82
Institute of Transportation Studies ◦ University of California, Davis 1605 Tilia Street ◦ Davis, California 95616 PHONE (530) 752-6548 ◦ FAX (530) 752-6572 www.its.ucdavis.edu Working Paper – UCD-ITS-WP-16-04 City of Vancouver EV Infrastructure Strategy Report December 2016 Dahlia Garas Gustavo O. Collantes Michael A. Nicholas

City of Vancouver EV Infrastructure Strategy Report · 2017-08-14 · Institute of Transportation Studies University of California, Davis 1605 Tilia Street Davis, California 95616

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: City of Vancouver EV Infrastructure Strategy Report · 2017-08-14 · Institute of Transportation Studies University of California, Davis 1605 Tilia Street Davis, California 95616

Institute of Transportation Studies ◦ University of California, Davis

1605 Tilia Street ◦ Davis, California 95616

PHONE (530) 752-6548 ◦ FAX (530) 752-6572

www.its.ucdavis.edu

Working Paper – UCD-ITS-WP-16-04

City of Vancouver EV Infrastructure Strategy Report

December 2016

Dahlia Garas Gustavo O. Collantes Michael A. Nicholas

Page 2: City of Vancouver EV Infrastructure Strategy Report · 2017-08-14 · Institute of Transportation Studies University of California, Davis 1605 Tilia Street Davis, California 95616

1

City of Vancouver EV Infrastructure Strategy Report

DahliaGarasGustavoCollantesMichaelNicholas

UniversityofCaliforniaatDavisPolicyInstituteforEnergy,EnvironmentandtheEconomy

UCD‐ITS‐WP‐16‐04

December31,2016

Page 3: City of Vancouver EV Infrastructure Strategy Report · 2017-08-14 · Institute of Transportation Studies University of California, Davis 1605 Tilia Street Davis, California 95616

2

Page 4: City of Vancouver EV Infrastructure Strategy Report · 2017-08-14 · Institute of Transportation Studies University of California, Davis 1605 Tilia Street Davis, California 95616

3

Acknowledgements ThisstudywasfundedbyagrantfromtheCityofVancouver.TheauthorswouldliketothankresearchcollaboratorsatthePlug‐InHybrid&ElectricVehicleResearchCenter,Dr.TomTurrentineandDr.GilTalfortheirinputandresearchexpertise,andIanNevilleofVancouverforhisinputandfeedbackondraftsofthisreport.Inaddition,wemustthankourstudentsKathrynCanepaandMaiaMoranfortheireditingandformattingexpertisetohelpcreateamorepolishedfinalproduct.

Page 5: City of Vancouver EV Infrastructure Strategy Report · 2017-08-14 · Institute of Transportation Studies University of California, Davis 1605 Tilia Street Davis, California 95616

4

Table of Contents Abstract..........................................................................................................................................................6

Abbreviations...............................................................................................................................................7

Introduction.................................................................................................................................................8

TheRoleofChargingInfrastructureintheDevelopingPEVMarket..............................9

TechnologyBackground......................................................................................................................11

ChargingEquipment–TypeandDifference...........................................................................11

WirelessCharging..............................................................................................................................14

AvailableEVSE‐PowerandCost................................................................................................16

Plug‐InElectricVehicles–PowerandEnergyRequirements........................................18

EVSEInstallation–CostandSiting.............................................................................................21

EVChargingOptionsbyLocation.....................................................................................................24

HomeCharging....................................................................................................................................25

WorkplaceCharging..........................................................................................................................27

PublicCharging...................................................................................................................................30

FastCharging........................................................................................................................................32

TheImpactofDemandChargesonFastChargingCosts...................................................33

TheBusinessofCharging.....................................................................................................................34

InfrastructureOperationBusinessModels.............................................................................35

Revenueflowsvs.valueproposition.........................................................................................37

ITandData:AnimportantpartofthevalueunderlyingEVcharginginfrastructure.......................................................................................................................................42

GridIntegration..................................................................................................................................45

WorkplaceChargingInvestmentModels.................................................................................47

PublicPrivatePartnerships................................................................................................................50

Casestudy:OverviewofcharginginfrastructuredevelopmentinFrance................51

LegitimationoftheEVMarket...........................................................................................................54

ModelsBasedonEV‐BuildingIntegration..............................................................................57

ThePossibleRoleofElectricUtilities.............................................................................................59

