30
André Lucena, Bruno Borba, Roberto Schaeffer, Alexandre Szklo, Pedro Rochedo, Rafael Kelman, Pedro Ávila, Bernardo Bezerra Climate change impacts on hydropower genera4on in Brazil

Climate(change(impacts(on( hydropower(generaon in( Brazil · 2015. 12. 14. · LAMP&Climate&Policy&Scenarios& Electricity&Generaon& 0 200 400 600 800 1000 1200 1400 1600 1800 2000

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

  • André  Lucena,  Bruno  Borba,  Roberto  Schaeffer,  Alexandre  Szklo,  Pedro  Rochedo,  Rafael  Kelman,  Pedro  Ávila,  Bernardo  Bezerra  

    Climate  change  impacts  on  hydropower  genera4on  in  Brazil  

  • IntroducAon  –  Brazilian  Energy  System  •  The  Brazilian  energy  system  is  highly  dependent  on  

    renewable  energy,  especially  hydropower  •  Renewables  accounted  for  around  40%  of  primary  energy  

    supply  in  2014  –  Hydropower  was  80%  of  all  electricity  producAon  in  the  country  in  

    average  over  the  last  ten  years  –  15%  of  fuel  consumpAon  in  the  transportaAon  sector  was  ethanol  in  

    2014  –  Wind  energy  is  sAll  low,  but  has  increased  sharply  over  the  last  few  

    years  (currently  4.8%  of  total  installed  capacity)  

    How  is  that  impacted  by  future  climate  change?  

  • Hydrological  Seasonality  in  Brazil    (Historical  data  1931  –  2009)  

    Source:  Silva  (2012)  

  • NaAonal  Interconnected  System  (SIN)  

    h[p://www.ons.org.br/  

  • Previous  Studies  on  Climate  Change  Impacts-‐AdaptaAon  

  • What’s  new?  •  Project  hired  by  Secretaria  de  Assuntos  Estratégicos  da  Presidência  da  República  –  Colabora4on  COPPE-‐PSR  –  New  scenarios  –  RCPs  8.5  and  4.5  

    •  MiAgaAon  vs.  AdaptaAon  –  New  GCMs  (HadGEM  and  MIROC)  –  StochasAc  dispatch  modeling  

    •  Research  quesAons:  – What  are  the  impacts  of  climate  change  on  the  Brazilian  Interconnected  System?  

    – What  would  be  the  best  alternaAves  to  compensate  hydropower  loss?  •  What  is  the  best  way  to  adapt:  operaAon  vs.  expansion?  

    –  To  what  extent  miAgaAon  policies  may  affect  these  best  alternaAves?  

  • Methodology  and  Results  

  • Climate  Change  Data  •  RCPs  –  4.5  –  8.5  

    •  GCMs  – HadGEM  – MIROC  

    •  Dowscaling  –  ETA:    INPE  (Chou  et  al.,  2014)  

    •  Hydrological  Model  –  SMAP  (water  balance  model):  University  of  Ceará  (MarAns  et  at.,  2014)  

  • Projected  Riverflow  Brazilian  River  Basins  

  • Projected  Riverflow  Brazilian  River  Basins  –  Paraná    

  • Projected  Riverflow  Natural  inflow  to  Itaipu  hydropower  plant  –  RCP  8.5            HadGEM                MIROC  

  • Projected  Riverflow  Brazilian  River  Basins  –  TocanAns  Araguaia  

  • Projected  Riverflow  Natural  inflow  to  Tucuruí  hydropower  plant  –  RCP  8.5            HadGEM                MIROC  

     

  • Projected  Riverflow  Brazilian  River  Basins  –  São  Francisco  

  • Projected  Riverflow  Natural  inflow  to  Sobradinho  hydropower  plant  –  RCP  8.5            HadGEM                MIROC  

     

  • Energy  Modeling  Approach  

    Scenario  Premisses  (RCP  4.5  and  8.5)  

    OperaAon  Model  SDDP  (PSR)  

    Expansion  Model  MESSAGE-‐Brazil  

    (COPPE)  

    Opera4on/  Expansion  

    OperaAon  Impacts/  adaptaAon  

    AdaptaAon  through  expansion  

    Opera4on/Expansion  

    GCM  –  Dow

    scaling  –  Hy

    drology  Mod

    el  

    195  riv

    erflo

    w  se

    ries  

    • Hydro  generaAon  scenarios  • Marginal  cost  of  operaAon  • Deficit  probability  

