124
Clasificación vía Teoría Descriptiva de Conjuntos Román Sasyk Universidad de Buenos Aires Septiembre 9, 2015 Román Sasyk Classification via Descriptive Set Theory 1

Clasificación vía Teoría Descriptiva de Conjuntos · Classification Whatdoesitmeantoclassifymathematicalobjects? Whatfor? Example1:Complexn nmatrices,uptosimilaritytheJordan normalformisacompleteinvariant

  • Upload
    others

  • View
    6

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Clasificación vía Teoría Descriptiva de Conjuntos · Classification Whatdoesitmeantoclassifymathematicalobjects? Whatfor? Example1:Complexn nmatrices,uptosimilaritytheJordan normalformisacompleteinvariant

Clasificación vía Teoría Descriptiva de Conjuntos

Román Sasyk

Universidad de Buenos Aires

Septiembre 9, 2015

Román Sasyk Classification via Descriptive Set Theory 1

Page 2: Clasificación vía Teoría Descriptiva de Conjuntos · Classification Whatdoesitmeantoclassifymathematicalobjects? Whatfor? Example1:Complexn nmatrices,uptosimilaritytheJordan normalformisacompleteinvariant

Classification

What does it mean to classify mathematical objects?

What for?

Example 1: Complex n × n matrices, up to similarity the Jordannormal form is a complete invariant.Example 2: Finitely generated abelian groups, up to isomorphism,complete classification by its primary decomposition.Example 3: Finite simple groups. A list of all of them.A recent application is the solution of the Ore conjecture.Example 4: (Kolmogorov-Sinai 1955, Ornstein 1971) Bernoullishifts, the entropy is a complete invariant.Example 5: (Halmos-von Neumann 1939) Conjugacy of ergodicm.p. transformations with discrete spectrum. The spectrum is acomplete invariant.

Román Sasyk Classification via Descriptive Set Theory 2

Page 3: Clasificación vía Teoría Descriptiva de Conjuntos · Classification Whatdoesitmeantoclassifymathematicalobjects? Whatfor? Example1:Complexn nmatrices,uptosimilaritytheJordan normalformisacompleteinvariant

Classification

What does it mean to classify mathematical objects? What for?

Example 1: Complex n × n matrices, up to similarity the Jordannormal form is a complete invariant.Example 2: Finitely generated abelian groups, up to isomorphism,complete classification by its primary decomposition.Example 3: Finite simple groups. A list of all of them.A recent application is the solution of the Ore conjecture.Example 4: (Kolmogorov-Sinai 1955, Ornstein 1971) Bernoullishifts, the entropy is a complete invariant.Example 5: (Halmos-von Neumann 1939) Conjugacy of ergodicm.p. transformations with discrete spectrum. The spectrum is acomplete invariant.

Román Sasyk Classification via Descriptive Set Theory 2

Page 4: Clasificación vía Teoría Descriptiva de Conjuntos · Classification Whatdoesitmeantoclassifymathematicalobjects? Whatfor? Example1:Complexn nmatrices,uptosimilaritytheJordan normalformisacompleteinvariant

Classification

What does it mean to classify mathematical objects? What for?

Example 1: Complex n × n matrices, up to similarity the Jordannormal form is a complete invariant.

Example 2: Finitely generated abelian groups, up to isomorphism,complete classification by its primary decomposition.Example 3: Finite simple groups. A list of all of them.A recent application is the solution of the Ore conjecture.Example 4: (Kolmogorov-Sinai 1955, Ornstein 1971) Bernoullishifts, the entropy is a complete invariant.Example 5: (Halmos-von Neumann 1939) Conjugacy of ergodicm.p. transformations with discrete spectrum. The spectrum is acomplete invariant.

Román Sasyk Classification via Descriptive Set Theory 2

Page 5: Clasificación vía Teoría Descriptiva de Conjuntos · Classification Whatdoesitmeantoclassifymathematicalobjects? Whatfor? Example1:Complexn nmatrices,uptosimilaritytheJordan normalformisacompleteinvariant

Classification

What does it mean to classify mathematical objects? What for?

Example 1: Complex n × n matrices, up to similarity the Jordannormal form is a complete invariant.Example 2: Finitely generated abelian groups, up to isomorphism,complete classification by its primary decomposition.

Example 3: Finite simple groups. A list of all of them.A recent application is the solution of the Ore conjecture.Example 4: (Kolmogorov-Sinai 1955, Ornstein 1971) Bernoullishifts, the entropy is a complete invariant.Example 5: (Halmos-von Neumann 1939) Conjugacy of ergodicm.p. transformations with discrete spectrum. The spectrum is acomplete invariant.

Román Sasyk Classification via Descriptive Set Theory 2

Page 6: Clasificación vía Teoría Descriptiva de Conjuntos · Classification Whatdoesitmeantoclassifymathematicalobjects? Whatfor? Example1:Complexn nmatrices,uptosimilaritytheJordan normalformisacompleteinvariant

Classification

What does it mean to classify mathematical objects? What for?

Example 1: Complex n × n matrices, up to similarity the Jordannormal form is a complete invariant.Example 2: Finitely generated abelian groups, up to isomorphism,complete classification by its primary decomposition.Example 3: Finite simple groups. A list of all of them.

A recent application is the solution of the Ore conjecture.Example 4: (Kolmogorov-Sinai 1955, Ornstein 1971) Bernoullishifts, the entropy is a complete invariant.Example 5: (Halmos-von Neumann 1939) Conjugacy of ergodicm.p. transformations with discrete spectrum. The spectrum is acomplete invariant.

Román Sasyk Classification via Descriptive Set Theory 2

Page 7: Clasificación vía Teoría Descriptiva de Conjuntos · Classification Whatdoesitmeantoclassifymathematicalobjects? Whatfor? Example1:Complexn nmatrices,uptosimilaritytheJordan normalformisacompleteinvariant

Classification

What does it mean to classify mathematical objects? What for?

Example 1: Complex n × n matrices, up to similarity the Jordannormal form is a complete invariant.Example 2: Finitely generated abelian groups, up to isomorphism,complete classification by its primary decomposition.Example 3: Finite simple groups. A list of all of them.A recent application is the solution of the Ore conjecture.

Example 4: (Kolmogorov-Sinai 1955, Ornstein 1971) Bernoullishifts, the entropy is a complete invariant.Example 5: (Halmos-von Neumann 1939) Conjugacy of ergodicm.p. transformations with discrete spectrum. The spectrum is acomplete invariant.

Román Sasyk Classification via Descriptive Set Theory 2

Page 8: Clasificación vía Teoría Descriptiva de Conjuntos · Classification Whatdoesitmeantoclassifymathematicalobjects? Whatfor? Example1:Complexn nmatrices,uptosimilaritytheJordan normalformisacompleteinvariant

Classification

What does it mean to classify mathematical objects? What for?

Example 1: Complex n × n matrices, up to similarity the Jordannormal form is a complete invariant.Example 2: Finitely generated abelian groups, up to isomorphism,complete classification by its primary decomposition.Example 3: Finite simple groups. A list of all of them.A recent application is the solution of the Ore conjecture.Example 4: (Kolmogorov-Sinai 1955, Ornstein 1971) Bernoullishifts, the entropy is a complete invariant.

Example 5: (Halmos-von Neumann 1939) Conjugacy of ergodicm.p. transformations with discrete spectrum. The spectrum is acomplete invariant.

Román Sasyk Classification via Descriptive Set Theory 2

Page 9: Clasificación vía Teoría Descriptiva de Conjuntos · Classification Whatdoesitmeantoclassifymathematicalobjects? Whatfor? Example1:Complexn nmatrices,uptosimilaritytheJordan normalformisacompleteinvariant

Classification

What does it mean to classify mathematical objects? What for?

Example 1: Complex n × n matrices, up to similarity the Jordannormal form is a complete invariant.Example 2: Finitely generated abelian groups, up to isomorphism,complete classification by its primary decomposition.Example 3: Finite simple groups. A list of all of them.A recent application is the solution of the Ore conjecture.Example 4: (Kolmogorov-Sinai 1955, Ornstein 1971) Bernoullishifts, the entropy is a complete invariant.Example 5: (Halmos-von Neumann 1939) Conjugacy of ergodicm.p. transformations with discrete spectrum. The spectrum is acomplete invariant.

Román Sasyk Classification via Descriptive Set Theory 2

Page 10: Clasificación vía Teoría Descriptiva de Conjuntos · Classification Whatdoesitmeantoclassifymathematicalobjects? Whatfor? Example1:Complexn nmatrices,uptosimilaritytheJordan normalformisacompleteinvariant

Examples of Classification: Abelian group theory

A torsion free abelian group of rank one is a subgroup of Q .

Equivalently, ∀a, b ∈ A,∃m, n ∈ Z : ma + nb = 0.Given a ∈ A , p prime, let tp the largest positive integer such that∃x ∈ A, ptpx = a.H(a) = (t2, t3, t5, . . .) is the type of a. If b ∈ A,H(a) and H(b)differ only on finitely many places so it defines an invariant of A.(Baer 1937) The type is a complete invariant up to isomorphism.

Problem: What about torsion free abelian groups of higher rank?

Román Sasyk Classification via Descriptive Set Theory 3

Page 11: Clasificación vía Teoría Descriptiva de Conjuntos · Classification Whatdoesitmeantoclassifymathematicalobjects? Whatfor? Example1:Complexn nmatrices,uptosimilaritytheJordan normalformisacompleteinvariant

Examples of Classification: Abelian group theory

A torsion free abelian group of rank one is a subgroup of Q .Equivalently, ∀a, b ∈ A, ∃m, n ∈ Z : ma + nb = 0.

Given a ∈ A , p prime, let tp the largest positive integer such that∃x ∈ A, ptpx = a.H(a) = (t2, t3, t5, . . .) is the type of a. If b ∈ A,H(a) and H(b)differ only on finitely many places so it defines an invariant of A.(Baer 1937) The type is a complete invariant up to isomorphism.

Problem: What about torsion free abelian groups of higher rank?

Román Sasyk Classification via Descriptive Set Theory 3

Page 12: Clasificación vía Teoría Descriptiva de Conjuntos · Classification Whatdoesitmeantoclassifymathematicalobjects? Whatfor? Example1:Complexn nmatrices,uptosimilaritytheJordan normalformisacompleteinvariant

Examples of Classification: Abelian group theory

A torsion free abelian group of rank one is a subgroup of Q .Equivalently, ∀a, b ∈ A, ∃m, n ∈ Z : ma + nb = 0.Given a ∈ A , p prime, let tp the largest positive integer such that∃x ∈ A, ptpx = a.

H(a) = (t2, t3, t5, . . .) is the type of a. If b ∈ A,H(a) and H(b)differ only on finitely many places so it defines an invariant of A.(Baer 1937) The type is a complete invariant up to isomorphism.

Problem: What about torsion free abelian groups of higher rank?

Román Sasyk Classification via Descriptive Set Theory 3

Page 13: Clasificación vía Teoría Descriptiva de Conjuntos · Classification Whatdoesitmeantoclassifymathematicalobjects? Whatfor? Example1:Complexn nmatrices,uptosimilaritytheJordan normalformisacompleteinvariant

Examples of Classification: Abelian group theory

A torsion free abelian group of rank one is a subgroup of Q .Equivalently, ∀a, b ∈ A, ∃m, n ∈ Z : ma + nb = 0.Given a ∈ A , p prime, let tp the largest positive integer such that∃x ∈ A, ptpx = a.H(a) = (t2, t3, t5, . . .) is the type of a. If b ∈ A,H(a) and H(b)differ only on finitely many places so it defines an invariant of A.

(Baer 1937) The type is a complete invariant up to isomorphism.

Problem: What about torsion free abelian groups of higher rank?

Román Sasyk Classification via Descriptive Set Theory 3

Page 14: Clasificación vía Teoría Descriptiva de Conjuntos · Classification Whatdoesitmeantoclassifymathematicalobjects? Whatfor? Example1:Complexn nmatrices,uptosimilaritytheJordan normalformisacompleteinvariant

Examples of Classification: Abelian group theory

A torsion free abelian group of rank one is a subgroup of Q .Equivalently, ∀a, b ∈ A, ∃m, n ∈ Z : ma + nb = 0.Given a ∈ A , p prime, let tp the largest positive integer such that∃x ∈ A, ptpx = a.H(a) = (t2, t3, t5, . . .) is the type of a. If b ∈ A,H(a) and H(b)differ only on finitely many places so it defines an invariant of A.(Baer 1937) The type is a complete invariant up to isomorphism.

Problem: What about torsion free abelian groups of higher rank?

Román Sasyk Classification via Descriptive Set Theory 3

Page 15: Clasificación vía Teoría Descriptiva de Conjuntos · Classification Whatdoesitmeantoclassifymathematicalobjects? Whatfor? Example1:Complexn nmatrices,uptosimilaritytheJordan normalformisacompleteinvariant

Examples of Classification: Abelian group theory

A torsion free abelian group of rank one is a subgroup of Q .Equivalently, ∀a, b ∈ A, ∃m, n ∈ Z : ma + nb = 0.Given a ∈ A , p prime, let tp the largest positive integer such that∃x ∈ A, ptpx = a.H(a) = (t2, t3, t5, . . .) is the type of a. If b ∈ A,H(a) and H(b)differ only on finitely many places so it defines an invariant of A.(Baer 1937) The type is a complete invariant up to isomorphism.

Problem: What about torsion free abelian groups of higher rank?

Román Sasyk Classification via Descriptive Set Theory 3

Page 16: Clasificación vía Teoría Descriptiva de Conjuntos · Classification Whatdoesitmeantoclassifymathematicalobjects? Whatfor? Example1:Complexn nmatrices,uptosimilaritytheJordan normalformisacompleteinvariant

Examples of Classification: Topology

Compact orientable surfaces, are classifiable up to isomorphism bythe number of handles. Even more, this invariant can be computedusing a triangulation. (perhaps Dehn).

