CL 202 Fundamentals Handout Spring2016

Embed Size (px)

Citation preview

  • 8/18/2019 CL 202 Fundamentals Handout Spring2016

    1/43

    20-01-2016

    1

    CL 202: Introduction to Data Analysis

    Fundamentals of Probabilityand Random Variables

    Mani Bhushan and Sachin Patawardhan

    Department of Chemical Engineering

    I.I.T. Bombay

    1/20/2016 Fundamentals 1

     Automation LabIIT Bombay

    Outine

    Sample Space

    Borel Field and Probability Measure

    Probability Space

    Computing Probabilities

    Concept of a Random Variable

    Discrete and Continuous Random Variables

    Properties of Random Variables

    Appendix: Conditional Probability and Independence

    1/20/2016 Fundamentals 2

  • 8/18/2019 CL 202 Fundamentals Handout Spring2016

    2/43

    20-01-2016

    2

     Automation LabIIT Bombay

    Note

    The material in this presentation is composed frommultiple sources. The references are listed at theend. If you are looking for one reference text thatcontains almost every concept covered here then

    refer to the following standard textbook:

    Papoulis, A. and Pillai, S. U., Probability, RandomVariables and Stochastic Processes, (4’th Ed.),

    MacGraw-Hill International, 2002.

    1/20/2016 Fundamentals 3

     Automation LabIIT Bombay

    Probability (Maybeck, 1979)

    1/20/2016 Fundamentals 4

    Intuitive approach to define probabilities of events ofinterest in terms of the relative frequencies of occurrence 

    If the event A is observed to occur N(A) times ina total of N trials, then P(A) is defined by 

    provided that this limit in fact exists.

    Although this is a conceptually appealing basis for probabilitytheory, it does not allow precise treatment of many problems

    and issues of direct importance.

    Modern probability theory is more rigorously basedon an axiomatic definition of the probability.

     N 

     A N 

     N  A P 

      )(lim)(

  • 8/18/2019 CL 202 Fundamentals Handout Spring2016

    3/43

    20-01-2016

    3

     Automation LabIIT Bombay

    Sample Space (Maybeck, 1979)

    1/20/2016 Fundamentals 5

    )(i.e.

     experimenttheofoutcomeelementarysingle:

    conductedexperimenttheofoutcomes 

    possibleallcontainingspacesamplelfundamenta:

     

     

    S S    Ai.e. ofsubsetaisAeventsuchEach

    .experimenttheofoutcomesof 

    setspecificainterest,ofeventspecifica:A

    ,

    .Aifi.e.A,ofelementanis

     outcomeobservedtheifoccurtosaidisAeventAn

     

     

     Automation LabIIT Bombay

    Sample Space

    Discrete Sample space: consists of a finite or

    countably infinite number of elements/outcomes

    Examples : (1) Coin toss or roll of a die experiments,

    (2) set of manufacturing defects in a device

    Continuous Sample Space: consists of

    uncountable number of elements

    Examples : (1) Values measurement noise can take in a

    sensor, (2) Yield of a reaction, (3) Monthly profit of a

    company

    1/20/2016 Fundamentals 6

  • 8/18/2019 CL 202 Fundamentals Handout Spring2016

    4/43

    20-01-2016

    4

     Automation LabIIT Bombay

    Field (Papoulous and Pillai, 2002)

    1/20/2016 Fundamentals 7

    FF

    FF

    F

    FField

     B A B Ab

     A Aa

     then

     andthen

     ifthatsuchsetsofclassempty-nonaisfieldA

    ,)(

    )(

    )(

     

    )(event"impossible"theand

     )(event"certain"thecontainsfieldThe(b)

     thenIf(a)

     thatshownbecanit,propertiestheseUsing

     A A

     A AS 

     B A B A B A

     B A A,B

     

    FF

    FF

     ________ 

    Example: Consider experiment of rolling a die once 6,5,4,3,2,1S asspacesampledefinecanWe

     Automation LabIIT Bombay

    Borel Field (Papoulous and Pillai, 2002)

    1/20/2016 Fundamentals 8

    field.Borelacalledisthen

     tobelongalsosetstheseofonsintersecti

     andunionstheIf.fieldinsetsofsequence

     infiniteanis....,......Suppose)(

    B

    B

    B

    BFieldBorel

    n A A A 21

    A probability measure is defined only on a Borel field.

     field.abetoqualifiesclassThe

     

    asdefinedsets,ofclassaconsiderNow

    (contd)Example

    F

    F

    F

    S ,6,4,6,4,2,5,3,2,1,5,3,1},6,5,4,3,1{},2{,

    ,

     

  • 8/18/2019 CL 202 Fundamentals Handout Spring2016

    5/43

    20-01-2016

    5

     Automation LabIIT Bombay

    Example 1: Rolling of a Die (Jazwinski, 1970)

    1/20/2016 Fundamentals 9

    Consider experiment of rolling a die (with facesnumbered from 1 to 6) once

     ways.multipleindefinedbecanfieldBorelaNow,

     asspacesample)(or yprobabilitdefinecanWe

    6,5,4,3,2,11 S 

     

    asdefinedbecanfieldBorelthen(even),and(odd)

     eventsonlyonbettingininterestedareweIf:2Case

    2

    2

    1,6,4,2,5,3,1,   S  B

    B

    )11

    1

     ofsetpower(i.e. ofsubsets

     allofsetastakenbecanfieldBorel:1Case

    S S 

    B

     Automation LabIIT Bombay

    Example 1: Rolling of a Die

    1/20/2016 Fundamentals 10

     field.BorelaasqualifynotdoessetThus

    .andthougheven

     :Note

     asdefinedsetaconsiderNow

    F

    F

    F

    F

    F

    11

    1

    5,3,2,1

    5,3,2,15,3,1}2{

    ,6,4,2,5,3,1},2{,

    S S 

    S  

    Example 2: Error in temperature measurement

    This is an example of a continuous RV.Theoretically, the measurement error can take any

    real value.

    line.reali.e.spaceSample   RS  

  • 8/18/2019 CL 202 Fundamentals Handout Spring2016

    6/43

    20-01-2016

    6

     Automation LabIIT Bombay

    Example 2: Measurement Errors

    1/20/2016 Fundamentals 11

    formtheofeventsofconsistswhich

     Field,BorelthetobelongsetsfollowingtheThen, 

    eethatsuchRonpointsbeeandeLet 2121,

    .

