18
6/21/2016 1 Classical and Non- classical Nucleation Mechanisms Peter Vekilov University of Houston Crystallization is a Miracle! Crystallization Nucleation Crystallization and Nucleation

Classical and Non- classical Nucleation Mechanisms · Acta Physicochimica URSS 18, 1 (1943). Diffusion in the Space of n over a Barrier The Zeldovich Factor , æ

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

  • 6/21/2016

    1

    Classical and Non-classical Nucleation

    Mechanisms

    Peter VekilovUniversity of Houston

    Crystallization is a Miracle!

    Crystallization

    Nucleation

    Crystallization and Nucleation

  • 6/21/2016

    2

    Nucleation Kinetics Is Different

    Josiah Willard Gibbs (1839 - 1903)

    … and this has been strictly shown for Gibbs only

    Only God and Gibbs never erred

    E.D. Shchukin

    Free Surface Energy Surface Free Energy

    , , , ,

  • 6/21/2016

    3

    Molecular Origins of Surface Free Energy

    l

    G

    rl

    Excess G at liquid side: enthalpicExcess G at vapor side: entropic

    Molecular Origins of Surface Free Energy

    c

    z

    G

    z

    Liquid Gas

    Liquid Gas

    l +g

    – hatched area

    Position of interface: Zero concentrationEqual energy

    The contact angle of a droplet with a solid

    r

    2 1

    1

    13 2 3

    Young equation

    If the liquid and substrate are similar , ≪ , cos 1 and a 0

    If the liquid is repelled by the substrate , cos 0 and /2.

    The pressure within a small gas bubble

    = xy – (x + dx)(y + dy)  –(xdy + ydx)

    G = Vp + .

    At equilibrium, G = 0 and 

    .

    2Young‐Laplace relation

    and

    2Gibbs‐Thomson relation

    = p Vm

  • 6/21/2016

    4

    Surface Free Energy of Crystals

    81 atoms 36 broken bonds

    81 atoms 44 broken bonds

    Surface Free Energy of Crystals

    2,

    2

    The Thurnbull Rule

    0.3Δ Ω /

    2

    Ω /

    Classical Nucleation Theory: Thermodynamics

    n molecules from solution into a crystalline cluster

    Gibbs JWOn the equilibrium of heterogeneous substances

    Trans. Connect. Acad. Sci. (1876) 3, 108;(1978) 16, 343

    Solution—supersaturated: soln > crystal,   = soln – crystal > 0

    C2

  • 6/21/2016

    5

    Classical Nucleation Theory: Thermodynamics

    Free energy gain = ‐ n

    Free energy loss = 6n2/3creation of new surface

    G(n) = Δ 6 Ω /

    Δ4/

    ∗ 64 ΩΔ

    Δ ∗32 ΩΔ

    n2/3G

    G*n

    n*

    G(n)

    ‐ n

    Classical Nucleation Theory: Thermodynamics

    ∗ 64 ΩΔ

    Δ ∗32 ΩΔ

    12

    ∗Δ

    n2/3G

    G*n

    n*

    G(n)

    ‐ n

    G

    n

    G*

    G≠

    Creation of Chemical bonds in the Crystal The Structure of the Crystal Nucleus

    Suggested nuclei shapes

    Milchev, Contemp. Phys. 32 (1991) 321

    0 4 8 12 200

    4

    8

    12

    n*N

    ucle

    atio

    n W

    ork

    a

    b

    c

    d

    eg f

    16

  • 6/21/2016

    6

    Radius of 2D nucleus

    ΩαΔμ

    Critical Radius

    Supersaturation

    21

    Experimental Tests Thermodynamics of Hematin Crystallization

    0 20 40

    0.15

    0.30

    0.45

    BulkAFM

    c e(m

    M)

    T (oC)

    1/T (1/K)

    lnc e

    0.0032 0.0036-3-2-1

    ⁄∆

    The crystallization enthalpy ∆ = -37±8 kJ mol-1

    22

    Radius of 2D nucleus

    ΩαΔμ

    α 0.3Δ Ω /

    Critical Radius

    Turnbull’s Rule

    = 27 4 mJ m-2

    23

    Experimental Tests

    ∆ = -37±8 kJ mol-1

    Kinetics of Crystal Nucleation

    Nucleation rate J: nuclei per unit volume per unit time

  • 6/21/2016

    7

    Max Volmer(1885 - 1965)

    Classical Nucleation Theory: Kinetics

    Volmer M (1939) Kinetik der Phasenbildung (Steinkopff, Dresden)

    J

    C

    exp∆ ∗

    Assumes that crystal nuclei form directly in solution

    Predicts steep

    Jo = ?????