This is not possible in higher dimensions. Paper of Markov in ICM1960, Unsolvability of homeomorphy problem.Here unsolvable means that there is no algorithm to decide.Idea: use the unsolvability of the word problem for certain groups.Make this group the fundamental group of the manifold.The underlying notion of non classification comes from recursiontheory from mathematical logic.

Román Sasyk Classification via Descriptive Set Theory 4

Page 17: Clasificación vía Teoría Descriptiva de Conjuntos · Classification Whatdoesitmeantoclassifymathematicalobjects? Whatfor? Example1:Complexn nmatrices,uptosimilaritytheJordan normalformisacompleteinvariant

Examples of Classification: Topology

Compact orientable surfaces, are classifiable up to isomorphism bythe number of handles. Even more, this invariant can be computedusing a triangulation. (perhaps Dehn).This is not possible in higher dimensions. Paper of Markov in ICM1960, Unsolvability of homeomorphy problem.

Here unsolvable means that there is no algorithm to decide.Idea: use the unsolvability of the word problem for certain groups.Make this group the fundamental group of the manifold.The underlying notion of non classification comes from recursiontheory from mathematical logic.

Román Sasyk Classification via Descriptive Set Theory 4

Page 18: Clasificación vía Teoría Descriptiva de Conjuntos · Classification Whatdoesitmeantoclassifymathematicalobjects? Whatfor? Example1:Complexn nmatrices,uptosimilaritytheJordan normalformisacompleteinvariant

Examples of Classification: Topology

Compact orientable surfaces, are classifiable up to isomorphism bythe number of handles. Even more, this invariant can be computedusing a triangulation. (perhaps Dehn).This is not possible in higher dimensions. Paper of Markov in ICM1960, Unsolvability of homeomorphy problem.Here unsolvable means that there is no algorithm to decide.

Idea: use the unsolvability of the word problem for certain groups.Make this group the fundamental group of the manifold.The underlying notion of non classification comes from recursiontheory from mathematical logic.

Román Sasyk Classification via Descriptive Set Theory 4

Page 19: Clasificación vía Teoría Descriptiva de Conjuntos · Classification Whatdoesitmeantoclassifymathematicalobjects? Whatfor? Example1:Complexn nmatrices,uptosimilaritytheJordan normalformisacompleteinvariant

Examples of Classification: Topology

Compact orientable surfaces, are classifiable up to isomorphism bythe number of handles. Even more, this invariant can be computedusing a triangulation. (perhaps Dehn).This is not possible in higher dimensions. Paper of Markov in ICM1960, Unsolvability of homeomorphy problem.Here unsolvable means that there is no algorithm to decide.Idea: use the unsolvability of the word problem for certain groups.Make this group the fundamental group of the manifold.

The underlying notion of non classification comes from recursiontheory from mathematical logic.

Román Sasyk Classification via Descriptive Set Theory 4

Page 20: Clasificación vía Teoría Descriptiva de Conjuntos · Classification Whatdoesitmeantoclassifymathematicalobjects? Whatfor? Example1:Complexn nmatrices,uptosimilaritytheJordan normalformisacompleteinvariant

Examples of Classification: Topology

Compact orientable surfaces, are classifiable up to isomorphism bythe number of handles. Even more, this invariant can be computedusing a triangulation. (perhaps Dehn).This is not possible in higher dimensions. Paper of Markov in ICM1960, Unsolvability of homeomorphy problem.Here unsolvable means that there is no algorithm to decide.Idea: use the unsolvability of the word problem for certain groups.Make this group the fundamental group of the manifold.The underlying notion of non classification comes from recursiontheory from mathematical logic.

Román Sasyk Classification via Descriptive Set Theory 4

Page 21: Clasificación vía Teoría Descriptiva de Conjuntos · Classification Whatdoesitmeantoclassifymathematicalobjects? Whatfor? Example1:Complexn nmatrices,uptosimilaritytheJordan normalformisacompleteinvariant

Classification meta mathematically speaking

All these examples can be thought as understanding, (orclassifying) the orbits of an equivalent relation in certainspaces.

The equivalence relation is the one given by isomorphism.Abstractly this means: Given a space X with an equivalencerelation E , find another space Y , with an equivalence relation Fand a function f : X → Y such that

x1 E x2 ⇐⇒ f (x1)F f (x2).

The objects of the space Y should be consider simpler to deal with,than the objects of X .The function f should be computable in some sense.The axiom of choice is unreasonable to be used to classify.In what follows we try to convey why descriptive set theory providesan adequate framework to study many classification problems.

Román Sasyk Classification via Descriptive Set Theory 5

Page 22: Clasificación vía Teoría Descriptiva de Conjuntos · Classification Whatdoesitmeantoclassifymathematicalobjects? Whatfor? Example1:Complexn nmatrices,uptosimilaritytheJordan normalformisacompleteinvariant

Classification meta mathematically speaking

All these examples can be thought as understanding, (orclassifying) the orbits of an equivalent relation in certainspaces.The equivalence relation is the one given by isomorphism.

Abstractly this means: Given a space X with an equivalencerelation E , find another space Y , with an equivalence relation Fand a function f : X → Y such that

x1 E x2 ⇐⇒ f (x1)F f (x2).

The objects of the space Y should be consider simpler to deal with,than the objects of X .The function f should be computable in some sense.The axiom of choice is unreasonable to be used to classify.In what follows we try to convey why descriptive set theory providesan adequate framework to study many classification problems.

Román Sasyk Classification via Descriptive Set Theory 5

Page 23: Clasificación vía Teoría Descriptiva de Conjuntos · Classification Whatdoesitmeantoclassifymathematicalobjects? Whatfor? Example1:Complexn nmatrices,uptosimilaritytheJordan normalformisacompleteinvariant

Classification meta mathematically speaking

All these examples can be thought as understanding, (orclassifying) the orbits of an equivalent relation in certainspaces.The equivalence relation is the one given by isomorphism.Abstractly this means: Given a space X with an equivalencerelation E , find another space Y , with an equivalence relation Fand a function f : X → Y such that

x1 E x2 ⇐⇒ f (x1)F f (x2).

The objects of the space Y should be consider simpler to deal with,than the objects of X .The function f should be computable in some sense.The axiom of choice is unreasonable to be used to classify.In what follows we try to convey why descriptive set theory providesan adequate framework to study many classification problems.

Román Sasyk Classification via Descriptive Set Theory 5

Page 24: Clasificación vía Teoría Descriptiva de Conjuntos · Classification Whatdoesitmeantoclassifymathematicalobjects? Whatfor? Example1:Complexn nmatrices,uptosimilaritytheJordan normalformisacompleteinvariant

Classification meta mathematically speaking

All these examples can be thought as understanding, (orclassifying) the orbits of an equivalent relation in certainspaces.The equivalence relation is the one given by isomorphism.Abstractly this means: Given a space X with an equivalencerelation E , find another space Y , with an equivalence relation Fand a function f : X → Y such that

x1 E x2 ⇐⇒ f (x1)F f (x2).

The objects of the space Y should be consider simpler to deal with,than the objects of X .

The function f should be computable in some sense.The axiom of choice is unreasonable to be used to classify.In what follows we try to convey why descriptive set theory providesan adequate framework to study many classification problems.

Román Sasyk Classification via Descriptive Set Theory 5

Page 25: Clasificación vía Teoría Descriptiva de Conjuntos · Classification Whatdoesitmeantoclassifymathematicalobjects? Whatfor? Example1:Complexn nmatrices,uptosimilaritytheJordan normalformisacompleteinvariant

Classification meta mathematically speaking

All these examples can be thought as understanding, (orclassifying) the orbits of an equivalent relation in certainspaces.The equivalence relation is the one given by isomorphism.Abstractly this means: Given a space X with an equivalencerelation E , find another space Y , with an equivalence relation Fand a function f : X → Y such that

x1 E x2 ⇐⇒ f (x1)F f (x2).

The objects of the space Y should be consider simpler to deal with,than the objects of X .The function f should be computable in some sense.

The axiom of choice is unreasonable to be used to classify.In what follows we try to convey why descriptive set theory providesan adequate framework to study many classification problems.

Román Sasyk Classification via Descriptive Set Theory 5

Page 26: Clasificación vía Teoría Descriptiva de Conjuntos · Classification Whatdoesitmeantoclassifymathematicalobjects? Whatfor? Example1:Complexn nmatrices,uptosimilaritytheJordan normalformisacompleteinvariant

Classification meta mathematically speaking

All these examples can be thought as understanding, (orclassifying) the orbits of an equivalent relation in certainspaces.The equivalence relation is the one given by isomorphism.Abstractly this means: Given a space X with an equivalencerelation E , find another space Y , with an equivalence relation Fand a function f : X → Y such that

x1 E x2 ⇐⇒ f (x1)F f (x2).

The objects of the space Y should be consider simpler to deal with,than the objects of X .The function f should be computable in some sense.The axiom of choice is unreasonable to be used to classify.

In what follows we try to convey why descriptive set theory providesan adequate framework to study many classification problems.

Román Sasyk Classification via Descriptive Set Theory 5

Page 27: Clasificación vía Teoría Descriptiva de Conjuntos · Classification Whatdoesitmeantoclassifymathematicalobjects? Whatfor? Example1:Complexn nmatrices,uptosimilaritytheJordan normalformisacompleteinvariant

Classification meta mathematically speaking

All these examples can be thought as understanding, (orclassifying) the orbits of an equivalent relation in certainspaces.The equivalence relation is the one given by isomorphism.Abstractly this means: Given a space X with an equivalencerelation E , find another space Y , with an equivalence relation Fand a function f : X → Y such that

x1 E x2 ⇐⇒ f (x1)F f (x2).

The objects of the space Y should be consider simpler to deal with,than the objects of X .The function f should be computable in some sense.The axiom of choice is unreasonable to be used to classify.In what follows we try to convey why descriptive set theory providesan adequate framework to study many classification problems.

Román Sasyk Classification via Descriptive Set Theory 5

Page 28: Clasificación vía Teoría Descriptiva de Conjuntos · Classification Whatdoesitmeantoclassifymathematicalobjects? Whatfor? Example1:Complexn nmatrices,uptosimilaritytheJordan normalformisacompleteinvariant

Classical descriptive set theory

Recall that a Polish space is a completely metrizable separabletopological space. E.g. R, NN, {0, 1}N = 2N, C ([0, 1]).

Descriptive set theory is the study of definable subsets of Polishspaces, and definable functions on Polish spaces. Definable sets andfunctions include

I Borel sets and functions, i.e. those sets that occur in theσ-algebra generated by the open sets.

I Analytic sets: Those sets that are the image of a Polish spaceunder a continuous function.

Definition. A standard Borel space is a set X equipped with aσ-algebra B which is itself generated by the open sets of a Polishtopology on X .

Román Sasyk Classification via Descriptive Set Theory 6

Page 29: Clasificación vía Teoría Descriptiva de Conjuntos · Classification Whatdoesitmeantoclassifymathematicalobjects? Whatfor? Example1:Complexn nmatrices,uptosimilaritytheJordan normalformisacompleteinvariant

Classical descriptive set theory

Recall that a Polish space is a completely metrizable separabletopological space. E.g. R, NN, {0, 1}N = 2N, C ([0, 1]).

Descriptive set theory is the study of definable subsets of Polishspaces, and definable functions on Polish spaces. Definable sets andfunctions include

I Borel sets and functions, i.e. those sets that occur in theσ-algebra generated by the open sets.

I Analytic sets: Those sets that are the image of a Polish spaceunder a continuous function.

Definition. A standard Borel space is a set X equipped with aσ-algebra B which is itself generated by the open sets of a Polishtopology on X .

Román Sasyk Classification via Descriptive Set Theory 6

Page 30: Clasificación vía Teoría Descriptiva de Conjuntos · Classification Whatdoesitmeantoclassifymathematicalobjects? Whatfor? Example1:Complexn nmatrices,uptosimilaritytheJordan normalformisacompleteinvariant

Classical descriptive set theory

Recall that a Polish space is a completely metrizable separabletopological space. E.g. R, NN, {0, 1}N = 2N, C ([0, 1]).

Descriptive set theory is the study of definable subsets of Polishspaces, and definable functions on Polish spaces. Definable sets andfunctions include

I Borel sets and functions, i.e. those sets that occur in theσ-algebra generated by the open sets.

I Analytic sets: Those sets that are the image of a Polish spaceunder a continuous function.

Definition. A standard Borel space is a set X equipped with aσ-algebra B which is itself generated by the open sets of a Polishtopology on X .

Román Sasyk Classification via Descriptive Set Theory 6

Page 31: Clasificación vía Teoría Descriptiva de Conjuntos · Classification Whatdoesitmeantoclassifymathematicalobjects? Whatfor? Example1:Complexn nmatrices,uptosimilaritytheJordan normalformisacompleteinvariant

Classical descriptive set theory

Recall that a Polish space is a completely metrizable separabletopological space. E.g. R, NN, {0, 1}N = 2N, C ([0, 1]).

Descriptive set theory is the study of definable subsets of Polishspaces, and definable functions on Polish spaces. Definable sets andfunctions include

I Borel sets and functions, i.e. those sets that occur in theσ-algebra generated by the open sets.

I Analytic sets: Those sets that are the image of a Polish spaceunder a continuous function.

Definition. A standard Borel space is a set X equipped with aσ-algebra B which is itself generated by the open sets of a Polishtopology on X .

Román Sasyk Classification via Descriptive Set Theory 6

Page 32: Clasificación vía Teoría Descriptiva de Conjuntos · Classification Whatdoesitmeantoclassifymathematicalobjects? Whatfor? Example1:Complexn nmatrices,uptosimilaritytheJordan normalformisacompleteinvariant

Classical descriptive set theory

Recall that a Polish space is a completely metrizable separabletopological space. E.g. R, NN, {0, 1}N = 2N, C ([0, 1]).