    B

    1

    212

    *

    1

    1

    *

    11

    *

    1

    21

    222

    2

    111

    1

    ],(

    ),(],(,:

    ],(,:

    ],(,:

    e

    ee A A

    ee Re A

    ee

    e Re A

    e

    e Re A

    e

     toequaliserror:4Event

     andbetweenliesError:3Event

     toequalor thanlessiserror:2Event

     toequalorthanlessiserror:1Event

       

       

       

     Automation LabIIT Bombay

    Axioms of Probability

    1/20/2016 Fundamentals 12

     N.infinitecountablyandfiniteallfor

    )P(A)AP(thenofelements 

    exclusivemutuallyordisjointareIf3.

    1)P( 2.

     allfor0)P(1.

    :thatsuch) (ofmemberaiswhicheachto

     ),value,aassignsthatfieldBorelondefined

     functionvalued-scalarrealabetodefinedis

     measure) yprobabilit(orfunction yprobabilitThe

    ii  

     N 

    i

     N 

    i

     N 

    i

    ii

    i

     ,...A ,A A

     A

     A A

     A P 

     P 

    11

    21

    (

    (.)

    B

    BA

    BB

    B

    i

  • 8/18/2019 CL 202 Fundamentals Handout Spring2016

    7/43

    20-01-2016

    7

     Automation LabIIT Bombay

    Note (Papoulous and Pillai, 2002)

    1/20/2016 Fundamentals 13

    It may be noted that, the axioms of probability areso chosen that the resulting theory gives asatisfactory representation of the physical world.Probabilities as used in real problems must,therefore, be compatible with the axioms. Using thefrequency interpretation of probability, it can beshown that they do.

     P(A)+P(B) N 

     B N  A N 

     N 

     B A N  B A P 

     B A B A

     B N  A N  B A N  B A=N S  N S =S  P 

     N> A N  A P 

    )()()()(

    ),()()()(1)(

    0)(0)(

     Hence 

    both.notbut occursorthenoccurs,if 

    becausethen},{=If3..hencetrial;everyatoccursbecause2.

    .and0because1.

     

     Automation LabIIT Bombay

    Example: Dart Board

    1/20/2016 Fundamentals 14

    1 A

    2 A

    7 A

    Sample Space (S): Set of allPoints on the Dart Boardseteachtovalue

      yprobabilitaassignto

     easyRelatively:sets

     exclusivemutually

     ordisjointare

     Cones   ,... A ,... ,A A 721   ,

    Event of interest: Concentric Circles

  • 8/18/2019 CL 202 Fundamentals Handout Spring2016

    8/43

    20-01-2016

    8

     Automation LabIIT Bombay

    Probability Space

    1/20/2016 Fundamentals 15

    lly.axiomaticadefinedallfunction, yprobabilitthe

     andfield,Borelunderlyingthespace,sampletheof

     P),,(tripletthebyDefined :space yProbabilit   BS 

    Example 1: Rolling of a Die (contd.)

    1B

    B

     ineventanyof yprobabilitfindcanweThen

     forsetweIf

     forsetsdisjointConsider ofsetpowerfieldBorel:1Case 11

    6,..,2,16/1)(

    .6,..,2,1}{

    1  

    i A P 

    ii AS 

    i

    i

    6,5,4,3,2,11 S spacesampleConsider

     Automation LabIIT Bombay

    Example 1: Rolling of a Die (contd.)

    1/20/2016 Fundamentals 16

     asdefinedisfieldBoreland

     (even),and(odd)eventsonlyon

     bettingininterestedareweIf:2Case

    2

    2

    1,6,4,2,5,3,1, S  B

    B

    .)111 space yprobabilitaforms(tripletThus,   ,P  ,S  B

    space yprobabilitaformsTriplet

     withand

     and

    Define

    )(

    0,1)(0)(

    6,4,25,3,1

    221

    122

    22

     ,P  ,S 

     p,qq pS  P  P 

    q P  p P 

    B

     

  • 8/18/2019 CL 202 Fundamentals Handout Spring2016

    9/43

    20-01-2016

    9

     Automation LabIIT Bombay

    Example 1: Rolling of a Die (contd.)

    1/20/2016 Fundamentals 17

    RofsubsetsallofSetfieldBorel

     numbers.realallofseti.e.definecan We:3Case

    3

    2

    B

     RS 

     PP

    P

    33

    3

    110:;01:

    )6/1(43.59.1:

        

      

    space yprobabilitaformsTriplet   )( 332   ,P  ,S   B

    )(;)(

    contains}a],(-which1,2,...,6pts.of{No.×)(=])((

    6153.5:6125.2:

    613

     /  P  /  P 

     /  ,a- P 

        

     Automation LabIIT Bombay

    Points to Note

    1/20/2016 Fundamentals 18

      S  A A

     A A

     implyNOT doesPr

     implyNOT doesPr

    1

    0    

    .experiemntphysicalthebydeterminedNOT 

     andspecified''bemustP)B,,(Triplet S 

     unique.NOT isexperiment givenaforspace yprobabilitaofDefinition

  • 8/18/2019 CL 202 Fundamentals Handout Spring2016

    10/43

    20-01-2016

    10

     Automation LabIIT Bombay

    Computing Probabilities

    1/20/2016 Fundamentals 19

     disjoint.NOT arethatineventstwobeandLet   B B A

     

        )()(  I  B A P  B A P  A P 

     B A B A A

    ........

    disjoint.arewhich

    writecanWe

    Non-Disjoint Events

    ).,,   P S  B(sapce yprobabilitaConsider

    )(1/)()(/)(

    )(1)(1)()()(

    ,

    ).()(,

     A P  A P  A P  A P  A

     A P  A P  A P  A P S  P 

     A AS  A A

     A P  A P  A

     eventofOdds

     

    writecanwedisjoint,are)(andfacttheusingThen,

     thanfindtoeasierisitcases,someineventanGiven   B

     Automation LabIIT Bombay

    Computing Probabilities

    1/20/2016 Fundamentals 20

      )()()(   B A P  B P  A P  B A P 

     B A P 

     havewe(I),using(II)fromgEliminatin

     

        )()(   II  B A P  B P  B A P 

     B A B

     B B A B B A B A

    .......

    disjoint.arewhich

    writecanweSimilarly,

    Non-Disjoint Events (contd.)