    • Capacity  expansion  • Investment  costs  • Second  order  effects  

  • Energy  Modeling  Approach  

    Scenario  Premisses  (RCP  4.5  and  8.5)  

    OperaAon  Model  SDDP  (PSR)  

    Expansion  Model  MESSAGE-‐Brazil  

    (COPPE)  

    Opera4on/  Expansion  

    OperaAon  Impacts/  adaptaAon  

    AdaptaAon  through  expansion  

    GCM  –  Dow

    scaling  –  Hy

    drology  Mod

    el  

    195  riv

    erflo

    w  se

    ries  

    • Hydro  generaAon  scenarios  • Marginal  cost  of  operaAon  • Deficit  probability  

    • Capacity  expansion  • Investment  costs  • Second  order  effects  

    Opera4on/Expansion  

  • Baseline  Scenarios  

    Baseline  scenarios:  RCP  comparison  –  Electricity  

    0.0  

    20.0  

    40.0  

    60.0  

    80.0  

    100.0  

    120.0  

    140.0  

    160.0  

    Base  4.5  

    Base  8.5  

    Base  4.5  

    Base  8.5  

    Base  4.5  

    Base  8.5  

    Base  4.5  

    Base  8.5  

    Base  4.5  

    Base  8.5  

    Base  4.5  

    Base  8.5  

    Base  4.5  

    Base  8.5  

    2010   2015   2020   2025   2030   2035   2040  

    GW  year  

    Hydro   Coal   Gas   Oil   Nuclear   Biomass   Wind   Solar  

    Premisses:    RCP  8.5  • BAU  expansion  –  no  explicit  miAgaAon  assumed  

    RCP  4.5  • Energy  efficiency  • Lower  fossil  expansion  • 100$/tCO2  Carbon  tax  aoer  2030  (ETP,  2015)  

  • Energy  Modeling  Approach  

    Scenario  Premisses  (RCP  4.5  and  8.5)  

    OperaAon  Model  SDDP  (PSR)  

    Expansion  Model  MESSAGE-‐Brazil  

    (COPPE)  

    Opera4on/  Expansion  

    OperaAon  Impacts/  adaptaAon  

    AdaptaAon  through  expansion  

    GCM  –  Dow

    scaling  –  Hy

    drology  Mod

    el  

    195  riv

    erflo

    w  se

    ries  

    • Hydro  generaAon  scenarios  • Marginal  cost  of  operaAon  • Deficit  probability  

    • Capacity  expansion  • Investment  costs  • Second  order  effects  

    Opera4on/Expansion  

  • Results  OperaAon:  Risk  of  shortage  

    HadGEM   MIROC  

    RCP  8.5  

    RCP  4.5  

  • Results  –  OperaAon  Costs  

    0  

    200  

    400  

    600  

    800  

    1000  

    1200  

    1400  

    Base   HadGEM   MIROC  

    Billion

     USD

     

    RCP  8.5  

    Base   HadGEM   MIROC  

    RCP  4.5  

  • Energy  Modeling  Approach  

    Scenario  Premisses  (RCP  4.5  and  8.5)  

    OperaAon  Model  SDDP  (PSR)  

    Expansion  Model  MESSAGE-‐Brazil  

    (COPPE)  

    Opera4on/  Expansion  

    OperaAon  Impacts/  adaptaAon  

    AdaptaAon  through  expansion  

    GCM  –  Dow

    scaling  –  Hy

    drology  Mod

    el  

    195  riv

    erflo

    w  se

    ries  

    • Hydro  generaAon  scenarios  • Marginal  cost  of  operaAon  • Deficit  probability  

    • Capacity  expansion  • Investment  costs  • Second  order  effects  

    Opera4on/Expansion  

  • Results  –  AdaptaAon    RCP  8.5  

    0.0

    20.0

    40.0

    60.0

    80.0

    100.0

    120.0

    140.0

    160.0

    Base

    HadGEM

    MIROC

    Base

    HadGEM

    MIROC

    Base

    HadGEM

    MIROC

    Base

    HadGEM

    MIROC

    Base

    HadGEM

    MIROC

    Base

    HadGEM

    MIROC

    Base

    HadGEM

    MIROC

    2010 2015 2020 2025 2030 2035 2040

    GW  m

    ed

    Hidro Carvão Gás Óleo  Combustível Diesel Nuclear Biomassa Eólica Solar

  • Results  –  AdaptaAon    RCP  4.5  

    0.0

    20.0

    40.0

    60.0

    80.0

    100.0

    120.0

    140.0

    Base

    HadGEM

    MIROC

    Base

    HadGEM

    MIROC

    Base

    HadGEM

    MIROC

    Base

    HadGEM

    MIROC

    Base

    HadGEM

    MIROC

    Base

    HadGEM

    MIROC

    Base

    HadGEM

    MIROC

    2010 2015 2020 2025 2030 2035 2040

    GW  m

    ed

    Hidro Carvão Gás Óleo  Combustível Diesel Nuclear Biomassa Eólica Solar

  • Results  –  AdaptaAon  Costs  

    •  Accumulated  invesAment  costs  up  to  2040:  – HadGEM  •  RCP  4.5:  USD  79  billion  •  RCP  8.5:  USD  280  billion  

