48
Design Kit Class D Audio Amplifier Using IRS2092 1 All Rights Reserved Copyright (c) Bee Technologies Inc. 2009

Class d Audio Amplifier

Embed Size (px)

Citation preview

  • Design KitClass D Audio Amplifier Using IRS2092

    1 All Rights Reserved Copyright (c) Bee Technologies Inc. 2009

  • Slide #

    1. Specification........................................................................................................................................... Efficiency........................................................................................................................................... THD................................................................................................................................................... Frequency Response........................................................................................................................ Note: Po[W] vs. Vin[VPEAK] ...............................................................................................................

    2. Waveforms Evaluations..........................................................................................................................3. Simulated vs. Measured Waveforms......................................................................................................4. Voltage Gain GV...............................................................................................................................5. Self Oscillation Frequency......................................................................................................................6. Dead time...............................................................................................................................................7. Turn on transient....................................................................................................................................8. Components stress.................................................................................................................................9. Power loss in the MOSFETs...................................................................................................................

    Standard Model................................................................................................................................. Professional Model............................................................................................................................ Standard vs. Professional Model.......................................................................................................

    10.Short circuit vs. switching output shutdown............................................................................................11.Short Circuit Response...........................................................................................................................12.Capacitor Models........................................................................................... ........................................13.Simulated Performance of the circuit with different FETs......... ..............................................................14.Simulation Index ....................................................................................................................................

    34-56-78-9101112-1415-1617-1819-2122-2526-272829-3031-3334-3536-3839-4142-4445-4748

    Contents

    2 All Rights Reserved Copyright (c) Bee Technologies Inc. 2009

  • 1. Specifications

    3

    General Test Conditions Simulation folder

    Supply Voltage + 15V

    Load Impedance 8-4

    Self-Oscillating Frequency 400kHz

    Gain Setting 24dB

    Electrical DataOutput Power 25W (1kHz, 4)

    Efficiency 93% (25W, 4) [Efficiency]

    Audio PerformanceDistortion Less than 0.015%THD (1kHz, 4, 10W) [THD]

    Frequency Response : 20Hz~20kHz

    + 1dB (20 ~ 20000 Hz, 4, 2V Output) [FrqRsp]

    All Rights Reserved Copyright (c) Bee Technologies Inc. 2009

  • 4Condition : Po = 25[W], 4 Load

    AnalysisTime Domain (Transient)

    Run to time: 3msStart saving data after: 1msMaximum step size: 100n Skip the initial transient bias point calculation (SKIPBP)

    .OptionsRELTOL: 0.01VNTOL: 1.0uABSTOL: 1.0nCHGTOL: 0.01pGMIN: 1.0E-12ITL1: 500ITL2: 200ITL4: 10

    Specifications : Efficiency Evaluation Circuit

    TEST CONDITION:

    C41nF

    0

    +B15V

    +

    C18EKMG500ELL222MLP1S

    C51nF

    0

    R1810

    0

    R192.2k

    PARAMETERS:Po = 25WGv = 15.85RL = 4f in = 1kHz

    C14MMH250K684

    R4220

    C710uIC = 10

    R2

    3kR1100k

    C10 22uIC = 15

    LOAD{RL}

    OUT

    C922uIC = 12.85

    MUR120RLGD2

    IN

    VS

    R1310

    R3

    47k

    L17G14N-220-RB

    VB

    R171

    R203.3k

    0

    R218.2k

    R8

    820

    +B

    VAA

    0

    VREF

    R6 8.2k

    R71.2k

    CSD

    OCSET

    IN-

    IC1

    IRS2092

    VAA

    GND

    IN-

    COMP

    CSD

    VSS

    VREF

    OCSET DT

    COM

    LO

    VCC

    VS

    HO

    VB

    CSH

    VCC

    0

    DT

    VSS 0

    COMP

    R5

    820

    -B

    HO

    R15

    10

    LO

    VR175

    -B-15V

    0

    C210uIC = 7

    C810uIC = 7

    R1110k

    V1

    FREQ = {f in}VAMPL = {1.4142*SQRT(Po*RL)/Gv }VOFF = 0

    VS

    CSH

    C13MMC400K104

    0

    C12MMC250K474

    R16

    10

    C11RPER11H104K2K1A01B

    C15RPER11H104K2K1A01B

    0

    R144.7

    MUR120RLGD1

    0

    R94.7k

    + C16EKMG500ELL222MLP1S

    C17RPER11H104K2K1A01B

    R1210k

    C3RPER11H103K2K1A01B

    +C1

    EKMG500ELL100ME11DC6AMZ0050J102

    FET1IRFIZ24N

    FET2IRFIZ24N

    Ls120nH

    1

    2

    Ls220nH

    1

    2

    Ls320nH

    1

    2

    Ls420nH

    1

    2

    Ls520nH

    12

    All Rights Reserved Copyright (c) Bee Technologies Inc. 2009

  • 5PSUPPLY [W]

    PO [W]

    %Efficiency

    Specifications : Efficiency Simulation Result

    All Rights Reserved Copyright (c) Bee Technologies Inc. 2009

  • C41nF

    0

    +B15V

    +

    C18EKMG500ELL222MLP1S

    C51nF

    C61n

    0

    R1810

    0

    R192.2k

    C1 10u

    PARAMETERS:Po = 10Gv = 15.85RL = 4f in = 1k

    C14MMH250K684

    R4220

    C710uIC = 10

    R2

    3kR1100k

    C10 22uIC = 15

    FET1IRFIZ24N

    FET2IRFIZ24N

    TEST CONDITION:

    LOAD{RL}

    OUT

    C922uIC = 12.85

    MUR120RLGD2

    IN

    VS

    R1310

    R3

    47k

    L17G14N-220-RB

    VB

    R171

    R203.3k

    0

    R218.2k

    R8

    820

    +B

    VAA

    0

    VREF

    R6 8.2k

    R71.2k

    OCSET

    CSD

    IN-

    U5

    IRS2092

    VAA

    GND

    IN-

    COMP

    CSD

    VSS

    VREF

    OCSET DT

    COM

    LO

    VCC

    VS

    HO

    VB

    CSH

    VCC

    0

    DT

    VSS 0

    COMP

    R5

    820

    HO

    -B

    R15

    10

    LO

    VR175

    -B-15V

    0

    C210uIC = 7

    C810uIC = 7

    R1110k

    V1

    FREQ = 1kVAMPL = {1.4142*SQRT(Po*RL)/Gv }VOFF = 0

    CSH

    VS

    C13MMC400K104

    0

    C12MMC250K474

    R16

    10

    C11RPER11H104K2K1A01B

    C15RPER11H104K2K1A01B

    0Ls120nH

    1

    2

    Ls220nH

    1

    2

    Ls320nH

    1

    2

    Ls420nH

    1

    2

    R144.7

    MUR120RLGD1

    0

    R94.7k

    + C16EKMG500ELL222MLP1S

    C310uIC = 14

    Ls520nH

    12

    C17RPER11H104K2K1A01B

    R1210k

    6

    Condition : fin = 1kHz, Po = 10[W],

    4 Load

    AnalysisTime Domain (Transient)

