfarb RC, Ongseng F. Tc-99m sestamibi parathyroid

gland scintigraphy: Added value of Tc-99m pertechnetate thyroid imaging for

increasing interpretation confidence and avoiding additional testing. Clin Imaging.

2013;37(3):475-479.

Yip L, Silverberg SJ, El-Hajj Fuleihan G. Preoperative localization for parathyroid

surgery in patients with primary hyperparathyroidism. Last reviewed November

2013. UpToDate Inc., Waltham, MA.

Page 43: Clinical Policy Bulletin: Tumor Scintigraphy...Tumor Scintigraphy Page 1 of 51 ... cancer that is thought to be clinically localized after standard diagnostic evaluation, but who have

Tumor Scintigraphy Page 43 of 51

http://qawww.aetna.com/cpb/medical/data/100_199/0168_draft.html 03/25/2015

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

Hruska CB, Boughey JC, Phillips SW, Rhodes DJ, Wahner-Roedler DL, Whaley

DH, Degnim AC, O'Connor MK. Scientific Impact Recognition Award: Molecular

breast imaging: A review of the Mayo Clinic experience. Am J Surg. 2008;196

(4):470-476.

Hruska CB, Phillips SW, Whaley DH, et al. Molecular breast imaging: Use of a dual

-head dedicated gamma camera to detect small breast tumors. AJR Am J

Roentgenol. 2008;191(6):1805-1815.

Spanu A, Chessa F, Battista Meloni G, et al. Scintimammography with high

resolution dedicated breast camera and mammography in multifocal, multicentric

and bilateral breast cancer detection: A comparative study. Q J Nucl Med Mol

Imaging. 2009;53(2):133-143.

Rhodes DJ, Hruska CB , Phillips SW, Whaley DH, O’Connor MK. Dedicated dual-

head gamma imaging for breast cancer screening in women with

mammographically dense breasts. Radiology. 2011;258(1):106-118

Hruska CB, Weinmann AL, O'Connor MK. Proof of concept for low-dose molecular

breast imaging with a dual-head CZT gamma camera. Part I. Evaluation in

phantoms. Med Phys. 2012;39(6):3466-3475.

Spanu A, Sanna D, Chessa F, et al. The clinical impact of breast scintigraphy

acquired with a breast specific γ-camera (BSGC) in the diagnosis of breast cancer:

Incremental value versus mammography. Int J Oncol. 2012;41(2):483-

489.Swanson TN, Troung DT, Paulsen A, et al. Adsorption of 99mTc-sestamibi

onto plastic syringes: Evaluation of factors affecting the degree of adsorption and

their impact on clinical studies. J Nucl Med Technol. 2013;41(4):247-252.

Mitchell D, Hruska CB, Boughey JC, Wahner-Roedler DL, Jones KN, Tortorelli C,

Conners AL, O'Connor MK. 99mTc-sestamibi using a direct conversion molecular

breast imaging system to assess tumor response to neoadjuvant chemotherapy in

women with locally advanced breast cancer. Clin Nucl Med. 2013;38(12):949-956.

Hruska CB, Conners AL, Jones KN, Weinmann AL, Lingineni RK, Carter RE,

Rhodes DJ, O'Connor MK. Half-time Tc-99m sestamibi imaging with a direct

conversion molecular breast imaging system. EJNMMI Res. 2014;4(1):5.

Ma Q, Chen B, Gao S, et al. 99mTc-3P4-RGD2 scintimammography in the

assessment of breast lesions: comparative study with 99mTc-MIBI. PLoS One.

2014;9(9):e108349.

Sharma S, Singh B, Mishra AK, et al. LAT-1 based primary breast cancer detection

by [99m]Tc-labeled DTPA-bis-methionine scintimammography: First results using

indigenously developed single vial kit preparation. Cancer Biother Radiopharm.

2014;29(7):283-288.

Liu L, Song Y, Gao S, et al. (99)mTc-3PRGD2 scintimammography in palpable and

nonpalpable breast lesions. Mol Imaging. 2014;13.