  • 8/18/2019 CL 202 Fundamentals Handout Spring2016

    11/43

    20-01-2016

    11

     Automation LabIIT Bombay

    Example (Ross, 2009)

    1/20/2016 Fundamentals 21

    What percentage of males smoke neither cigars norcigarettes?

    Event A: a  randomly chosen male is a cigarette smokerEvent B: a  randomly chosen male a cigar smoker.

    Thus the probability that the person is not a smokeris .7, implying that 70 percent of American malessmoke neither cigarettes nor cigars.

    A total of 28 percent of American males smokecigarettes, 7 percent smoke cigars, and 5 percent smokeboth cigars and cigarettes.

    3.005.007.028.0

    )()()()(

     B A P  B P  A P  B A P 

     Automation LabIIT Bombay

    Product of Sample Spaces

    1/20/2016 Fundamentals 22

    In statistics one usually does not consider asingle experiment, but that the same experiment

    is performed several times.

    experimentoriginaltheofspacesampletheof

    copyaisforwhere

    isspacesampleingcorrespondthethen

     times,experimentanperformweWhen

    n , . . . ,iS 

    S S S S 

    n

    i

    n

    1

    ....321

    S

    i

    nn

    n

     p

     p p p P 

      yprobabilithaseachwhere

     outcomecombinedtheof yProbabilit

    i

    1

    1

     

       

       

    .....),....,,(

    ),....,,(

    212

    2

  • 8/18/2019 CL 202 Fundamentals Handout Spring2016

    12/43

    20-01-2016

    12

     Automation LabIIT Bombay

    Example: Repeated Coin Toss

    1/20/2016 Fundamentals 23

    1,0

    1)()(

    ,

    q p

     pqT  P  p H  P 

    T  H S 

     and Let

    experimenttosscoinwithassociatedspaceSample

    T  H T  H T  H 

    n

    ,......,,   S

     timesexperimenttosscointheperformweWhen

    on.soand

     ThenwhensituationtheConsider

    )1(..),,(

    ),,(

    .3

    2

    3

     p p pq p H T  H  P 

     p H  H  H  P 

    n

    Dekking et al., 2005

     Automation LabIIT Bombay

    Example: Infinite Outcomes

    1/20/2016 Fundamentals 24

    upturnsheadfirsttheuntilrepeatedlycoinaToss

    outcomesmanyinfinitelywithExperiment

    ,......3,2,1)

     S 

     H ofoccurrence(i.e.

     successfirstthehavetotakesittossesofNo.

     experimenttheofOutcome

      1

    2

    )1(),,....,,()(

    ..........

    )1(),,()3(

    3

    n p p H T T T  P n P 

    ni

     p p H T T  P  P 

    i

     

    havewe,For

     

    havewe,For

  • 8/18/2019 CL 202 Fundamentals Handout Spring2016

    13/43

    20-01-2016

    13

     Automation LabIIT Bombay

    Example Infinite Outcomes

    1/20/2016 Fundamentals 25

    events.exclusivemutuallyordisjointare

     i.e.eventsthatnotedbemayIt

    ),.....,,....,,),......(,,(),,(),(

    ,......,21

     H T T T  H T T  H T  H 

    n , ,

    1)1(1

    1

    ......)1()1(1

    ....)1(....)1(

    ....)(....)2()1()(

    2

    1

     

      

     

     p p

     p p p

     p p p p p

    n P  P  P S  P 

    n

    thatfollowsit y,probabilitofaxiomsfromThus,

     Automation LabIIT Bombay

    Random Variable

    1/20/2016 Fundamentals 26

    Example 1: A die with 6 faces painted with 6different colors

    Problem 1: A sample space associated with a randomphenomenon need not consist of elements that are

    not numbers.

    Example 2: Candidates appearing in an election heldin a constituency

    How to perform numerical calculationsinvolving such sample spaces?

  • 8/18/2019 CL 202 Fundamentals Handout Spring2016

    14/43

    20-01-2016

    14

     Automation LabIIT Bombay

    Random Variable

    1/20/2016 Fundamentals 27

    To understand the reactor behavior, these

    multiple random phenomenon have to beconsidered simultaneously.

    Problem 2: We often have to consider multiple randomphenomena simultaneously. Even if the sample spacesassociated with these random phenomenon consists of

    numbers, their ranges can be widely different.

    Example: Temperature, pressure and feedconcentration fluctuations in a chemical reactor.

    How can we treat such problems through aunified mathematical framework?

     Automation LabIIT Bombay

    Random Variable

    1/20/2016 Fundamentals 28

    The concept of a random variable is introducedbecause, we need a mapping from the sample space

    to the set of real numbers for carrying outquantitative analysis through

    a unified mathematical framework.

    It is possible to define a transformationsuch that we can perform all the calculations using

    a generic sample spaceand

    a generic Borel fielddefined using the generic sample space?

  • 8/18/2019 CL 202 Fundamentals Handout Spring2016

    15/43

    20-01-2016

    15

     Automation LabIIT Bombay

    Random Variable (Maybeck, 1979)

    1/20/2016 Fundamentals 29

    .fieldBoreltheofelementanis

    R)(linerealtheonvalueanyfor

    })x(:{A

     formtheofAseteverythatsuch,)x(asdenoted

     ,inpointeachtovaluesclarrealaassignswhich

    mapping'orfunction'pointvalued-realais

     )x(variablerandomscalarA

    B

     xa

     x

      

      

     

     

     fieldBorelassociatedan

     andspace,sampleaGiven

    .

    ,

    B

     Automation LabIIT Bombay

    Random Variable

    1/20/2016 Fundamentals 30

     .function yprobabilitathrough

     definedbecaniesprobabilitthe

    whichforineventsare

     in],(-formtheofintervalsopen-half

    ofimagesinversethatsuch

     intospace,samplethefrommappingais

     variablerandomscalarA

    (.)