    Run to time: 3msStart saving data after: 0sMaximum step size: 100n Skip the initial transient bias point calculation (SKIPBP)

    Output File Options... Perform Fourier AnalysisCenter Frequency: 1khzOutput Variables: V(OUT)

    .OptionsRELTOL: 0.01VNTOL: 1.0uABSTOL: 1.0nCHGTOL: 0.01pGMIN: 1.0E-12ITL1: 500ITL2: 200ITL4: 10

    Specifications : THD Evaluation Circuit

    All Rights Reserved Copyright (c) Bee Technologies Inc. 2009

  • 7HARMONIC FREQUENCY FOURIER NORMALIZED PHASE NORMALIZED

    NO (HZ) COMPONENT COMPONENT (DEG) PHASE

    1 1.00E+03 8.81E+00 1.00E+00 1.79E+02 0.00E+00

    2 2.00E+03 4.62E-04 5.25E-05 4.18E+01 -3.15E+02

    3 3.00E+03 2.78E-04 3.16E-05 8.49E+01 -4.51E+02

    4 4.00E+03 3.23E-04 3.67E-05 6.91E+01 -6.45E+02

    5 5.00E+03 3.73E-04 4.23E-05 8.66E+01 -8.06E+02

    6 6.00E+03 6.69E-04 7.60E-05 6.10E+01 -1.01E+03

    7 7.00E+03 2.85E-04 3.24E-05 8.09E+01 -1.17E+03

    8 8.00E+03 4.32E-04 4.91E-05 7.17E+01 -1.36E+03

    9 9.00E+03 5.95E-04 6.76E-05 2.70E+01 -1.58E+03

    TOTAL HARMONIC DISTORTION = 1.438206E-02 PERCENT

    VOUT 0.0144%THD

    Specifications : THD Simulation Result

    All Rights Reserved Copyright (c) Bee Technologies Inc. 2009

  • 8Condition : 20 ~ 20000 Hz, 4

    Load, 2V Output

    AnalysisTime Domain (Transient)

    Run to time: 2msStart saving data after: 0msMaximum step size: 100n Skip the initial transient bias point calculation (SKIPBP)

    Parametric Sweep Global parameter

    Parameter name: RL Value list: 4, 8

    .OptionsRELTOL: 0.01VNTOL: 1.0uABSTOL: 1.0nCHGTOL: 0.01pGMIN: 1.0E-12ITL1: 500ITL2: 200ITL4: 10

    Specifications : Frequency Response Evaluation Circuit

    0

    C41nF

    +B15V

    +

    C18EKMG500ELL222MLP1S

    C51nF

    0

    R1810

    0

    R192.2k

    C14MMH250K684

    R4220

    C710uIC = 9.8

    R23k

    R1100k

    C10 22uIC = 15.11

    LOAD{RL}

    OUT

    C922uIC = 8.499

    MUR120RLGD2

    IN

    VS

    R1310

    R3

    47k

    L17G14N-220-RB

    VB

    R171

    0

    R203.3k

    R218.2k

    R8

    820

    +B

    VAA

    0

    VREF

    R6 8.2k

    R71.2k

    OCSET

    CSD

    IN-

    U5

    IRS2092

    VAA

    GND

    IN-

    COMP

    CSD

    VSS

    VREF

    OCSET DT

    COM

    LO

    VCC

    VS

    HO

    VB

    CSH

    VCC

    0

    DT

    VSS 0

    COMP

    R5

    820

    HO

    -B

    R15

    10

    LO

    VR175

    -B-15V

    0

    C210uIC = 7

    C810uIC = 7

    R1110k

    V1

    FREQ = {f in}VAMPL = { 1.4142*VOUT/Gv }VOFF = 0

    CSH

    VS

    C13MMC400K104

    0

    C12MMC250K474

    R16

    10

    C11RPER11H104K2K1A01B

    C15RPER11H104K2K1A01B

    0Ls120nH

    1

    2

    Ls220nH

    1

    2

    Ls320nH

    1

    2

    Ls420nH

    1

    2

    R144.7

    MUR120RLGD1

    0

    R94.7k

    + C16EKMG500ELL222MLP1S

    Ls520nH

    12

    C17RPER11H104K2K1A01B

    R1210k

    PARAMETERS:

    RL = 8

    VOUT = 2Gv = 15.85

    f in = 20k

    +

    C1EKMG500ELL100ME11D

    C6AMZ0050J102C3

    RPER11H103K2K1A01B

    TEST CONDITION:

    FET1IRFIZ24N

    FET2IRFIZ24N

    All Rights Reserved Copyright (c) Bee Technologies Inc. 2009

  • 9VOUT+1dB (8 Load @ 20kHz)

    VOUT - 0.4dB (4 Load @ 20kHz)

    Specifications : Frequency Response Simulation Result

    All Rights Reserved Copyright (c) Bee Technologies Inc. 2009

  • 10

    Po [W] = power output Rload [] = Load resistance GV = Amplifier voltage gain

    [] = 1.4142

    Note : PO [W] vs. VIN [VPEAK]