OctreoScan and OctreoTher

1. Shi W, Johnston CF, Buchanan KD, et al. Localization of neuroendocrine tumours

with [111In] DTPA-octreotide scintigraphy (Octreoscan): A comparative study with

CT and MR imaging. QJM. 1998;91(4):295-301.

2. Myssiorek D, Palestro CJ. 111Indium pentetreotide scan detection of familial

paragangliomas. Laryngoscope. 1998;108(2):228-231.

3. Oliaro A, Filosso PL, Bello M, et al. Use of 111In-DTPA-octreotide scintigraphy in

the diagnosis of neuroendocrine and non-neuroendocrine tumors of the lung.

Preliminary results. J Cardiovasc Surg (Torino). 1997;38(3):313-315.

Page 44: Clinical Policy Bulletin: Tumor Scintigraphy...Tumor Scintigraphy Page 1 of 51 ... cancer that is thought to be clinically localized after standard diagnostic evaluation, but who have

Tumor Scintigraphy Page 44 of 51

http://qawww.aetna.com/cpb/medical/data/100_199/0168_draft.html 03/25/2015

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Limouris GS, Rassidakis A, Kondi-Paphiti A, et al. Somatostatin receptor

scintigraphy of non-neuroendocrine malignancies with 111In-pentetreotide.

Anticancer Res. 1997;17(3B):1593-1597.

Limouris GS, Rassidakis A, Kondi-Paphiti A, et al. Receptor scintigraphy of non-

neuroendocrine cancers with In-111 pentetreotide. Hybridoma. 1997;16(1):133-

137.

Rieger A, Rainov NG, Elfrich C, et al. Somatostatin receptor scintigraphy in patients

with pituitary adenoma. Neurosurg Rev. 1997;20(1):7-12.

Cadiot G, Lebtahi R, Sarda L, et al. Preoperative detection of duodenal

gastrinomas and peripancreatic lymph nodes by somatostatin receptor

scintigraphy. Groupe D'etude Du Syndrome De Zollinger-Ellison. Gastroenterology.

1996;111(4):845-854.

Oberg K. Neuroendocrine gastrointestinal tumours. Ann Oncol. 1996;7(5):453-463.

Celentano L, Sullo P, Klain M, et al. 111In-pentetreotide scintigraphy in the post-

thyroidectomy follow-up of patients with medullary thyroid carcinoma. Q J Nucl

Med. 1995;39(4 Suppl 1):131-133.

Semprebene A, Ferraironi A, Franciotti G, et al. 111In-octreotide scintigraphy in

small cell lung cancer. Q J Nucl Med. 1995;39(4 Suppl 1):108-110.

Sciuto R, Ferraironi A, Semprebene A, et al. Clinical relevance of 111In-octreotide

scans in CNS tumors. Q J Nucl Med. 1995;39(4 Suppl 1):101-103.

Goldsmith SJ, Macapinlac HA, O'Brien JP. Somatostatin-receptor imaging in

lymphoma. Semin Nucl Med. 1995;25(3):262-271.

Olsen JO, Pozderac RV, Hinkle G, et al. Somatostatin receptor imaging of

neuroendocrine tumors with indium-111 pentetreotide (Octreoscan). Semin Nucl

Med. 1995;25(3):251-261.

Frank-Raue K, Bihl H, Dorr U, et al. Somatostatin receptor imaging in persistent

medullary thyroid carcinoma. Clin Endocrinol (Oxf). 1995;42(1):31-37.

Maini CL, Tofani A, Sciuto R, et al. Somatostatin receptors in meningiomas: A

scintigraphic study using 111In-DTPA-D-Phe-1-octreotide. Nucl Med Commun.

1993;14(7):550-558.

Medicare Services Advisory Committee (MSAC). OctreoScan scintigraphy for

gastro-entero-pancreatic neuroendocrine tumours. Final assessment report; MSAC

application 1003. Canberra, ACT: MSAC; 1999.

Bajetta E, Procopio G, Buzzoni R, et al. Advances in diagnosis and therapy of

neuroendocrine tumors. Expert Rev Anticancer Ther. 2001;1(3):371-381.