    ,

     P 

     R x

     RS 

    B

    )particularaforassumesfunctionthisthatvaluethe(i.e.

     variablerandomtheofnrealizatioa

     (mapping)variableRandom:)x(

     

     

     

    :

  • 8/18/2019 CL 202 Fundamentals Handout Spring2016

    16/43

    20-01-2016

    16

     Automation LabIIT Bombay

    Advantage

    1/20/2016 Fundamentals 31

     RS 

     R  spacesamplegeneric''the

     withworkingstartcanwe

     sayspace,sampleoriginalanon

     xvariablerandomadefineweOnce

    ,

    )( 

     Rofintervals-suballofconsisting

     FieldBorelGeneric

     FieldBorelOriginal

    )(

     RB

    B

      ],(,:   x R x x A

    S  A  R

    xwithxx

     ineventelementarygenericA

     Automation LabIIT Bombay

    The Generic Borel Field

    1/20/2016 Fundamentals 32

    values.pointandopen)halfclosed,(open,intervalsfinitetoleads

    Asetstheofonsintersectiandunions,s,complementTaking i

     .onproblem yprobabilitadescribingininterestofof

     intervals-suballvirtuallyofcomposedis,Bfield,BorelThe

     R R

     R

     R

     x x x x

    BField,BorelthetobelongsetsfollowingtheThen, 

    thatsuchRonpointsbeandLet .2121  

    ],(

    ),(],(,

    ],(

    ],(

    212

    *

    1

    1*

    11*1

    222

    111

     x x A A

     x x R x A

     x x A

     x x A

     x

    x

    x

  • 8/18/2019 CL 202 Fundamentals Handout Spring2016

    17/43

    20-01-2016

    17

     Automation LabIIT Bombay

    Advantage

    1/20/2016 Fundamentals 33

    problems.allfor

     space yprobabilitwithworkwe on,nowfromThus,

    x   ))((   x ,F  R,  RB

    FunctiononDistributi yProbabilit

     where

     formtheofeventsallfor

     definedisfunction, yprobabilitgenericA

    x

    x

    :)(

    10

    ]),(()(

    ],(

    (.),

     x F 

     x P  x F 

     x A

     P 

     

     

     Automation LabIIT Bombay

    Properties of Distribution Function

    1/20/2016 Fundamentals 34

    00

    )(0

    lim)()(

    0

    lim)(

     

     

      

      

     for

     and 

    Notation

    xxxx  x F  x F  x F  x F 

    0)(1)(     F  F   and 

    1Property

    ).()(

    ,)(

    2121   x F  x F  x x

     x x F 

    xx

    x

     thenifi.e.,

     offunctiondecreasing-nonais

    2Property

  • 8/18/2019 CL 202 Fundamentals Handout Spring2016

    18/43

    20-01-2016

    18

     Automation LabIIT Bombay

    Properties of Distribution Function

    1/20/2016 Fundamentals 35

    .0)(0)( 00   x x x F  x F     allforthenIf

    3Property

    xx

    ).()(

    )(

     x F  x F 

     x F 

    xx

    x

     

    i.e.,right,thefromcontinuousisfunctionThe

    4Property

    ).()()(     x F  x F  x P  xxx

    5Property

    )()()( 1221   x F  x F  x x P  xxx

    6Property

     Automation LabIIT Bombay

    Points to Note

    1/20/2016 Fundamentals 36

    .)()()(

    )(

     x x F  x F  x F 

     x F 

     allfor

    i.e.,,continuousisfunctionondistributithe

     iftypecontunuouscalledisvariablerandomA

    VariableRandomContinuous

    xxx

    x

     

     RV.type-discretebetosaidisxthen

     type),stepconstant,(piecewiseiesdiscontuit jump

     ofnumberfiniteaforexceptconstantisIf

    VariableRandomDiscrete

    x   )( x F 

    It is possible to encounter a situation wherea random variable is mixed type.

  • 8/18/2019 CL 202 Fundamentals Handout Spring2016

    19/43

    20-01-2016

    19

     Automation LabIIT Bombay

    Example: Coin Toss

    1/20/2016 Fundamentals 37

    1),(0,1,)(,)(

    ,,,,

    q pq pqT  P  p H  P 

    S T  H T  H S   ; ;

    tripletwithexperimenttosscointheConsider

     B

     R R

    T  H 

    BisfieldBorelassociatedandisspacesampleNew

    xandx

     asRVdiscreteadefinecanWe

    0)(1)(  

     x

     xq

     x

     x F 

    11

    10

    00

    )(

     for 

    for 

    for 

    functionondistributiNew

    x

     Automation LabIIT Bombay

    Probability of Other Events

    1/20/2016 Fundamentals 38

    )1)(

    )(1]),((1),(

    ),(}

    S  P 

     x F  x P  x P 

     x x

      yprobabilitofaxiomthefromfollows(This

     seti.e.{xeventof yProbabilit

    x

    )()(],(

    ],(],(],(

    ],(],(

    ],(],(],(],(}

    1221

    2112

    211

    2112

    2121

     x F  x F  x x P 

     x x P  x P  x P 

     x x x

     x x x x x x x x

    xx

     y)probabilitofaxiomsfrom(follows

    disjointareandSets:Note

     seti.e.x{eventof yProbabilit

  • 8/18/2019 CL 202 Fundamentals Handout Spring2016

    20/43

    20-01-2016

    20

     Automation LabIIT Bombay

    Example 1: Rolling a Die (contd.)

    1/20/2016 Fundamentals 39

    Consider experiment of rolling a die (with 6 facespainted with 6 different colors) once.

    654321 C,C,C,C,C,CspacesampleOriginal   4S 

     

     

    .

    .........,,

    ,

    ,

    4

     andtoadditionin

     onsoand

    C,C,CCC,C

    C,C,C,CC,C

     formtheofsetscontainsspace,sample

     originaltheondefined,sayfield,BorelA

    542631

    654321

     

    B

     Automation LabIIT Bombay

    Example 1: Rolling a Die (contd.)

    1/20/2016 Fundamentals 40

     RS 

    i

     R  

     spacesampleNew

    x(C

    RVdiscreteadefinecanWe

    i   10)

    on.soand

     wherexA

     or

     wherexA

    formtheofintervalsareinEvents 

    inAeventanusingdescribedbenowcan fieldBoreltheinsayevent,An

    21212121   ,,],[~

    ],(~

    ~,

     x x R x x x x x x

     R x x x

     A

     R

     R

    B

    BB4

  • 8/18/2019 CL 202 Fundamentals Handout Spring2016

    21/43

    20-01-2016

    21

     Automation LabIIT Bombay

    Example 1: Rolling a Die (contd.)