    , , , ,

    The General Aggregation Scheme

    ∂ ,∂ 1, 1, ,

    ∂ 1,∂ 1, 2, , ,

    , , 1,

    The Szilard Assumption

  • 6/21/2016

    8

    The “Equilibrium” Concentration of Nuclei

    Y. B. Zel'dovich, Acta Physicochimica URSS 18, 1 (1943).

    Diffusion in the Space of n over a Barrier The Zeldovich Factor

    ∗ ∗

    z = ∗

    ∗ /

    z 0.1 – 0.01

  • 6/21/2016

    9

    The Nucleation Rate Law

    ∗ ∗

    ∗ exp ∆ ∗⁄

    ∗ NOT limited by diffusion

    - Experimentally measured- Evaluated based on reaction kinetics

    G

    n

    G*

    G≠

    Time Evolution of Nucleation

    2

    3 2 ∗

    =  1/JstV + d/R

    Non-classical Behaviors

    Solution-to-crystal spinodal: n* ≤ 1

    Two-step nucleation of crystals

    Non-equilibrium crystal shape

    Mysteries of Nucleation Kinetics

    5 10 15 20 25 300

    0.2

    0.4

    TL-L

    TL-L

    Clys= 50 mg/mlClys = 80 mg/ml

    Temperature T [°C]

    Hom

    ogen

    eous

    Nuc

    leat

    ion

    Rate

    J[c

    m-3

    s-1]

    Non-monotonic behavior of J(T)

    O. Galkin & P. G. Vekilov,PNAS 97, 6277 (2000)

    Nucleation rate lower by 109then prediction of CNT

    J0(experiment) ~ 1010 cm-3s-1J0(CNT) ~ 1019 cm-3s-1

    J0(CNT) = f+zC

    f+ 300 s-1z 0.1C 1018 cm-3

    )exp(*

    0 TkGJJB

    Sharp leveling of J()

    Large data scatter

    O. Galkin et al., JACS 122, 156 (2000)

    Vekilov PG (2010) Nucleation. Crystal Growth & Design 10(12):5007-5019.

  • 6/21/2016

    10

    Determination of Nucleus Size

    Nucleation theoremD. Kashchiev, D. Oxtoby JCP 100 (1994) 7665

    )1()/(

    )(lnB

    * OTkd

    Jdn

    allows determination of nuclei sizes (10 4 1)

    O. Galkin, P.G. Vekilov, JACS 122 (2000) 156

    ..

    0

    0.2

    0.4

    2.5%

    2.5 3.0 3.50.01

    0.1

    1

    3%

    4%

    2.5% 3% 4%

    L-L coexistence

    L-L coexistence

    Hom

    ogen

    eous

    Nuc

    leat

    ion

    Rat

    e J

    [cm

    -3s-

    1 ]

    Supersaturation = In(C/Ceq)

    10.0oC12.6oC15.0oC

    2.8 3.2 3.610-2

    10-1

    100

    Nucl

    eatio

    n Ra

    te J

    [cm

    -3s-

    1 ]

    Supersaturation / kBT

    n* = 1

    • Spinodal can be defined from n* 1

    Solution-to-crystal Spinodal

    L.F. Filobelo, et al., J. Chem. Phys. 123, 014904 (2005)

    At and below spinodal G* < kBT

    Why is the maximum in J(T) sharp?

    0 100 200 300

    -10

    0

    10

    20

    30

    40

    50

    Tem

    pera

    ture

    [oC

    ]

    Concentration [mg/ml]

    Liquidus

    Liquid-liquid (L-L) spinodal

    L-L coexistence

    Gelation line

    J(T) reaches sharp max at solution-crystal spinodal

    J() levels off at solution-crystal spinodal

    Direct and Two-step Nucleation

    Concentration

    Stru

    ctur

    e

  • 6/21/2016

    11

    The Two-step Nucleation Mechanism

    1 2

    Tem

    pera

    ture

    Protein Concentration

    Solubility

    Gelation

    Binodal

    Spinodal

    The Two-step Nucleation Mechanism

    What are the structuresthat serve as precursors above the L-L coexistence line and persist in the homogeneous region?

    ?