Oberg K. Established clinical use of octreotide and lanreotide in oncology.

Chemotherapy. 2001;47 Suppl 2:40-53.

Warner RR, O'dorisio TM. Radiolabeled peptides in diagnosis and tumor imaging:

Clinical overview. Semin Nucl Med. 2002;32(2):79-83.

Weiner RE, Thakur ML. Radiolabeled peptides in the diagnosis and therapy of

oncological diseases. Appl Radiat Isot. 2002;57(5):749-763.

Warner RR, O'dorisio TM. Radiolabeled peptides in diagnosis and tumor imaging:

Clinical overview. Semin Nucl Med. 2002;32(2):79-83.

Bodei L, Handkiewicz-Junak D, Grana C, et al. Receptor radionuclide therapy with

90Y-DOTATOC in patients with medullary thyroid carcinomas. Cancer Biother

Radiopharm. 2004;19(1):65-71.

Weiner RE, Thakur ML. Radiolabeled peptides in oncology: Role in diagnosis and

treatment. BioDrugs. 2005;19(3):145-163.

Page 45: Clinical Policy Bulletin: Tumor Scintigraphy...Tumor Scintigraphy Page 1 of 51 ... cancer that is thought to be clinically localized after standard diagnostic evaluation, but who have

Tumor Scintigraphy Page 45 of 51

http://qawww.aetna.com/cpb/medical/data/100_199/0168_draft.html 03/25/2015

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

Oberg K, Eriksson B. Nuclear medicine in the detection, staging and treatment of

gastrointestinal carcinoid tumours. Best Pract Res Clin Endocrinol Metab. 2005;19

(2):265-276.

Kwekkeboom DJ, Mueller-Brand J, Paganelli G, et al. Overview of results of

peptide receptor radionuclide therapy with 3 radiolabeled somatostatin analogs. J

Nucl Med. 2005;46 Suppl 1:62S-66S.

Ramage JK, Davies AHG, Ardill J, et al. Guidelines for the management of

gastroenteropancreatic neuroendocrine (including carcinoid) tumours. Gut.

2005;54;1-16.

Paganelli G, Bodei L, Handkiewicz Junak D, et al. 90Y-DOTA-D-Phe1-Try3-

octreotide in therapy of neuroendocrine malignancies. Biopolymers. 2002;66

(6):393-398.

Waldherr C, Pless M, Maecke HR, et al. Tumor response and clinical benefit in

neuroendocrine tumors after 7.4 GBq (90)Y-DOTATOC. J Nucl Med. 2002;43

(5):610-616.

Kwekkeboom DJ, Krenning EP. Somatostatin receptor imaging. Semin Nucl Med.

2002;32(2):84-91.

Carbone R, Filiberti R, Grosso M, et al. Octreoscan perspectives in sarcoidosis and

idiopathic interstitial pneumonia. Eur Rev Med Pharmacol Sci. 2003;7(4):97-105.

Kroot EJ, Dolhain RJ, van Hagen PM, Kwekkeboom DJ. Sarcoidosis in a clinically

unaffected joint demonstrated by somatostatin receptor scintigraphy. Clin Nucl

Med. 2006;31(8):501-503.

Scarpa M, Prando D, Pozza A, et al. A systematic review of diagnostic procedures

to detect midgut neuroendocrine tumors. J Surg Oncol. 2010;102(7):877-888.

Johnson DR, Kimmel DW, Burch PA, et al. Phase II study of subcutaneous

octreotide in adults with recurrent or progressive meningioma and meningeal

hemangiopericytoma. Neuro Oncol. 2011;13(5):530-535.

Schulz C, Mathieu R, Kunz U, Mauer UM. Treatment of unresectable skull base

meningiomas with somatostatin analogs. Neurosurg Focus. 2011;30(5):E11.

Lin K, Nguyen BD, Ettinger DS, Chin BB. Somatostatin receptor scintigraphy and

somatostatin therapy in the evaluation and treatment of malignant thymoma. Clin

Nucl Med. 1999;24(1):24-28.