ProposalsfromUtilitiesConductingPilotPrograms..........................................................62

PacificGas&Electric....................................................................................................................62

SouthernCaliforniaEdison.......................................................................................................63

SanDiegoGas&Electric.............................................................................................................64

Eversource(EastCoastUtility)...............................................................................................65

Page 6: City of Vancouver EV Infrastructure Strategy Report · 2017-08-14 · Institute of Transportation Studies University of California, Davis 1605 Tilia Street Davis, California 95616

5

PossibleapproachesforBCHydro.............................................................................................65

Theintegrationoftheelectricvehiclewiththegrid................................................................69

Conclusion..................................................................................................................................................71

References..................................................................................................................................................75

Page 7: City of Vancouver EV Infrastructure Strategy Report · 2017-08-14 · Institute of Transportation Studies University of California, Davis 1605 Tilia Street Davis, California 95616

6

Abstract

Theroleofthelocalgovernmentinsupportingthegrowthandmaintenanceofa

strongplug‐inelectricvehiclemarketinVancouverisevaluatedinthisreport.This

reportidentifiesareasofactioninwhichalocalgovernment,suchasVancouver,can

impacttheirregionbasedonathoroughunderstandingofthecurrentplug‐in

vehiclemarket,internationaldemonstrationprojects,andresearchefforts.

Specifically,workplaceandpublicchargingisneededtoreinforceandfulfillthegaps

fromhome‐basedchargingindenseurbanregions.Localgovernmentcan

encourageinvestmentsinworkplaceandpublicchargingbyprovidingclear

regionalguidelinesforinstallersandcustomers,providingappropriateincentivesto

businesses,allowingforaninnovativemarketplaceinthevehiclechargingindustry,

andcollaboratingwiththeregionalutilitytoidentifyspecificopportunitiesfor

optimizationandencouragementofutilityratesandvehicle‐gridinteractions.

Page 8: City of Vancouver EV Infrastructure Strategy Report · 2017-08-14 · Institute of Transportation Studies University of California, Davis 1605 Tilia Street Davis, California 95616

7

Abbreviations

BEV BatteryElectricVehicleBMS BatteryManagementSystemCA CaliforniaCEC CaliforniaEnergyCommissionCPUC CaliforniaPublicUtilitiesCommissionDOE UnitedStatesDepartmentofEnergyDSM DemandSideManagementEPA EnvironmentalProtectionAgencyEPRI ElectricPowerResearchInstituteEVSE ElectricalVehicleSupplyEquipmentGHG GreenhouseGasEmissionsGVWR GrossVehicleWeightRatingHOV HighOccupancyVehicle(orcarpool)lanesICE InternalCombustionEngineMOU MemorandumofUnderstandingNHTSA NationalHighwayTransportationandSafetyAdministrationOEM OriginalEquipmentManufacturer(Automotivecompanies)PEV Plug‐inElectricVehicle,includingbothBEVsandPHEVsPHEV Plug‐inHybridElectricVehiclePPP PublicPrivatePartnershipSAE SocietyofAutomotiveEngineers(governingvehiclestandards)SCE SouthernCaliforniaEdisonSOC StateofChargeTOU TimeofUse(usedinelectricityrates)QC QuickCharging(alsosometimesreferredtoasFastCharging)

Page 9: City of Vancouver EV Infrastructure Strategy Report · 2017-08-14 · Institute of Transportation Studies University of California, Davis 1605 Tilia Street Davis, California 95616

8

Introduction

Developingarobustmarketforplug‐inelectricvehicles(PEVs),includingbothplug‐

inhybridelectricvehicles(PHEVs)andbattery‐electricvehicles(BEVs)iscriticalto

transitioningourtransportationsystemstoacleaner,lowcarbonfuture.Lower

emissionsvehicleswillhavemeasurableimpactsonlocalairquality,global

emissionslevels,andcitizens’health.Whiletheroleofpublicinfrastructurein

aidingthedevelopmentofthePEVmarketisstillunknown,itisoneoftheareasin

whichthelocalandregionalgovernmentcanplayarole.Thegoalisnotjustgrowth

ofPEVsales,butmaximizingtheutilizationofthePEVsintheregion–thereby

decreasinguseoffossilfuelsandemissions,whichdependsonareliableand

functionalchargingnetwork.Throughoutthisreport,specificactionsand

recommendationsareitalicizedforclarity.

