7
JOB PERTAMINA - TALISMAN JAMBI MERANG DIESEL GENERATOR FOUNDATION DESIGN CALCULATION Table 2.2 Material Unit Weight Material Unit Weight Reinforced Concrete y", 23.5 kN/m' Steel y. = 76.9 kN/m' Soil y ", = 16.5 kN/m' Water yw 10.0 kN/m' Sand Gravel y, 17.7 kN/m' 2.4 PILE ALLOWABLE CAPACITY Refer to Attachment A for the Pile capadty calculation Study extracted from Final Report of PC! 5011 Investigation for North Geragai Facility Project, Jambi, Sumatera. 91400 mm PC Spun Pile with 36 m penetration had been used to the design with following capacity: Table 2.3 Pile Allowable Capacity Condition of Loading Qcomp (kN) SF = 3.0 Group Efficiency Permanent 725 1.0 Temporary 966 1.0 3 FOUNDATION DESIGN 3.1 DESIGN CRITERIA Where the centre of mass of the machine is not known, its eccentricity from the centerline of the foundation is assumed to be zero, and that it would not have Significant impact on the foundation size and hence cost. Top of foundation assumed to be 150 mm above the Finish Grade Level (FGL) which Is higher than top of surface gravel. The foundation structure Is checkec by : 1. Pile aXial capadty 2. Settlement (fi,,!,+ fW -\-l"iS (A,1c.,,(p,-ho vt U. - ./Or - Factore oa I rnation Is usee for designing reinforced concrete slab. Unfactored loading oomblnation is used for checking the pile capacity and punching shear of the foundation. 3.2 DESIGN LOADS 3.2.1 DEAD LOAD (D) Dead loads are the self weight of structure of foundation. Unit weights of the major oonstructlon materials as seen on Table 1.2 Material Unit Weight. Page 60f9

Client Comment Response -DG Foundation

  • Upload
    annelz

  • View
    88

  • Download
    1

Embed Size (px)

Citation preview

Page 1: Client Comment Response -DG Foundation

JOB PERTAMINA - TALISMAN JAMBI MERANG DIESEL GENERATOR FOUNDATION DESIGN CALCULATION

Table 22 Material Unit Weight

Material Unit Weight

Reinforced Concrete y ~ 235 kNm Steel y = 769 kNm Soil y = 165 kNm Water yw ~ 100 kNm Sand Gravel y ~ 177 kNm

24 PILE ALLOWABLE CAPACITY

Refer to Attachment A for the Pile capadty calculation Study extracted from Final Report of PC 5011 Investigation for North Geragai Facility Project Jambi Sumatera 91400 mm PC Spun Pile with 36 m penetration had been used to the design with following capacity

Table 23 Pile Allowable Capacity

Condition of Loading Qcomp (kN)

SF =30 Group

Efficiency

Permanent 725 10

Temporary 966 10

3 FOUNDATION DESIGN 31 DESIGN CRITERIA

Where the centre of mass of the machine is not known its eccentricity from the centerline of the foundation is assumed to be zero and that it would not have Significant impact on the foundation size and hence cost

Top of foundation assumed to be 150 mm above the Finish Grade Level (FGL) which Is higher than top of surface gravel

The foundation structure Is checkec by

1 Pile aXial capadty

2 Settlement (fi+ fW --liS (A1c(p-ho vt U - ~o+ ~ficchk Or f~ - Factore oa I rnation Is usee for designing reinforced concrete slab

Unfactored loading oomblnation is used for checking the pile capacity and punching shear of the foundation

32 DESIGN LOADS

321 DEAD LOAD (D) Dead loads are the self weight of structure of foundation Unit weights of the major oonstructlon materials as seen on Table 12 Material Unit Weight

Page 60f9

JOB PERTAMINA - TALISMAN JAMBI MERANG DIESEL GENERATOR FOUNDATION DESIGN CALCULATION

322 EQUIPMENT LOAD (E) The equipment load is the weight of the equipment refers to Doc No GD-M-Ll-002 Equipment Ust The equipment loads are classified as empty [E(E)] and operating [E(O)] condition

323 EARTHQUAKE LOAD (EQ) The equipment foundation has been designed for earthquake forces in accordance with USC 1997 with following conditions

- Seismic zone = 2A - Seismic Acceleration =015 G - Soil specification =Soft soil Base Shear (Vs)

Design base snear shall be calculated by using this following equation

V = CxI xw RxT ~ I

The design base shear need not exceed following

V =25 X CQ x I x w =0426 x W sma R ~ I

Also shall be not less than the following formula

V mm = Ol1x CQ xIxIw = 0041 x LW

where W = Weight of equipment andor structure (kN)

I = Importance factor = 125 Cv =Seismic coeffident = 05 C = Seismic coeffident = 03

R = Numerical coeffident = 22 hn = Total height of equipment = 16 m T = Fundamental Period = 00488 (hn) 3 = 0069 s

C xl Design Sase shear V = --x ~wRxT

V= 05x125 xIw 22 x 0069 I

V = 4117 X LW kN gt Vsmax

Therefore we use Vsmax as the design base shear V = 0426 X W kN

For unfactored load combination (Allowable Stress Design Method) the design base shear should be divided by 14 as per USC 1997

V = 0304 xW kN Whe-re ~~ ~~ Cv1 001 (- Jtshy~ ~JsFr The total weight of equipment and structures (W) I~ so we get 0V-(W0 ltl

V = 11902 kN

J--b]lt eq )L rhv~J U~[M ~ -iu bll tea ~ ~I ~I c-IV 19f~ cph)--931-- Ii 1rpl~ o~ r-ll~~Ol f~ ~~4A L c-lIO -v Page 7 of 9

A~l 1 l-tJ

JOB PERTAMINA- TAUSMAN JAMBI MERANG DIESEL GENERATOR FOUNDATION DESIGN CALCULATION

324 WIND LOAD (W) The foundation will be designed for wind load with following criterion

Basic Wind Speed V = 28 ms Equipment Height H = 16 m

- Equipment Width B = 28 m - Velocity pressure exposure coefficient (Exposure C z=24 m) K = 062

- Topographic factor (flat area) K =100

- Wind directional factor K = 09 - Importance factor (category rrn I = 115 - Gust effect factor G = 085