    1/20/2016 Fundamentals 41

    1,2,3iifonlyx(Cbecause

     inC,C,CEventin35}{xEvent

    i

    321

    35)

    4BB R

    6) 

    ix(Coutcomenoistherebecause

     inEventin6}{xEvent   4BB     R

    2,3,4iforonly46.8x(C17.5because

     inC,C,CEventin46.8}x{17.5Event

    i

    432

    )

    4BB R

    2,3,4iforonly45x(C20because

     inC,C,CEventin45}x{20Event

    i

    432

    )

    4BB R

     Automation LabIIT Bombay

    Example 1: Rolling a Die (contd.)

    1/20/2016 Fundamentals 42

    28)

    4

    i

    x(Cthatsuchoutcomenoistherebecause

     inEventin28}{xEvent   BB     R

    5iifonlyx(Cbecause

     inCEventin50}{xEvent

    i

    5

    50)

    4BB R

    4

    4

    BB

    B

    B

     ineventassametheNOT isinEvent(2)

     ineventsMultiple

     tocorrespondcanineventAn(1)

     Note

        R

     R

    4BB  inEventin80}{xEvent   S  R 

  • 8/18/2019 CL 202 Fundamentals Handout Spring2016

    22/43

    20-01-2016

    22

     Automation LabIIT Bombay

    Probability Measured

    1/20/2016 Fundamentals 43

    contains],(-which

    6010,20,...,pts.ofNo.×)(=])((

     onmeasure yprobabilitequivalentAn

    x x

     /  ,x- P  x F 

     R

    61)(

    B

    6,...,2,16/1)(

    4

      iC  P  i  for

     onMeasure yProbabilitA   B

    points)6atonly

     itiesdiscontinu(with

    Rentireoverdefined

     functioncontinuousais Unlike

    :Note

    x   )(

    ),(

     x F 

    C  P  i

     Automation LabIIT Bombay

    Example 1: Rolling a Die (contd.)

    1/20/2016 Fundamentals 44

     function.staircaseais

     10i)x(CRVdiscreteoffunctiononDistributi i  

    1}{

    0}{

    44

    4

    4

    4

    4

    BB

    BB

    BB

    BB

    BB

     inin82}x{-(82)

     inin6}x{-(6)6

    12inC,Cin29.5}xP{-(29.5)

    6

    13inC,C,Cin31.9}xP{-(31.9)

    6

    13inC,C,Cin38}x{-(38)

    particularIn

    x

    x

    21x

    321x

    321x

    S  P  P  F 

     P  P  F 

     P  F 

     P  F 

     P  P  F 

     R

     R

     R

     R

     R

     

  • 8/18/2019 CL 202 Fundamentals Handout Spring2016

    23/43

    20-01-2016

    23

     Automation LabIIT Bombay

    Probability Mass Function

    1/20/2016 Fundamentals 45

    .

  • 8/18/2019 CL 202 Fundamentals Handout Spring2016

    24/43

    20-01-2016

    24

     Automation LabIIT Bombay

    Probability Mass Function

    1/20/2016 Fundamentals 47

     function.deltaDiractherepresentswhere

     for asdrepresentebecanRVdiscretea

     forfunctionmass yprobabilitthe

     calculus,throughtreatmentfacilitateTo

    x

    )(

    )()(

    i

    i

    ii

    a x

     x-a x p x f 

     

     

    The definition of probability mass function onthe previous slide is intuitively appealing.However, it does not facilitate treatment

    through calculus.

     Automation LabIIT Bombay

    Probability Mass Function

    1/20/2016 Fundamentals 48

     )ofpropertiesthefromfollows(This

     equationintegralfollowingthe

     throughfunctionondistributi yprobabilit

     torelatedisfunctionmass yprobabilitThe

    x

    xx

    )(

    )()(

    )()()(

    ,

    i

     xai

    i

    i

     x

    ii

     x

    i

    ii

     x

    a x

    a f d a p

    d a pd  f  x F 

    i

     

       

         

  • 8/18/2019 CL 202 Fundamentals Handout Spring2016

    25/43

    20-01-2016

    25

     Automation LabIIT Bombay

    Example: Data Transmission

    1/20/2016 Fundamentals 49

    There is a chance that a bit transmitted through adigital transmission channel is received in error.

    Define discrete RV, x, equal to the number of bitsin error in the next four bits transmitted.

     , , , ,S 

     ofsetPowerfieldBorelOriginal

     spacesampleOriginal

      43210

    000104003603

    048602291601656100

    54

    32

    .== P .==

    .== P .== P .== P 

    )( ,)P(

    )( ,)( ,)(

     toreferencewithDefinediesProbabilit

    1

      

       

     Automation LabIIT Bombay

    Example: Data Transmission

    1/20/2016 Fundamentals 50

     R

    i

     R

    ii

    B

     fieldBorelnewandspacesampleNew

     forx

    RVdiscreteadefineusLet

    5,4,3,2,11)( 

    000104003603

    048602291601656100

    .= f .= f 

    .= f .= f .= f 

    )( ,)(

    )( ,)( ,)(

    FunctionMass yProbabilit

    xx

    xxx

    2194770

    1065610

    00

    )(

     x.

     x.

     x

     x F 

     for 

    for 

    for 

    x

     x

     x.

     x.

     x F 

    41

    4399990

    3299630

    )(

     for 

    for 

    for 

    x

    Probability/Cumulative Distribution Function

  • 8/18/2019 CL 202 Fundamentals Handout Spring2016

    26/43

    20-01-2016

    26

     Automation LabIIT Bombay

    Example 2: Telephone Call

    1/20/2016 Fundamentals 51

     ][)(SpaceSampleOriginal

    ].[intervaltimeduring

     randomatoccurscalltelephoneA

     ,T S 

     ,T 

    0

    0

    ],0[

    ][ 21

     ,t t 

     intervaloverdefined

     intervals-suballofSet

     FieldBorelOriginal

    B

    T t t T 

    t t t t  P   

      21

    1221   0)(  anyfor

     onFunction yProbabilit

     

    B

     Automation LabIIT Bombay

    Example 2: Telephone Call

    1/20/2016 Fundamentals 52

    .,

    ],(

    B

    B

     inevent,certainthewithassociatedis

     where,x,ineventAn

    T aa R  

    ][when)x(

     asRVcontinuousaDefine

     ,T 0      

    )0

    ],(],0[

    T t 

    t t 

     RS 

     R

     R

     (for xEvent Event

    )(spacesampleNew

    BB 

    .