    All Rights Reserved Copyright (c) Bee Technologies Inc. 2009

  • +-SPEAKERF120A

    FET1IRFIZ24N

    FET2IRFIZ24N

    +

    C1EKMG500ELL100ME11D

    C6AMZ0050J102C3

    RPER11H103K2K1A01B

    V1

    FREQ = {f in}VAMPL = { 1.4142*VOUT/Gv }VOFF = 0

    0

    C41nF

    +B15V

    +

    C18EKMG500ELL222MLP1S

    C51nF

    0

    R1810

    0

    R192.2k

    C14MMH250K684

    R4220

    C710uIC = 10

    R23k

    R1100k

    C10 22uIC = 15

    OUT

    C922uIC = 12.85

    MUR120RLGD2

    VS

    INR1310

    R3

    47k

    L17G14N-220-RB

    VB

    R171

    0

    R203.3k

    R218.2k

    R8

    820

    +B

    VREF

    VAA

    0

    R6 8.2k

    R71.2k

    CSD

    OCSET

    IN-

    IC1

    IRS2092

    VAA

    GND

    IN-

    COMP

    CSD

    VSS

    VREF

    OCSET DT

    COM

    LO

    VCC

    VS

    HO

    VB

    CSH

    VCC

    0

    DT

    VSS 0

    COMP

    HO

    R5

    820

    -B

    R15

    10

    LO

    VR175

    -B-15V

    0

    C210uIC = 7

    C810uIC = 7

    R1110k

    CSH

    VS

    C13MMC400K104

    0

    C12MMC250K474

    R16

    10

    C11RPER11H104K2K1A01B

    C15RPER11H104K2K1A01B

    0Ls120nH

    1

    2

    Ls220nH

    1

    2

    Ls320nH

    1

    2

    Ls420nH

    1

    2

    R144.7

    MUR120RLGD1

    0

    R94.7k

    + C16EKMG500ELL222MLP1S

    Ls520nH

    12

    C17RPER11H104K2K1A01B

    R1210k

    PARAMETERS:VOUT = 2Gv = 15.85f in = 1k

    V

    V

    V

    V V

    V

    11

    Class D amplifier circuit are simulated and compared with measured waveforms from oscilloscope (Tektronix: TDS3054B)

    2. Waveforms Evaluation

    All Rights Reserved Copyright (c) Bee Technologies Inc. 2009

  • 12

    OUT

    VS

    Simulated Measured

    3. Simulated vs. Measured Waveform (1/3)

    All Rights Reserved Copyright (c) Bee Technologies Inc. 2009

  • 13

    HO

    LO

    Simulated Measured

    3. Simulated vs. Measured Waveform (2/3)

    All Rights Reserved Copyright (c) Bee Technologies Inc. 2009

  • 14

    COMP

    Simulated Measured

    3. Simulated vs. Measured Waveform (3/3)

    All Rights Reserved Copyright (c) Bee Technologies Inc. 2009

  • +C1EKMG500ELL100ME11D

    C6AMZ0050J102C3

    RPER11H103K2K1A01B

    FET1IRFIZ24N

    FET2IRFIZ24N

    +

    -SPEAKERF120A

    V1

    FREQ = {Freq}VAMPL = 0.14142VOFF = 0

    0

    C41nF

    +B15V

    +

    C18EKMG500ELL222MLP1S

    C51nF

    0

    R1810

    0

    R192.2k

    C14MMH250K684

    R4220

    C710uIC = 10

    R2

    {RIN}R1100k

    C10 22uIC = 15

    OUT

    C922uIC = 12.85

    VS

    MUR120RLGD2

    INR1310

    R3

    47k

    L17G14N-220-RB

    VB

    R171

    0

    R203.3k

    R218.2k

    R8

    820

    +B

    VAA

    0

    VREF

    R6 8.2k

    CSD

    R71.2k

    OCSET

    IN-

    IC1

    IRS2092

    VAA

    GND

    IN-

    COMP

    CSD

    VSS

    VREF

    OCSET DT

    COM

    LO

    VCC

    VS

    HO

    VB

    CSH

    VCC

    0

    DT

    VSS

    COMP

    0

    HO

    R5

    820

    -B

    LOR15

    10

    VR175

    -B-15V

    0

    C210uIC = 7

    C810uIC = 7

    R1110k

    VS

    CSH

    C13MMC400K104

    0

    C12MMC250K474

    R16

    10

    C11RPER11H104K2K1A01B

    0

    C15RPER11H104K2K1A01B

    Ls120nH

    1

    2

    Ls220nH

    1

    2

    Ls320nH

    1

    2

    Ls420nH

    1

    2

    R144.7

    0

    MUR120RLGD1

    R94.7k

    + C16EKMG500ELL222MLP1S

    Ls520nH

    12

    C17RPER11H104K2K1A01B

    R1210k

    PARAMETERS:

    Freq = 1kRIN = 3k

    15

    RIN =2.4 ,3kRFB =47k =

    AnalysisTime Domain (Transient)

    Run to time: 1msStart saving data after: 100nMaximum step size: 100n Skip the initial transient bias point calculation (SKIPBP)

    Sweep variable Global parameter: RIN Value list: 2.4k, 3k

    .OptionsRELTOL: 0.01VNTOL: 1.0uABSTOL: 1.0nCHGTOL: 0.01pGMIN: 1.0E-12ITL1: 500ITL2: 200ITL4: 10

    4. Voltage gain of the amplifier GV

    All Rights Reserved Copyright (c) Bee Technologies Inc. 2009

  • 16

    GV = 26dBGV = 24dB

    4. Voltage gain of the amplifier GV

    All Rights Reserved Copyright (c) Bee Technologies Inc. 2009

  • +-SPEAKERF120A

    FET1IRFIZ24N

    FET2IRFIZ24N

    +

    C1EKMG500ELL100ME11D

    C6AMZ0050J102C3

    RPER11H103K2K1A01B

    V1

    FREQ = 1kVAMPL = 0VOFF = 0

    0

    C41nF

    +B15V

    +

    C18EKMG500ELL222MLP1S

    C51nF

    0

    R1810

    0

    R192.2k

    C14MMH250K684

    R4220

    C710uIC = 10

    R23k

    R1100k

    C10 22uIC = 15

    OUT

    C922uIC = 12.85

    MUR120RLGD2

    VS

    INR1310

    R3

    47k

    L17G14N-220-RB

    VB

    R171

    0

    R203.3k

    R218.2k

    R8

    820

    +B

    VREF

    VAA

    0

    R6 8.2k

    R71.2k

    CSD

    OCSET

    IN-

    IC1

    IRS2092

    VAA

    GND

    IN-

    COMP

    CSD

    VSS

    VREF

    OCSET DT

    COM

    LO

    VCC

    VS

    HO

    VB

    CSH

    VCC

    0

    DT

    VSS 0

    COMP

    HO

    R5

    820

    -B

    R15

    10

    LO

    VR175

    -B-15V

    0

    C210uIC = 7

    C810uIC = 7

    R1110k

    CSH

    VS

    C13MMC400K104

    0

    C12MMC250K474

    R16

    10

    C11RPER11H104K2K1A01B

    C15RPER11H104K2K1A01B

    0Ls120nH

    1

    2

    Ls220nH

    1

    2

    Ls320nH

    1

    2

    Ls420nH

    1

    2

    R144.7

    MUR120RLGD1

    0

    R94.7k

    + C16EKMG500ELL222MLP1S

    Ls520nH

    12

    C17RPER11H104K2K1A01B

    R1210k

    17

    Self oscillating frequency is design by setting the following items Integration capacitors. Integration resistor.