Loehrer PJ Sr, Wang W, Johnson DH, et al; Eastern Cooperative Oncology Group

Phase II Trial. Octreotide alone or with prednisone in patients with advanced

thymoma and thymic carcinoma: An Eastern Cooperative Oncology Group Phase II

Trial. J Clin Oncol. 2004;22(2):293-299.

Ozkan E, Tokmak E, Kucuk NO. Efficacy of adding high-dose In-111 octreotide

therapy during Sandostatin treatment in patients with disseminated neuroendocrine

tumors: Clinical results of 14 patients. Ann Nucl Med. 2011;25(6):425-431.

Gubens MA. Treatment updates in advanced thymoma and thymic carcinoma. Curr

Treat Options Oncol. 2012;13(4):527-534.

National Comprehensive Cancer Network. Clinical Practice Guideline in Oncology.

Thymomas and thymic carcinomas. Version 2.2013. NCCN: Fort Washington, PA.

Moran M, Paul A. Octreotide scanning in the detection of a mesenchymal tumour in

the pubic symphysis causing hypophosphataemic osteomalacia. Int Orthop.

2002;26(1):61-62.

Takahashi M, Toru S, Ota K, et al. Detection of the primary tumor site in tumor-

induced osteomalacia by indium-111 octreotide scintigraphy: A case report. Rinsho

Shinkeigaku. 2008;48(2):120-124.

Page 46: Clinical Policy Bulletin: Tumor Scintigraphy...Tumor Scintigraphy Page 1 of 51 ... cancer that is thought to be clinically localized after standard diagnostic evaluation, but who have

Tumor Scintigraphy Page 46 of 51

http://qawww.aetna.com/cpb/medical/data/100_199/0168_draft.html 03/25/2015

42.

43.

44.

45.

46.

47.

Seijas R, Ares O, Sierra J, Perez-Dominguez M. Oncogenic osteomalacia: Two

case reports with surprisingly different outcomes. Arch Orthop Trauma Surg.

2009;129(4):533-539.

Hu FK, Yuan F, Jiang CY, et al. Tumor-induced osteomalacia with elevated

fibroblast growth factor 23: A case of phosphaturic mesenchymal tumor mixed with

connective tissue variants and review of the literature. Chin J Cancer. 2011;30

(11):794-804.

Jiang Y, Xia WB, Xing XP, et al. Tumor-induced osteomalacia: An important cause

of adult-onset hypophosphatemic osteomalacia in China: Report of 39 cases and

review of the literature. J Bone Miner Res. 2012;27(9):1967-1975.

Sanchez A, Castiglioni A, Coccaro N, et al. Ostemalacia due to a tumor secreting

FGF-23. Medicina (B Aires). 2013;73(1):43-46.

Jing H, Li F, Zhuang H, et al. Effective detection of the tumors causing

osteomalacia using [Tc-99m]-HYNIC-octreotide (99mTc-HYNIC-TOC) whole body

scan. Eur J Radiol. 2013;82(11):2028-2034.

Scheinman SJ, Drezner MK. Hereditary hypophosphatemic rickets and tumor-

induced osteomalacia. UpToDate [online serial]. Waltham, MA:

UpToDate; reviewed November 2013.

48. Genestreti G, Bongiovanni A, Burgio MA, et al. 111In-Pentetreotide (OctreoScan)

scintigraphy in the staging of small-cell lung cancer: Its accuracy and prognostic

significance. Nucl Med Commun. 2015;36(2):135-142.

Lymphoscintigraphy

1. Stephens PL, Ariyan S, Ocampo RV, et al. The predictive value of

lymphoscintigraphy for nodal metastases of cutaneous melanoma. Conn Med.

1999;63(7):387-390.

2. Berman CG, Goscin C, Kim JJ, et al. Lymphoscintigraphy in malignant melanoma

and breast cancer. Surg Oncol Clin N Am. 1999;8(3):401-412, vii.