Pressure coeffICient Cp = 135

Design wind load shall be calculated by using these following equations Velodty Pressure

q = 0613 K K K Vl Iw = 0308 kNm2

- Wind Pressure P =qGCp

= 0354 kNm2 - Wind Proected N

Ar = H B -------jgt I-L~ 3 ov - 448 m2 ~ ~ L

Wind Force

W = PA = 158 kN lt V =11902 kN Not governing

Therefore the wind load is not considered in the foundation design load combination

Page 8 of9

V ~ Calculation Sheet ~~- ~-

y~ Calc no GI-CL-C-004 File

Elec file location

Project till EPC Condensat Metertng Station At North Geragal Project Pro no

Client JOB PERTAMINA-TALISMAN JAMBI MERANG PhaseCTR

Calculation tille Diesel Generator Foundation Page 5 ot 8

Diesel Generator Foundation

D Pile Capacity Check Pile COmpression Capadty

0 0

Iy

0 0 1 1 Y

I I I Pile quantity (long di~n) nx = 2

PII quantity (short dirn) ny = 2

Total Nos of Pile n = 4

Pile location x = 100 m y = 110 m ~Pile spacing (long di~n) Ix = 420 m = 105 D

Pile spacing (short dl~n) Iy = 280 m = 7 D Pile EffiCiency Factor T) = 100

Modulus Shape of Pile SX = Lxi Xm where 1x = 1x12 x n x (n -1)

(x - axis) = S88 m = 882 m

Xmu = 15 m pz M PUmaxbull

Case No (kN) (kNm) (kN)

Case 1 47186 000 11796

Case 2 35400 093 8866

Case 3 47613 000 11903

lt)e4 35710 093 89~

r caseS 43710 CTOO 10928) ) Pu = pIn + MSx

Pile design load (axial) Pu = 23807 kN (multiplied by 20 forload safety factor)

Pile Allowable Capadty Poop = 72500 kN 36 m pile penetration

Pile Safety Factor SF = Pcapl Pu

= 305 gt 30 Hence pile OK

A~middotho~ [OtQ Q~Iho - 11 11

Calculation Sheet --shy

Calc no GD-CL-C-004

Elec file location

Project title

Cllant

EPC Condensate Metering StaUon At North Geragai Project

JOB PERTAMINA-TALISMAN JAMBI MERANG

Calculation title Diesel Generator FoundaUon

File

Proj no PhaseCTR

Page 6 of 8

Diesel Generator Foundation

E Pllecap Design

L Footing Flexural Reinforcement (Top amp Bottom)

Wu = 13332 kNm M max Pmax Pmln

fc

= 2365

= 66659

= 42467

= 2S00

= 40000

kNm (Max M from Sect C2~ kN (Max pz from Sect CrcbC-) lt

5000

Unit Breadth of Slab

Slab Found Depth

Bar Diameter

Effective Depth

Equivalent uniform load

Bending moment

Strength Reduction Factor

Coeffident of Resistance

Steel Ratio Reqd moment based

Concrete strength redct Factor

Steel Ratio (balanced Cond)

Steel Ratio (Max)

Steel Ratio (Min)

Steel Ratio (Shrinkage)

Steel Ratio (requined)

Steel area required

Spacing of Rebar

Reinforcement Provided

kN (Min Pz from Sect c ~ I~e - 9) J MPa

tv MPa

b = 1 m

h

d

dOl

= H 7 =

= D~ =

= h c 2 =

Wu = PmL =

Mu

1

= (WUXL)S~I1-~= ~ 090

Ru = Mu(llIbd) =

Preqd = O 8Sflt-~(I_ 1_ 2amp J f i O85flt-~

=

= 085

Pblnc ~ ~ 085 fc-pcfyfx600(600+fyf) = Pm = O7SX ~Ill( =

PmIn = Ii) l4fyf =

0600 m

19050 mm

0520 m

133317 kNm

~ kNm ~~~euro c)rQcgtI

~ yenC02

00303

00228

00035

kNm

govern I

(ii) rcmiddotpclI4 x fyf) = 00033

p

POY

= =

OOOlS

00035

Asrq d povem X b Xdb

s = 019130

~ pro = n X025 7t dlH

I so n

As provd

= 1822 mm

= 130 mm = 7

= 1988 mm

gt Asreqd okl

1)L

~ --shy -_ shy- -Calculation Sheet

Calc no GD-CL-c-()04 File

Elec file location

Project title EPC Ccndensate Metering Stetion At North Geraga Project Proj no Client JOB PERTAMINA-TALISMAN JAMBI MERANG PhaseCTR

Calculation title Diesel Generator Foundation Page 7 01

Diesel Generator Foundation 2 Punching Shear Check

Design compressive strength fc 2800 MPa

Foundation slab thickness h 600 mm

Concrete cover cv = 70 l Effective depth dblt = reg~~lte~l lV-Radius 01 punching shear = 02+ dbt2

= 4150 mm

Critical Shear Perimeter b = 2608 mm

Pile dimensional ratio ~ = 10

Strength Redn Factor (shear) ~ = 085

Re-bar vield strength I = 4000 MPa

Constant used to compute Vc a = 30 (assumed as edge column)

Provisional punching shear cap = $(l+2P)(f Jsbd6 209 kN

= ~(adb+2) (IJb~d12 242 kN

= $(13)(fl bd 140 kN

Umltfng punching shear cap = ~(16 (f)osbQd = 70 kN

Punching shear capacity

Design punching load

Utilization ratio

3 Tie Bar - Tie Bar Requirement Maximum Actual Shear Vu = 1697 kN (Max Px Irom Sect C2) Allowable Shear for Slab without 2xvfcmiddotxBxdbl

Vc = Reinforcement 12

= 157 kN

Strength Reduction Factor p = 075 ~ Nominal Shear Strength pVc = 11808 kN

05 pVc 5904 kN gt Vu = 1697 kN (OK I)