Descriptive set theory is the study of definable subsets of Polishspaces, and definable functions on Polish spaces. Definable sets andfunctions include

I Borel sets and functions, i.e. those sets that occur in theσ-algebra generated by the open sets.

I Analytic sets: Those sets that are the image of a Polish spaceunder a continuous function.

Definition. A standard Borel space is a set X equipped with aσ-algebra B which is itself generated by the open sets of a Polishtopology on X .

Román Sasyk Classification via Descriptive Set Theory 6

Page 33: Clasificación vía Teoría Descriptiva de Conjuntos · Classification Whatdoesitmeantoclassifymathematicalobjects? Whatfor? Example1:Complexn nmatrices,uptosimilaritytheJordan normalformisacompleteinvariant

Example: Countable groups

The set of countable groups with underlying sets N is a Polishspace.

It may be identified with the set

GP = {(f , e) ∈ NN×N × N :The operation n ·f m = f (n,m)

defines a group operation on Nwith identity e}

This set is seen to be Gδ and thus is Polish.

Román Sasyk Classification via Descriptive Set Theory 7

Page 34: Clasificación vía Teoría Descriptiva de Conjuntos · Classification Whatdoesitmeantoclassifymathematicalobjects? Whatfor? Example1:Complexn nmatrices,uptosimilaritytheJordan normalformisacompleteinvariant

Example: Countable groups

The set of countable groups with underlying sets N is a Polishspace.It may be identified with the set

GP = {(f , e) ∈ NN×N × N :The operation n ·f m = f (n,m)

defines a group operation on Nwith identity e}

This set is seen to be Gδ and thus is Polish.

Román Sasyk Classification via Descriptive Set Theory 7

Page 35: Clasificación vía Teoría Descriptiva de Conjuntos · Classification Whatdoesitmeantoclassifymathematicalobjects? Whatfor? Example1:Complexn nmatrices,uptosimilaritytheJordan normalformisacompleteinvariant

Example: Countable groups

The set of countable groups with underlying sets N is a Polishspace.It may be identified with the set

GP = {(f , e) ∈ NN×N × N :The operation n ·f m = f (n,m)

defines a group operation on Nwith identity e}

This set is seen to be Gδ and thus is Polish.

Román Sasyk Classification via Descriptive Set Theory 7

Page 36: Clasificación vía Teoría Descriptiva de Conjuntos · Classification Whatdoesitmeantoclassifymathematicalobjects? Whatfor? Example1:Complexn nmatrices,uptosimilaritytheJordan normalformisacompleteinvariant

Example: Ergodic measure preserving transformations

Fix a standard measure space (X ,B, µ). Denote by MPT the setof measure preserving invertible transformations of X .

MPT is a Polish space (via the Koopman representation).The set EMPT of ergodic measure preserving transformations is aGδ subset of MPT:Indeed fix a dense sequence {fi} in L2(X ,B, µ), then EMPT =

⋂i

⋂j

⋃N

{T ∈ MPT : ||1/NN∑

n=1

T nfi −∫

fidµ||2 < 1/j}

Thus EMPT is a Polish space.

Román Sasyk Classification via Descriptive Set Theory 8

Page 37: Clasificación vía Teoría Descriptiva de Conjuntos · Classification Whatdoesitmeantoclassifymathematicalobjects? Whatfor? Example1:Complexn nmatrices,uptosimilaritytheJordan normalformisacompleteinvariant

Example: Ergodic measure preserving transformations

Fix a standard measure space (X ,B, µ). Denote by MPT the setof measure preserving invertible transformations of X .MPT is a Polish space (via the Koopman representation).

The set EMPT of ergodic measure preserving transformations is aGδ subset of MPT:Indeed fix a dense sequence {fi} in L2(X ,B, µ), then EMPT =

⋂i

⋂j

⋃N

{T ∈ MPT : ||1/NN∑

n=1

T nfi −∫

fidµ||2 < 1/j}

Thus EMPT is a Polish space.

Román Sasyk Classification via Descriptive Set Theory 8

Page 38: Clasificación vía Teoría Descriptiva de Conjuntos · Classification Whatdoesitmeantoclassifymathematicalobjects? Whatfor? Example1:Complexn nmatrices,uptosimilaritytheJordan normalformisacompleteinvariant

Example: Ergodic measure preserving transformations

Fix a standard measure space (X ,B, µ). Denote by MPT the setof measure preserving invertible transformations of X .MPT is a Polish space (via the Koopman representation).The set EMPT of ergodic measure preserving transformations is aGδ subset of MPT:

Indeed fix a dense sequence {fi} in L2(X ,B, µ), then EMPT =

⋂i

⋂j

⋃N

{T ∈ MPT : ||1/NN∑

n=1

T nfi −∫

fidµ||2 < 1/j}

Thus EMPT is a Polish space.

Román Sasyk Classification via Descriptive Set Theory 8

Page 39: Clasificación vía Teoría Descriptiva de Conjuntos · Classification Whatdoesitmeantoclassifymathematicalobjects? Whatfor? Example1:Complexn nmatrices,uptosimilaritytheJordan normalformisacompleteinvariant

Example: Ergodic measure preserving transformations

Fix a standard measure space (X ,B, µ). Denote by MPT the setof measure preserving invertible transformations of X .MPT is a Polish space (via the Koopman representation).The set EMPT of ergodic measure preserving transformations is aGδ subset of MPT:Indeed fix a dense sequence {fi} in L2(X ,B, µ),

then EMPT =

⋂i

⋂j

⋃N

{T ∈ MPT : ||1/NN∑

n=1

T nfi −∫

fidµ||2 < 1/j}

Thus EMPT is a Polish space.

Román Sasyk Classification via Descriptive Set Theory 8

Page 40: Clasificación vía Teoría Descriptiva de Conjuntos · Classification Whatdoesitmeantoclassifymathematicalobjects? Whatfor? Example1:Complexn nmatrices,uptosimilaritytheJordan normalformisacompleteinvariant

Example: Ergodic measure preserving transformations

Fix a standard measure space (X ,B, µ). Denote by MPT the setof measure preserving invertible transformations of X .MPT is a Polish space (via the Koopman representation).The set EMPT of ergodic measure preserving transformations is aGδ subset of MPT:Indeed fix a dense sequence {fi} in L2(X ,B, µ), then EMPT =

⋂i

⋂j

⋃N

{T ∈ MPT : ||1/NN∑

n=1

T nfi −∫

fidµ||2 < 1/j}

Thus EMPT is a Polish space.

Román Sasyk Classification via Descriptive Set Theory 8

Page 41: Clasificación vía Teoría Descriptiva de Conjuntos · Classification Whatdoesitmeantoclassifymathematicalobjects? Whatfor? Example1:Complexn nmatrices,uptosimilaritytheJordan normalformisacompleteinvariant

Example: Ergodic measure preserving transformations

Fix a standard measure space (X ,B, µ). Denote by MPT the setof measure preserving invertible transformations of X .MPT is a Polish space (via the Koopman representation).The set EMPT of ergodic measure preserving transformations is aGδ subset of MPT:Indeed fix a dense sequence {fi} in L2(X ,B, µ), then EMPT =

⋂i

⋂j

⋃N

{T ∈ MPT : ||1/NN∑

n=1

T nfi −∫

fidµ||2 < 1/j}

Thus EMPT is a Polish space.

Román Sasyk Classification via Descriptive Set Theory 8

Page 42: Clasificación vía Teoría Descriptiva de Conjuntos · Classification Whatdoesitmeantoclassifymathematicalobjects? Whatfor? Example1:Complexn nmatrices,uptosimilaritytheJordan normalformisacompleteinvariant

Example: The Effros-Borel space

There is a Borel structure in the space of separable von Neumannalgebras:

Let H be a separable Hilbert. Let vN(H) denote the vonNeumann algebras acting on H The associated Borel structure isthe Effros Borel structure, i.e. the one generated by the sets

{N ∈ vN(H) : N ∩ U 6= ∅}

where U ranges over the weakly open subsets of B(H).

Theorem (Effros ’64): Sets of factors of types I, II1, II∞, III, areBorel sets in vN(H). (Same for IIIλ, 0 ≤ λ ≤ 1.)

To give a Borel structure to vN(H) was the first step in Effros’sattempt to show that there exists uncountably many factors.

Román Sasyk Classification via Descriptive Set Theory 9

Page 43: Clasificación vía Teoría Descriptiva de Conjuntos · Classification Whatdoesitmeantoclassifymathematicalobjects? Whatfor? Example1:Complexn nmatrices,uptosimilaritytheJordan normalformisacompleteinvariant

Example: The Effros-Borel space

There is a Borel structure in the space of separable von Neumannalgebras: Let H be a separable Hilbert. Let vN(H) denote the vonNeumann algebras acting on H The associated Borel structure isthe Effros Borel structure, i.e. the one generated by the sets

{N ∈ vN(H) : N ∩ U 6= ∅}

where U ranges over the weakly open subsets of B(H).

Theorem (Effros ’64): Sets of factors of types I, II1, II∞, III, areBorel sets in vN(H). (Same for IIIλ, 0 ≤ λ ≤ 1.)

To give a Borel structure to vN(H) was the first step in Effros’sattempt to show that there exists uncountably many factors.

Román Sasyk Classification via Descriptive Set Theory 9

Page 44: Clasificación vía Teoría Descriptiva de Conjuntos · Classification Whatdoesitmeantoclassifymathematicalobjects? Whatfor? Example1:Complexn nmatrices,uptosimilaritytheJordan normalformisacompleteinvariant

Example: The Effros-Borel space

There is a Borel structure in the space of separable von Neumannalgebras: Let H be a separable Hilbert. Let vN(H) denote the vonNeumann algebras acting on H The associated Borel structure isthe Effros Borel structure, i.e. the one generated by the sets

{N ∈ vN(H) : N ∩ U 6= ∅}

where U ranges over the weakly open subsets of B(H).

Theorem (Effros ’64): Sets of factors of types I, II1, II∞, III, areBorel sets in vN(H). (Same for IIIλ, 0 ≤ λ ≤ 1.)

To give a Borel structure to vN(H) was the first step in Effros’sattempt to show that there exists uncountably many factors.

Román Sasyk Classification via Descriptive Set Theory 9

Page 45: Clasificación vía Teoría Descriptiva de Conjuntos · Classification Whatdoesitmeantoclassifymathematicalobjects? Whatfor? Example1:Complexn nmatrices,uptosimilaritytheJordan normalformisacompleteinvariant

Example: The Effros-Borel space

There is a Borel structure in the space of separable von Neumannalgebras: Let H be a separable Hilbert. Let vN(H) denote the vonNeumann algebras acting on H The associated Borel structure isthe Effros Borel structure, i.e. the one generated by the sets

{N ∈ vN(H) : N ∩ U 6= ∅}

where U ranges over the weakly open subsets of B(H).

Theorem (Effros ’64): Sets of factors of types I, II1, II∞, III, areBorel sets in vN(H). (Same for IIIλ, 0 ≤ λ ≤ 1.)

To give a Borel structure to vN(H) was the first step in Effros’sattempt to show that there exists uncountably many factors.

Román Sasyk Classification via Descriptive Set Theory 9

Page 46: Clasificación vía Teoría Descriptiva de Conjuntos · Classification Whatdoesitmeantoclassifymathematicalobjects? Whatfor? Example1:Complexn nmatrices,uptosimilaritytheJordan normalformisacompleteinvariant

Borel vs Analytic sets

Historically, descriptive set theory started with an example of Luzin(1917) of a set A that was the continuous image of a Borel set butA itself was not Borel. (i.e. there exists sets that are analytic andnon Borel)

Properties of Analytic sets. Unions, countable intersections,continuous images, continuous inverse images of analytic sets areanalytic. However the complement of an analytic set is usually notanalytic. In factTheorem (Suslin 1917): a set A and its complement are bothanalytic iff A is Borel. (This is the starting point of what is calledprojective hierarchy of sets)In concrete examples, “interesting” sets are obviously Analytic.The question is: How to show that a given set is analytic and notBorel?Answer Complete analytic sets.

Román Sasyk Classification via Descriptive Set Theory 10

Page 47: Clasificación vía Teoría Descriptiva de Conjuntos · Classification Whatdoesitmeantoclassifymathematicalobjects? Whatfor? Example1:Complexn nmatrices,uptosimilaritytheJordan normalformisacompleteinvariant

Borel vs Analytic sets

Historically, descriptive set theory started with an example of Luzin(1917) of a set A that was the continuous image of a Borel set butA itself was not Borel. (i.e. there exists sets that are analytic andnon Borel)Properties of Analytic sets. Unions, countable intersections,continuous images, continuous inverse images of analytic sets areanalytic.

However the complement of an analytic set is usually notanalytic. In factTheorem (Suslin 1917): a set A and its complement are bothanalytic iff A is Borel. (This is the starting point of what is calledprojective hierarchy of sets)In concrete examples, “interesting” sets are obviously Analytic.The question is: How to show that a given set is analytic and notBorel?Answer Complete analytic sets.

Román Sasyk Classification via Descriptive Set Theory 10

Page 48: Clasificación vía Teoría Descriptiva de Conjuntos · Classification Whatdoesitmeantoclassifymathematicalobjects? Whatfor? Example1:Complexn nmatrices,uptosimilaritytheJordan normalformisacompleteinvariant

Borel vs Analytic sets

Historically, descriptive set theory started with an example of Luzin(1917) of a set A that was the continuous image of a Borel set butA itself was not Borel. (i.e. there exists sets that are analytic andnon Borel)Properties of Analytic sets. Unions, countable intersections,continuous images, continuous inverse images of analytic sets areanalytic. However the complement of an analytic set is usually notanalytic. In fact

Theorem (Suslin 1917): a set A and its complement are bothanalytic iff A is Borel. (This is the starting point of what is calledprojective hierarchy of sets)In concrete examples, “interesting” sets are obviously Analytic.The question is: How to show that a given set is analytic and notBorel?Answer Complete analytic sets.