    0],(

    B

    B

     ineventimpossiblethewithassociatedis

     where,x,ineventAn

     

      t t  R

  • 8/18/2019 CL 202 Fundamentals Handout Spring2016

    27/43

    20-01-2016

    27

     Automation LabIIT Bombay

    Example 2: Telephone Call

    1/20/2016 Fundamentals 53

    )()()(

    )()()()()(

    2112

    211

    2112

    t t  P t  P t  P 

    t t t t t t t 

    xxx

     thatfollowsit y,probabilitofaxiomsthefrom

     disjoint,arexandxeventsand xxxSince

    t T 

    T t t/T 

    t -

    t  P t  F 

     if 

    if 

    if 

    x Define x1

    0)(

    00

    )()(

    )(

    ],0[,

    21

    2121

    t t 

    t t T t t 

    xintervalincallaofoccurrenceof

      yprobabilittheoutfindtowantweSuppose

     thatsuchconsiderNow

     Automation LabIIT Bombay

    Example 2: Telephone Call

    1/20/2016 Fundamentals 54

     xThus,

    xxx

    xx   ,)()()(

    )()()(

    121221

    1221

    t t t  F t  F t t  P 

    t  P t  P t t  P 

    002

    )(

    0

    21

      

      

     

      

     asx

    thennumber,smallaiswhere andsupposeNow,

    Note

    T t t  P 

    t t t t 

    This is an example of a continuous random variable.Which attributes qualify a RV to be called continuous?

  • 8/18/2019 CL 202 Fundamentals Handout Spring2016

    28/43

    20-01-2016

    28

     Automation LabIIT Bombay

    Continuous Random Variable

    1/20/2016 Fundamentals 55

    1)(0)()(

    )1......()()(

    :)(

    dx x f  x x f  x f 

    dx x f ba P 

    ba Ra,b

     R R x f 

    b

    a

    XXX

    X

    X

     andsatisfymust

    x

     withanyforthatsuch

     functiondensityaexiststhereif

     continuouscalledis x,variable,randomA

    a

    dx x f a P a F 

      ,:R F 

    )()()(

    ]10[(.)

    Xx

    bydefinedfunctionais x,RV,continuousaoffunctiononDistributi

     Automation LabIIT Bombay

    Probability Density Function

    1/20/2016 Fundamentals 56

    )( x f xTypical

    ][

    ],[)(

    a,b

    ba x f 

     inliewill

     xRVthethat yprobabilit

     infunctiondensity

     yprobabilittheunderArea

    x

  • 8/18/2019 CL 202 Fundamentals Handout Spring2016

    29/43

    20-01-2016

    29

     Automation LabIIT Bombay

    Note (Dekking et al., 2005)

    1/20/2016 Fundamentals 57

    If the interval gets progressively smaller, thenthe probability will tend to zero.

    0)(,0

    )()(

    0

    a P 

    dx x f aa P 

     ,>

    a

    a

     thatfollowsitAs

    x

    havewesmall yarbitrarilanyFor

    X

     

      

     

     

     

    )()()()(  

  • 8/18/2019 CL 202 Fundamentals Handout Spring2016

    30/43

    20-01-2016

    30

     Automation LabIIT Bombay

    Uniform Distribution

    1/20/2016 Fundamentals 59

    b x

    b xaaba x

     x f 

     x

    0

    )/(10

    )(

    )(

    x

    x  getwe,FatingDifferenti

    The distribution is notdifferentiable at a and at b.

    Uniform Density Function

     xb

    b xaab x/ 

    a x-

     x F 

     if 

    if 

    if 

    x

    1

    ))((

    0

    )(

    Generalization of PDF appearing in Telephone Call example

     Automation LabIIT Bombay

    Example: Chemical Reactor

    1/20/2016Fundamentals   60

    Consider steady state operation ofa Continuously Stirred Tank

    Reactor (CSTR)

     rateflowfeedinlet

    rateflowvolumetriceffluent

     VolumeReactor

    q

    vesseltheinparticle

     aoftimeresidencex

    interestofVariableRandom

    Assumption: perfect mixing,particle's position is uniformlydistributed over the volume

  • 8/18/2019 CL 202 Fundamentals Handout Spring2016

    31/43

    20-01-2016

    31

     Automation LabIIT Bombay

    Example: Chemical Reactor

    1/20/2016 Fundamentals 61

    t/nt 

     ,t 

    t t 

    lengthequalofeach

     intervalssmallnintodividedbe][intervaltheLet

    large.toonotiswhenintervalConsider

    0

    ],0[

     reactor?theinstaydoeslongHow:Question

     atCSTRtheenteredvolume,elementalanSuppose

    v

    t v

      0,

    .)stillisvolumetotaltheandduringreactorthe

     leavesamountequalstate,steadyatissystemthe(Since

     intervalanduringreactor theenterswhichelementvolumeaConsider

    V t 

    t t qv

    .

     Automation LabIIT Bombay

    Example: Chemical Reactor

    1/20/2016 Fundamentals 62

     )()

     islengthofintervalstheofany

     duringvesseltheleavesthat yprobabilitthe

    mixed,wellbetoassumedisreactortheSince

    )/(//( 1   nV qt V t qV v p P 

    t n

    v

     

    reactor)theinstays( reactor)theleaves(

     ofconsistsspacesampletheeachduringThus,

    2

    1

    v failure

    v success

    S t 

     

     

    ,

     .sexperimenttosscoinrepeatedthetosimilarelyqualitativ

     isintervaleachinhappenswhatthatassumeusLet   t 

  • 8/18/2019 CL 202 Fundamentals Handout Spring2016

    32/43

    20-01-2016

    32

     Automation LabIIT Bombay

    Example: Chemical Reactor

    1/20/2016 Fundamentals 63

    n

    n

    nV 

    qt --p P t  P 

    nt 

    v

     

      

     

    1)1(),....,,()(

    0

    ,

    222      x

    byedapproximatwell,largeforis,timeuptoleastatvesseltheinstillisatCSTRtheenteredwhich

     volume,elementalanthat yprobabilittheThus,

    ,......3,2,1

    n

    1ofoccurrencefirstthe

     havetotakesit)tosses""(orintervalsofNo.