    – MIROC  •  RCP  4.5:  USD  3  billion  •  RCP  8.5:  USD  158  billion  

  • Discussion  

    •  Detailed  dispatch  modeling  requires  detailed  hydrological  modeling  

    •  OperaAonal  impacts  can  be  severe  and  costly  if  there  is  no  adaptaAon  through  system  expansion  

    •  MiAgaAon  policies  do  impact  opAmal  adaptaAon  strategies  –  AdapAng  to  a  reduced  hydropower  availability  may  further  increase  Brazil’s  emissions  if  no  other  acAons  are  taken  

    –  AdaptaAon  can  be  achieved  by  fossil  fuels  or  by  a  combinaAon  of  energy  efficiency,  renewable  energy,  etc.  

  • LAMP  Climate  Policy  Scenarios  Electricity  GeneraAon  

    0

    200

    400

    600

    800

    1000

    1200

    1400

    1600

    1800

    2000

    EPPA

    GCAM

    MESSA

    GE-‐Brazil

    POLES

    Phoe

    nix

    TIAM

    -‐ECN

    EPPA

    GCAM

    MESSA

    GE-‐Brazil

    POLES

    Phoe

    nix

    TIAM

    -‐ECN

    EPPA

    GCAM

    MESSA

    GE-‐Brazil

    POLES

    Phoe

    nix

    TIAM

    -‐ECN

    EPPA

    GCAM

    MESSA

    GE-‐Brazil

    POLES

    Phoe

    nix

    TIAM

    -‐ECN

    EPPA

    GCAM

    MESSA

    GE-‐Brazil

    POLES

    Phoe

    nix

    TIAM

    -‐ECN

    Core  baseline $10  CO2  price $50  CO2  price 20%  abatement  (FF&I) 50%  abatement  (FF&I)

    TWh/year2030

    Hydro Oil Coal Coal  w/CCS Gas Gas  w/CCS Nuclear Biomass Biomass  w/CCS Solar Wind Other

    0

    200

    400

    600

    800

    1000

    1200

    1400

    1600

    1800

    2000

    EPPA

    GCAM

    MESSA

    GE-‐Brazil

    POLES

    Phoe

    nix

    TIAM

    -‐ECN

    EPPA

    GCAM

    MESSA

    GE-‐Brazil

    POLES

    Phoe

    nix

    TIAM

    -‐ECN

    EPPA

    GCAM

    MESSA

    GE-‐Brazil

    POLES

    Phoe

    nix

    TIAM

    -‐ECN

    EPPA

    GCAM

    MESSA

    GE-‐Brazil

    POLES

    Phoe

    nix

    TIAM

    -‐ECN

    EPPA

    GCAM

    MESSA

    GE-‐Brazil

    POLES

    Phoe

    nix

    TIAM

    -‐ECN

    Core  baseline $10  CO2  price $50  CO2  price 20%  abatement  (FF&I) 50%  abatement  (FF&I)

    TWh/year

    2050

    Hydro Oil Coal Coal  w/CCS Gas Gas  w/CCS Nuclear Biomass Biomass  w/CCS Solar Wind Other

  • Next  Steps  

    •  Second  stage  of  LAMP  –  impacts/adaptaAon  – To  what  extent  a  more  detailed  dispatch  analysis  is  relevant  for  adaptaAon-‐miAgaAon  assessment?  

    – What  are  the  uncertainAes  related  to  the  miAgaAon-‐adaptaAon  interacAons?  • What  is  the  role  of  Brazil  in  a  given  climate  goal?  •  How  will  adaptaAon  take  place  in  such  circumstances?  

    •  JGCRI  –  impact  analysis  •  Several  IAMs  looking  at  miAgaAon-‐adaptaAon  – GCAM,  TIAM-‐ECN,  IMAGE,  EPPA,  MESSAGE-‐Brazil  

  •    

    Thank  you  [email protected]