Román Sasyk Classification via Descriptive Set Theory 10

Page 49: Clasificación vía Teoría Descriptiva de Conjuntos · Classification Whatdoesitmeantoclassifymathematicalobjects? Whatfor? Example1:Complexn nmatrices,uptosimilaritytheJordan normalformisacompleteinvariant

Borel vs Analytic sets

Historically, descriptive set theory started with an example of Luzin(1917) of a set A that was the continuous image of a Borel set butA itself was not Borel. (i.e. there exists sets that are analytic andnon Borel)Properties of Analytic sets. Unions, countable intersections,continuous images, continuous inverse images of analytic sets areanalytic. However the complement of an analytic set is usually notanalytic. In factTheorem (Suslin 1917): a set A and its complement are bothanalytic iff A is Borel.

(This is the starting point of what is calledprojective hierarchy of sets)In concrete examples, “interesting” sets are obviously Analytic.The question is: How to show that a given set is analytic and notBorel?Answer Complete analytic sets.

Román Sasyk Classification via Descriptive Set Theory 10

Page 50: Clasificación vía Teoría Descriptiva de Conjuntos · Classification Whatdoesitmeantoclassifymathematicalobjects? Whatfor? Example1:Complexn nmatrices,uptosimilaritytheJordan normalformisacompleteinvariant

Borel vs Analytic sets

Historically, descriptive set theory started with an example of Luzin(1917) of a set A that was the continuous image of a Borel set butA itself was not Borel. (i.e. there exists sets that are analytic andnon Borel)Properties of Analytic sets. Unions, countable intersections,continuous images, continuous inverse images of analytic sets areanalytic. However the complement of an analytic set is usually notanalytic. In factTheorem (Suslin 1917): a set A and its complement are bothanalytic iff A is Borel. (This is the starting point of what is calledprojective hierarchy of sets)

In concrete examples, “interesting” sets are obviously Analytic.The question is: How to show that a given set is analytic and notBorel?Answer Complete analytic sets.

Román Sasyk Classification via Descriptive Set Theory 10

Page 51: Clasificación vía Teoría Descriptiva de Conjuntos · Classification Whatdoesitmeantoclassifymathematicalobjects? Whatfor? Example1:Complexn nmatrices,uptosimilaritytheJordan normalformisacompleteinvariant

Borel vs Analytic sets

Historically, descriptive set theory started with an example of Luzin(1917) of a set A that was the continuous image of a Borel set butA itself was not Borel. (i.e. there exists sets that are analytic andnon Borel)Properties of Analytic sets. Unions, countable intersections,continuous images, continuous inverse images of analytic sets areanalytic. However the complement of an analytic set is usually notanalytic. In factTheorem (Suslin 1917): a set A and its complement are bothanalytic iff A is Borel. (This is the starting point of what is calledprojective hierarchy of sets)In concrete examples, “interesting” sets are obviously Analytic.

The question is: How to show that a given set is analytic and notBorel?Answer Complete analytic sets.

Román Sasyk Classification via Descriptive Set Theory 10

Page 52: Clasificación vía Teoría Descriptiva de Conjuntos · Classification Whatdoesitmeantoclassifymathematicalobjects? Whatfor? Example1:Complexn nmatrices,uptosimilaritytheJordan normalformisacompleteinvariant

Borel vs Analytic sets

Historically, descriptive set theory started with an example of Luzin(1917) of a set A that was the continuous image of a Borel set butA itself was not Borel. (i.e. there exists sets that are analytic andnon Borel)Properties of Analytic sets. Unions, countable intersections,continuous images, continuous inverse images of analytic sets areanalytic. However the complement of an analytic set is usually notanalytic. In factTheorem (Suslin 1917): a set A and its complement are bothanalytic iff A is Borel. (This is the starting point of what is calledprojective hierarchy of sets)In concrete examples, “interesting” sets are obviously Analytic.The question is: How to show that a given set is analytic and notBorel?

Answer Complete analytic sets.

Román Sasyk Classification via Descriptive Set Theory 10

Page 53: Clasificación vía Teoría Descriptiva de Conjuntos · Classification Whatdoesitmeantoclassifymathematicalobjects? Whatfor? Example1:Complexn nmatrices,uptosimilaritytheJordan normalformisacompleteinvariant

Borel vs Analytic sets

Historically, descriptive set theory started with an example of Luzin(1917) of a set A that was the continuous image of a Borel set butA itself was not Borel. (i.e. there exists sets that are analytic andnon Borel)Properties of Analytic sets. Unions, countable intersections,continuous images, continuous inverse images of analytic sets areanalytic. However the complement of an analytic set is usually notanalytic. In factTheorem (Suslin 1917): a set A and its complement are bothanalytic iff A is Borel. (This is the starting point of what is calledprojective hierarchy of sets)In concrete examples, “interesting” sets are obviously Analytic.The question is: How to show that a given set is analytic and notBorel?Answer Complete analytic sets.

Román Sasyk Classification via Descriptive Set Theory 10

Page 54: Clasificación vía Teoría Descriptiva de Conjuntos · Classification Whatdoesitmeantoclassifymathematicalobjects? Whatfor? Example1:Complexn nmatrices,uptosimilaritytheJordan normalformisacompleteinvariant

Analytic equivalence relations

Definition. An equivalence relation E on a Polish space X isanalytic if E viewed as a subset of X × X is an analytic set.

Theorem: Hjorth, Downey-Montalban 2005.The isomorphismrelation of torsion free abelian groups is complete analytic.Theorem: Foreman-Rudolph-Weiss 2006-2010.The conjugacyrelation of ergodic measure preserving transformations is completeanalytic.The authors claim that this result finishes the classification problemof EMPT posed by von Neumann.This is an instance where non classification is understood in termsof descriptive set theory.

Román Sasyk Classification via Descriptive Set Theory 11

Page 55: Clasificación vía Teoría Descriptiva de Conjuntos · Classification Whatdoesitmeantoclassifymathematicalobjects? Whatfor? Example1:Complexn nmatrices,uptosimilaritytheJordan normalformisacompleteinvariant

Analytic equivalence relations

Definition. An equivalence relation E on a Polish space X isanalytic if E viewed as a subset of X × X is an analytic set.Theorem: Hjorth, Downey-Montalban 2005.The isomorphismrelation of torsion free abelian groups is complete analytic.

Theorem: Foreman-Rudolph-Weiss 2006-2010.The conjugacyrelation of ergodic measure preserving transformations is completeanalytic.The authors claim that this result finishes the classification problemof EMPT posed by von Neumann.This is an instance where non classification is understood in termsof descriptive set theory.

Román Sasyk Classification via Descriptive Set Theory 11

Page 56: Clasificación vía Teoría Descriptiva de Conjuntos · Classification Whatdoesitmeantoclassifymathematicalobjects? Whatfor? Example1:Complexn nmatrices,uptosimilaritytheJordan normalformisacompleteinvariant

Analytic equivalence relations

Definition. An equivalence relation E on a Polish space X isanalytic if E viewed as a subset of X × X is an analytic set.Theorem: Hjorth, Downey-Montalban 2005.The isomorphismrelation of torsion free abelian groups is complete analytic.Theorem: Foreman-Rudolph-Weiss 2006-2010.The conjugacyrelation of ergodic measure preserving transformations is completeanalytic.

The authors claim that this result finishes the classification problemof EMPT posed by von Neumann.This is an instance where non classification is understood in termsof descriptive set theory.

Román Sasyk Classification via Descriptive Set Theory 11

Page 57: Clasificación vía Teoría Descriptiva de Conjuntos · Classification Whatdoesitmeantoclassifymathematicalobjects? Whatfor? Example1:Complexn nmatrices,uptosimilaritytheJordan normalformisacompleteinvariant

Analytic equivalence relations

Definition. An equivalence relation E on a Polish space X isanalytic if E viewed as a subset of X × X is an analytic set.Theorem: Hjorth, Downey-Montalban 2005.The isomorphismrelation of torsion free abelian groups is complete analytic.Theorem: Foreman-Rudolph-Weiss 2006-2010.The conjugacyrelation of ergodic measure preserving transformations is completeanalytic.The authors claim that this result finishes the classification problemof EMPT posed by von Neumann.

This is an instance where non classification is understood in termsof descriptive set theory.

Román Sasyk Classification via Descriptive Set Theory 11

Page 58: Clasificación vía Teoría Descriptiva de Conjuntos · Classification Whatdoesitmeantoclassifymathematicalobjects? Whatfor? Example1:Complexn nmatrices,uptosimilaritytheJordan normalformisacompleteinvariant

Analytic equivalence relations

Definition. An equivalence relation E on a Polish space X isanalytic if E viewed as a subset of X × X is an analytic set.Theorem: Hjorth, Downey-Montalban 2005.The isomorphismrelation of torsion free abelian groups is complete analytic.Theorem: Foreman-Rudolph-Weiss 2006-2010.The conjugacyrelation of ergodic measure preserving transformations is completeanalytic.The authors claim that this result finishes the classification problemof EMPT posed by von Neumann.This is an instance where non classification is understood in termsof descriptive set theory.

Román Sasyk Classification via Descriptive Set Theory 11

Page 59: Clasificación vía Teoría Descriptiva de Conjuntos · Classification Whatdoesitmeantoclassifymathematicalobjects? Whatfor? Example1:Complexn nmatrices,uptosimilaritytheJordan normalformisacompleteinvariant

Isomorphism of II1 factors is complete analytic

Theorem: S.-Tornquist.The isomorphism relation of II1 factors iscomplete analytic.

i.e. if we denote by FII1(H) the (standard)space of II1 factors on H, then the set

{(N,M) ∈ FII1(H)×FII1(H) : N is iso. M}

is a complete analytic set.In fact this result is a corollary of a stronger statement about “Borelreducibility”.

Román Sasyk Classification via Descriptive Set Theory 12

Page 60: Clasificación vía Teoría Descriptiva de Conjuntos · Classification Whatdoesitmeantoclassifymathematicalobjects? Whatfor? Example1:Complexn nmatrices,uptosimilaritytheJordan normalformisacompleteinvariant

Isomorphism of II1 factors is complete analytic

Theorem: S.-Tornquist.The isomorphism relation of II1 factors iscomplete analytic. i.e. if we denote by FII1(H) the (standard)space of II1 factors on H, then the set

{(N,M) ∈ FII1(H)×FII1(H) : N is iso. M}

is a complete analytic set.

In fact this result is a corollary of a stronger statement about “Borelreducibility”.

Román Sasyk Classification via Descriptive Set Theory 12

Page 61: Clasificación vía Teoría Descriptiva de Conjuntos · Classification Whatdoesitmeantoclassifymathematicalobjects? Whatfor? Example1:Complexn nmatrices,uptosimilaritytheJordan normalformisacompleteinvariant

Isomorphism of II1 factors is complete analytic

Theorem: S.-Tornquist.The isomorphism relation of II1 factors iscomplete analytic. i.e. if we denote by FII1(H) the (standard)space of II1 factors on H, then the set

{(N,M) ∈ FII1(H)×FII1(H) : N is iso. M}

is a complete analytic set.In fact this result is a corollary of a stronger statement about “Borelreducibility”.

Román Sasyk Classification via Descriptive Set Theory 12

Page 62: Clasificación vía Teoría Descriptiva de Conjuntos · Classification Whatdoesitmeantoclassifymathematicalobjects? Whatfor? Example1:Complexn nmatrices,uptosimilaritytheJordan normalformisacompleteinvariant

Borel reducibility

Borel reducibility is a theory within descriptive set theory which hasbeen developed as a tool to measure the relative complexity ofclassification problems that arise naturally in mathematics.

Its development has lead to what is now a large programme ofanalyzing the descriptive set theory of definable equivalencerelations. (Definable=Borel, analytic, etc.).Borel reducibility was first introduced in the late 80’s by Friedmanand Stanley in the context of model theory but it was quickly takenover by descriptive set theorists. The starting point comes from ageneralization of theorems of Mackey, Glimm and Effros in operatoralgebras.

Román Sasyk Classification via Descriptive Set Theory 13

Page 63: Clasificación vía Teoría Descriptiva de Conjuntos · Classification Whatdoesitmeantoclassifymathematicalobjects? Whatfor? Example1:Complexn nmatrices,uptosimilaritytheJordan normalformisacompleteinvariant

Borel reducibility

Borel reducibility is a theory within descriptive set theory which hasbeen developed as a tool to measure the relative complexity ofclassification problems that arise naturally in mathematics.

Its development has lead to what is now a large programme ofanalyzing the descriptive set theory of definable equivalencerelations. (Definable=Borel, analytic, etc.).

Borel reducibility was first introduced in the late 80’s by Friedmanand Stanley in the context of model theory but it was quickly takenover by descriptive set theorists. The starting point comes from ageneralization of theorems of Mackey, Glimm and Effros in operatoralgebras.

Román Sasyk Classification via Descriptive Set Theory 13

Page 64: Clasificación vía Teoría Descriptiva de Conjuntos · Classification Whatdoesitmeantoclassifymathematicalobjects? Whatfor? Example1:Complexn nmatrices,uptosimilaritytheJordan normalformisacompleteinvariant

Borel reducibility

Borel reducibility is a theory within descriptive set theory which hasbeen developed as a tool to measure the relative complexity ofclassification problems that arise naturally in mathematics.

Its development has lead to what is now a large programme ofanalyzing the descriptive set theory of definable equivalencerelations. (Definable=Borel, analytic, etc.).Borel reducibility was first introduced in the late 80’s by Friedmanand Stanley in the context of model theory but it was quickly takenover by descriptive set theorists. The starting point comes from ageneralization of theorems of Mackey, Glimm and Effros in operatoralgebras.