Hence shear reinforcement caJwlate based on shrinkage requirement only

- Shear Reinforcement Design

Shear reinforcement Spacing S = Zone 1 S gt 05 d Sgt 300 = 300 mm

Steel area requred Ad = 13 x((dbtx S)ffy) = 130 mm

Reinforcement Provided +10300 so n 2

~fN n x O2S1C dblr2

= 142 mm

~------------ Av gt oklegt 0- - Ad

fte)~cJgt~ gt~-tl ctv~-k~ ovshy

8

Calculation Sheet __ shy

~ -Calc no GD-CL-G-004 File Elec fila location Project tItle Client

EPC Condensate Melerlng Station At North Geragai Projact Proj no JOB PERTAMINA-TALISMAN JAMBI MERANG PhaseCTR

calculation UtI Diesel Generator Foundation Pa e 8 of 8

Diesel Generator Foundation

4 Reinforcement Bar Sketth Top Flexural Reinforcement

D19130

l~~------------------------------------------------~~--~

bull bull bull bull

)~Bottom Flexural einforcement

D19130

5 Maximum Crack WIdth On Tension Area Effective Tension Area

~ IJ

1 1~ ~ A0 l~i9-gt)tlJ ~~ bll

Is = ~ MPa ) de = 70 mm 2ds 140 mm j3 = 12 for beam

= 135 Ifor slab = 7 (Ref Sect E1)

2 ds

B 1000 mm

Maximum crack width on tension area based on Gergely-Lutz formula

w 111 x 10 x j3 xfsx 3 Vde x A where Ae = 2 ds x B

= 111 x10-6 x 135 x 240 x 30(70 x20000) 140000 mm 00402 mm A = AelN

= 20000 mm

Allowable crack width W = 04 for interIor exposure (Ref GL-SP-C-l001

033 for exterior exposure (Ref GL-SP-C-100)

Maximum crack width W 0040 mm lt 033 mm (OK)

Page 2: Client Comment Response -DG Foundation

JOB PERTAMINA - TALISMAN JAMBI MERANG DIESEL GENERATOR FOUNDATION DESIGN CALCULATION

322 EQUIPMENT LOAD (E) The equipment load is the weight of the equipment refers to Doc No GD-M-Ll-002 Equipment Ust The equipment loads are classified as empty [E(E)] and operating [E(O)] condition

323 EARTHQUAKE LOAD (EQ) The equipment foundation has been designed for earthquake forces in accordance with USC 1997 with following conditions

- Seismic zone = 2A - Seismic Acceleration =015 G - Soil specification =Soft soil Base Shear (Vs)

Design base snear shall be calculated by using this following equation

V = CxI xw RxT ~ I

The design base shear need not exceed following

V =25 X CQ x I x w =0426 x W sma R ~ I

Also shall be not less than the following formula

V mm = Ol1x CQ xIxIw = 0041 x LW

where W = Weight of equipment andor structure (kN)

I = Importance factor = 125 Cv =Seismic coeffident = 05 C = Seismic coeffident = 03

R = Numerical coeffident = 22 hn = Total height of equipment = 16 m T = Fundamental Period = 00488 (hn) 3 = 0069 s

C xl Design Sase shear V = --x ~wRxT

V= 05x125 xIw 22 x 0069 I

V = 4117 X LW kN gt Vsmax

Therefore we use Vsmax as the design base shear V = 0426 X W kN

For unfactored load combination (Allowable Stress Design Method) the design base shear should be divided by 14 as per USC 1997

V = 0304 xW kN Whe-re ~~ ~~ Cv1 001 (- Jtshy~ ~JsFr The total weight of equipment and structures (W) I~ so we get 0V-(W0 ltl

V = 11902 kN

J--b]lt eq )L rhv~J U~[M ~ -iu bll tea ~ ~I ~I c-IV 19f~ cph)--931-- Ii 1rpl~ o~ r-ll~~Ol f~ ~~4A L c-lIO -v Page 7 of 9

A~l 1 l-tJ

JOB PERTAMINA- TAUSMAN JAMBI MERANG DIESEL GENERATOR FOUNDATION DESIGN CALCULATION

324 WIND LOAD (W) The foundation will be designed for wind load with following criterion

Basic Wind Speed V = 28 ms Equipment Height H = 16 m

- Equipment Width B = 28 m - Velocity pressure exposure coefficient (Exposure C z=24 m) K = 062

- Topographic factor (flat area) K =100

- Wind directional factor K = 09 - Importance factor (category rrn I = 115 - Gust effect factor G = 085

Pressure coeffICient Cp = 135

Design wind load shall be calculated by using these following equations Velodty Pressure

q = 0613 K K K Vl Iw = 0308 kNm2

- Wind Pressure P =qGCp

= 0354 kNm2 - Wind Proected N

Ar = H B -------jgt I-L~ 3 ov - 448 m2 ~ ~ L

Wind Force

W = PA = 158 kN lt V =11902 kN Not governing

Therefore the wind load is not considered in the foundation design load combination

Page 8 of9

V ~ Calculation Sheet ~~- ~-

y~ Calc no GI-CL-C-004 File

Elec file location

Project till EPC Condensat Metertng Station At North Geragal Project Pro no

Client JOB PERTAMINA-TALISMAN JAMBI MERANG PhaseCTR

Calculation tille Diesel Generator Foundation Page 5 ot 8

Diesel Generator Foundation

D Pile Capacity Check Pile COmpression Capadty

0 0

Iy

0 0 1 1 Y

I I I Pile quantity (long di~n) nx = 2

PII quantity (short dirn) ny = 2

Total Nos of Pile n = 4

Pile location x = 100 m y = 110 m ~Pile spacing (long di~n) Ix = 420 m = 105 D

Pile spacing (short dl~n) Iy = 280 m = 7 D Pile EffiCiency Factor T) = 100

Modulus Shape of Pile SX = Lxi Xm where 1x = 1x12 x n x (n -1)

(x - axis) = S88 m = 882 m

Xmu = 15 m pz M PUmaxbull

Case No (kN) (kNm) (kN)

Case 1 47186 000 11796

Case 2 35400 093 8866

Case 3 47613 000 11903

lt)e4 35710 093 89~

r caseS 43710 CTOO 10928) ) Pu = pIn + MSx

Pile design load (axial) Pu = 23807 kN (multiplied by 20 forload safety factor)

Pile Allowable Capadty Poop = 72500 kN 36 m pile penetration

Pile Safety Factor SF = Pcapl Pu

= 305 gt 30 Hence pile OK

A~middotho~ [OtQ Q~Iho - 11 11

Calculation Sheet --shy

Calc no GD-CL-C-004

Elec file location

Project title

Cllant

EPC Condensate Metering StaUon At North Geragai Project

JOB PERTAMINA-TALISMAN JAMBI MERANG

Calculation title Diesel Generator FoundaUon

File

Proj no PhaseCTR

Page 6 of 8

Diesel Generator Foundation

E Pllecap Design

L Footing Flexural Reinforcement (Top amp Bottom)