    1 2

    Protein-Rich ClustersAtomic force microscopy,lumazine synthase

    O. Gliko, et al., JACS 127, 3433 (2005)

    0

    100

    200

    0 2.5 5 7.5 10Surface Coordinate [m]

    75 nm

    10-4 10-2 100 102 1040.0

    0.5

    1.0

    Delay Time [ms]

    G()

    Dynamic light scattering,lysozyme

    W. Pan, et al., Biophys. J. 92, 267 (2007)

    10 1000

    5

    10

    Exp. 1 Exp. 2 Exp. 3

    Cluster Radius R2 [nm]

    Con

    cent

    ratio

    n n 2

    [107

    cm

    -3]

    Reproduces results on R2 and n2 from dynamic light scattering

    Brownian microscopy

    Y. Li, et al., Rev. Sci. Instr. 82, 053106 (2011)

    Do Crystals Nucleate in the Clusters?You can observe a lot by watching.

    Yogi Berra

    Depolarized Oblique Illumination Microscopy

  • 6/21/2016

    12

    Do Crystals Nucleate in the Clusters?Depolarized Oblique Illumination Microscopy

    Phenomenological Theory of Two-step Nucleation

    0 1 2

    – mean first-passage time

    J = -1 , 2 – rate-limiting

    )(1

    )()()(

    )(1

    220

    1

    0 TuTuTuTu

    Tu

    TkG

    UUTC

    TkGTCk

    J

    B

    liquid

    B0

    0

    11

    *2

    12

    exp1),(

    )exp(

    TkECkC B/expexp1 110

    2

    2

    21)(

    **2

    spe

    e

    e TTTT

    TTETG

    Single adjustable k2 reproduces 3 complex kinetic curves

    W. Pan, et al., J. Chem. Phys. 122, 174905 (2005)

    276 280 284 288 292 296 3000.0

    0.1

    0.2

    0.3

    0.4

    0.5

    Nuc

    leat

    ion

    Rate

    J [c

    m-3s-

    1 ]

    Temperature T [K]

    80 mg ml-1

    50 mg ml-1

    20 30 40 50 600.0

    0.1

    0.2

    Nucl

    eatio

    n Ra

    te J

    [cm

    -3s-

    1 ]

    Concentration C [mg ml-1]

    T = 12.6 oC

    Nucleation barrier on approach to spinodal

    Viscosity inside dense liquid

    TkG

    UUTC

    TkETCk

    J

    B

    B

    exp1),(

    )exp(

    0

    11

    212

    The Pre-exponential Factor in the Nucleation Rate Law

    )exp(*

    0 TkGJJB

    From experiments: J0 ~ 1010 cm-3s-1

    From classical theoryJ0 ~ 1018 cm-3s-1

    From phenomenological theory:

    fractionvolumecluster,1)exp(0

    1

    TkG

    UU

    B

    0 50 100 150 200 250

    10-7

    Volu

    me

    Frac

    tion

    Time of Monitoring [min]

    Low J0—due to nucleation within clusters

    inside clusters 10 cP

    -1 108

    Explains low Jo0 1 2 3

    0.00

    0.04

    0.08

    0.12

    0.16

    2.2 2.4 2.6 2.8 3.0 3.210-2

    10-1

    / kBT

    Nuc

    leat

    ion

    Rat

    e [c

    m-3 s

    -1]

    Concentration [mg ml-1]

    Why is the Two-step Mechanism Faster?

    Vekilov, P. G. Crystal Growth & Design 2010, 10, 5007

    exp∆ ∗

    ∆ ∗ 10-20 J

    ∆ ∗ 32

    0.2 mJ/m2

    10-1

    10-22.4 2.8 3.2

    /kBT

    Nucleation rate data for insulin

  • 6/21/2016

    13

    94 frames Size: 9.5 x 9.5 m250 s per frameReal time: 95 min

    Growth of Insulin Crystals

    I. Reviakine, et al., J. Am. Chem. Soc.125, 11684 (2003)O. Gliko, et al., Phys. Rev. Lett 90, 225503 (2003)

    Estimate of Crystal Solution Surface Free Energy

    Lc 320 nmΩΔ

    28 mJ/m2

    Nucleation in dense liquid clusters lowers by ~ 140× and G* by 106Increases J by 14 orders of magnitude

    Reviakine, I., et al., J. Am. Chem. Soc. 125, 11684-11693, (2003)

    The Two-step Mechanism for Solution Crystallization

    Protein CrystallizationO. Galkin & P. G. Vekilov, PNAS 97, 6277 (2000)P. G. Vekilov, Cryst. Growth & Design 4, 671 (2004)M. Sleutel, A. van Driesche, PNAS (2013)

    Glycine, ureaB. Garetz, et al., Phys. Rev. Lett. 89, 175501 (2002)J.E. Aber, et al., Phys. Rev. Lett. 94, 145503 (2005)D.W. Oxtoby, Nature 420, 277 (2002)