    Integration capacitors:C4=C5

    Integration resistor:R4+VR1

    AnalysisTime Domain (Transient)

    Run to time: 1msStart saving data after: 0.5mMaximum step size: 40n Skip the initial transient bias point calculation (SKIPBP)

    .OptionsRELTOL: 0.001VNTOL: 1.0uABSTOL: 1.0nCHGTOL: 0.01pGMIN: 1.0E-12ITL1: 500ITL2: 200ITL4: 10

    5. Self-Oscillating Frequency

    All Rights Reserved Copyright (c) Bee Technologies Inc. 2009

  • 18

    Self-oscillation frequency= 400kHz (Simulated)

    Self-oscillation frequency= 400kHz (Measured)

    Simulated Measured

    OUT OUT

    VS VS

    5. Self-Oscillating Frequency

    All Rights Reserved Copyright (c) Bee Technologies Inc. 2009

  • +-SPEAKERF120A

    FET1IRFIZ24N

    FET2IRFIZ24N

    +

    C1EKMG500ELL100ME11D

    C6AMZ0050J102C3

    RPER11H103K2K1A01B

    V1

    FREQ = 1kVAMPL = 0VOFF = 0

    0

    C41nF

    +B15V

    +

    C18EKMG500ELL222MLP1S

    C51nF

    0

    R1810

    0

    R192.2k

    C14MMH250K684

    R4220

    C710uIC = 10

    R23k

    R1100k

    C10 22uIC = 15

    OUT

    C922uIC = 12.85

    MUR120RLGD2

    VS

    INR1310

    R3

    47k

    L17G14N-220-RB

    VB

    R171

    0

    R218.2k

    R203.3k

    R8

    820

    +B

    VREF

    VAA

    0

    R6 8.2k

    R71.2k

    CSD

    OCSET

    IN-

    IC1

    IRS2092

    VAA

    GND

    IN-

    COMP

    CSD

    VSS

    VREF

    OCSET DT

    COM

    LO

    VCC

    VS

    HO

    VB

    CSH

    VCC

    0

    DT

    VSS 0

    COMP

    HO

    R5

    820

    -B

    R15

    10

    LO

    VR175

    -B-15V

    0

    C210uIC = 7

    C810uIC = 7

    R1110k

    CSH

    VS

    C13MMC400K104

    0

    C12MMC250K474

    R16

    10

    C11RPER11H104K2K1A01B

    C15RPER11H104K2K1A01B

    0Ls120nH

    1

    2

    Ls220nH

    1

    2

    Ls320nH

    1

    2

    Ls420nH

    1

    2

    R144.7

    MUR120RLGD1

    0

    R94.7k

    +

    C16EKMG500ELL222MLP1S

    Ls520nH

    12

    C17RPER11H104K2K1A01B

    R1210k

    6. Dead-time

    19

    Dead-time Mode R20 R21

    DT1 (25ns) 3.3k 8.2k

    DT2 (40ns) 5.6k 4.7k

    DT3 (65ns) 8.2k 3.3k

    DT4 (105ns) - < 10k

    V(DT) Voltage Divider

    AnalysisTime Domain (Transient)

    Run to time: 1msStart saving data after: 0.5mMaximum step size: 40n Skip the initial transient bias point calculation (SKIPBP)

    .OptionsRELTOL: 0.001VNTOL: 1.0uABSTOL: 1.0nCHGTOL: 0.01pGMIN: 1.0E-12ITL1: 500ITL2: 200ITL4: 10

    All Rights Reserved Copyright (c) Bee Technologies Inc. 2009

  • Dead-time DT1(25ns)

    20

    DT1(25ns)

    DT1(25ns)

    Spike voltage

    All Rights Reserved Copyright (c) Bee Technologies Inc. 2009

  • Dead-time DT3(65ns)

    21

    DT3(65ns)

    DT3(65ns)

    Spike voltages(Decrease for longer dead time)

    All Rights Reserved Copyright (c) Bee Technologies Inc. 2009

  • R100.01m

    +

    C1EKMG500ELL100ME11D

    C6AMZ0050J102

    C3RPER11H103K2K1A01B

    C222uIC = 0

    FET1IRFIZ24N

    FET2IRFIZ24N

    C822uIC = 0

    C922uIC = 0

    C1022uIC = 0

    +

    -SPEAKERF120A

    V1

    FREQ = 1kVAMPL = 0VOFF = 0

    0

    C41nF

    +B15V

    C710uIC = 0

    +

    C18EKMG500ELL222MLP1S

    C51nF

    0

    R1810

    0

    R192.2k

    C14MMH250K684

    R4220

    R23k

    R1100k

    OUT

    VS

    MUR120RLGD2

    INR1310

    R3

    47k

    L17G14N-220-RB

    VB

    R171

    0

    R203.3k

    R218.2k

    R8

    820

    +B

    VAA

    0

    VREF

    R6 8.2k

    CSD

    R71.2k

    OCSET

    IN-

    IC1

    IRS2092

    VAA

    GND

    IN-

    COMP

    CSD

    VSS

    VREF

    OCSET DT

    COM

    LO

    VCC

    VS

    HO

    VB

    CSH

    VCC

    0

    DT

    VSS 0

    COMP

    HO

    R5

    820

    -B

    LOR15

    10

    VR175

    -B-15V

    0

    R1110k

    CSH

    VS

    C13MMC400K104

    0

    C12MMC250K474

    R16

    10

    C11RPER11H104K2K1A01B

    0

    C15RPER11H104K2K1A01B

    Ls120nH

    1

    2

    Ls220nH

    1

    2

    Ls320nH

    1

    2

    Ls420nH

    1

    2

    R144.7

    0

    MUR120RLGD1

    R94.7k

    + C16EKMG500ELL222MLP1S

    Ls520nH

    12

    C17RPER11H104K2K1A01B

    R1210k

    All Rights Reserved Copyright (c) Bee Technologies Inc. 200922

    C7: 10u, 5u, and 3.3u F

    AnalysisTime Domain (Transient)

    Run to time: 975msStart saving data after: 100nMaximum step size: 100u Skip the initial transient bias point calculation (SKIPBP)

    .OptionsRELTOL: 0.01VNTOL: 1.0uABSTOL: 1nCHGTOL: 0.01pGMIN: 1.0E-12ITL1: 500ITL2: 200ITL4: 10

    7. Turn-on transient Start-up sequencing is achieved through the charging of the CSD voltage (C7). Simulation will

    show how capacitors are charged to complete the sequence for each capacitance value.

  • 23

    V(VAA)

    V(VSS)

    V(CSD)

    V(LO)

    V(HO)

    V(VCC,COM)

    V(VB,VS)

    Vth1___

    Vth2___

    Class D Startup@ 0.976second.