Román Sasyk Classification via Descriptive Set Theory 13

Page 65: Clasificación vía Teoría Descriptiva de Conjuntos · Classification Whatdoesitmeantoclassifymathematicalobjects? Whatfor? Example1:Complexn nmatrices,uptosimilaritytheJordan normalformisacompleteinvariant

Borel reducibility

Definition. Let E and F be equivalence relations on standard Borelspaces X and Y respectively.

E is Borel reducible to F , written E ≤B F , if there is a Borelf : X → Y such that

xEy ⇐⇒ f (x)Ff (y).

This means that the points of X can be classified up toE -equivalence by a Borel assignment of invariants that areF -equivalence classes.

f is required to be Borel to make sure that the invariant f (x) has areasonable computation from x .

Without a requirement on f , the definition would only amount tostudying the cardinality of X/E vs. Y /F .

Román Sasyk Classification via Descriptive Set Theory 14

Page 66: Clasificación vía Teoría Descriptiva de Conjuntos · Classification Whatdoesitmeantoclassifymathematicalobjects? Whatfor? Example1:Complexn nmatrices,uptosimilaritytheJordan normalformisacompleteinvariant

Borel reducibility

Definition. Let E and F be equivalence relations on standard Borelspaces X and Y respectively.

E is Borel reducible to F , written E ≤B F , if there is a Borelf : X → Y such that

xEy ⇐⇒ f (x)Ff (y).

This means that the points of X can be classified up toE -equivalence by a Borel assignment of invariants that areF -equivalence classes.

f is required to be Borel to make sure that the invariant f (x) has areasonable computation from x .

Without a requirement on f , the definition would only amount tostudying the cardinality of X/E vs. Y /F .

Román Sasyk Classification via Descriptive Set Theory 14

Page 67: Clasificación vía Teoría Descriptiva de Conjuntos · Classification Whatdoesitmeantoclassifymathematicalobjects? Whatfor? Example1:Complexn nmatrices,uptosimilaritytheJordan normalformisacompleteinvariant

Borel reducibility

Definition. Let E and F be equivalence relations on standard Borelspaces X and Y respectively.

E is Borel reducible to F , written E ≤B F , if there is a Borelf : X → Y such that

xEy ⇐⇒ f (x)Ff (y).

This means that the points of X can be classified up toE -equivalence by a Borel assignment of invariants that areF -equivalence classes.

f is required to be Borel to make sure that the invariant f (x) has areasonable computation from x .

Without a requirement on f , the definition would only amount tostudying the cardinality of X/E vs. Y /F .

Román Sasyk Classification via Descriptive Set Theory 14

Page 68: Clasificación vía Teoría Descriptiva de Conjuntos · Classification Whatdoesitmeantoclassifymathematicalobjects? Whatfor? Example1:Complexn nmatrices,uptosimilaritytheJordan normalformisacompleteinvariant

Borel reducibility

Definition. Let E and F be equivalence relations on standard Borelspaces X and Y respectively.

E is Borel reducible to F , written E ≤B F , if there is a Borelf : X → Y such that

xEy ⇐⇒ f (x)Ff (y).

This means that the points of X can be classified up toE -equivalence by a Borel assignment of invariants that areF -equivalence classes.

f is required to be Borel to make sure that the invariant f (x) has areasonable computation from x .

Without a requirement on f , the definition would only amount tostudying the cardinality of X/E vs. Y /F .

Román Sasyk Classification via Descriptive Set Theory 14

Page 69: Clasificación vía Teoría Descriptiva de Conjuntos · Classification Whatdoesitmeantoclassifymathematicalobjects? Whatfor? Example1:Complexn nmatrices,uptosimilaritytheJordan normalformisacompleteinvariant

Borel reducibility

Definition. Let E and F be equivalence relations on standard Borelspaces X and Y respectively.

E is Borel reducible to F , written E ≤B F , if there is a Borelf : X → Y such that

xEy ⇐⇒ f (x)Ff (y).

This means that the points of X can be classified up toE -equivalence by a Borel assignment of invariants that areF -equivalence classes.

f is required to be Borel to make sure that the invariant f (x) has areasonable computation from x .

Without a requirement on f , the definition would only amount tostudying the cardinality of X/E vs. Y /F .

Román Sasyk Classification via Descriptive Set Theory 14

Page 70: Clasificación vía Teoría Descriptiva de Conjuntos · Classification Whatdoesitmeantoclassifymathematicalobjects? Whatfor? Example1:Complexn nmatrices,uptosimilaritytheJordan normalformisacompleteinvariant

Smooth equivalence relations

Let X be a standard Borel space and E an equiv. rel. on X .

Definition. E is smooth or countably separated or concretelyclassifiable if ∃ {An}n∈N Borel subsets of X such that

xEy ⇐⇒ (∀n ∈ N)x ∈ An ⇐⇒ y ∈ An

.Same as E ≤B=R, where =R denotes the equality relation in R.

Example 1: X the set of n × n matrices , E = similarity.f (A) =Jordan form of A.

Example 2 (Ornstein-Bowen): X Classical Bernoulli shifts, Econjugacy. f (T ) = the entropy of T .

Román Sasyk Classification via Descriptive Set Theory 15

Page 71: Clasificación vía Teoría Descriptiva de Conjuntos · Classification Whatdoesitmeantoclassifymathematicalobjects? Whatfor? Example1:Complexn nmatrices,uptosimilaritytheJordan normalformisacompleteinvariant

Smooth equivalence relations

Let X be a standard Borel space and E an equiv. rel. on X .

Definition. E is smooth or countably separated or concretelyclassifiable if ∃ {An}n∈N Borel subsets of X such that

xEy ⇐⇒ (∀n ∈ N)x ∈ An ⇐⇒ y ∈ An

.

Same as E ≤B=R, where =R denotes the equality relation in R.

Example 1: X the set of n × n matrices , E = similarity.f (A) =Jordan form of A.

Example 2 (Ornstein-Bowen): X Classical Bernoulli shifts, Econjugacy. f (T ) = the entropy of T .

Román Sasyk Classification via Descriptive Set Theory 15

Page 72: Clasificación vía Teoría Descriptiva de Conjuntos · Classification Whatdoesitmeantoclassifymathematicalobjects? Whatfor? Example1:Complexn nmatrices,uptosimilaritytheJordan normalformisacompleteinvariant

Smooth equivalence relations

Let X be a standard Borel space and E an equiv. rel. on X .

Definition. E is smooth or countably separated or concretelyclassifiable if ∃ {An}n∈N Borel subsets of X such that

xEy ⇐⇒ (∀n ∈ N)x ∈ An ⇐⇒ y ∈ An

.Same as E ≤B=R, where =R denotes the equality relation in R.

Example 1: X the set of n × n matrices , E = similarity.f (A) =Jordan form of A.

Example 2 (Ornstein-Bowen): X Classical Bernoulli shifts, Econjugacy. f (T ) = the entropy of T .

Román Sasyk Classification via Descriptive Set Theory 15

Page 73: Clasificación vía Teoría Descriptiva de Conjuntos · Classification Whatdoesitmeantoclassifymathematicalobjects? Whatfor? Example1:Complexn nmatrices,uptosimilaritytheJordan normalformisacompleteinvariant

Smooth equivalence relations

Let X be a standard Borel space and E an equiv. rel. on X .

Definition. E is smooth or countably separated or concretelyclassifiable if ∃ {An}n∈N Borel subsets of X such that

xEy ⇐⇒ (∀n ∈ N)x ∈ An ⇐⇒ y ∈ An

.Same as E ≤B=R, where =R denotes the equality relation in R.

Example 1: X the set of n × n matrices , E = similarity.f (A) =Jordan form of A.

Example 2 (Ornstein-Bowen): X Classical Bernoulli shifts, Econjugacy. f (T ) = the entropy of T .

Román Sasyk Classification via Descriptive Set Theory 15

Page 74: Clasificación vía Teoría Descriptiva de Conjuntos · Classification Whatdoesitmeantoclassifymathematicalobjects? Whatfor? Example1:Complexn nmatrices,uptosimilaritytheJordan normalformisacompleteinvariant

Smooth equivalence relations

Let X be a standard Borel space and E an equiv. rel. on X .

Definition. E is smooth or countably separated or concretelyclassifiable if ∃ {An}n∈N Borel subsets of X such that

xEy ⇐⇒ (∀n ∈ N)x ∈ An ⇐⇒ y ∈ An

.Same as E ≤B=R, where =R denotes the equality relation in R.

Example 1: X the set of n × n matrices , E = similarity.f (A) =Jordan form of A.

Example 2 (Ornstein-Bowen): X Classical Bernoulli shifts, Econjugacy. f (T ) = the entropy of T .

Román Sasyk Classification via Descriptive Set Theory 15

Page 75: Clasificación vía Teoría Descriptiva de Conjuntos · Classification Whatdoesitmeantoclassifymathematicalobjects? Whatfor? Example1:Complexn nmatrices,uptosimilaritytheJordan normalformisacompleteinvariant

The equivalence relation E0

The simplest example of a non-smooth equivalence relation is E0,defined on 2N, by

xEy ⇐⇒ (∃N)(∀n ≥ N)x(n) = y(n).

Remark: If E0 ≤B E then E has uncountable many equivalenceclasses.

Theorem (Baer): The isomorphism relation for countable rank 1torsion free abelian groups is Borel bireducible to E0.

Román Sasyk Classification via Descriptive Set Theory 16

Page 76: Clasificación vía Teoría Descriptiva de Conjuntos · Classification Whatdoesitmeantoclassifymathematicalobjects? Whatfor? Example1:Complexn nmatrices,uptosimilaritytheJordan normalformisacompleteinvariant

The equivalence relation E0

The simplest example of a non-smooth equivalence relation is E0,defined on 2N, by

xEy ⇐⇒ (∃N)(∀n ≥ N)x(n) = y(n).

Remark: If E0 ≤B E then E has uncountable many equivalenceclasses.

Theorem (Baer): The isomorphism relation for countable rank 1torsion free abelian groups is Borel bireducible to E0.

Román Sasyk Classification via Descriptive Set Theory 16

Page 77: Clasificación vía Teoría Descriptiva de Conjuntos · Classification Whatdoesitmeantoclassifymathematicalobjects? Whatfor? Example1:Complexn nmatrices,uptosimilaritytheJordan normalformisacompleteinvariant

The equivalence relation E0

The simplest example of a non-smooth equivalence relation is E0,defined on 2N, by

xEy ⇐⇒ (∃N)(∀n ≥ N)x(n) = y(n).

Remark: If E0 ≤B E then E has uncountable many equivalenceclasses.

Theorem (Baer): The isomorphism relation for countable rank 1torsion free abelian groups is Borel bireducible to E0.

Román Sasyk Classification via Descriptive Set Theory 16

Page 78: Clasificación vía Teoría Descriptiva de Conjuntos · Classification Whatdoesitmeantoclassifymathematicalobjects? Whatfor? Example1:Complexn nmatrices,uptosimilaritytheJordan normalformisacompleteinvariant

Historical Remark: Group representations

A representation of a group G is a continuous morphismπ : G → U(H).

The unitary dual G is the set of irreducible representations.Peter-Weyl Theorem describes the irreducible representations ofcompact groups.PROBLEM :What happen in the locally compact case?Manyapproaches to answer this question: (Weyl, Weil, Gelfand,Harish-Chandra, Langlands, Kirillov, von Neumann, Mackey, etc, )

Mackey conjectured that the unitary dual of a group with goodrepresentation theory is countable separated. This was proved byhis students Glimm, and Effros around 1960.This really marks the beginning of Borel reducibility.

Román Sasyk Classification via Descriptive Set Theory 17

Page 79: Clasificación vía Teoría Descriptiva de Conjuntos · Classification Whatdoesitmeantoclassifymathematicalobjects? Whatfor? Example1:Complexn nmatrices,uptosimilaritytheJordan normalformisacompleteinvariant

Historical Remark: Group representations

A representation of a group G is a continuous morphismπ : G → U(H).The unitary dual G is the set of irreducible representations.

Peter-Weyl Theorem describes the irreducible representations ofcompact groups.PROBLEM :What happen in the locally compact case?Manyapproaches to answer this question: (Weyl, Weil, Gelfand,Harish-Chandra, Langlands, Kirillov, von Neumann, Mackey, etc, )

Mackey conjectured that the unitary dual of a group with goodrepresentation theory is countable separated. This was proved byhis students Glimm, and Effros around 1960.This really marks the beginning of Borel reducibility.

Román Sasyk Classification via Descriptive Set Theory 17

Page 80: Clasificación vía Teoría Descriptiva de Conjuntos · Classification Whatdoesitmeantoclassifymathematicalobjects? Whatfor? Example1:Complexn nmatrices,uptosimilaritytheJordan normalformisacompleteinvariant

Historical Remark: Group representations

A representation of a group G is a continuous morphismπ : G → U(H).The unitary dual G is the set of irreducible representations.Peter-Weyl Theorem describes the irreducible representations ofcompact groups.

PROBLEM :What happen in the locally compact case?Manyapproaches to answer this question: (Weyl, Weil, Gelfand,Harish-Chandra, Langlands, Kirillov, von Neumann, Mackey, etc, )

Mackey conjectured that the unitary dual of a group with goodrepresentation theory is countable separated. This was proved byhis students Glimm, and Effros around 1960.This really marks the beginning of Borel reducibility.

Román Sasyk Classification via Descriptive Set Theory 17

Page 81: Clasificación vía Teoría Descriptiva de Conjuntos · Classification Whatdoesitmeantoclassifymathematicalobjects? Whatfor? Example1:Complexn nmatrices,uptosimilaritytheJordan normalformisacompleteinvariant

Historical Remark: Group representations

A representation of a group G is a continuous morphismπ : G → U(H).The unitary dual G is the set of irreducible representations.Peter-Weyl Theorem describes the irreducible representations ofcompact groups.PROBLEM :What happen in the locally compact case?