3. Burak WE Jr, Walker MJ, Yee LD, et al. Routine preoperative lymphoscintigraphy is

not necessary prior to sentinel node biopsy for breast cancer. Am J Surg. 1999;177

(6):445-449.

4. Koops HS, Doting MH, de Vries J, et al. Sentinel node biopsy as a surgical staging

method for solid cancers. Radiother Oncol. 1999;51(1):1-7.

5. Lenisa L, Santinami M, Belli F, et al. Sentinel node biopsy and selective lymph

node dissection in cutaneous melanoma patients. J Exp Clin Cancer Res. 1999;18

(1):69-74.

6. Mays SR, Nelson BR. Current therapy of cutaneous melanoma. Cutis. 1999;63

(5):293-298.

Page 47: Clinical Policy Bulletin: Tumor Scintigraphy...Tumor Scintigraphy Page 1 of 51 ... cancer that is thought to be clinically localized after standard diagnostic evaluation, but who have

Tumor Scintigraphy Page 47 of 51

http://qawww.aetna.com/cpb/medical/data/100_199/0168_draft.html 03/25/2015

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

O'Doherty M, Nunan TO. Sentinel node lymphoscintigraphy in malignant

melanoma. Nucl Med Commun. 1999;20(4):305-306.

Ell PJ, Keshtgar MR. The sentinel node and lymphoscintigraphy in breast cancer.

Nucl Med Commun. 1999;20(4):303-305.

Nieweg OE, Jansen L, Valdes Olmos RA, et al. Lymphatic mapping and sentinel

lymph node biopsy in breast cancer. Eur J Nucl Med. 1999;26(4 Suppl):S11-S16.

Yudd AP, Kempf JS, Goydos JS, et al. Use of sentinel node lymphoscintigraphy in

malignant melanoma. Radiographics. 1999;19(2):343-356.

Kelley MC, Ollila DW, Morton DL. Lymphatic mapping and sentinel

lymphadenectomy for melanoma. Semin Surg Oncol. 1998;14(4):283-290.

Borgstein PJ, Pijpers R, Comans EF, et al. Sentinel lymph node biopsy in breast

cancer: Guidelines and pitfalls of lymphoscintigraphy and gamma probe detection.

J Am Coll Surg. 1998;186(3):275-283.

Essner R. The role of lymphoscintigraphy and sentinel node mapping in assessing

patient risk in melanoma. Semin Oncol. 1997;24(1 Suppl 4):S8-S10.

Kapteijn BA, Nieweg OE, Valdes Olmos RA, et al. Reproducibility of

lymphoscintigraphy for lymphatic mapping in cutaneous melanoma. J Nucl Med.

1996;37(6):972-975.

Mudun A, Murray DR, Herda SC, et al. Early stage melanoma:

Lymphoscintigraphy, reproducibility of sentinel node detection, and effectiveness of

the intraoperative gamma probe. Radiology. 1996;199(1):171-175.

Newman J. Recent advances in breast cancer imaging. Radiol Technol. 1999;71

(1):35-57.

Linehan DC, Hill AD, Akhurst T, et al. Intradermal radiocolloid and

intraparenchymal blue dye injection optimize sentinel node identification in breast

cancer patients. Ann Surg Oncol. 1999;6(5):450-454.

Krag D, Weaver D, Ashikaga T, et al. The sentinel node in breast cancer - a

multicenter validation study. N Engl J Med. 1998;339(14):941-946.

Giuliano A, Jones RC, Brennan M, Statman R. Sentinel lymphadenectomy in

breast cancer. J Clin Oncol. 1997;15(6):2345-2450.

Veronesi U, Paganelli G, Galimberti V, et al. Sentinel node biopsy to avoid axillary

dissection in breast cancer with clinically negative lymph nodes. Lancet. 1997;349

(9069):1864-1867.

Veronesi U, Paganelli G, Viale G, et al. Sentinel lymph node biopsy and axillary

dissection in breast cancer: Results in a large series. JNCI. 1999;91(4):368-373.

Swedish Council on Technology Assessment in Health Care (SBU). Lymphatic

mapping and sentinel node biopsy in breast cancer - early assessment briefs

(ALERT). Stockholm, Sweden: SBU; 2000.