ArecentpollsuggeststhatthelargemajorityofCanadiansandBritishColumbians,

76and71percentrespectively,wouldliketoownacarthatisnotpoweredby

gasoline,includingelectricvehicles.Thesamepollfurthersuggeststhat81percent

ofCanadiansand80percentofBritishColumbiansthinkthatelectricvehiclesare

the“wayofthefuture”(Ipsos,2015).Withregardtotheenvironmentalimpactsof

displacingpetroleumwithelectricityfortransportation,91%ofBritishColumbians

believe,accordingtothepoll,thatelectricvehicleswouldbringaboutgreatbenefits.

ThesenumberswouldseemtosuggestthatCanadaingeneral,andBritishColumbia

inparticularofferpromisingconditionsforthemarketacceptanceofplug‐inelectric

vehicles.However,66percentofBritishColumbiansand67percentofCanadians

surveyedindicatedthatwhiletheywouldliketoownaneco‐friendlycar,electric

poweredcarsare“toomuchhassle”.Thislastfindingmaybeoneimportantreason

whythemarketuptakeofplug‐inelectricvehiclesinBritishColumbia(andCanada

ingeneral)isstillslow.In2015,therewerejust6,661plug‐invehiclessoldin

Canada,0.35%ofthenewvehiclemarket,thoughthatwasanincreaseoverthe

0.27%ofsalesin2014(EV‐Sales).

Page 10: City of Vancouver EV Infrastructure Strategy Report · 2017-08-14 · Institute of Transportation Studies University of California, Davis 1605 Tilia Street Davis, California 95616

9

The Role of Charging Infrastructure in the Developing PEV Market

TherecentNationalAcademiesCouncilonelectricvehiclesreviewedconsumer

surveysthatsuggestthatpublicaccesschargingstations,sofarpredominantlylevel

2,havenothadastrongimpactonplug‐invehiclesales.Instead,someofthese

surveyssuggestthatcharginginfrastructuremayhaveastrongerimpactontheuse

ofplug‐invehicles(TransportationResearchBoardandNationalResearchCouncil,

2015).Inotherwords,consumerswhoalreadyownplug‐invehiclesbecomeaware

oftheexistenceandgeographicallocationsofchargingspots,whichleadstomore

publicchargingandmoreelectricmiles.Thesestudieshavenotevaluatedwhether

thosemilesreplacedwalking/bikingorpublictransituseorjustICEvehicleuse.UC

Davisiscurrentlyconductinganempiricalstudyoftheeffectivenessofvariousstate

strategiesonthemarketuptakeofplug‐invehicles,andpreliminaryresultssuggest

thattheimpactofpublicaccessinfrastructuremayhavenotbeenasstrongas

expected.SimonFraserUniversityarrivedatconsistentconclusionsinarecent

study,namelythatcharginginfrastructurehasnotshownaverysignificanteffecton

themarketuptakeofplug‐invehicles(Baileyetal,2015).

Allthesefindingsshouldbelookedatwithanunderstandingofthecontext.Plug‐in

vehiclesarestillinanearlymarketstage,andmarketsandrelatedconsumer

behaviorandlearningcontinuetoevolve.Muchoftheinvestmentincharging

infrastructurewasdoneduringtheveryearlyyearsofthemarketlaunchofthese

vehiclesinitiatedwiththeEVProject(launchedinselectcitiesintheUSin2010),

whenverylittlewasknownaboutbestpracticesforstrategicdeploymentofthis

infrastructure.Theearlystagecanbecharacterizedasoneofexperimentation,

whereideasaretestedtolearnaboutbestpractices.Itispossiblethatinvestments

ininfrastructurewereinefficientinitially,failingtoidentifythebestlocationsfor

installations,ornotbeingabletodeploystationsatdesiredlocations.Themost

commonfactorsthataffectedinstallingElectricVehicleSupplyEquipment(EVSE)

wasthewillingnessofthepropertyorbusinessownertohosttheEVSE,installation

costs,andparkinglocationrelativetoelectricitysourceratherthanthedesirability

Page 11: City of Vancouver EV Infrastructure Strategy Report · 2017-08-14 · Institute of Transportation Studies University of California, Davis 1605 Tilia Street Davis, California 95616

10

ofthelocationorexpecteddemand.