Manyapproaches to answer this question: (Weyl, Weil, Gelfand,Harish-Chandra, Langlands, Kirillov, von Neumann, Mackey, etc, )

Mackey conjectured that the unitary dual of a group with goodrepresentation theory is countable separated. This was proved byhis students Glimm, and Effros around 1960.This really marks the beginning of Borel reducibility.

Román Sasyk Classification via Descriptive Set Theory 17

Page 82: Clasificación vía Teoría Descriptiva de Conjuntos · Classification Whatdoesitmeantoclassifymathematicalobjects? Whatfor? Example1:Complexn nmatrices,uptosimilaritytheJordan normalformisacompleteinvariant

Historical Remark: Group representations

A representation of a group G is a continuous morphismπ : G → U(H).The unitary dual G is the set of irreducible representations.Peter-Weyl Theorem describes the irreducible representations ofcompact groups.PROBLEM :What happen in the locally compact case?Manyapproaches to answer this question:

(Weyl, Weil, Gelfand,Harish-Chandra, Langlands, Kirillov, von Neumann, Mackey, etc, )

Mackey conjectured that the unitary dual of a group with goodrepresentation theory is countable separated. This was proved byhis students Glimm, and Effros around 1960.This really marks the beginning of Borel reducibility.

Román Sasyk Classification via Descriptive Set Theory 17

Page 83: Clasificación vía Teoría Descriptiva de Conjuntos · Classification Whatdoesitmeantoclassifymathematicalobjects? Whatfor? Example1:Complexn nmatrices,uptosimilaritytheJordan normalformisacompleteinvariant

Historical Remark: Group representations

A representation of a group G is a continuous morphismπ : G → U(H).The unitary dual G is the set of irreducible representations.Peter-Weyl Theorem describes the irreducible representations ofcompact groups.PROBLEM :What happen in the locally compact case?Manyapproaches to answer this question: (Weyl, Weil, Gelfand,Harish-Chandra, Langlands, Kirillov, von Neumann, Mackey, etc, )

Mackey conjectured that the unitary dual of a group with goodrepresentation theory is countable separated. This was proved byhis students Glimm, and Effros around 1960.This really marks the beginning of Borel reducibility.

Román Sasyk Classification via Descriptive Set Theory 17

Page 84: Clasificación vía Teoría Descriptiva de Conjuntos · Classification Whatdoesitmeantoclassifymathematicalobjects? Whatfor? Example1:Complexn nmatrices,uptosimilaritytheJordan normalformisacompleteinvariant

Historical Remark: Group representations

A representation of a group G is a continuous morphismπ : G → U(H).The unitary dual G is the set of irreducible representations.Peter-Weyl Theorem describes the irreducible representations ofcompact groups.PROBLEM :What happen in the locally compact case?Manyapproaches to answer this question: (Weyl, Weil, Gelfand,Harish-Chandra, Langlands, Kirillov, von Neumann, Mackey, etc, )

Mackey conjectured that the unitary dual of a group with goodrepresentation theory is countable separated.

This was proved byhis students Glimm, and Effros around 1960.This really marks the beginning of Borel reducibility.

Román Sasyk Classification via Descriptive Set Theory 17

Page 85: Clasificación vía Teoría Descriptiva de Conjuntos · Classification Whatdoesitmeantoclassifymathematicalobjects? Whatfor? Example1:Complexn nmatrices,uptosimilaritytheJordan normalformisacompleteinvariant

Historical Remark: Group representations

A representation of a group G is a continuous morphismπ : G → U(H).The unitary dual G is the set of irreducible representations.Peter-Weyl Theorem describes the irreducible representations ofcompact groups.PROBLEM :What happen in the locally compact case?Manyapproaches to answer this question: (Weyl, Weil, Gelfand,Harish-Chandra, Langlands, Kirillov, von Neumann, Mackey, etc, )

Mackey conjectured that the unitary dual of a group with goodrepresentation theory is countable separated. This was proved byhis students Glimm, and Effros around 1960.This really marks the beginning of Borel reducibility.

Román Sasyk Classification via Descriptive Set Theory 17

Page 86: Clasificación vía Teoría Descriptiva de Conjuntos · Classification Whatdoesitmeantoclassifymathematicalobjects? Whatfor? Example1:Complexn nmatrices,uptosimilaritytheJordan normalformisacompleteinvariant

Borel-reducibility hierarchy

Theorem (Effros-Glimm dichotomy, (Harrington-K.-L. 90))E is a Borel equivalence relation. Either E is smooth or E0 ≤ E.

Facts:1. In RN,

xE1y ⇐⇒ (∃N)(∀n > N) x(n) = y(n).

andxE2y ⇐⇒ lim

n→∞(x(n)− y(n)) = 0

are incomparable. (Kechris-Louveau)2. There exists a universal countable equivalence relation E∞

(i. e. E ≤B E∞, E has countable orbits)3. E0 <B E <B E∞ (Jackson, K, L)

Román Sasyk Classification via Descriptive Set Theory 18

Page 87: Clasificación vía Teoría Descriptiva de Conjuntos · Classification Whatdoesitmeantoclassifymathematicalobjects? Whatfor? Example1:Complexn nmatrices,uptosimilaritytheJordan normalformisacompleteinvariant

Borel-reducibility hierarchy

Theorem (Effros-Glimm dichotomy, (Harrington-K.-L. 90))E is a Borel equivalence relation. Either E is smooth or E0 ≤ E.

Facts:1. In RN,

xE1y ⇐⇒ (∃N)(∀n > N) x(n) = y(n).

andxE2y ⇐⇒ lim

n→∞(x(n)− y(n)) = 0

are incomparable. (Kechris-Louveau)2. There exists a universal countable equivalence relation E∞

(i. e. E ≤B E∞, E has countable orbits)3. E0 <B E <B E∞ (Jackson, K, L)

Román Sasyk Classification via Descriptive Set Theory 18

Page 88: Clasificación vía Teoría Descriptiva de Conjuntos · Classification Whatdoesitmeantoclassifymathematicalobjects? Whatfor? Example1:Complexn nmatrices,uptosimilaritytheJordan normalformisacompleteinvariant

Borel-reducibility hierarchy

Theorem (Effros-Glimm dichotomy, (Harrington-K.-L. 90))E is a Borel equivalence relation. Either E is smooth or E0 ≤ E.

Facts:1. In RN,

xE1y ⇐⇒ (∃N)(∀n > N) x(n) = y(n).

and

xE2y ⇐⇒ limn→∞

(x(n)− y(n)) = 0

are incomparable. (Kechris-Louveau)2. There exists a universal countable equivalence relation E∞

(i. e. E ≤B E∞, E has countable orbits)3. E0 <B E <B E∞ (Jackson, K, L)

Román Sasyk Classification via Descriptive Set Theory 18

Page 89: Clasificación vía Teoría Descriptiva de Conjuntos · Classification Whatdoesitmeantoclassifymathematicalobjects? Whatfor? Example1:Complexn nmatrices,uptosimilaritytheJordan normalformisacompleteinvariant

Borel-reducibility hierarchy

Theorem (Effros-Glimm dichotomy, (Harrington-K.-L. 90))E is a Borel equivalence relation. Either E is smooth or E0 ≤ E.

Facts:1. In RN,

xE1y ⇐⇒ (∃N)(∀n > N) x(n) = y(n).

andxE2y ⇐⇒ lim

n→∞(x(n)− y(n)) = 0

are incomparable. (Kechris-Louveau)

2. There exists a universal countable equivalence relation E∞(i. e. E ≤B E∞, E has countable orbits)

3. E0 <B E <B E∞ (Jackson, K, L)

Román Sasyk Classification via Descriptive Set Theory 18

Page 90: Clasificación vía Teoría Descriptiva de Conjuntos · Classification Whatdoesitmeantoclassifymathematicalobjects? Whatfor? Example1:Complexn nmatrices,uptosimilaritytheJordan normalformisacompleteinvariant

Borel-reducibility hierarchy

Theorem (Effros-Glimm dichotomy, (Harrington-K.-L. 90))E is a Borel equivalence relation. Either E is smooth or E0 ≤ E.

Facts:1. In RN,

xE1y ⇐⇒ (∃N)(∀n > N) x(n) = y(n).

andxE2y ⇐⇒ lim

n→∞(x(n)− y(n)) = 0

are incomparable. (Kechris-Louveau)2. There exists a universal countable equivalence relation E∞

(i. e. E ≤B E∞, E has countable orbits)

3. E0 <B E <B E∞ (Jackson, K, L)

Román Sasyk Classification via Descriptive Set Theory 18

Page 91: Clasificación vía Teoría Descriptiva de Conjuntos · Classification Whatdoesitmeantoclassifymathematicalobjects? Whatfor? Example1:Complexn nmatrices,uptosimilaritytheJordan normalformisacompleteinvariant

Borel-reducibility hierarchy

Theorem (Effros-Glimm dichotomy, (Harrington-K.-L. 90))E is a Borel equivalence relation. Either E is smooth or E0 ≤ E.

Facts:1. In RN,

xE1y ⇐⇒ (∃N)(∀n > N) x(n) = y(n).

andxE2y ⇐⇒ lim

n→∞(x(n)− y(n)) = 0

are incomparable. (Kechris-Louveau)2. There exists a universal countable equivalence relation E∞

(i. e. E ≤B E∞, E has countable orbits)3. E0 <B E <B E∞ (Jackson, K, L)

Román Sasyk Classification via Descriptive Set Theory 18

Page 92: Clasificación vía Teoría Descriptiva de Conjuntos · Classification Whatdoesitmeantoclassifymathematicalobjects? Whatfor? Example1:Complexn nmatrices,uptosimilaritytheJordan normalformisacompleteinvariant

Classification by countable structures

Definition. Let E be an equivalence relation on a Polish space X .E is classifiable by countable structures if

E ≤B EYS∞

Where S∞ is the infinite symmetric group and EYS∞

denotes a Borelequivalence relation induced by a continuous S∞-action on Y .

Let L be a countable language. Mod(L) denotes the natural Polishspace of countable models of L with underlying set N. 'Mod(L)

denotes the isomorphism relation in Mod(L).

Example. L = {R, f }, R an n-ary relation symbol, and f an m-aryfunction symbol. Then

Mod(L) = 2Nn × NNm

.

Definition. E is classifiable by countable structures if there is acountable language L such that E ≤B'Mod(L).

Román Sasyk Classification via Descriptive Set Theory 19

Page 93: Clasificación vía Teoría Descriptiva de Conjuntos · Classification Whatdoesitmeantoclassifymathematicalobjects? Whatfor? Example1:Complexn nmatrices,uptosimilaritytheJordan normalformisacompleteinvariant

Classification by countable structures

Definition. Let E be an equivalence relation on a Polish space X .E is classifiable by countable structures if

E ≤B EYS∞

Where S∞ is the infinite symmetric group and EYS∞

denotes a Borelequivalence relation induced by a continuous S∞-action on Y .Let L be a countable language. Mod(L) denotes the natural Polishspace of countable models of L with underlying set N. 'Mod(L)

denotes the isomorphism relation in Mod(L).

Example. L = {R, f }, R an n-ary relation symbol, and f an m-aryfunction symbol. Then

Mod(L) = 2Nn × NNm

.

Definition. E is classifiable by countable structures if there is acountable language L such that E ≤B'Mod(L).

Román Sasyk Classification via Descriptive Set Theory 19

Page 94: Clasificación vía Teoría Descriptiva de Conjuntos · Classification Whatdoesitmeantoclassifymathematicalobjects? Whatfor? Example1:Complexn nmatrices,uptosimilaritytheJordan normalformisacompleteinvariant

Classification by countable structures

Definition. Let E be an equivalence relation on a Polish space X .E is classifiable by countable structures if

E ≤B EYS∞

Where S∞ is the infinite symmetric group and EYS∞

denotes a Borelequivalence relation induced by a continuous S∞-action on Y .Let L be a countable language. Mod(L) denotes the natural Polishspace of countable models of L with underlying set N. 'Mod(L)

denotes the isomorphism relation in Mod(L).

Example. L = {R, f }, R an n-ary relation symbol, and f an m-aryfunction symbol. Then

Mod(L) = 2Nn × NNm

.

Definition. E is classifiable by countable structures if there is acountable language L such that E ≤B'Mod(L).

Román Sasyk Classification via Descriptive Set Theory 19

Page 95: Clasificación vía Teoría Descriptiva de Conjuntos · Classification Whatdoesitmeantoclassifymathematicalobjects? Whatfor? Example1:Complexn nmatrices,uptosimilaritytheJordan normalformisacompleteinvariant

Classification by countable structures

Definition. Let E be an equivalence relation on a Polish space X .E is classifiable by countable structures if

E ≤B EYS∞

Where S∞ is the infinite symmetric group and EYS∞

denotes a Borelequivalence relation induced by a continuous S∞-action on Y .Let L be a countable language. Mod(L) denotes the natural Polishspace of countable models of L with underlying set N. 'Mod(L)

denotes the isomorphism relation in Mod(L).

Example. L = {R, f }, R an n-ary relation symbol, and f an m-aryfunction symbol. Then

Mod(L) = 2Nn × NNm

.

Definition. E is classifiable by countable structures if there is acountable language L such that E ≤B'Mod(L).

Román Sasyk Classification via Descriptive Set Theory 19

Page 96: Clasificación vía Teoría Descriptiva de Conjuntos · Classification Whatdoesitmeantoclassifymathematicalobjects? Whatfor? Example1:Complexn nmatrices,uptosimilaritytheJordan normalformisacompleteinvariant

Classification by countable structures II

Example: Graphs as a countable structure.

GRAPHS = {f : N× N→ {0, 1}f (x , x) = 0; f (x , y) = f (y , x))}

f1 ∼ f2 ⇐⇒ ∃φ : N→ N bijection s.t. f1(x , y) = f2(φ(x), φ(y)).