Wu = 13332 kNm M max Pmax Pmln

fc

= 2365

= 66659

= 42467

= 2S00

= 40000

kNm (Max M from Sect C2~ kN (Max pz from Sect CrcbC-) lt

5000

Unit Breadth of Slab

Slab Found Depth

Bar Diameter

Effective Depth

Equivalent uniform load

Bending moment

Strength Reduction Factor

Coeffident of Resistance

Steel Ratio Reqd moment based

Concrete strength redct Factor

Steel Ratio (balanced Cond)

Steel Ratio (Max)

Steel Ratio (Min)

Steel Ratio (Shrinkage)

Steel Ratio (requined)

Steel area required

Spacing of Rebar

Reinforcement Provided

kN (Min Pz from Sect c ~ I~e - 9) J MPa

tv MPa

b = 1 m

h

d

dOl

= H 7 =

= D~ =

= h c 2 =

Wu = PmL =

Mu

1

= (WUXL)S~I1-~= ~ 090

Ru = Mu(llIbd) =

Preqd = O 8Sflt-~(I_ 1_ 2amp J f i O85flt-~

=

= 085

Pblnc ~ ~ 085 fc-pcfyfx600(600+fyf) = Pm = O7SX ~Ill( =

PmIn = Ii) l4fyf =

0600 m

19050 mm

0520 m

133317 kNm

~ kNm ~~~euro c)rQcgtI

~ yenC02

00303

00228

00035

kNm

govern I

(ii) rcmiddotpclI4 x fyf) = 00033

p

POY

= =

OOOlS

00035

Asrq d povem X b Xdb

s = 019130

~ pro = n X025 7t dlH

I so n

As provd

= 1822 mm

= 130 mm = 7

= 1988 mm

gt Asreqd okl

1)L

~ --shy -_ shy- -Calculation Sheet

Calc no GD-CL-c-()04 File

Elec file location

Project title EPC Ccndensate Metering Stetion At North Geraga Project Proj no Client JOB PERTAMINA-TALISMAN JAMBI MERANG PhaseCTR

Calculation title Diesel Generator Foundation Page 7 01

Diesel Generator Foundation 2 Punching Shear Check

Design compressive strength fc 2800 MPa

Foundation slab thickness h 600 mm

Concrete cover cv = 70 l Effective depth dblt = reg~~lte~l lV-Radius 01 punching shear = 02+ dbt2

= 4150 mm

Critical Shear Perimeter b = 2608 mm

Pile dimensional ratio ~ = 10

Strength Redn Factor (shear) ~ = 085

Re-bar vield strength I = 4000 MPa

Constant used to compute Vc a = 30 (assumed as edge column)

Provisional punching shear cap = $(l+2P)(f Jsbd6 209 kN

= ~(adb+2) (IJb~d12 242 kN

= $(13)(fl bd 140 kN

Umltfng punching shear cap = ~(16 (f)osbQd = 70 kN

Punching shear capacity

Design punching load

Utilization ratio

3 Tie Bar - Tie Bar Requirement Maximum Actual Shear Vu = 1697 kN (Max Px Irom Sect C2) Allowable Shear for Slab without 2xvfcmiddotxBxdbl

Vc = Reinforcement 12

= 157 kN

Strength Reduction Factor p = 075 ~ Nominal Shear Strength pVc = 11808 kN

05 pVc 5904 kN gt Vu = 1697 kN (OK I)

Hence shear reinforcement caJwlate based on shrinkage requirement only

- Shear Reinforcement Design

Shear reinforcement Spacing S = Zone 1 S gt 05 d Sgt 300 = 300 mm

Steel area requred Ad = 13 x((dbtx S)ffy) = 130 mm

Reinforcement Provided +10300 so n 2

~fN n x O2S1C dblr2

= 142 mm

~------------ Av gt oklegt 0- - Ad

fte)~cJgt~ gt~-tl ctv~-k~ ovshy

8

Calculation Sheet __ shy

~ -Calc no GD-CL-G-004 File Elec fila location Project tItle Client

EPC Condensate Melerlng Station At North Geragai Projact Proj no JOB PERTAMINA-TALISMAN JAMBI MERANG PhaseCTR

calculation UtI Diesel Generator Foundation Pa e 8 of 8

Diesel Generator Foundation

4 Reinforcement Bar Sketth Top Flexural Reinforcement

D19130

l~~------------------------------------------------~~--~

bull bull bull bull

)~Bottom Flexural einforcement

D19130

5 Maximum Crack WIdth On Tension Area Effective Tension Area

~ IJ

1 1~ ~ A0 l~i9-gt)tlJ ~~ bll

Is = ~ MPa ) de = 70 mm 2ds 140 mm j3 = 12 for beam

= 135 Ifor slab = 7 (Ref Sect E1)

2 ds

B 1000 mm

Maximum crack width on tension area based on Gergely-Lutz formula

w 111 x 10 x j3 xfsx 3 Vde x A where Ae = 2 ds x B

= 111 x10-6 x 135 x 240 x 30(70 x20000) 140000 mm 00402 mm A = AelN

= 20000 mm

Allowable crack width W = 04 for interIor exposure (Ref GL-SP-C-l001

033 for exterior exposure (Ref GL-SP-C-100)

Maximum crack width W 0040 mm lt 033 mm (OK)

Page 3: Client Comment Response -DG Foundation

JOB PERTAMINA- TAUSMAN JAMBI MERANG DIESEL GENERATOR FOUNDATION DESIGN CALCULATION

324 WIND LOAD (W) The foundation will be designed for wind load with following criterion

Basic Wind Speed V = 28 ms Equipment Height H = 16 m

- Equipment Width B = 28 m - Velocity pressure exposure coefficient (Exposure C z=24 m) K = 062

- Topographic factor (flat area) K =100

- Wind directional factor K = 09 - Importance factor (category rrn I = 115 - Gust effect factor G = 085

Pressure coeffICient Cp = 135

Design wind load shall be calculated by using these following equations Velodty Pressure

q = 0613 K K K Vl Iw = 0308 kNm2

- Wind Pressure P =qGCp

= 0354 kNm2 - Wind Proected N

Ar = H B -------jgt I-L~ 3 ov - 448 m2 ~ ~ L

Wind Force

W = PA = 158 kN lt V =11902 kN Not governing

Therefore the wind load is not considered in the foundation design load combination