    Turn-on transient: C7 = 10uF

    All Rights Reserved Copyright (c) Bee Technologies Inc. 2009

  • 24

    V(VAA)

    V(VSS)

    V(CSD)

    V(LO)

    V(HO)

    V(VCC,COM)

    V(VB,VS)

    Vth1

    Vth2

    Class D Startup@ 0.488second.

    Turn-on transient: C7 = 5uF

    All Rights Reserved Copyright (c) Bee Technologies Inc. 2009

  • All Rights Reserved Copyright (c) Bee Technologies Inc. 200925

    V(VAA)

    V(VSS)

    V(CSD)

    V(LO)

    V(HO)

    V(VCC,COM)

    V(VB,VS)

    Vth1

    Vth2

    Class D Startup@ 0.320second.

    Turn-on transient: C7 = 3.3uF

  • This simulation shows how voltage and current are applied to each components at the maximum load condition (25W,4ohm).

    26

    8. Components stress

    FET1IRFIZ24N

    FET2IRFIZ24N

    +

    C1EKMG500ELL100ME11D

    C6AMZ0050J102C3

    RPER11H103K2K1A01B

    0

    C41nF

    +B15V

    +

    C18EKMG500ELL222MLP1S

    C51nF

    0

    R1810

    0

    R192.2k

    C14MMH250K684

    R4220

    C710uIC = 9.81

    R23k

    R1100k

    C10 22uIC = 15.5

    OUT

    C922uIC = 12.5

    MUR120RLGD2

    VS

    INR1310

    R3

    47k

    L17G14N-220-RB

    VB

    R171

    0

    R203.3k

    R218.2k

    R8

    820

    +B

    VREF

    VAA

    0

    R6 8.2k

    R71.2k

    CSD

    OCSET

    IN-

    IC1

    IRS2092

    VAA

    GND

    IN-

    COMP

    CSD

    VSS

    VREF

    OCSET DT

    COM

    LO

    VCC

    VS

    HO

    VB

    CSH

    VCC

    0

    DT

    VSS 0

    COMP

    HO

    R5

    820

    -B

    R15

    10

    LO

    VR175

    -B-15V

    0

    C210uIC = 7

    C810uIC = 7

    R1110k

    CSH

    VS

    C13MMC400K104

    0

    C12MMC250K474

    R16

    10

    C11RPER11H104K2K1A01B

    C15RPER11H104K2K1A01B

    0Ls120nH

    1

    2

    Ls220nH

    1

    2

    Ls320nH

    1

    2

    Ls420nH

    1

    2

    R144.7

    MUR120RLGD1

    0

    R94.7k

    + C16EKMG500ELL222MLP1S

    Ls520nH

    12

    C17RPER11H104K2K1A01B

    R1210k

    PARAMETERS:Po = 25Gv = 15.85RL = 4

    LOAD{RL}

    V1

    FREQ = 1kVAMPL = {1.4142*SQRT(Po*RL)/Gv }VOFF = 0

    All Rights Reserved Copyright (c) Bee Technologies Inc. 2009

  • All Rights Reserved Copyright (c) Bee Technologies Inc. 200927

    D1

    D2

    FET1

    FET2

    L1

    4Load

    Components Stress Simulated Result forDiodes, FETs, Inductor, and 4Load

  • +C1EKMG500ELL100ME11D

    C6AMZ0050J102C3

    RPER11H103K2K1A01B

    C17RPER11H104K2K1A01B

    +

    C18EKMG500ELL222MLP1S

    FET1IRFIZ24N

    FET2IRFIZ24N

    +

    -SPEAKERF120A

    0

    C41nF

    +B15V

    C51nF

    0

    R1810

    0

    R192.2k

    C14MMH250K684

    R4220

    C710uIC = 10

    R23k

    R1100k

    C10 22uIC = 15

    OUT

    C922uIC = 12.85

    MUR120RLGD2

    VS

    INR1310

    R3

    47k

    L17G14N-220-RB

    VB

    R171

    0

    R203.3k

    R218.2k

    R8

    820

    +B

    VREF

    VAA

    0

    R6 8.2k

    R71.2k

    CSD

    OCSET

    IN-

    IC1

    IRS2092

    VAA

    GND

    IN-

    COMP

    CSD

    VSS

    VREF

    OCSET DT

    COM

    LO

    VCC

    VS

    HO

    VB

    CSH

    V1

    FREQ = 1kVAMPL = 0VOFF = 0

    VCC

    0

    DT

    VSS 0

    COMP

    HO

    R5

    820

    -B

    R15

    10

    LO

    VR175

    -B-15V

    0

    C210uIC = 7

    C810uIC = 7

    R1110k

    CSH

    VS

    C13MMC400K104

    0

    C12MMC250K474

    R16

    10

    C11RPER11H104K2K1A01B

    C15RPER11H104K2K1A01B

    0Ls120nH

    1

    2

    Ls220nH

    1

    2

    Ls320nH

    1

    2

    Ls420nH

    1

    2

    R144.7

    MUR120RLGD1

    0

    R94.7k

    + C16EKMG500ELL222MLP1S

    Ls520nH

    12

    R1210k

    The total power loss in MOSFET are given by:PTOTAL = PSW+Pcond+Pgd

    28

    9. Power losses in the MOSFETs

    AnalysisTime Domain (Transient)

    Run to time: 500usStart saving data after: 100nMaximum step size: 2n Skip the initial transient bias point calculation (SKIPBP)

    .OptionsRELTOL: 0.003VNTOL: 1.0mABSTOL: 100nCHGTOL: 0.01pGMIN: 1.0E-12ITL1: 500ITL2: 200ITL4: 20

    All Rights Reserved Copyright (c) Bee Technologies Inc. 2009

  • Power losses FET1(Standard Model)

    29

    FET1: ID and VDS are simulated and compared with scope (Tektronix: TDS3054B) waveforms PSW ,Pcond ,and Pgd are calculated by PSpice.

    VDS, ID (Measured)

    -VDS

    ID

    -VDS

    ID

    Power loss (VDS*ID)

    PSWPgd Pcond

    VDS, ID (Simulated)

    All Rights Reserved Copyright (c) Bee Technologies Inc. 2009

  • Power losses FET2(Standard Model)

    30

    FET2: ID and VDS are simulated and compared with scope (Tektronix: TDS3054B) waveforms PSW ,Pcond ,and Pgd are calculated by PSpice.