Uren RF, Thompson JF, Howman-Giles R. Sentinel lymph node biopsy in patients

with melanoma and breast cancer. Intern Med J. 2001;31(9):547-553.

Mariani G, Gipponi M, Moresco L, et al. Radioguided sentinel lymph node biopsy in

malignant cutaneous melanoma. J Nucl Med. 2002;43(6):811-827.

Lang PG. Current concepts in the management of patients with melanoma. Am J

Clin Dermatol. 2002;3(6):401-426.

Institute for Clinical Systems Improvement (ICSI). Lymphatic mapping with sentinel

lymph node biopsy for breast cancer. Technology Assessment Report.

Bloomington, MN: ICSI; 2002.

Xing Y, Foy M, Cox DD, et al. Meta-analysis of sentinel lymph node biopsy after

preoperative chemotherapy in patients with breast cancer. Br J Surg. 2006;93

(5):539-546.

Page 48: Clinical Policy Bulletin: Tumor Scintigraphy...Tumor Scintigraphy Page 1 of 51 ... cancer that is thought to be clinically localized after standard diagnostic evaluation, but who have

Tumor Scintigraphy Page 48 of 51

http://qawww.aetna.com/cpb/medical/data/100_199/0168_draft.html 03/25/2015

28.

29.

30.

Kim T, Giuliano AE, Lyman GH. Lymphatic mapping and sentinel lymph node

biopsy in early-stage breast carcinoma: A metaanalysis. Cancer. 2006;106(1):4-16.

Medical Services Advisory Committee (MSAC). Sentinel lymph node biopsy in

breast cancer. MSAC Application 1065. Canberra, ACT; MSAC; 2006.

Gosselin C. La biopsie des ganglions sentinelles dans le cadre du traitement du

cancer du sein: Aspects techniques. [Sentinel lymph node biopsy in breast cancer

management: Technical aspects]. Summary. Montreal, QC: Agence d'Evaluation

des Technologies et des Modes d'Intervention en Sante (AETMIS); 2009;5(10).

Meta-Iodobenzylguanidine (MIBG) Imaging

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

Gaze MN, Wheldon TE. Radiolabelled MIBG in the treatment of neuroblastoma.

Eur J Cancer. 1996;32:93-96.

Troncone L. 131I-MIBG therapy of neural crest tumours (review). Anticancer Res.

1997;17(3B):1823-1831.

Mastrangelo R, Tornesello A, Mastrangelo S. Role of 131I-

metaiodobenzylguanidine in the treatment of neuroblastoma. Med Pediatr Oncol.

1998;31(1):22-26.

Tepmongkol S, Heyman S. 131I MIBG therapy in neuroblastoma: Mechanisms,

rationale, and current status. Med Pediatr Oncol. 1999;32:427-431.

Zeutenhorst H. Long-term palliation in metastatic carcinoid tumours with various

applications of meta-iodobenzylguanidin (MIBG): Pharmacological MIBG, 131I-

labelled MIBG and the combination. Eur J Gastroenterol Hepatol. 1999;11

(10):1157-1164.

Castellani MR. Role of 131I-metaiodobenzylguanidine (MIBG) in the treatment of

neuroendocrine tumours. Experience of the National Cancer Institute of Milan. Q J

Nucl Med. 2000;44(1):77-87.

Hattori N, Schwaiger M. Metaiodobenzylguanidine scintigraphy of the heart: What

have we learnt clinically? Eur J Nucl Med. 2000;27(1):1-6.

Bajetta E, Procopio G, Buzzoni R, et al. Advances in diagnosis and therapy of

neuroendocrine tumors. Expert Rev Anticancer Ther. 2001;1(3):371-381.

Manger WM, Gifford RW. Pheochromocytoma. J Clin Hypertens (Greenwich).

2002;4(1):62-72.

Sisson JC. Radiopharmaceutical treatment of pheochromocytomas. Ann N Y Acad

Sci. 2002;970:54-60.