Page 8 of9

V ~ Calculation Sheet ~~- ~-

y~ Calc no GI-CL-C-004 File

Elec file location

Project till EPC Condensat Metertng Station At North Geragal Project Pro no

Client JOB PERTAMINA-TALISMAN JAMBI MERANG PhaseCTR

Calculation tille Diesel Generator Foundation Page 5 ot 8

Diesel Generator Foundation

D Pile Capacity Check Pile COmpression Capadty

0 0

Iy

0 0 1 1 Y

I I I Pile quantity (long di~n) nx = 2

PII quantity (short dirn) ny = 2

Total Nos of Pile n = 4

Pile location x = 100 m y = 110 m ~Pile spacing (long di~n) Ix = 420 m = 105 D

Pile spacing (short dl~n) Iy = 280 m = 7 D Pile EffiCiency Factor T) = 100

Modulus Shape of Pile SX = Lxi Xm where 1x = 1x12 x n x (n -1)

(x - axis) = S88 m = 882 m

Xmu = 15 m pz M PUmaxbull

Case No (kN) (kNm) (kN)

Case 1 47186 000 11796

Case 2 35400 093 8866

Case 3 47613 000 11903

lt)e4 35710 093 89~

r caseS 43710 CTOO 10928) ) Pu = pIn + MSx

Pile design load (axial) Pu = 23807 kN (multiplied by 20 forload safety factor)

Pile Allowable Capadty Poop = 72500 kN 36 m pile penetration

Pile Safety Factor SF = Pcapl Pu

= 305 gt 30 Hence pile OK

A~middotho~ [OtQ Q~Iho - 11 11

Calculation Sheet --shy

Calc no GD-CL-C-004

Elec file location

Project title

Cllant

EPC Condensate Metering StaUon At North Geragai Project

JOB PERTAMINA-TALISMAN JAMBI MERANG

Calculation title Diesel Generator FoundaUon

File

Proj no PhaseCTR

Page 6 of 8

Diesel Generator Foundation

E Pllecap Design

L Footing Flexural Reinforcement (Top amp Bottom)

Wu = 13332 kNm M max Pmax Pmln

fc

= 2365

= 66659

= 42467

= 2S00

= 40000

kNm (Max M from Sect C2~ kN (Max pz from Sect CrcbC-) lt

5000

Unit Breadth of Slab

Slab Found Depth

Bar Diameter

Effective Depth

Equivalent uniform load

Bending moment

Strength Reduction Factor

Coeffident of Resistance

Steel Ratio Reqd moment based

Concrete strength redct Factor

Steel Ratio (balanced Cond)

Steel Ratio (Max)

Steel Ratio (Min)

Steel Ratio (Shrinkage)

Steel Ratio (requined)

Steel area required

Spacing of Rebar

Reinforcement Provided

kN (Min Pz from Sect c ~ I~e - 9) J MPa

tv MPa

b = 1 m

h

d

dOl

= H 7 =

= D~ =

= h c 2 =

Wu = PmL =

Mu

1

= (WUXL)S~I1-~= ~ 090

Ru = Mu(llIbd) =

Preqd = O 8Sflt-~(I_ 1_ 2amp J f i O85flt-~

=

= 085

Pblnc ~ ~ 085 fc-pcfyfx600(600+fyf) = Pm = O7SX ~Ill( =

PmIn = Ii) l4fyf =

0600 m

19050 mm

0520 m

133317 kNm

~ kNm ~~~euro c)rQcgtI

~ yenC02

00303

00228

00035

kNm

govern I

(ii) rcmiddotpclI4 x fyf) = 00033

p

POY

= =

OOOlS

00035

Asrq d povem X b Xdb

s = 019130

~ pro = n X025 7t dlH

I so n

As provd

= 1822 mm

= 130 mm = 7

= 1988 mm

gt Asreqd okl

1)L

~ --shy -_ shy- -Calculation Sheet

Calc no GD-CL-c-()04 File

Elec file location

Project title EPC Ccndensate Metering Stetion At North Geraga Project Proj no Client JOB PERTAMINA-TALISMAN JAMBI MERANG PhaseCTR

Calculation title Diesel Generator Foundation Page 7 01

Diesel Generator Foundation 2 Punching Shear Check

Design compressive strength fc 2800 MPa

Foundation slab thickness h 600 mm

Concrete cover cv = 70 l Effective depth dblt = reg~~lte~l lV-Radius 01 punching shear = 02+ dbt2

= 4150 mm

Critical Shear Perimeter b = 2608 mm

Pile dimensional ratio ~ = 10

Strength Redn Factor (shear) ~ = 085

Re-bar vield strength I = 4000 MPa

Constant used to compute Vc a = 30 (assumed as edge column)

Provisional punching shear cap = $(l+2P)(f Jsbd6 209 kN

= ~(adb+2) (IJb~d12 242 kN

= $(13)(fl bd 140 kN

Umltfng punching shear cap = ~(16 (f)osbQd = 70 kN

Punching shear capacity

Design punching load

Utilization ratio

3 Tie Bar - Tie Bar Requirement Maximum Actual Shear Vu = 1697 kN (Max Px Irom Sect C2) Allowable Shear for Slab without 2xvfcmiddotxBxdbl

Vc = Reinforcement 12

= 157 kN

Strength Reduction Factor p = 075 ~ Nominal Shear Strength pVc = 11808 kN

05 pVc 5904 kN gt Vu = 1697 kN (OK I)

Hence shear reinforcement caJwlate based on shrinkage requirement only

- Shear Reinforcement Design

Shear reinforcement Spacing S = Zone 1 S gt 05 d Sgt 300 = 300 mm

Steel area requred Ad = 13 x((dbtx S)ffy) = 130 mm

Reinforcement Provided +10300 so n 2

~fN n x O2S1C dblr2

= 142 mm

~------------ Av gt oklegt 0- - Ad

fte)~cJgt~ gt~-tl ctv~-k~ ovshy

8

Calculation Sheet __ shy

~ -Calc no GD-CL-G-004 File Elec fila location Project tItle Client

EPC Condensate Melerlng Station At North Geragai Projact Proj no JOB PERTAMINA-TALISMAN JAMBI MERANG PhaseCTR

calculation UtI Diesel Generator Foundation Pa e 8 of 8

Diesel Generator Foundation

4 Reinforcement Bar Sketth Top Flexural Reinforcement

D19130

l~~------------------------------------------------~~--~

bull bull bull bull

)~Bottom Flexural einforcement

D19130

5 Maximum Crack WIdth On Tension Area Effective Tension Area

~ IJ

1 1~ ~ A0 l~i9-gt)tlJ ~~ bll

Is = ~ MPa ) de = 70 mm 2ds 140 mm j3 = 12 for beam

= 135 Ifor slab = 7 (Ref Sect E1)