Wealsohypothesizethattherelationshipbetweenavailabilityofpublicaccess

infrastructureandplug‐invehicleadoptionmaybemoreindirectandcomplex.Our

studiesconsistentlyshowthatpublicawarenessofelectricvehiclesislow(Kurani,

2016)andthatpeer‐to‐peercommunicationisakeydriverofawarenessandlikely

ofplug‐invehicleadoption(Axsen,2010).Innovationscholarsandpractitioners

haveknownaboutthesepeer‐to‐peerdynamicsfordecades,usuallywiththename

of“contagion”(asthemodelsusedtostudydiffusionofinnovationsborrowedfrom

thoseusedinthestudyofepidemics).Inthiscontext,theroleofpublicaccess

charginginfrastructuremaybefirsttohelpexistingownersofplug‐invehicleshave

agoodconsumerexperiencewiththeproduct.Oncethathappens,theseconsumers

willfeelmoreinclinedtorecommendplug‐invehiclesintheirsocialnetworks,

whichinturncaninducemoreplug‐invehicleadoption.Thisspeakstothepotential

valueofinvestingincharginginfrastructureinsettingswheresocialinteractionis

likely—forexample,theworkplace.Oneimportantmessageistointegrateeffective

planningaswellasprogramevaluationintoinfrastructureinvestments,toensure

thatearlierlearningisincorporatedandtodocumentlessonslearnedthatcan

informfutureinvestments.

Thevaluechainpossibilitiesforelectricvehiclecharginginfrastructurearemore

complexthanthosecurrentlyseenforconventionalpumpfuels.Itisfairtostate

earlyinthisreportthatthesearchforsustainablebusinessmodelsforthesupplyof

stand‐alonepublicaccesschargingequipmentisstillopen.Itishelpful,however,to

mentiontwoelementsthatwillinformourdiscussions.First,thefactthat

businessesandotherorganizationsareinstallingchargingstationsatacost,

suggeststhatabusinessmodelexists,oratleastthatitisbelievedtoexist.Second,

conventionalfuelstationsmakeasignificantportionoftheirprofitsfromthesales

ofconveniencestoreitemsratherthanpurelyliquidfuels(NationalAssociationfor

ConvenienceandFuelRetailing)duetothelowprofitmarginsonfuelsales.Itis

equallylikelythatEVinfrastructurewillalsobedependentonassociatedsales

Page 12: City of Vancouver EV Infrastructure Strategy Report · 2017-08-14 · Institute of Transportation Studies University of California, Davis 1605 Tilia Street Davis, California 95616

11

ratherthanpurelyelectricitysalesforthesamereason,withtheaddedconstraintof

alowcost,home‐chargingoptionformostPEVdrivers.

Technology Background

Thissectionincludesadescriptionoftheelectricalrequirementsfortheinstallation

ofcharginginfrastructure,bothforlevel2andDCFastCharging,areviewofthe

retailpriceoftypicallevel2andDCfastchargeequipment,andadescriptionof

electricalvariablesduringcharging,includinghowcurrentandpowervaryduring

thechargingeventasafunctionoftimeandothervariables(e.g.stateofcharge).All

ofthesefactorswillaffecttheutilization,pricing,andbusinesscaseforinstallation.

Laterinthischapter,weincludesomepurchaseandinstallationcostinformation

fromtheearlyUSmarketasareference.Infrastructuretype,installationcosts,and

dwelltimewillhaveadirectimpactonthereturnoninvestmentthatanownerand

operatorcanexpect.

Charging Equipment – Type and Difference

TheElectricVehicleSupplyEquipment(EVSE)orElectricVehicleChargingStationis

adevicetotransferelectricityfromtheelectricgridanddistributeelectricityto

plug‐inelectricvehicles.ElectricvehiclechargingistheprocessofconvertingAC

electricityfromtheACelectricgridtoDCelectricityandstoringDCelectricityinDC

batteriesofelectricvehicles.ThepowerelectronicsusedtoconvertACtoDCandto

controlbatterychargingisa“charger”.Twobasictypesofchargingstations:AC

chargingandDCFastcharginghavebeendefinedaccordingtowherethechargeris

positioned.ThedifferenceiswheretheAC/DCconversionandthechargingcontrol

isdone.ThediagraminFigure1illustrateswherethechargerispositioned.