    Colloid crystalsM. E. Leunissen, et al., Nature 437, 235 (2005)J. R. Savage and A. D. Dinsmore, PRL 102, 198302 (2009)T. H. Zhang and X. Y. Liu, JPCB 111, 14001 (2007)

    NaClO3R.Y. Qian, G.D. Botsaris, Chem. Eng. Sci. 59, 2841 (2004)

    Calcite nucleation in bulk solutionsL. Gower, Chem. Rev. 108, 4551 (2008)H. Coelfen, et al., Science 322, 1819 (2008)E. M. Pouget, et al., Science 323, 1455 (2009)A.F. Wallace, et al., Science 341, 885 (2013)

    +

    1 2

    Nanohorn with hook

    Dense liquid droplet

    Crystal nucleus

    Largecrystal

    =

    Br

    Br

    Br

    The Case of Y-Br

    Harano, K. et al. Nature Mater. 11, 877–881 (2012).

  • 6/21/2016

    14

    HbS Polymer Nucleation

    D(T) much stronger than R(T)contradicts 1-step nucleation and agrees with 2-step

    Polymers are perpendicular to plane of polarization of polarized light

    Dependencies of Vl of mesoscopic metastable clusters on C and T follow those of nucleated polymers

    0

    30

    60

    90

    120

    150

    180

    210

    240 300

    330

    Time of Monitoring [min]

    0 20 40 60

    200

    400

    600

    800

    10oC 15oC 20oC 25oC 30oC

    Rad

    ius

    [nm

    ]

    Clusters are precursors for polymer nucleiO. Galkin, P.G. Vekilov, J. Mol. Biol. 336, 43 (2004)

    O. Galkin, et al., J. Mol. Biol. 365 425 (2007)O. Galkin, et al., Biophys. J. 92, 902 (2007)

    P.G. Vekilov, Brit. J. Haematol. 139, 173 (2007)

    0 5 10 15 20 250.0

    0.2

    0.4

    0.6

    D [s]

    1/R

    [s

    m-1

    ]

    Fe

    O-

    O-

    O

    ON

    N-

    N-

    N

    CH3

    CH3

    CH3

    CH3CH2

    CH2

    H H

    H H

    (a)

    (b)

    So What: the Heme and Sickle Cell Polymerization

    0 30 60 90 12010-9

    10-7

    10-5

    10-3

    67 mg ml-1 96 121 121, 66 M 131 178

    Volu

    me

    Frac

    tion

    Time t [min]

    Dependence of Cluster Volume Fraction on HbS Concentration

    2 for hemoglobin S

    Increases with C from 67 to 96 mg ml-1

    Similar at 96, 121, 131, and 178 mg ml-1

    as per theory

    Heme addition: 2 higher by 80×

    The nucleation rate ??

    60 80 100 120 140 160 18010-6

    10-5

    10-4

    10-3

    Concentration C [mg ml-1]

    Ava

    rage

    Vol

    ume

    Frac

    tion

    107

    108

    10

    100

    5 10 15 20 25 30 350.1

    1

    10

    Nuc

    leat

    ion

    Rat

    e J

    [cm

    -3s-

    1 ]D

    elay

    Tim

    e

    [s]

    290 mg ml-1, 0.16 mM271, 0.26 267, 0.28

    280 mg ml-1;265; 245

    230 mg ml-1; 220; 210; 201

    Temperature T [oC]

    Gro

    wth

    Rat

    eR

    [ m

    s-1]

    The Nucleation Rate

    In the presence of heme, J is ~ 100× faster

  • 6/21/2016

    15

    How Can We Image the Critical Clusters?1)  They exist for a very short time2)  They are freely floating in the solution

    • Protein crystallization is very slowAt = 1.2 kBTSolution/crystal net exchange frequency f = 0.065 s-1 = 1 molecule/50 s/active site

    At dG/dn = 0 – even slowerComparable to AFM imaging time

    Dcluster =D1

    nedge=

    3 10-7 cm2/s5 = 6 10

    -8 cm2/s

    From x2 = 2D = (100 m)2/ 2Dcluster = 850 s ≈ 15 min

    • A cluster needs 15 min to reach surface after nucleation 100 m above substrate• Ferritin molecules readily adsorb on glass

    Near-critical and sub-critical clusters could be viewed by AFM

    0.2 m

    • Clusters are Brownian particles

    Adsorption of Ferritin Molecules on the Substrate

    Full coverage with a disordered monomolecular layer of ferritin – 2D ferritin glass

    50 nm

    10 nm

    Strong adsorption, no surface mobility of the molecules No crystallization occurs in the adsorbed layer

    All crystalline aggregates seen on the surface come from the solution bulk and lie on top of adsorbed layer