Patel AD, Iskandrian AE. MIBG imaging. J Nucl Cardiol. 2002;9(1):75-94.

Udelson JE, Shafer CD, Carrio I. Radionuclide imaging in heart failure: Assessing

etiology and outcomes and implications for management. J Nucl Cardiol. 2002;9(5

Suppl):40S-52S.

Yamada T, Shimonagata T, Fukunami M, et al. Comparison of the prognostic value

of cardiac iodine-123 metaiodobenzylguanidine imaging and heart rate variability in

patients with chronic heart failure: A prospective study. J Am Coll Cardiol. 2003;41

(2):231-238.

Biffi M, Fallani F, Boriani G, et al. Abnormal cardiac innervation in patients with

idiopathic ventricular fibrillation. Pacing Clin Electrophysiol. 2003;26(1 Pt 2):357-

360.

Sipola P, Vanninen E, Aronen HJ, et al. Cardiac adrenergic activity is associated

with left ventricular hypertrophy in genetically homogeneous subjects with

hypertrophic cardiomyopathy. J Nucl Med. 2003;44(4):487-493.

Page 49: Clinical Policy Bulletin: Tumor Scintigraphy...Tumor Scintigraphy Page 1 of 51 ... cancer that is thought to be clinically localized after standard diagnostic evaluation, but who have

Tumor Scintigraphy Page 49 of 51

http://qawww.aetna.com/cpb/medical/data/100_199/0168_draft.html 03/25/2015

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

Boubaker A, Bischof Delaloye A. Nuclear medicine procedures and neuroblastoma

in childhood. Their value in the diagnosis, staging and assessment of response to

therapy. Q J Nucl Med. 2003;47(1):31-40.

Pacak K, Eisenhofer G, Ilias I. Diagnostic imaging of pheochromocytoma. Front

Horm Res. 2004;31:107-120.

National Cancer Institute (NCI). PDQ Cancer Information Summaries: Adult

Treatment. Bethesda, MD: NCI; 2004. Available at:

http://www.cancer.gov/cancer_information/list.aspx?viewid=5f35036e-5497-4d86-

8c2c-714a9f7c8d25. Accessed February 5, 2004.

Lau J, Balk E, Rothberg M, et al. Management of clinically inapparent adrenal

mass. Evidence Report/Technology Assessment 56. Rockville, MD: Agency for

Healthcare Research and Quality (AHRQ); 2002.

Sweeney AT, Blake MA. Pheochromocytoma. eMedicine Medicine Topic 1816.

Omaha, NE: eMedicine.com; updated January 14, 2002. Available at:

http://www.emedicine.com/med/topic1816.htm. Accessed May 26, 2004.

National Comprehensive Cancer Network (NCCN). Neuroendocrine tumors.

Version 1.2003. Clinical Practice Guidelines in Oncology - v.1.2003. Jenkintown,

PA:NCCN; 2003. Available at: http://www.nccn.org. Accessed May 26, 2004.

National Cancer Institute (NCI). Pheochromocytoma (PDQ): Treatment. Information

for Health Professionals. Bethesda, MD:NCI; updated December 18, 2003.

Available at: http://www.nci.nih.gov/cancerinfo/pdq/treatment/. Accessed May 26,

2004.

Suchowersky O, Reich S, Perlmutter J, et al; Quality Standards Subcommittee of

the American Academy of Neurology. Practice Parameter: Diagnosis and

prognosis of new onset Parkinson disease (an evidence-based review): Report of

the Quality Standards Subcommittee of the American Academy of Neurology.

Neurology. 2006;66(7):968-975.

Tamaki S, Yamada T, Okuyama Y, et al. Cardiac iodine-123

metaiodobenzylguanidine imaging predicts sudden cardiac death independently of

left ventricular ejection fraction in patients with chronic heart failure and left

ventricular systolic dysfunction: Results from a comparative study with signal-

averaged electrocardiogram, heart rate variability, and QT dispersion. J Am Coll

Cardiol. 2009;53(5):426-435.