    VDS

    ID

    VDS

    ID

    Power loss (VDS*ID)

    PSWPgd Pcond

    VDS, ID (Measured)VDS, ID (Simulated)

    All Rights Reserved Copyright (c) Bee Technologies Inc. 2009

  • FET1MIRFIZ24N_P

    C17RPER11H104K2K1A01B

    +

    C18EKMG500ELL222MLP1S

    FET2MIRFIZ24N_P

    D3DIRFIZ24N

    D4DIRFIZ24N

    +

    -SPEAKERF120A

    0

    C41nF

    +B15V

    C51nF

    0

    R1810

    0

    R192.2k

    C14MMH250K684

    R4220

    C710uIC = 10

    R23k

    R1100k

    C10 22uIC = 15

    OUT

    C922uIC = 12.85

    MUR120RLGD2

    VS

    INR1310

    R3

    47k

    L17G14N-220-RB

    VB

    R171

    0

    R203.3k

    R218.2k

    R8

    820

    +B

    VREF

    VAA

    0

    R6 8.2k

    R71.2k

    CSD

    OCSET

    IN-

    IC1

    IRS2092

    VAA

    GND

    IN-

    COMP

    CSD

    VSS

    VREF

    OCSET DT

    COM

    LO

    VCC

    VS

    HO

    VB

    CSH

    V1

    FREQ = 1kVAMPL = 0VOFF = 0

    VCC

    0

    DT

    VSS 0

    COMP

    HO

    R5

    820

    -B

    R15

    10

    LO

    VR175

    -B-15V

    0

    C210uIC = 7

    C810uIC = 7

    R1110k

    CSH

    VS

    C13MMC400K104

    0

    C12MMC250K474

    R16

    10

    C11RPER11H104K2K1A01B

    C15RPER11H104K2K1A01B

    0Ls120nH

    1

    2

    Ls220nH

    1

    2

    Ls320nH

    1

    2

    Ls420nH

    1

    2

    R144.7

    MUR120RLGD1

    0

    R94.7k

    + C16EKMG500ELL222MLP1S

    Ls520nH

    12

    R1210k

    +

    C1EKMG500ELL100ME11D

    C6AMZ0050J102C3

    RPER11H103K2K1A01B

    The total power loss in MOSFET are given by:PTOTAL = PSW+Pcond+Pgd

    31

    Power losses in the MOSFETs (Professional model)

    AnalysisTime Domain (Transient)

    Run to time: 500usStart saving data after: 100nMaximum step size: 2n Skip the initial transient bias point calculation (SKIPBP)

    .OptionsRELTOL: 0.001VNTOL: 1.0mABSTOL: 100nCHGTOL: 0.01pGMIN: 1.0E-12ITL1: 500ITL2: 200ITL4: 10

  • Power losses FET1(Professional Model)

    32

    FET1: ID and VDS are simulated and compared with scope (Tektronix: TDS3054B) waveforms PSW ,Pcond ,and Pgd are calculated by PSpice.

    VDS, ID (Measured)

    -VDS

    ID

    -VDS

    ID

    Power loss (VDS*ID)

    PSWPgd Pcond

    VDS, ID (Simulated)

    All Rights Reserved Copyright (c) Bee Technologies Inc. 2009

  • Power losses FET2(Professional Model)

    33

    FET2: ID and VDS are simulated and compared with scope (Tektronix: TDS3054B) waveforms PSW ,Pcond ,and Pgd are calculated by PSpice.

    VDS

    ID

    VDS

    ID

    Power loss (VDS*ID)

    PSWPgd Pcond

    VDS, ID (Measured)VDS, ID (Simulated)

    All Rights Reserved Copyright (c) Bee Technologies Inc. 2009

  • Gate charge characteristics in Professional model has more accurate results than standard model.

    FET: IRFIZ24N Qg Standard vs. Professional Model

    34

    IRFIZ24N (Standard)

    IRFIZ24N (Professional)

    VDD=44V,ID=10A,VGS=10V

    Measurement Simulation Error (%)

    Standard Model: Qg(nc) 13.400 12.543 -6.396Professional Model: Qg(nc) 13.400 13.409 0.067

    All Rights Reserved Copyright (c) Bee Technologies Inc. 2009

  • Simulated Pgd ,Standard model compared to Professional model ,shows some different result caused by different Qg characteristics of the models.

    35

    IRFIZ24N (Standard)

    IRFIZ24N (Professional)

    Professional model requires more simulation time and might cause some convergence error.

    FET: IRFIZ24N Pgd Standard vs. Professional Model

    All Rights Reserved Copyright (c) Bee Technologies Inc. 2009

  • 36

    AnalysisTime Domain (Transient)

    Run to time: 4msStart saving data after: 100nMaximum step size: 100n Skip the initial transient bias point calculation (SKIPBP)

    .OptionsRELTOL: 0.01VNTOL: 1.0uABSTOL: 1nCHGTOL: 0.01pGMIN: 1.0E-12ITL1: 500ITL2: 200ITL4: 10

    Short circuit

    10. Short circuit vs. switching output shutdown This simulation will show how the IRS2092 responds to a short circuit condition.

    Short circuit at 2.25ms.

    +

    -SPEAKERF120A

    0

    C41nF

    +B15V

    +

    C18EKMG500ELL222MLP1S

    0

    C51nF

    R1810

    0

    R192.2k

    C14MMH250K684

    R4220

    C710uIC = 14

    R23k

    R1100k

    C10 22uIC = 15

    OUT

    C922uIC = 12.85

    VS

    MUR120RLGD2

    INR1310

    R3

    47k

    VB

    L17G14N-220-RB

    R171

    0

    R203.3k

    R218.2k

    R8

    820

    +B

    VAA

    VREF

    0

    R6 8.2k

    CSD

    R71.2k

    IN-

    OCSET

    IC1

    IRS2092

    VAA

    GND

    IN-

    COMP

    CSD

    VSS

    VREF

    OCSET DT

    COM

    LO

    VCC

    VS

    HO

    VB

    CSH

    VCC

    0

    DT

    VSS

    COMP

    0

    HO

    R5

    820

    LO

    -B

    R15

    10

    VR175

    -B-15V

    0

    C210uIC = 7

    C810uIC = 7

    CSH

    R1110k

    VS

    C13MMC400K104

    0

    C12MMC250K474

    R16

    10

    C11RPER11H104K2K1A01B

    0

    C15RPER11H104K2K1A01B

    Ls120nH

    1

    2

    Ls220nH

    1

    2

    Ls320nH

    1

    2

    Ls420nH

    1

    2

    R144.7

    0

    MUR120RLGD1

    R94.7k

    + C16EKMG500ELL222MLP1S

    Ls520nH

    12

    C17RPER11H104K2K1A01B

    R1210k

    PARAMETERS:Po = 12.5Gv = 15.85RL = 8tshrt = 2.25m

    V1

    FREQ = 1kVAMPL = {1.4142*SQRT(Po*RL)/Gv }VOFF = 0

    +

    C1EKMG500ELL100ME11D

    C6AMZ0050J102C3

    RPER11H103K2K1A01B+-

    +

    -

    S1

    S

    VON = 1.0VVOFF = 0.0V

    V2

    TD = {tshrt}

    TF = 10nPW = 1PER = 100

    V1 = 0

    TR = 10n

    V2 = 5

    FET1IRFIZ24N

    FET2IRFIZ24N

    0

    All Rights Reserved Copyright (c) Bee Technologies Inc. 2009

  • Short Circuit vs. Switching Output Shutdown (Positive Side)