    Clusters Are Formed in the Bulk and Land on the Surface

    t = 0

    50 nm

    t = 430 s

    For ~7 min the monitored cluster looses 2 molecules Another cluster lands next to it from the solution  Observed for many clusters, supported by indirect evidence

    Structures of Aggregates Adsorbed on Substrate

    50 nm

    (a) (b)

    (c) (d)

    Aggregates containing 2, 4, 6, ~16 and ~20 molecules

    Molecules in the 6-membered aggregate in (b) are arranged in 2 rods with 4 and 2 molecules

    Molecules in larger aggregates (c) and (d) form a single layerconsisting of a few rods of 4-5 molecules

    Disordered aggregates also seen

    Ordered aggregates are in dynamic exchange with solution, disordered aggregates are “dead”

  • 6/21/2016

    16

    Structures of Aggregates Adsorbed on a Crystal

    Better visibility of cluster structure, likely due to stronger adsorption on structured surface of crystal

    100 nm

    896 s

    • Arrangement of molecules – same as in the bulk of a large crystal, intermolecular distance = 13 nm

    • Shape: 110 rods forming 1 or 2 (110) layers• Structure compatible with clusters seen on the substrate

    S.-T. Yau, P.G. Vekilov, Nature 406 (2000) 494.

    100 nm

    0 s

    Dynamics of Exchange with Solution

    Blue molecules: detach from cluster after frame recorded

    Red molecules: attach to cluster after previous frame recorded

    Clusters are in dynamic exchange with solution: these are not dead-end aggregates

    Net attachment frequency: 4 molecules / 43 s 0.1 attachment

    event / second 20 possible sites f = 0.005 s-1 per site

  • 6/21/2016

    17

    t = 0

    50 nm

    t = 384 s

    t = 640 s t = 1102 s

    Random Selection of Cluster Behavior

    Larger cluster dissolves over long times, smaller cluster adds and loses 1 molecule

    Seeming violation of Oswald ripeningrules?

    Oswald ripening describes evolution of large populations of crystallites

    Are These Precrystalline Clusters?Do they evolve into crystals?

    0 s100 nm 170 s 340 s

    0

    25

    -250 250 500

    Surface Coordinate [nm]

    Heigh

    t[nm

    ]

    • (111)-faceted microcrystal consisting of 3 layers formed in solution:

    - inclined with respect to underlying face- misfit upon incorporation by oncoming step

    • Contains ~ 140 molecules: slightly larger than the near critical clusters

    • Slowly grows• It has evolved from near-critical clusters similar to those above

    Do These Clusters Belong to the Crystal Nucleation Pathway?We have shown that the clusters:

    Form in the solution bulk

    Their structure is representative of the structure of the crystal nuclei

    100 nm

    100 nm

    385 s100 nm

    0 s100 nm

    Evolve into crystals

    Size is inversely proportional to supersaturation

    Grow or dissolve over longer time periods

    The net exchange frequency is very low, indicative of near equilibrium

    Are in dynamic exchange with the medium

    Have arrangement of molecules same as in crystal

    These are subcritical and near critical clusters in the nucleation pathway of ferritin crystals

    S ingle molecules rods planar nuclei crystals

    V

    IV

    IIIIII

    • All 5 steps are evidenced by the images above (110) layers stack to form a crystal faceted by (111) planes

    Suggested Nucleation Pathway

    S.‐T. Yau, P.G. Vekilov, Nature 406 (2000) 494

    Rather thanCompact structure of all subcritical clusters

  • 6/21/2016

    18

    Shape of Colloid Crystal Nuclei

    U. Gasser, E. Weeks, A. Schofield, P. Pusey, and D. Weitz, Science 292, 258 (2001).

    Why Would Spherical Molecules Form Linear and Planar Clusters?• If long-range repulsion acts, after a dimer is formed, the axis sites are

    preferred loci for attachment of third molecule, etc.A.J. Hurd, D.W. Shaefer PRL 54 (1985) 1043

    U

    r

    Long-rangerepulsive potential

    + +

    Do All Crystals Follow the Two-step Mechanism?Ferritin: nucleus size fully explained by classical theory

    S.‐T. Yau, P.G. Vekilov, Nature 406 (2000) 494

    50 nm

    = 1.6 kBTn* = 4 moleculesn* scales ~ with 1/, as per Gibbs-Thomson relation

    R. Kaischew and I. Stranski, Z. Phys. Chem. B35 (1937) 427

    — intermolecular bond energyS.‐T. Yau et al., PRL 85 (2000) 353

    n* =

    = 3.2 kBT

    at  = 1.6 kBT n* = 4

    2