2 ds

B 1000 mm

Maximum crack width on tension area based on Gergely-Lutz formula

w 111 x 10 x j3 xfsx 3 Vde x A where Ae = 2 ds x B

= 111 x10-6 x 135 x 240 x 30(70 x20000) 140000 mm 00402 mm A = AelN

= 20000 mm

Allowable crack width W = 04 for interIor exposure (Ref GL-SP-C-l001

033 for exterior exposure (Ref GL-SP-C-100)

Maximum crack width W 0040 mm lt 033 mm (OK)

Page 4: Client Comment Response -DG Foundation

V ~ Calculation Sheet ~~- ~-

y~ Calc no GI-CL-C-004 File

Elec file location

Project till EPC Condensat Metertng Station At North Geragal Project Pro no

Client JOB PERTAMINA-TALISMAN JAMBI MERANG PhaseCTR

Calculation tille Diesel Generator Foundation Page 5 ot 8

Diesel Generator Foundation

D Pile Capacity Check Pile COmpression Capadty

0 0

Iy

0 0 1 1 Y

I I I Pile quantity (long di~n) nx = 2

PII quantity (short dirn) ny = 2

Total Nos of Pile n = 4

Pile location x = 100 m y = 110 m ~Pile spacing (long di~n) Ix = 420 m = 105 D

Pile spacing (short dl~n) Iy = 280 m = 7 D Pile EffiCiency Factor T) = 100

Modulus Shape of Pile SX = Lxi Xm where 1x = 1x12 x n x (n -1)

(x - axis) = S88 m = 882 m

Xmu = 15 m pz M PUmaxbull

Case No (kN) (kNm) (kN)

Case 1 47186 000 11796

Case 2 35400 093 8866

Case 3 47613 000 11903

lt)e4 35710 093 89~

r caseS 43710 CTOO 10928) ) Pu = pIn + MSx

Pile design load (axial) Pu = 23807 kN (multiplied by 20 forload safety factor)

Pile Allowable Capadty Poop = 72500 kN 36 m pile penetration

Pile Safety Factor SF = Pcapl Pu

= 305 gt 30 Hence pile OK

A~middotho~ [OtQ Q~Iho - 11 11

Calculation Sheet --shy

Calc no GD-CL-C-004

Elec file location

Project title

Cllant

EPC Condensate Metering StaUon At North Geragai Project

JOB PERTAMINA-TALISMAN JAMBI MERANG

Calculation title Diesel Generator FoundaUon

File

Proj no PhaseCTR

Page 6 of 8

Diesel Generator Foundation

E Pllecap Design

L Footing Flexural Reinforcement (Top amp Bottom)

Wu = 13332 kNm M max Pmax Pmln

fc

= 2365

= 66659

= 42467

= 2S00

= 40000

kNm (Max M from Sect C2~ kN (Max pz from Sect CrcbC-) lt

5000

Unit Breadth of Slab

Slab Found Depth

Bar Diameter

Effective Depth

Equivalent uniform load

Bending moment

Strength Reduction Factor

Coeffident of Resistance

Steel Ratio Reqd moment based

Concrete strength redct Factor

Steel Ratio (balanced Cond)

Steel Ratio (Max)

Steel Ratio (Min)

Steel Ratio (Shrinkage)

Steel Ratio (requined)

Steel area required

Spacing of Rebar

Reinforcement Provided

kN (Min Pz from Sect c ~ I~e - 9) J MPa

tv MPa

b = 1 m

h

d

dOl

= H 7 =

= D~ =

= h c 2 =

Wu = PmL =

Mu

1

= (WUXL)S~I1-~= ~ 090

Ru = Mu(llIbd) =

Preqd = O 8Sflt-~(I_ 1_ 2amp J f i O85flt-~

=

= 085

Pblnc ~ ~ 085 fc-pcfyfx600(600+fyf) = Pm = O7SX ~Ill( =

PmIn = Ii) l4fyf =

0600 m

19050 mm

0520 m

133317 kNm

~ kNm ~~~euro c)rQcgtI

~ yenC02

00303

00228

00035

kNm

govern I

(ii) rcmiddotpclI4 x fyf) = 00033

p

POY

= =

OOOlS

00035

Asrq d povem X b Xdb

s = 019130

~ pro = n X025 7t dlH

I so n

As provd

= 1822 mm

= 130 mm = 7

= 1988 mm

gt Asreqd okl

1)L

~ --shy -_ shy- -Calculation Sheet

Calc no GD-CL-c-()04 File

Elec file location

Project title EPC Ccndensate Metering Stetion At North Geraga Project Proj no Client JOB PERTAMINA-TALISMAN JAMBI MERANG PhaseCTR

Calculation title Diesel Generator Foundation Page 7 01

Diesel Generator Foundation 2 Punching Shear Check

Design compressive strength fc 2800 MPa

Foundation slab thickness h 600 mm

Concrete cover cv = 70 l Effective depth dblt = reg~~lte~l lV-Radius 01 punching shear = 02+ dbt2

= 4150 mm

Critical Shear Perimeter b = 2608 mm

Pile dimensional ratio ~ = 10

Strength Redn Factor (shear) ~ = 085

Re-bar vield strength I = 4000 MPa

Constant used to compute Vc a = 30 (assumed as edge column)

Provisional punching shear cap = $(l+2P)(f Jsbd6 209 kN

= ~(adb+2) (IJb~d12 242 kN

= $(13)(fl bd 140 kN

Umltfng punching shear cap = ~(16 (f)osbQd = 70 kN

Punching shear capacity

Design punching load

Utilization ratio

3 Tie Bar - Tie Bar Requirement Maximum Actual Shear Vu = 1697 kN (Max Px Irom Sect C2) Allowable Shear for Slab without 2xvfcmiddotxBxdbl

Vc = Reinforcement 12

= 157 kN

Strength Reduction Factor p = 075 ~ Nominal Shear Strength pVc = 11808 kN

05 pVc 5904 kN gt Vu = 1697 kN (OK I)