    37

    Delay between short circuit and switching output shutdown

    Load (Speaker) currentVS pin

    CSD pin

    V(Speaker)

    All Rights Reserved Copyright (c) Bee Technologies Inc. 2009

  • Short Circuit vs. Switching Output Shutdown (Negative Side)

    38

    Delay between short circuit and switching output shutdown

    Load (Speaker) currentVS pin

    CSD pin

    V(Speaker)

    All Rights Reserved Copyright (c) Bee Technologies Inc. 2009

  • +C1EKMG500ELL100ME11D

    C6AMZ0050J102C3

    RPER11H103K2K1A01B

    +

    -SPEAKERF120A

    0

    C41nF

    +B15V

    +

    C18EKMG500ELL222MLP1S

    C51nF

    0

    R1810

    0

    R192.2k

    C14MMH250K684

    R4220

    C710uIC = 14

    R2

    3kR1100k

    C10 22uIC = 15

    OUT

    C922uIC = 12.85

    VS

    MUR120RLGD2

    INR1310

    R3

    47k

    L17G14N-220-RB

    VB

    R171

    0

    R203.3k

    R218.2k

    R8

    820

    +B

    VREF

    VAA

    0

    R6 8.2k

    CSD

    R71.2k

    IN-

    OCSET

    IC1

    IRS2092

    VAA

    GND

    IN-

    COMP

    CSD

    VSS

    VREF

    OCSET DT

    COM

    LO

    VCC

    VS

    HO

    VB

    CSH

    VCC

    0

    DT

    VSS 0

    COMP

    HO

    R5

    820

    LO

    -B

    R15

    10

    VR175

    -B-15V

    0

    C210uIC = 7

    C810uIC = 7

    CSH

    R1110k

    VS

    C13MMC400K104

    0

    C12MMC250K474

    R16

    10

    C11RPER11H104K2K1A01B

    0

    C15RPER11H104K2K1A01B

    Ls120nH

    1

    2

    Ls220nH

    1

    2

    Ls320nH

    1

    2

    Ls420nH

    1

    2

    R144.7

    0

    MUR120RLGD1

    R94.7k

    + C16EKMG500ELL222MLP1S

    Ls520nH

    12

    C17RPER11H104K2K1A01B

    R1210k

    PARAMETERS:Po = 12.5Gv = 15.85RL = 8tshrt = 1.75m

    V1

    FREQ = 1kVAMPL = {1.4142*SQRT(Po*RL)/Gv }VOFF = 0

    FET1IRFIZ24N

    +-

    +

    -

    S1

    S

    VON = 1.0VVOFF = 0.0V

    FET2IRFIZ24N

    V2

    TD = {tshrt}

    TF = 10nPW = 4PER = 400

    V1 = 0

    TR = 10n

    V2 = 5

    0

    This simulation will show how the IRS2092 responds to a short circuit condition.

    39

    AnalysisTime Domain (Transient)

    Run to time: 1.25sStart saving data after: 100nMaximum step size: 100u Skip the initial transient bias point calculation (SKIPBP)

    .OptionsRELTOL: 0.01VNTOL: 1.0uABSTOL: 1nCHGTOL: 0.01pGMIN: 1.0E-12ITL1: 500ITL2: 200ITL4: 10

    Short circuit

    C7: 10u and 3.3u F

    11. Short Circuit Response

    Short circuit at 1.75ms.

    All Rights Reserved Copyright (c) Bee Technologies Inc. 2009

  • Short Circuit Response: C7 = 10uF

    40

    Load (Speaker) current

    VS pin

    CSD pin

    All Rights Reserved Copyright (c) Bee Technologies Inc. 2009

  • Short Circuit Response: C7 = 3.3uF

    41

    Load (Speaker) current

    VS pin

    CSD pin

    All Rights Reserved Copyright (c) Bee Technologies Inc. 2009

  • +-SPEAKERF120A

    C150.1u

    C162200u

    C170.1u C18

    2200u

    C120.47u

    FET1IRFIZ24N

    FET2IRFIZ24N

    C130.1u

    V1

    FREQ = 1kVAMPL = 0VOFF = 0

    0

    C41nF

    +B15V

    C51nF

    0

    R1810

    0

    R192.2k

    R4220

    C710uIC = 10

    R23k

    R1100k

    C10 22uIC = 15

    OUT

    C922uIC = 12.85

    MUR120RLGD2

    VS

    INR1310

    C310n

    R3

    47k

    L17G14N-220-RB

    VB

    R171

    0

    R203.3k

    R218.2k

    R8

    820

    +B

    VREF

    VAA

    0

    R6 8.2k

    R71.2k

    CSD

    OCSET

    IN-

    IC1

    IRS2092

    VAA

    GND

    IN-

    COMP

    CSD

    VSS

    VREF

    OCSET DT

    COM

    LO

    VCC

    VS

    HO

    VB

    CSH

    VCC

    0

    DT

    C110u

    VSS 0

    COMP

    HO

    R5

    820

    -B

    R15

    10

    LO

    VR175

    -B-15V

    0

    C210uIC = 7

    C810uIC = 7

    R1110k

    CSH

    VS

    0

    R16

    10

    0Ls120nH

    1

    2

    Ls220nH

    1

    2

    Ls320nH

    1

    2

    Ls420nH

    1

    2

    R144.7

    MUR120RLGD1

    0

    R94.7k

    Ls520nH

    12

    R1210k

    C60.001u

    C110.1u

    C140.68u

    Capacitor models are needed for the simulation to include spike voltage.