Page 13: City of Vancouver EV Infrastructure Strategy Report · 2017-08-14 · Institute of Transportation Studies University of California, Davis 1605 Tilia Street Davis, California 95616

12

Figure1.ACandDCChargingPaths(modified,source:pluginamerica.org)

AllchargingsystemstakeACpowerfromthegridandconvertittoDCpowerata

suitablevoltageforchargingthebattery.ACLevel1andACLevel2chargingare

lowpowerchargingandareimplementedonthevehicleonboardcharger.ACLevel

1andLevel2chargingstationsmerelydelivertheACpowertothevehicle.DCFast

Level1andLevel2Chargingrequiresveryhighpowerandverylargeandvery

expensivepowerelectronics.TheAC/DCconversionandthepowerconditioning

andcontrolareexercisedinthechargerwithinthechargingstation.Table1

summarizesthechargingpower,supplypowerrequirement,andwherecharging

happensforeachcharginglevel.Foralltypesofchargingstations,theonboard

batterymanagementsystem(BMS)integratedwiththebatteryprovidesthecharger

therequiredconstantcurrent/constantvoltagechargingprofiles.

Page 14: City of Vancouver EV Infrastructure Strategy Report · 2017-08-14 · Institute of Transportation Studies University of California, Davis 1605 Tilia Street Davis, California 95616

13

Table1.Powerboundarybetweendifferentchargingtypesandlevels[source:Bohn,2013]

ACLevel1chargingusesastandard120Vplug,shouldbeusedonadedicated

circuit,thoughthatisoftennotthecaseforstandardhomeusecaseandexisting

householdwiring.ThischargerisincludedwiththepurchaseofaPEV,andisoften

referredtoasthe“conveniencecharger”andcarriedon‐boardandcanbeusedin

thecaseofemergencies.ManyEVlesseesdonotinstallalevel2chargerathome,

especiallyiftheyhaveaccesstoworkplacecharging,andwillinsteadrelyontheir

conveniencechargerandexistingelectricalsystem.Whilethiscanleadtotripped

breakersifmultipledevicesareinuseonthesamecircuit,inupdatedhomeswith

20Arated,andnootherdevices,itcanbeaneconomicalsolutionforthosenot

dedicatedtoinstallingachargeranddrivinganEVinthelongterm.Anyproperty

withelectricitycanbeapotentialfuelingpointforthePEVswithaportablecharging

unit.Theportablechargingunitcomesstandardwiththevehicle,andcanonlyplug

intoconventional120Voutletsfoundathomeandbusinesses.Sincetheadoptionof

astandardconnector–SAEJ1772,everynewPEVcanbechargedusinganyAC

Level2chargingequipmentwiththestandardconnector.ForDCFastcharging,

Page 15: City of Vancouver EV Infrastructure Strategy Report · 2017-08-14 · Institute of Transportation Studies University of California, Davis 1605 Tilia Street Davis, California 95616

14

therearethreefastchargingstandardsinvariousstagesofadoption,CHAdeMO,

TeslaSupercharger,andSAEJ1772ComboorCCS(combinedcouplerstandard).

CHAdeMO–JapanElectricVehicleStandard,isthemostestablishedafteramajor

pushbyNissanforinstallingchargers.TheCCSFastChargersarecurrentlybeing

installedbyABBandChargepoint,andservetheAmericanandGermanautomakers

whohaveagreedtoimplementthatstandard,butwerelatertomarketwith

vehicles,andchargers.AnotheravailableinthemarketistheTeslaSupercharger,

butfornowitisonlyaproprietarydevice,dedicatedtotheModelSandModelX.

ThesethreeDCFastcharginginterfacesarenotphysicallycompatible.SomeEVs

havetwoseparateconnectorstoaccommodatedifferentchargingstandards.Other

EVownersneedtofindtheDCFastchargingstationthat’scompatiblewiththeir

EVs.

Wireless Charging

Wirelesschargingisayoungtechnologythatcanbedeployedineitherdynamicor

staticchargingapplications,whereenergyistransferredwirelesslythougha

magneticfield,withacoilintheroadconnectedtothepowergrid,andareceiveron

thebottomofthevehicle.Currently,somecompaniessuchasPROOVaredeploying

staticwirelesschargingforquickrechargingatbusstops,wherethiscouldallowthe

bussestohavesmalleron‐boardbatterypacks.Inaddition,thischargingcouldbe

usedbymultiplebuses,onmultipleroutes,throughstrategicplacementattransfer

stops.Therearemanydemonstrationsofthistechnology,oneexampleisoperating

inDenBosch,Netherlandswith120kWwirelesschargingsince2012,shownin

Figure2.Itisstillarelativelyexpensiveinstallationcomparedtostandardcharging,

butmayremovesomeaspectsofoperatorerror,andallowforreducedvehiclecost

inthelongterm.Someanalysis,forexamplebyDr.MicahFullerwasconducted

evaluatingthepotentialfordynamic(in‐road)wirelesschargingforhigh‐traffic

freewaysfoundthatahighinvestmentcostisneeded,butthatinthelongterm

couldbeamorecosteffectiveapproachtoextendingrangethanincreasingbattery

capacity(Fuller,2016).