Hence shear reinforcement caJwlate based on shrinkage requirement only

- Shear Reinforcement Design

Shear reinforcement Spacing S = Zone 1 S gt 05 d Sgt 300 = 300 mm

Steel area requred Ad = 13 x((dbtx S)ffy) = 130 mm

Reinforcement Provided +10300 so n 2

~fN n x O2S1C dblr2

= 142 mm

~------------ Av gt oklegt 0- - Ad

fte)~cJgt~ gt~-tl ctv~-k~ ovshy

8

Calculation Sheet __ shy

~ -Calc no GD-CL-G-004 File Elec fila location Project tItle Client

EPC Condensate Melerlng Station At North Geragai Projact Proj no JOB PERTAMINA-TALISMAN JAMBI MERANG PhaseCTR

calculation UtI Diesel Generator Foundation Pa e 8 of 8

Diesel Generator Foundation

4 Reinforcement Bar Sketth Top Flexural Reinforcement

D19130

l~~------------------------------------------------~~--~

bull bull bull bull

)~Bottom Flexural einforcement

D19130

5 Maximum Crack WIdth On Tension Area Effective Tension Area

~ IJ

1 1~ ~ A0 l~i9-gt)tlJ ~~ bll

Is = ~ MPa ) de = 70 mm 2ds 140 mm j3 = 12 for beam

= 135 Ifor slab = 7 (Ref Sect E1)

2 ds

B 1000 mm

Maximum crack width on tension area based on Gergely-Lutz formula

w 111 x 10 x j3 xfsx 3 Vde x A where Ae = 2 ds x B

= 111 x10-6 x 135 x 240 x 30(70 x20000) 140000 mm 00402 mm A = AelN

= 20000 mm

Allowable crack width W = 04 for interIor exposure (Ref GL-SP-C-l001

033 for exterior exposure (Ref GL-SP-C-100)

Maximum crack width W 0040 mm lt 033 mm (OK)

Page 5: Client Comment Response -DG Foundation

Calculation Sheet --shy

Calc no GD-CL-C-004

Elec file location

Project title

Cllant

EPC Condensate Metering StaUon At North Geragai Project

JOB PERTAMINA-TALISMAN JAMBI MERANG

Calculation title Diesel Generator FoundaUon

File

Proj no PhaseCTR

Page 6 of 8

Diesel Generator Foundation

E Pllecap Design

L Footing Flexural Reinforcement (Top amp Bottom)

Wu = 13332 kNm M max Pmax Pmln

fc

= 2365

= 66659

= 42467

= 2S00

= 40000

kNm (Max M from Sect C2~ kN (Max pz from Sect CrcbC-) lt

5000

Unit Breadth of Slab

Slab Found Depth

Bar Diameter

Effective Depth

Equivalent uniform load

Bending moment

Strength Reduction Factor

Coeffident of Resistance

Steel Ratio Reqd moment based

Concrete strength redct Factor

Steel Ratio (balanced Cond)

Steel Ratio (Max)

Steel Ratio (Min)

Steel Ratio (Shrinkage)

Steel Ratio (requined)

Steel area required

Spacing of Rebar

Reinforcement Provided

kN (Min Pz from Sect c ~ I~e - 9) J MPa

tv MPa

b = 1 m

h

d

dOl

= H 7 =

= D~ =

= h c 2 =

Wu = PmL =

Mu

1

= (WUXL)S~I1-~= ~ 090

Ru = Mu(llIbd) =

Preqd = O 8Sflt-~(I_ 1_ 2amp J f i O85flt-~

=

= 085

Pblnc ~ ~ 085 fc-pcfyfx600(600+fyf) = Pm = O7SX ~Ill( =

PmIn = Ii) l4fyf =

0600 m

19050 mm

0520 m

133317 kNm

~ kNm ~~~euro c)rQcgtI

~ yenC02

00303

00228

00035

kNm

govern I

(ii) rcmiddotpclI4 x fyf) = 00033

p

POY

= =

OOOlS

00035

Asrq d povem X b Xdb

s = 019130

~ pro = n X025 7t dlH

I so n

As provd

= 1822 mm

= 130 mm = 7

= 1988 mm

gt Asreqd okl

1)L

~ --shy -_ shy- -Calculation Sheet

Calc no GD-CL-c-()04 File

Elec file location

Project title EPC Ccndensate Metering Stetion At North Geraga Project Proj no Client JOB PERTAMINA-TALISMAN JAMBI MERANG PhaseCTR

Calculation title Diesel Generator Foundation Page 7 01

Diesel Generator Foundation 2 Punching Shear Check

Design compressive strength fc 2800 MPa

Foundation slab thickness h 600 mm

Concrete cover cv = 70 l Effective depth dblt = reg~~lte~l lV-Radius 01 punching shear = 02+ dbt2

= 4150 mm

Critical Shear Perimeter b = 2608 mm

Pile dimensional ratio ~ = 10

Strength Redn Factor (shear) ~ = 085

Re-bar vield strength I = 4000 MPa

Constant used to compute Vc a = 30 (assumed as edge column)

Provisional punching shear cap = $(l+2P)(f Jsbd6 209 kN

= ~(adb+2) (IJb~d12 242 kN

= $(13)(fl bd 140 kN

Umltfng punching shear cap = ~(16 (f)osbQd = 70 kN

Punching shear capacity

Design punching load

Utilization ratio

3 Tie Bar - Tie Bar Requirement Maximum Actual Shear Vu = 1697 kN (Max Px Irom Sect C2) Allowable Shear for Slab without 2xvfcmiddotxBxdbl

Vc = Reinforcement 12

= 157 kN

Strength Reduction Factor p = 075 ~ Nominal Shear Strength pVc = 11808 kN

05 pVc 5904 kN gt Vu = 1697 kN (OK I)