    All Rights Reserved Copyright (c) Bee Technologies Inc. 200942

    AnalysisTime Domain (Transient)

    Run to time: 1msStart saving data after: 0.5mMaximum step size: 40n Skip the initial transient bias point calculation (SKIPBP)

    .OptionsRELTOL: 0.001VNTOL: 1.0uABSTOL: 1.0nCHGTOL: 0.01pGMIN: 1.0E-12ITL1: 500ITL2: 200ITL4: 10

    12. Capacitor models

  • 43

    Simulated (without output capacitor models) Measured

    OUT OUT

    VS VS

    Self-oscillation frequency= 400kHz (Simulated)

    Self-oscillation frequency= 400kHz (Measured)

    Simulation Result (without Capacitor Model)

    All Rights Reserved Copyright (c) Bee Technologies Inc. 2009

  • 44

    Simulated (with output capacitor models) Measured

    OUT OUT

    VS VS

    Self-oscillation frequency= 400kHz (Simulated)

    Self-oscillation frequency= 400kHz (Measured)

    Simulation Result (with Capacitor Model)

    All Rights Reserved Copyright (c) Bee Technologies Inc. 2009

  • 13. Simulated Performance of the circuit with different FETs

    45

    IRFI4024H-117P Key ParametersVDS 55 VID 11 A

    RDS(ON) typ. @ 10V 48 mQg typ. 8.9 nCtON typ. 7.9 nstOFF typ. 16.4 nsQrr typ. 11 nC

    IRFIZ24N Key ParametersVDS 55 VID 14 A

    RDS(ON) typ. @ 10V 70 mQg typ. 13.4 nCtON typ. 38.9 nstOFF typ. 46 nsQrr typ. 120 nC

  • +C1EKMG500ELL100ME11D

    C6AMZ0050J102C3

    RPER11H103K2K1A01B

    C17RPER11H104K2K1A01B

    +

    C18EKMG500ELL222MLP1S

    FET1IRFI4024H-117P

    FET2IRFI4024H-117P

    +

    -SPEAKERF120A

    0

    C41nF

    +B15V

    C51nF

    0

    R1810

    0

    R192.2k

    C14MMH250K684

    R4220

    C710uIC = 10

    R23k

    R1100k

    C10 22uIC = 15

    OUT

    C922uIC = 12.85

    VS

    MUR120RLGD2

    INR1310

    R3

    47k

    L17G14N-220-RB

    VB

    R171

    0

    R203.3k

    R218.2k

    R8

    820

    +B

    VAA

    VREF

    0

    R6 8.2k

    CSD

    R71.2k

    OCSET

    IN-

    IC1

    IRS2092

    VAA

    GND

    IN-

    COMP

    CSD

    VSS

    VREF

    OCSET DT

    COM

    LO

    VCC

    VS

    HO

    VB

    CSH

    V1

    FREQ = 1kVAMPL = 0VOFF = 0

    VCC

    0

    DT

    VSS

    COMP

    0

    HO

    R5

    820

    -B

    LOR15

    10

    VR175

    -B-15V

    0

    C210uIC = 7

    C810uIC = 7

    R1110k

    CSH

    VS

    C13MMC400K104

    0

    C12MMC250K474

    R16

    10

    C11RPER11H104K2K1A01B

    0

    C15RPER11H104K2K1A01B

    Ls120nH

    1

    2

    Ls220nH

    1

    2

    Ls320nH

    1

    2

    Ls420nH

    1

    2

    R144.7

    0

    MUR120RLGD1

    R94.7k

    + C16EKMG500ELL222MLP1S

    Ls520nH

    12

    R1210k

    46

    Simulated Performance of the circuit with different FETs

    All Rights Reserved Copyright (c) Bee Technologies Inc. 2009

    IRFIZ24N IRFI4024H-117P

    Efficiency (@ 25W, 4) 93.505% 94.578%

    Distortion (@ 1kHz, 4, 10W) 0.0144 %THD 0.0201 %THD

  • Simulated Performance of the circuit with different FETs

    47

    -VDS

    ID

    Power loss (VDS*ID)

    PSWPgd Pcond

    -VDS

    ID

    Power loss (VDS*ID)

    PSWPgd Pcond

    VDS

    ID

    Power loss (VDS*ID)

    PSWPgd Pcond

    VDS

    ID

    Power loss (VDS*ID)

    PSWPgd Pcond

    IRFIZ24N IRFI4024H-117P

    FET1

    FET2

  • Simulations Index

    48

    Simulation

    1. Efficiency Evaluation............................................................

    2. THD Evaluation....................................................................

    3. Frequency Response Evaluation..........................................

    4. Waveforms Evaluation..........................................................

    5. Voltage gain of the amplifier GV ........................................

    6. Self-Oscillating Frequency....................................................

    7. Dead-time Evaluation...........................................................

    8. Turn-on transient..................................................................

    9. Component stresses.............................................................

    10.Power losses in the MOSFETs (Standard model) ................

    11.Power loss in the MOSFETs (Professional Model) ..............

    12.Short Circuit vs. Switching Output Shutdown.......................

    13.Short Circuit Response.........................................................

    Folder Name

    Efficiency

    THD

    FrqRsp

    Waveforms

    Gv

    OSC

    DT

    StartUp

    Stress

    FET(STD)

    FET(PRO)

    Short

    ShrtRsp

    All Rights Reserved Copyright (c) Bee Technologies Inc. 2009

    Design KitContents1. SpecificationsSpecifications : Efficiency Evaluation CircuitSpecifications : Efficiency Simulation ResultSpecifications : THD Evaluation CircuitSpecifications : THD Simulation ResultSpecifications : Frequency Response Evaluation CircuitSpecifications : Frequency Response Simulation ResultNote : PO [W] vs. VIN [VPEAK]2. Waveforms Evaluation3. Simulated vs. Measured Waveform (1/3)3. Simulated vs. Measured Waveform (2/3)3. Simulated vs. Measured Waveform (3/3)4. Voltage gain of the amplifier GV 4. Voltage gain of the amplifier GV 5. Self-Oscillating Frequency5. Self-Oscillating Frequency6. Dead-timeDead-time DT1(25ns)Dead-time DT3(65ns)7. Turn-on transientTurn-on transient: C7 = 10uFTurn-on transient: C7 = 5uFTurn-on transient: C7 = 3.3uF8. Components stressComponents Stress Simulated Result forDiodes, FETs, Inductor, and 4Load9. Power losses in the MOSFETsPower losses FET1(Standard Model)Power losses FET2(Standard Model)Power losses in the MOSFETs (Professional model)Power losses FET1(Professional Model)Power losses FET2(Professional Model)FET: IRFIZ24N Qg Standard vs. Professional ModelFET: IRFIZ24N Pgd Standard vs. Professional Model10. Short circuit vs. switching output shutdownShort Circuit vs. Switching Output Shutdown (Positive Side)Short Circuit vs. Switching Output Shutdown (Negative Side)11. Short Circuit ResponseShort Circuit Response: C7 = 10uFShort Circuit Response: C7 = 3.3uF12. Capacitor modelsSimulation Result (without Capacitor Model)Simulation Result (with Capacitor Model)13. Simulated Performance of the circuit with different FETsSimulated Performance of the circuit with different FETsSimulated Performance of the circuit with different FETsSimulations Index