S∞ acts on GRAPHS as Θ ∈ S∞, Θf (x , y) = f (Θ−1(x),Θ−1(y))

The equivalence relations that are classifiable by countablestructures include all equivalence relations that can be classified(reasonably) using countable groups, graphs, fields, etc., ascomplete invariants.

Example I: E∞ ≤B EYS∞

Example II: (Halmos-vN) E = conjugacy of ergodic m.p.transformations with discrete spectrum. σP(T ) is a completeinvariant. E ≤B EY

S∞

Román Sasyk Classification via Descriptive Set Theory 20

Page 97: Clasificación vía Teoría Descriptiva de Conjuntos · Classification Whatdoesitmeantoclassifymathematicalobjects? Whatfor? Example1:Complexn nmatrices,uptosimilaritytheJordan normalformisacompleteinvariant

Classification by countable structures II

Example: Graphs as a countable structure.

GRAPHS = {f : N× N→ {0, 1}f (x , x) = 0; f (x , y) = f (y , x))}

f1 ∼ f2 ⇐⇒ ∃φ : N→ N bijection s.t. f1(x , y) = f2(φ(x), φ(y)).

S∞ acts on GRAPHS as Θ ∈ S∞, Θf (x , y) = f (Θ−1(x),Θ−1(y))

The equivalence relations that are classifiable by countablestructures include all equivalence relations that can be classified(reasonably) using countable groups, graphs, fields, etc., ascomplete invariants.

Example I: E∞ ≤B EYS∞

Example II: (Halmos-vN) E = conjugacy of ergodic m.p.transformations with discrete spectrum. σP(T ) is a completeinvariant. E ≤B EY

S∞

Román Sasyk Classification via Descriptive Set Theory 20

Page 98: Clasificación vía Teoría Descriptiva de Conjuntos · Classification Whatdoesitmeantoclassifymathematicalobjects? Whatfor? Example1:Complexn nmatrices,uptosimilaritytheJordan normalformisacompleteinvariant

Classification by countable structures II

Example: Graphs as a countable structure.

GRAPHS = {f : N× N→ {0, 1}f (x , x) = 0; f (x , y) = f (y , x))}

f1 ∼ f2 ⇐⇒ ∃φ : N→ N bijection s.t. f1(x , y) = f2(φ(x), φ(y)).

S∞ acts on GRAPHS as Θ ∈ S∞, Θf (x , y) = f (Θ−1(x),Θ−1(y))

The equivalence relations that are classifiable by countablestructures include all equivalence relations that can be classified(reasonably) using countable groups, graphs, fields, etc., ascomplete invariants.

Example I: E∞ ≤B EYS∞

Example II: (Halmos-vN) E = conjugacy of ergodic m.p.transformations with discrete spectrum. σP(T ) is a completeinvariant. E ≤B EY

S∞

Román Sasyk Classification via Descriptive Set Theory 20

Page 99: Clasificación vía Teoría Descriptiva de Conjuntos · Classification Whatdoesitmeantoclassifymathematicalobjects? Whatfor? Example1:Complexn nmatrices,uptosimilaritytheJordan normalformisacompleteinvariant

Classification by countable structures II

Example: Graphs as a countable structure.

GRAPHS = {f : N× N→ {0, 1}f (x , x) = 0; f (x , y) = f (y , x))}

f1 ∼ f2 ⇐⇒ ∃φ : N→ N bijection s.t. f1(x , y) = f2(φ(x), φ(y)).

S∞ acts on GRAPHS as Θ ∈ S∞, Θf (x , y) = f (Θ−1(x),Θ−1(y))

The equivalence relations that are classifiable by countablestructures include all equivalence relations that can be classified(reasonably) using countable groups, graphs, fields, etc., ascomplete invariants.

Example I: E∞ ≤B EYS∞

Example II: (Halmos-vN) E = conjugacy of ergodic m.p.transformations with discrete spectrum. σP(T ) is a completeinvariant. E ≤B EY

S∞

Román Sasyk Classification via Descriptive Set Theory 20

Page 100: Clasificación vía Teoría Descriptiva de Conjuntos · Classification Whatdoesitmeantoclassifymathematicalobjects? Whatfor? Example1:Complexn nmatrices,uptosimilaritytheJordan normalformisacompleteinvariant

Classification by countable structures II

Example: Graphs as a countable structure.

GRAPHS = {f : N× N→ {0, 1}f (x , x) = 0; f (x , y) = f (y , x))}

f1 ∼ f2 ⇐⇒ ∃φ : N→ N bijection s.t. f1(x , y) = f2(φ(x), φ(y)).

S∞ acts on GRAPHS as Θ ∈ S∞, Θf (x , y) = f (Θ−1(x),Θ−1(y))

The equivalence relations that are classifiable by countablestructures include all equivalence relations that can be classified(reasonably) using countable groups, graphs, fields, etc., ascomplete invariants.

Example I: E∞ ≤B EYS∞

Example II: (Halmos-vN) E = conjugacy of ergodic m.p.transformations with discrete spectrum. σP(T ) is a completeinvariant. E ≤B EY

S∞

Román Sasyk Classification via Descriptive Set Theory 20

Page 101: Clasificación vía Teoría Descriptiva de Conjuntos · Classification Whatdoesitmeantoclassifymathematicalobjects? Whatfor? Example1:Complexn nmatrices,uptosimilaritytheJordan normalformisacompleteinvariant

Classification by countable structures II

Example: Graphs as a countable structure.

GRAPHS = {f : N× N→ {0, 1}f (x , x) = 0; f (x , y) = f (y , x))}

f1 ∼ f2 ⇐⇒ ∃φ : N→ N bijection s.t. f1(x , y) = f2(φ(x), φ(y)).

S∞ acts on GRAPHS as Θ ∈ S∞, Θf (x , y) = f (Θ−1(x),Θ−1(y))

The equivalence relations that are classifiable by countablestructures include all equivalence relations that can be classified(reasonably) using countable groups, graphs, fields, etc., ascomplete invariants.

Example I: E∞ ≤B EYS∞

Example II: (Halmos-vN) E = conjugacy of ergodic m.p.transformations with discrete spectrum. σP(T ) is a completeinvariant. E ≤B EY

S∞

Román Sasyk Classification via Descriptive Set Theory 20

Page 102: Clasificación vía Teoría Descriptiva de Conjuntos · Classification Whatdoesitmeantoclassifymathematicalobjects? Whatfor? Example1:Complexn nmatrices,uptosimilaritytheJordan normalformisacompleteinvariant

Classification by countable structures II

Example: Graphs as a countable structure.

GRAPHS = {f : N× N→ {0, 1}f (x , x) = 0; f (x , y) = f (y , x))}

f1 ∼ f2 ⇐⇒ ∃φ : N→ N bijection s.t. f1(x , y) = f2(φ(x), φ(y)).

S∞ acts on GRAPHS as Θ ∈ S∞, Θf (x , y) = f (Θ−1(x),Θ−1(y))

The equivalence relations that are classifiable by countablestructures include all equivalence relations that can be classified(reasonably) using countable groups, graphs, fields, etc., ascomplete invariants.

Example I: E∞ ≤B EYS∞

Example II: (Halmos-vN) E = conjugacy of ergodic m.p.transformations with discrete spectrum. σP(T ) is a completeinvariant. E ≤B EY

S∞Román Sasyk Classification via Descriptive Set Theory 20

Page 103: Clasificación vía Teoría Descriptiva de Conjuntos · Classification Whatdoesitmeantoclassifymathematicalobjects? Whatfor? Example1:Complexn nmatrices,uptosimilaritytheJordan normalformisacompleteinvariant

Classification by countable structures III

TURBULENCE (Hjorth ′97 ∼′ 00)

A theory to show that an equivalence relation E is NOTclassifiableby countable structures.

Example III: (Hjorth ’02?,Foreman-Weiss, ’04) Conjugacy of MPETon ([0, 1], µ) is not classifiable by countable structures.

Example IV: (Kechris, Sasyk-Tornquist, 2004 ∼ 2008) OE of free,ergodic, measure preserving Fn actions is not classifiable bycountable structures.

Example V: (Epstein-Ioana-Kechris-Tsankov, ’08) OE of G actionsfor G non amenable is not classifiable by countable structures.

Román Sasyk Classification via Descriptive Set Theory 21

Page 104: Clasificación vía Teoría Descriptiva de Conjuntos · Classification Whatdoesitmeantoclassifymathematicalobjects? Whatfor? Example1:Complexn nmatrices,uptosimilaritytheJordan normalformisacompleteinvariant

Classification by countable structures III

TURBULENCE (Hjorth ′97 ∼′ 00)

A theory to show that an equivalence relation E is NOTclassifiableby countable structures.

Example III: (Hjorth ’02?,Foreman-Weiss, ’04) Conjugacy of MPETon ([0, 1], µ) is not classifiable by countable structures.

Example IV: (Kechris, Sasyk-Tornquist, 2004 ∼ 2008) OE of free,ergodic, measure preserving Fn actions is not classifiable bycountable structures.

Example V: (Epstein-Ioana-Kechris-Tsankov, ’08) OE of G actionsfor G non amenable is not classifiable by countable structures.

Román Sasyk Classification via Descriptive Set Theory 21

Page 105: Clasificación vía Teoría Descriptiva de Conjuntos · Classification Whatdoesitmeantoclassifymathematicalobjects? Whatfor? Example1:Complexn nmatrices,uptosimilaritytheJordan normalformisacompleteinvariant

Classification by countable structures III

TURBULENCE (Hjorth ′97 ∼′ 00)

A theory to show that an equivalence relation E is NOTclassifiableby countable structures.

Example III: (Hjorth ’02?,Foreman-Weiss, ’04) Conjugacy of MPETon ([0, 1], µ) is not classifiable by countable structures.

Example IV: (Kechris, Sasyk-Tornquist, 2004 ∼ 2008) OE of free,ergodic, measure preserving Fn actions is not classifiable bycountable structures.

Example V: (Epstein-Ioana-Kechris-Tsankov, ’08) OE of G actionsfor G non amenable is not classifiable by countable structures.

Román Sasyk Classification via Descriptive Set Theory 21

Page 106: Clasificación vía Teoría Descriptiva de Conjuntos · Classification Whatdoesitmeantoclassifymathematicalobjects? Whatfor? Example1:Complexn nmatrices,uptosimilaritytheJordan normalformisacompleteinvariant

Classification by countable structures III

TURBULENCE (Hjorth ′97 ∼′ 00)

A theory to show that an equivalence relation E is NOTclassifiableby countable structures.

Example III: (Hjorth ’02?,Foreman-Weiss, ’04) Conjugacy of MPETon ([0, 1], µ) is not classifiable by countable structures.

Example IV: (Kechris, Sasyk-Tornquist, 2004 ∼ 2008) OE of free,ergodic, measure preserving Fn actions is not classifiable bycountable structures.

Example V: (Epstein-Ioana-Kechris-Tsankov, ’08) OE of G actionsfor G non amenable is not classifiable by countable structures.

Román Sasyk Classification via Descriptive Set Theory 21

Page 107: Clasificación vía Teoría Descriptiva de Conjuntos · Classification Whatdoesitmeantoclassifymathematicalobjects? Whatfor? Example1:Complexn nmatrices,uptosimilaritytheJordan normalformisacompleteinvariant

Classification by countable structures III

TURBULENCE (Hjorth ′97 ∼′ 00)

A theory to show that an equivalence relation E is NOTclassifiableby countable structures.

Example III: (Hjorth ’02?,Foreman-Weiss, ’04) Conjugacy of MPETon ([0, 1], µ) is not classifiable by countable structures.

Example IV: (Kechris, Sasyk-Tornquist, 2004 ∼ 2008) OE of free,ergodic, measure preserving Fn actions is not classifiable bycountable structures.

Example V: (Epstein-Ioana-Kechris-Tsankov, ’08) OE of G actionsfor G non amenable is not classifiable by countable structures.

Román Sasyk Classification via Descriptive Set Theory 21

Page 108: Clasificación vía Teoría Descriptiva de Conjuntos · Classification Whatdoesitmeantoclassifymathematicalobjects? Whatfor? Example1:Complexn nmatrices,uptosimilaritytheJordan normalformisacompleteinvariant

Classification of factors

Theorem (S.-Törnquist, ’08)The isomorphism relation for separable von Neumann factors oftype II1, II∞ and IIIλ, λ ∈ [0, 1], are not classifiable by countablestructures.

Corollary: The classification problem of II1 factors is not smooth.This is a far fetching solution of Effros? Problem. Prior to ourtheorem, the only result in this direction was for type III factors,(Woods 1973) and only showed that the isomorphism relation isnot smooth.Theorem (S, ’14):The isomorphism relation for separable McDufffactors of type II1, is not classifiable by countable structures.

Román Sasyk Classification via Descriptive Set Theory 22

Page 109: Clasificación vía Teoría Descriptiva de Conjuntos · Classification Whatdoesitmeantoclassifymathematicalobjects? Whatfor? Example1:Complexn nmatrices,uptosimilaritytheJordan normalformisacompleteinvariant

Classification of factors

Theorem (S.-Törnquist, ’08)The isomorphism relation for separable von Neumann factors oftype II1, II∞ and IIIλ, λ ∈ [0, 1], are not classifiable by countablestructures.Corollary: The classification problem of II1 factors is not smooth.

This is a far fetching solution of Effros? Problem. Prior to ourtheorem, the only result in this direction was for type III factors,(Woods 1973) and only showed that the isomorphism relation isnot smooth.Theorem (S, ’14):The isomorphism relation for separable McDufffactors of type II1, is not classifiable by countable structures.

Román Sasyk Classification via Descriptive Set Theory 22

Page 110: Clasificación vía Teoría Descriptiva de Conjuntos · Classification Whatdoesitmeantoclassifymathematicalobjects? Whatfor? Example1:Complexn nmatrices,uptosimilaritytheJordan normalformisacompleteinvariant

Classification of factors

Theorem (S.-Törnquist, ’08)The isomorphism relation for separable von Neumann factors oftype II1, II∞ and IIIλ, λ ∈ [0, 1], are not classifiable by countablestructures.Corollary: The classification problem of II1 factors is not smooth.This is a far fetching solution of Effros? Problem.