     :)n(assumptiospaceSample

     

     p P 

    t n

    v

    1( 2)

     islengthofintervalstheofany

     duringvesseltheinstaysthat yprobabilittheThus,

     

     Automation LabIIT Bombay

    Example: Chemical Reactor

    1/20/2016 Fundamentals 64

     

      

     

     

      

     

    qt 

    nV 

    qt -

    nt  P 

    n

    n

    exp1

    1lim

    )(x

     lettingBy

     

      

     

     

      

     

    0exp

    00

    )(

    0exp1

    00)()(

    t V 

    qt 

    qt 

    t  f 

    t V 

    qt t 

    t  P t  F 

     for 

    for 

    isfunctiondensity yprobabilitassociatedand

     for for 

    x

    equalsxoffunctionondistributithethatfollowsIt

    x

    x

     on.distributilexponentiatheofexampleanisThis

  • 8/18/2019 CL 202 Fundamentals Handout Spring2016

    33/43

    20-01-2016

    33

     Automation LabIIT Bombay

    Exponential Distribution

    1/20/2016 Fundamentals 65

    )(t  F x)(t  f x

    t  t 

    Probability Density Function Probability Distribution Function

     Automation LabIIT Bombay

    Exponential Distribution

    1/20/2016 Fundamentals 66

     

    for 

    for 

    functiondensity yProbabilit

     for 

    for x

    functionondistributi yProbabilit

    x

    x

    0exp

    00)(

    0exp1

    00)()(

    t t 

    t t  f 

    t t 

    t t  P t  F 

      

     

    Useful in describing probabilitiesassociated with many engineering problems

    For example, x = lifetime of an equipment/component(i.e. time before which the equipment/component fails)

  • 8/18/2019 CL 202 Fundamentals Handout Spring2016

    34/43

    20-01-2016

    34

     Automation LabIIT Bombay

    Points to Note

    1/20/2016 Fundamentals 67

    A discrete RV does not have a probability density functionand

    continuous RV does not have a probability mass function.

    However, both have a distribution function and

      dx x f a P a P a F    )(],()()( xxx

    exists.derivativethewhen

    thatcalculusintegralthe

     fromfollowsitRV,discreteorcontinuousaFor

    xx

    dx

     xdF  x f 

      )()(  

     Automation LabIIT Bombay

    Points to Note

    1/20/2016 Fundamentals 68

    A continuous RV is defined using the integralequation (1) on slide 51. The RV definition doesnot require the density function to becontinuous and differentiable at all points on R.Thus, a valid probability density function may

    have discontinuities at isolated points on thereal line.

    Histogram of a continuous RV can be viewed asan approximation of the probability densityfunction. The relative frequency is an estimateof the probability that a measurement falls inthe interval.

  • 8/18/2019 CL 202 Fundamentals Handout Spring2016

    35/43

    20-01-2016

    35

     Automation LabIIT Bombay

    Histogram

    1/20/2016 Fundamentals 69

    A typical histogram of a continuous Random Variable [1]

     Automation LabIIT Bombay

    Summary

    The modern axiomatic definition of the probabilityfacilitates rigorous mathematical treatment ofthe random phenomenon.

    A probability space consists of the triplet (i)

    sample space, (ii) a Borel field defined on thesample space and (iii) a probability measuredefined on each event in the Borel field.

    The concept of a random variable is introducedbecause, we need a mapping from the sample spaceto the set of real numbers for carrying outquantitative analysis through a unifiedmathematical framework.

    1/20/2016 Fundamentals 70

  • 8/18/2019 CL 202 Fundamentals Handout Spring2016

    36/43

    20-01-2016

    36

     Automation LabIIT Bombay

    Summary

    1/20/2016 Fundamentals 71

    problems.allfor

     space yprobabilitwithworkwe

    mappingvariablerandomadefiningAfter

    x   ))((   x ,F  R,  RB

     problems.allfor

     where formtheofeventsallfor

     definedisfunction, yprobabilitgenerica

    Moreover

    x   10]),(()(],(

    (.),

       x P  x F 

     x A

     P 

     Automation LabIIT Bombay

    1/20/2016 Fundamentals 72

    AppendixConditional Probabilities

    and Independence(Dekking et al., 2005)

  • 8/18/2019 CL 202 Fundamentals Handout Spring2016

    37/43

    20-01-2016

    37

     Automation LabIIT Bombay

    Conditional Probability

    1/20/2016 Fundamentals 73

    IndependenceIf the conditional probability of A equals what theprobability of A was before, then events A and B

    are called independent .

    .

    ).,,(

    B

    B

     ineventstworepresentBandALet

     sapce yprobabilitaConsider   P S 

    Conditional ProbabilityKnowing that an event B has occurred sometimes

    forces us to reassess the probability of event A. Thenew probability is the conditional probability.

     Automation LabIIT Bombay

    Conditional Probability

    1/20/2016 Fundamentals 74

    0.provided

     asdefinedisoccurredhasBeventgiven

    Aeventof yprobabilitlconditionaThe

    )(

    )(

    )()|(

     B P 

     B P 

     B A P  B A P 

    1

    )(

    )(

    )(

    )()(

    )(

    )(

    )(

    )()|()|(

    )(

    )()|(

     B P 

     B P 

     B P 

     B A B A P 

     B P 

     B A P 

     B P 

     B A P  B A P  B A P 

     B P 

     B A P  B A P 

    Note

  • 8/18/2019 CL 202 Fundamentals Handout Spring2016

    38/43

    20-01-2016

    38

     Automation LabIIT Bombay

    Conditional Probability

    1/20/2016 Fundamentals 75

    NoteThe conditional probability function

    satisfies all the axioms of probability, and,thus, is a valid probability function in itself.

    )()|()()|()(   A P  A B P  B P  B A P  B A P   

     BandAeventsanyforruletionMultiplica

    )()|()()|(

    )()()(

    )()(

    ,

     B P  B A P  B P  B A P 

     B A P  B A P  A P 

     B A B A A

     A

     

    Aeventof yprobabilitthe

     

    asexpressedbecanwhicheventConsider

     Automation LabIIT Bombay

    Example: Mad Cow Disease

    1/20/2016 Fundamentals 76

    Consider a test in which a cow is tested to determineinfection with the “mad cow disease.” It is known that,using the specified test, an infected cow has a 70%chance of testing positive, and a healthy cow just 10%. Itis also known that 2% cows are infected. Find probabilitythat an arbitrary cow tests positive.

    Note: As no test is 100% accurate, most tests have theproblem of false positives and false negatives. A falsepositive means that according to the test the cow isinfected, but in actuality it is not. A false negative means aninfected cow is not detected by the test.