Quach A, Ji L, Mishra V, Sznewajs A, et al. Thyroid and hepatic function after high-

dose (131) I-metaiodobenzylguanidine ((131) I-MIBG) therapy for neuroblastoma.

Pediatr Blood Cancer. 2011;56(2):191-201.

AndreView

1. U.S. Food and Drug Administration (FDA), Center for Drug Evaluation and

Research (CDER). FDA approves Iobenguane I 123 for the detection of primary or

metastatic pheochromocytoma or neuroblastoma. Rockville, MD: FDA; September

30, 2008. Available at:

http://www.fda.gov/cder/Offices/OODP/whatsnew/iobenguane_I_123.htm.

Accessed November 10, 2008.

2. GE Healthcare. AndreView (iobenguane I 123 injection) for intravenous use.

Prescribing Information. Arlington Heights, IL: GE Healthcare; revised September

2008. Available at: http://www.fda.gov/cder/foi/label/2008/22290lbl.pdf. Accessed

November 10, 2008.

Technetium-Tc 99m Tilmanocept:

Page 50: Clinical Policy Bulletin: Tumor Scintigraphy...Tumor Scintigraphy Page 1 of 51 ... cancer that is thought to be clinically localized after standard diagnostic evaluation, but who have

Tumor Scintigraphy Page 50 of 51

http://qawww.aetna.com/cpb/medical/data/100_199/0168_draft.html 03/25/2015

1. Leong SP, Kim J, Ross M, et al. A phase 2 study of (99m)Tc-tilmanocept in the

detection of sentinel lymph nodes in melanoma and breast cancer. Ann Surg

Oncol. 2011;18(4):961-969.

2. Tokin CA, Cope FO, Metz WL, et al. The efficacy of Tilmanocept in sentinel lymph

mode mapping and identification in breast cancer patients: A comparative review

and meta-analysis of the ⠹⠹mTc-labeled nanocolloid human serum albumin

standard of care. Clin Exp Metastasis. 2012;29(7):681-686.

3. Sondak VK, King DW, Zager JS, et al. Combined analysis of phase III trials

evaluating [⠹⠹mTc]tilmanocept and vital blue dye for identification of sentinel

lymph nodes in clinically node-negative cutaneous melanoma. Ann Surg Oncol.

2013;20(2):680-688.

4. Wallace AM, Han LK, Povoski SP, et al. Comparative evaluation of [(99m)tc]

tilmanocept for sentinel lymph node mapping in breast cancer patients: Results of

two phase 3 trials. Ann Surg Oncol. 2013;20(8):2590-2599.

5. U.S. Food and Drug Administration (FDA). FDA approves Lymphoseek to help

locate lymph nodes in patients with certain cancers. FDA News Release. Silver

Spring, MD: FDA; March 13, 2013. Available at:

http://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm343525.htm.

Accessed December 11, 2013.

6. Marcinow AM, Hall N, Byrum E, et al. Use of a novel receptor-targeted (CD206)

radiotracer, 99mTc-tilmanocept, and SPECT/CT for sentinel lymph node detection

in oral cavity squamous cell carcinoma: Initial institutional report in an ongoing

phase 3 study. JAMA Otolaryngol Head Neck Surg. 2013;139(9):895-902.

7. Tausch C, Baege A, Rageth C. Mapping lymph nodes in cancer management - role

of (99m)Tc-tilmanocept injection. Onco Targets Ther. 2014;7:1151-1158. Copyright Aetna Inc. All rights reserved. Clinical Policy Bulletins are developed by Aetna to assist in administering plan

benefits and constitute neither offers of coverage nor medical advice. This Clinical Policy Bulletin contains only a partial,

general description of plan or program benefits and does not constitute a contract. Aetna does not provide health care

services and, therefore, cannot guarantee any results or outcomes. Participating providers are independent contractors in

private practice and are neither employees nor agents of Aetna or its affiliates. Treating providers are solely responsible for

medical advice and treatment of members. This Clinical Policy Bulletin may be updated and therefore is subject to change.

CPT only copyright 2008 American Medical Association. All Rights Reserved.