Prior to ourtheorem, the only result in this direction was for type III factors,(Woods 1973) and only showed that the isomorphism relation isnot smooth.Theorem (S, ’14):The isomorphism relation for separable McDufffactors of type II1, is not classifiable by countable structures.

Román Sasyk Classification via Descriptive Set Theory 22

Page 111: Clasificación vía Teoría Descriptiva de Conjuntos · Classification Whatdoesitmeantoclassifymathematicalobjects? Whatfor? Example1:Complexn nmatrices,uptosimilaritytheJordan normalformisacompleteinvariant

Classification of factors

Theorem (S.-Törnquist, ’08)The isomorphism relation for separable von Neumann factors oftype II1, II∞ and IIIλ, λ ∈ [0, 1], are not classifiable by countablestructures.Corollary: The classification problem of II1 factors is not smooth.This is a far fetching solution of Effros? Problem. Prior to ourtheorem, the only result in this direction was for type III factors,(Woods 1973) and only showed that the isomorphism relation isnot smooth.

Theorem (S, ’14):The isomorphism relation for separable McDufffactors of type II1, is not classifiable by countable structures.

Román Sasyk Classification via Descriptive Set Theory 22

Page 112: Clasificación vía Teoría Descriptiva de Conjuntos · Classification Whatdoesitmeantoclassifymathematicalobjects? Whatfor? Example1:Complexn nmatrices,uptosimilaritytheJordan normalformisacompleteinvariant

Classification of factors

Theorem (S.-Törnquist, ’08)The isomorphism relation for separable von Neumann factors oftype II1, II∞ and IIIλ, λ ∈ [0, 1], are not classifiable by countablestructures.Corollary: The classification problem of II1 factors is not smooth.This is a far fetching solution of Effros? Problem. Prior to ourtheorem, the only result in this direction was for type III factors,(Woods 1973) and only showed that the isomorphism relation isnot smooth.Theorem (S, ’14):The isomorphism relation for separable McDufffactors of type II1, is not classifiable by countable structures.

Román Sasyk Classification via Descriptive Set Theory 22

Page 113: Clasificación vía Teoría Descriptiva de Conjuntos · Classification Whatdoesitmeantoclassifymathematicalobjects? Whatfor? Example1:Complexn nmatrices,uptosimilaritytheJordan normalformisacompleteinvariant

Classification of injective factors

A factor M ∈ vN(H) is injective (or amenable or hyperfinite) if itcontains an increasing sequence of finite dimensional von Neumannalgebras, with dense union in M. For each of the types II1, II∞ andIIIλ, λ ∈ (0, 1], there is a unique injective factor of that type.However, for type III0 we have:

Theorem (S.-Törnquist 08)The isomorphism relation for injective factors of type III0 is notclassifiable by countable structures.

Theorem (S.-Törnquist 10)The isomorphism relation for ITPFI factors is not classifiable bycountable structures.(Compare with Woods’ Theorem: E0 ≤B ITPFI2' .)

Theorem (S.-Törnquist 15)The isomorphism relation for free Araki-wood factors is notclassifiable by countable structures.

Román Sasyk Classification via Descriptive Set Theory 23

Page 114: Clasificación vía Teoría Descriptiva de Conjuntos · Classification Whatdoesitmeantoclassifymathematicalobjects? Whatfor? Example1:Complexn nmatrices,uptosimilaritytheJordan normalformisacompleteinvariant

Classification of injective factors

A factor M ∈ vN(H) is injective (or amenable or hyperfinite) if itcontains an increasing sequence of finite dimensional von Neumannalgebras, with dense union in M. For each of the types II1, II∞ andIIIλ, λ ∈ (0, 1], there is a unique injective factor of that type.However, for type III0 we have:

Theorem (S.-Törnquist 08)The isomorphism relation for injective factors of type III0 is notclassifiable by countable structures.

Theorem (S.-Törnquist 10)The isomorphism relation for ITPFI factors is not classifiable bycountable structures.

(Compare with Woods’ Theorem: E0 ≤B ITPFI2' .)

Theorem (S.-Törnquist 15)The isomorphism relation for free Araki-wood factors is notclassifiable by countable structures.

Román Sasyk Classification via Descriptive Set Theory 23

Page 115: Clasificación vía Teoría Descriptiva de Conjuntos · Classification Whatdoesitmeantoclassifymathematicalobjects? Whatfor? Example1:Complexn nmatrices,uptosimilaritytheJordan normalformisacompleteinvariant

Classification of injective factors

A factor M ∈ vN(H) is injective (or amenable or hyperfinite) if itcontains an increasing sequence of finite dimensional von Neumannalgebras, with dense union in M. For each of the types II1, II∞ andIIIλ, λ ∈ (0, 1], there is a unique injective factor of that type.However, for type III0 we have:

Theorem (S.-Törnquist 08)The isomorphism relation for injective factors of type III0 is notclassifiable by countable structures.

Theorem (S.-Törnquist 10)The isomorphism relation for ITPFI factors is not classifiable bycountable structures.(Compare with Woods’ Theorem: E0 ≤B ITPFI2' .)

Theorem (S.-Törnquist 15)The isomorphism relation for free Araki-wood factors is notclassifiable by countable structures.

Román Sasyk Classification via Descriptive Set Theory 23

Page 116: Clasificación vía Teoría Descriptiva de Conjuntos · Classification Whatdoesitmeantoclassifymathematicalobjects? Whatfor? Example1:Complexn nmatrices,uptosimilaritytheJordan normalformisacompleteinvariant

Classification of injective factors

A factor M ∈ vN(H) is injective (or amenable or hyperfinite) if itcontains an increasing sequence of finite dimensional von Neumannalgebras, with dense union in M. For each of the types II1, II∞ andIIIλ, λ ∈ (0, 1], there is a unique injective factor of that type.However, for type III0 we have:

Theorem (S.-Törnquist 08)The isomorphism relation for injective factors of type III0 is notclassifiable by countable structures.

Theorem (S.-Törnquist 10)The isomorphism relation for ITPFI factors is not classifiable bycountable structures.(Compare with Woods’ Theorem: E0 ≤B ITPFI2' .)

Theorem (S.-Törnquist 15)The isomorphism relation for free Araki-wood factors is notclassifiable by countable structures.

Román Sasyk Classification via Descriptive Set Theory 23

Page 117: Clasificación vía Teoría Descriptiva de Conjuntos · Classification Whatdoesitmeantoclassifymathematicalobjects? Whatfor? Example1:Complexn nmatrices,uptosimilaritytheJordan normalformisacompleteinvariant

Borel Complete for countable structures

Denote by FII1(H) the (standard) space of II1 factors on H, and by'FII1 (H) the isomorphism relation for factors of type II1 on H.

Theorem (S.-Törnquist, ’08)If L is a countable language then 'Mod(L)<B'FII1 (H).As an immediate corollary, we have:

CorollaryThe isomorphism relation for factors of type II1 is complete analyticas a subset of FII1(H)×FII1(H). In particular it is not a Borelsubset.

Román Sasyk Classification via Descriptive Set Theory 24

Page 118: Clasificación vía Teoría Descriptiva de Conjuntos · Classification Whatdoesitmeantoclassifymathematicalobjects? Whatfor? Example1:Complexn nmatrices,uptosimilaritytheJordan normalformisacompleteinvariant

Borel Complete for countable structures

Denote by FII1(H) the (standard) space of II1 factors on H, and by'FII1 (H) the isomorphism relation for factors of type II1 on H.

Theorem (S.-Törnquist, ’08)If L is a countable language then 'Mod(L)<B'FII1 (H).

As an immediate corollary, we have:

CorollaryThe isomorphism relation for factors of type II1 is complete analyticas a subset of FII1(H)×FII1(H). In particular it is not a Borelsubset.

Román Sasyk Classification via Descriptive Set Theory 24

Page 119: Clasificación vía Teoría Descriptiva de Conjuntos · Classification Whatdoesitmeantoclassifymathematicalobjects? Whatfor? Example1:Complexn nmatrices,uptosimilaritytheJordan normalformisacompleteinvariant

Borel Complete for countable structures

Denote by FII1(H) the (standard) space of II1 factors on H, and by'FII1 (H) the isomorphism relation for factors of type II1 on H.

Theorem (S.-Törnquist, ’08)If L is a countable language then 'Mod(L)<B'FII1 (H).As an immediate corollary, we have:

CorollaryThe isomorphism relation for factors of type II1 is complete analyticas a subset of FII1(H)×FII1(H). In particular it is not a Borelsubset.

Román Sasyk Classification via Descriptive Set Theory 24

Page 120: Clasificación vía Teoría Descriptiva de Conjuntos · Classification Whatdoesitmeantoclassifymathematicalobjects? Whatfor? Example1:Complexn nmatrices,uptosimilaritytheJordan normalformisacompleteinvariant

Isomorphism of relative property (T) groups

To prove the previous theorem we had to use the notion of property(T) groups coming from representation theory.

An example of an ICC group with property (T) is SL(3,Z). Anygroup of the form H × SL(3,Z) has the relative property (T) (overSL(3,Z)). If H is ICC, then H × SL(3,Z) is ICC.

Denote by wTICC the class of ICC countable groups, having therelative property (T) over some infinite normal subgroup, and'wTICC the isomorphism relation in that class.

Theorem (S-Tornquist, ’08)For any countable language L, the isomorphism relation forcountable models of L, 'Mod(L), is Borel reducible to 'wTICC .In other words: 'wTICC is Borel complete for countable structures,in the sense of Friedman and Stanley.

Román Sasyk Classification via Descriptive Set Theory 25

Page 121: Clasificación vía Teoría Descriptiva de Conjuntos · Classification Whatdoesitmeantoclassifymathematicalobjects? Whatfor? Example1:Complexn nmatrices,uptosimilaritytheJordan normalformisacompleteinvariant

Isomorphism of relative property (T) groups

To prove the previous theorem we had to use the notion of property(T) groups coming from representation theory.An example of an ICC group with property (T) is SL(3,Z). Anygroup of the form H × SL(3,Z) has the relative property (T) (overSL(3,Z)). If H is ICC, then H × SL(3,Z) is ICC.

Denote by wTICC the class of ICC countable groups, having therelative property (T) over some infinite normal subgroup, and'wTICC the isomorphism relation in that class.

Theorem (S-Tornquist, ’08)For any countable language L, the isomorphism relation forcountable models of L, 'Mod(L), is Borel reducible to 'wTICC .In other words: 'wTICC is Borel complete for countable structures,in the sense of Friedman and Stanley.

Román Sasyk Classification via Descriptive Set Theory 25

Page 122: Clasificación vía Teoría Descriptiva de Conjuntos · Classification Whatdoesitmeantoclassifymathematicalobjects? Whatfor? Example1:Complexn nmatrices,uptosimilaritytheJordan normalformisacompleteinvariant

Isomorphism of relative property (T) groups

To prove the previous theorem we had to use the notion of property(T) groups coming from representation theory.An example of an ICC group with property (T) is SL(3,Z). Anygroup of the form H × SL(3,Z) has the relative property (T) (overSL(3,Z)). If H is ICC, then H × SL(3,Z) is ICC.

Denote by wTICC the class of ICC countable groups, having therelative property (T) over some infinite normal subgroup, and'wTICC the isomorphism relation in that class.

Theorem (S-Tornquist, ’08)For any countable language L, the isomorphism relation forcountable models of L, 'Mod(L), is Borel reducible to 'wTICC .In other words: 'wTICC is Borel complete for countable structures,in the sense of Friedman and Stanley.

Román Sasyk Classification via Descriptive Set Theory 25

Page 123: Clasificación vía Teoría Descriptiva de Conjuntos · Classification Whatdoesitmeantoclassifymathematicalobjects? Whatfor? Example1:Complexn nmatrices,uptosimilaritytheJordan normalformisacompleteinvariant

Isomorphism of relative property (T) groups

To prove the previous theorem we had to use the notion of property(T) groups coming from representation theory.An example of an ICC group with property (T) is SL(3,Z). Anygroup of the form H × SL(3,Z) has the relative property (T) (overSL(3,Z)). If H is ICC, then H × SL(3,Z) is ICC.

Denote by wTICC the class of ICC countable groups, having therelative property (T) over some infinite normal subgroup, and'wTICC the isomorphism relation in that class.

Theorem (S-Tornquist, ’08)For any countable language L, the isomorphism relation forcountable models of L, 'Mod(L), is Borel reducible to 'wTICC .

In other words: 'wTICC is Borel complete for countable structures,in the sense of Friedman and Stanley.

Román Sasyk Classification via Descriptive Set Theory 25

Page 124: Clasificación vía Teoría Descriptiva de Conjuntos · Classification Whatdoesitmeantoclassifymathematicalobjects? Whatfor? Example1:Complexn nmatrices,uptosimilaritytheJordan normalformisacompleteinvariant

Isomorphism of relative property (T) groups

To prove the previous theorem we had to use the notion of property(T) groups coming from representation theory.An example of an ICC group with property (T) is SL(3,Z). Anygroup of the form H × SL(3,Z) has the relative property (T) (overSL(3,Z)). If H is ICC, then H × SL(3,Z) is ICC.

Denote by wTICC the class of ICC countable groups, having therelative property (T) over some infinite normal subgroup, and'wTICC the isomorphism relation in that class.

Theorem (S-Tornquist, ’08)For any countable language L, the isomorphism relation forcountable models of L, 'Mod(L), is Borel reducible to 'wTICC .In other words: 'wTICC is Borel complete for countable structures,in the sense of Friedman and Stanley.

Román Sasyk Classification via Descriptive Set Theory 25