Hence shear reinforcement caJwlate based on shrinkage requirement only

- Shear Reinforcement Design

Shear reinforcement Spacing S = Zone 1 S gt 05 d Sgt 300 = 300 mm

Steel area requred Ad = 13 x((dbtx S)ffy) = 130 mm

Reinforcement Provided +10300 so n 2

~fN n x O2S1C dblr2

= 142 mm

~------------ Av gt oklegt 0- - Ad

fte)~cJgt~ gt~-tl ctv~-k~ ovshy

8

Calculation Sheet __ shy

~ -Calc no GD-CL-G-004 File Elec fila location Project tItle Client

EPC Condensate Melerlng Station At North Geragai Projact Proj no JOB PERTAMINA-TALISMAN JAMBI MERANG PhaseCTR

calculation UtI Diesel Generator Foundation Pa e 8 of 8

Diesel Generator Foundation

4 Reinforcement Bar Sketth Top Flexural Reinforcement

D19130

l~~------------------------------------------------~~--~

bull bull bull bull

)~Bottom Flexural einforcement

D19130

5 Maximum Crack WIdth On Tension Area Effective Tension Area

~ IJ

1 1~ ~ A0 l~i9-gt)tlJ ~~ bll

Is = ~ MPa ) de = 70 mm 2ds 140 mm j3 = 12 for beam

= 135 Ifor slab = 7 (Ref Sect E1)

2 ds

B 1000 mm

Maximum crack width on tension area based on Gergely-Lutz formula

w 111 x 10 x j3 xfsx 3 Vde x A where Ae = 2 ds x B

= 111 x10-6 x 135 x 240 x 30(70 x20000) 140000 mm 00402 mm A = AelN

= 20000 mm

Allowable crack width W = 04 for interIor exposure (Ref GL-SP-C-l001

033 for exterior exposure (Ref GL-SP-C-100)

Maximum crack width W 0040 mm lt 033 mm (OK)

Page 6: Client Comment Response -DG Foundation

~ --shy -_ shy- -Calculation Sheet

Calc no GD-CL-c-()04 File

Elec file location

Project title EPC Ccndensate Metering Stetion At North Geraga Project Proj no Client JOB PERTAMINA-TALISMAN JAMBI MERANG PhaseCTR

Calculation title Diesel Generator Foundation Page 7 01

Diesel Generator Foundation 2 Punching Shear Check

Design compressive strength fc 2800 MPa

Foundation slab thickness h 600 mm

Concrete cover cv = 70 l Effective depth dblt = reg~~lte~l lV-Radius 01 punching shear = 02+ dbt2

= 4150 mm

Critical Shear Perimeter b = 2608 mm

Pile dimensional ratio ~ = 10

Strength Redn Factor (shear) ~ = 085

Re-bar vield strength I = 4000 MPa

Constant used to compute Vc a = 30 (assumed as edge column)

Provisional punching shear cap = $(l+2P)(f Jsbd6 209 kN

= ~(adb+2) (IJb~d12 242 kN

= $(13)(fl bd 140 kN

Umltfng punching shear cap = ~(16 (f)osbQd = 70 kN

Punching shear capacity

Design punching load

Utilization ratio

3 Tie Bar - Tie Bar Requirement Maximum Actual Shear Vu = 1697 kN (Max Px Irom Sect C2) Allowable Shear for Slab without 2xvfcmiddotxBxdbl

Vc = Reinforcement 12

= 157 kN

Strength Reduction Factor p = 075 ~ Nominal Shear Strength pVc = 11808 kN

05 pVc 5904 kN gt Vu = 1697 kN (OK I)

Hence shear reinforcement caJwlate based on shrinkage requirement only

- Shear Reinforcement Design

Shear reinforcement Spacing S = Zone 1 S gt 05 d Sgt 300 = 300 mm

Steel area requred Ad = 13 x((dbtx S)ffy) = 130 mm

Reinforcement Provided +10300 so n 2

~fN n x O2S1C dblr2

= 142 mm

~------------ Av gt oklegt 0- - Ad

fte)~cJgt~ gt~-tl ctv~-k~ ovshy

8

Calculation Sheet __ shy

~ -Calc no GD-CL-G-004 File Elec fila location Project tItle Client

EPC Condensate Melerlng Station At North Geragai Projact Proj no JOB PERTAMINA-TALISMAN JAMBI MERANG PhaseCTR

calculation UtI Diesel Generator Foundation Pa e 8 of 8

Diesel Generator Foundation

4 Reinforcement Bar Sketth Top Flexural Reinforcement

D19130

l~~------------------------------------------------~~--~

bull bull bull bull

)~Bottom Flexural einforcement

D19130

5 Maximum Crack WIdth On Tension Area Effective Tension Area

~ IJ

1 1~ ~ A0 l~i9-gt)tlJ ~~ bll

Is = ~ MPa ) de = 70 mm 2ds 140 mm j3 = 12 for beam

= 135 Ifor slab = 7 (Ref Sect E1)

2 ds

B 1000 mm

Maximum crack width on tension area based on Gergely-Lutz formula

w 111 x 10 x j3 xfsx 3 Vde x A where Ae = 2 ds x B

= 111 x10-6 x 135 x 240 x 30(70 x20000) 140000 mm 00402 mm A = AelN

= 20000 mm

Allowable crack width W = 04 for interIor exposure (Ref GL-SP-C-l001

033 for exterior exposure (Ref GL-SP-C-100)

Maximum crack width W 0040 mm lt 033 mm (OK)

Page 7: Client Comment Response -DG Foundation

Calculation Sheet __ shy

~ -Calc no GD-CL-G-004 File Elec fila location Project tItle Client

EPC Condensate Melerlng Station At North Geragai Projact Proj no JOB PERTAMINA-TALISMAN JAMBI MERANG PhaseCTR

calculation UtI Diesel Generator Foundation Pa e 8 of 8

Diesel Generator Foundation

4 Reinforcement Bar Sketth Top Flexural Reinforcement

D19130

l~~------------------------------------------------~~--~

bull bull bull bull

)~Bottom Flexural einforcement

D19130

5 Maximum Crack WIdth On Tension Area Effective Tension Area

~ IJ

1 1~ ~ A0 l~i9-gt)tlJ ~~ bll

Is = ~ MPa ) de = 70 mm 2ds 140 mm j3 = 12 for beam

= 135 Ifor slab = 7 (Ref Sect E1)

2 ds

B 1000 mm

Maximum crack width on tension area based on Gergely-Lutz formula

w 111 x 10 x j3 xfsx 3 Vde x A where Ae = 2 ds x B

= 111 x10-6 x 135 x 240 x 30(70 x20000) 140000 mm 00402 mm A = AelN

= 20000 mm

Allowable crack width W = 04 for interIor exposure (Ref GL-SP-C-l001

033 for exterior exposure (Ref GL-SP-C-100)

Maximum crack width W 0040 mm lt 033 mm (OK)