    1.0)|(7.0)|(     BT  P  BT  P   and

     positivecomesTest:T Event

    infectediscowpickedrandomlyA:BEvent

  • 8/18/2019 CL 202 Fundamentals Handout Spring2016

    39/43

    20-01-2016

    39

     Automation LabIIT Bombay

    Example: Mad Cow Disease

    1/20/2016 Fundamentals 77

    )(

    98.0)(02.0)(

    T  P 

     B P  B P 

     B BS 

     findtoisProblem

     

    :Note

    112.098.01.002.07.0

    )()|()()|()(

    )()()(

    )()(

     B P  BT  P  B P  BT  P T  P 

     BT  P  BT  P T  P 

     BT  BT T 

     

    Since

    This is an application of the law of total probability.

     Automation LabIIT Bombay

    Law of Total Probability

    1/20/2016 Fundamentals 78

    )()|(......

    )()|()()|(

    )().....()()(

    .

    2211

    21

    21

    21

    mm

    m

    m

    m

    C  P C  A P 

    C  P C  A P C  P C  A P 

    C  A P C  A P C  A P  A P 

    S C . . .C C 

    C  , . . . , , C C 

     

    :asexpressedbecan

     Aeventarbitraryanof yprobabilittheThen,

     thatsuch

     eventsdisjointareSuppose

    Computing a probability through conditioning onseveral disjoint events that make up the whole

    sample space

  • 8/18/2019 CL 202 Fundamentals Handout Spring2016

    40/43

    20-01-2016

    40

     Automation LabIIT Bombay

    Law of Total Probability

    1/20/2016 Fundamentals 79

    The law of total probability (illustration for m = 5).

     Automation LabIIT Bombay

    Mad Cow Example (contd.)

    1/20/2016 Fundamentals 80

    A more pertinent question about the mad cowdisease test is the following:

    Suppose a cow tests positive; what is theprobability it really has the mad cow disease?

    ?)|(   T  B P iswhatterms,almathematicIn

    125.098.01.002.07.0

    02.07.0

    )()|()()|(

    )()|(

    )()(

    )(

    )(

    )()|(

     B P  BT  P  B P  BT  P 

     B P  BT  P 

     BT  P  BT  P 

     BT 

    T  P 

     BT T  B P 

    (Dekking et al., 2005)

  • 8/18/2019 CL 202 Fundamentals Handout Spring2016

    41/43

    20-01-2016

    41

     Automation LabIIT Bombay

    Example: Mad Cow Disease

    1/20/2016 Fundamentals 81

    InterpretationIf we know nothing about a cow, we would say

    that there is a 2% chance it is infected.However, if we know it tested positive, then we

    can say there is a 12.5% chance the cow isinfected.

    century.18ththeinBayesThomasclergyman

     EnglishbyderivedRuleBayes'ofnapplicatio

     anisusingFinding   )|()|(   BT  P T  B P 

     Automation LabIIT Bombay

    Bayes’ Rule

    1/20/2016 Fundamentals 82

    )(

    )()|(

    )()|(......)()|(

    )()|()|(

    .

    11

    21

    21

     A P 

    C  P C  A P 

    C  P C  A P C  P C  A P 

    C  P C  A P  AC  P 

    S C . . .C C 

    C  , . . . , , C C 

    ii

    mm

    iii

    i

    m

    m

     

    :asexpressedbecanA,eventarbitrary

    angiven,of yprobabilitlconditionatheThen,

     thatsuch

     eventsdisjointareSuppose

  • 8/18/2019 CL 202 Fundamentals Handout Spring2016

    42/43

    20-01-2016

    42

     Automation LabIIT Bombay

    Independence

    1/20/2016 Fundamentals 83

    )()(   A P  A|B P 

     B A

    ifoftindependencallediseventAn

    )()(1)(1)(   A P  A P  A|B P |B A P 

     B A B A

     oftindependenoftindependen:1Result

    )()()()()(

    )()()(

     B P  A P  B P  A|B P  B A P 

     B A

     B P  A P  B A P  B A

     oftindependenisif

     rule,tionmultiplicatheofnapplicatioBy

     oftindependen:2Result

     Automation LabIIT Bombay

    Independence

    1/20/2016 Fundamentals 84

    )()(

    )()(

    )(

    )()|(  B P 

     A P 

     B P  A P 

     A P 

     B A P   A B P 

     A B B A

     oftindependenoftindependen:3Result

     true.arethemofallholds,statementstheseofoneIf

     byreplacedbemayandbyreplacedbemay

    followingtheofone justproveto

    sufficesittindependenareandthatshowTo

    .)(

    )()()(

    )()|(

    )()(

     B B A A

     B P  A P  B A P 

     B P  A B P 

     A P  A|B P 

     B A

    dependent.calledaretheyt,independennotareeventstwoIf

  • 8/18/2019 CL 202 Fundamentals Handout Spring2016

    43/43

    20-01-2016

     Automation LabIIT Bombay

    Independence Multiple Events

    1/20/2016 Fundamentals 85

    formula.thethroughoutscomplement

     theirbyreplacedareeventstheof

     numberanywhenholdsalsostatementthisand

    iftindependencalledareeventAn

    n

    nn

    n

     ,. . . , A A

     A P  A P  A P  A A A P 

     A A A

    1

    2121

    21

    )()....()()....(

    ,...,,

    tindependenareandthatimplyNOT doesit

     thent,independenareandand

     tindependenareandIf :Note

    C  A

    C  B

     B A

     Automation LabIIT Bombay

    References

    1. Papoulis, A. Probability, Random Variables and StochasticProcesses, MacGraw-Hill International, 1991.

    2. Dekking, F.M., Kraaikamp, C., Lopuhaa, H.P., Meester, L. E., AModern Introduction to Probability and Statistics:Understanding Why and How, Springer, 2005.

    3. Montgomery, D. C. and G. C. Runger, Applied Statistics andProbability for Engineers, John Wiley and Sons, 2004.

    4. Ross, S. M., Introduction to Probability and Statistics forEngineers and Scientists, Elsevier, 4th Edition, 2009.

    5. Maybeck, P. S., Stochastic models, Estimation, and Control:Volume 1, Academic Press, 1979.

    6. Jazwinski, A. H., Stochastic Processes and Filtering Theory,Academic Press, 1970.

    1/20/2016 Fundamentals 86