Page 16: City of Vancouver EV Infrastructure Strategy Report · 2017-08-14 · Institute of Transportation Studies University of California, Davis 1605 Tilia Street Davis, California 95616

15

Figure2:120kWWirelessCharginginDenBosch,Netherlands.

Theotherapplicationforwirelesschargingthatmaybeviableinthenearer‐term

wouldbetoassisthandicappedusersinadoptingEVs,especiallyforhomecharging,

sincethemultiplesuppliersofwirelesschargingsystemsarenotnecessarily

compatibleyet.ThesesystemsaremoreexpensivethanstandardlevelIIhome

chargingsystems,sosubsidiesfortheirinstallationmayhelphandicappeddrivers

adoptEVs.

IfincreasingEVadoptionisthegoal,andsystemexpenseisasecondaryconcern

wirelesschargingcanovercomelackofchargingwhereusersareeither

unmotivatedoruncomfortablewiththechargingprocess,suchasfleet/assigned

vehicleapplications,andcar‐sharingapplications.

Wirelesschargingwillbemosttransformativewhenthereareautomatedvehicles

oratleastautomatedparking.Chargingefficiencycorrespondstoalignment,which

isachievablebyautomaticcontrol.Moreimportantlyself‐drivingcarscancharge

themselves,allowingforveryefficientuseofachargingspacesandforself‐driving

carstodrivethemselvestoachargerwhichmaybenear,butnotatone’s

destination,helpingtosolvethe“last‐mile”problem.

Page 17: City of Vancouver EV Infrastructure Strategy Report · 2017-08-14 · Institute of Transportation Studies University of California, Davis 1605 Tilia Street Davis, California 95616

16

Available EVSE ‐ Power and Cost

EventhoughthePEVmarketgrowsslowly,thechargingstationmarketistakingon

rapidgrowth.Thecostsofachargingstationvarywidelydependingonpower

levels,numberofoutputs,andifit’snetworkedthroughoneofthecustomerfacing

systems.MostchargingstationsdonotsupportthefullrangeofACLevel2charging

orDCFastcharging.Table2listsmajorEVSEproductsavailableonthemarket,and

therangeoftheirpowerlevelandprices.

UsuallyACLevel1EVSEoperatesat15A/1.8kW.MostPEVscomewithanACLevel

1EVSEcordset,sonoadditionalchargingequipmentisrequired.Basedonthe

vehicleonboardchargerandcircuitcapacity,mostofACLevel2chargingstations

operateat30A–32A,delivering7.2kW–7.6kWofelectricpower,costing

anywherebetween$450‐$5000.ThemajorityofcurrentDCFastchargingoccurs

witheitheraCHAdeMoorSAECombointerfaceandcanprovide50kWchargingat

125Awiththepriceof$19,000–$40,000.Thenumbersmentionedaboveand

showninthetablebelowarepurchasepriceonlyfortheEVSE,anddonotinclude

electricalsupplyandinstallationcosts.

Table2.MajorEVSEMakeandPowerLevel(NewWestTechnologiesforUSDOE,2015)

Level Make/Model MaxAmps&

Power

Purchase

Price

Level1 ChargePointCT2100SeriesClipperCreekPCS‐15,ACSEaton120VACUniversalReceptacleEV‐ChargerAmericaEV2000EVExtendCommercialLevel1LevitonEvr‐Green120ShorepowerWU‐120,SC2‐120TelefonixL1PowerPost

10A– 20A1.2kW‐2.4kWMostoperateat12A–16A

$300‐$1,500

Page 18: City of Vancouver EV Infrastructure Strategy Report · 2017-08-14 · Institute of Transportation Studies University of California, Davis 1605 Tilia Street Davis, California 95616

17

Level2 AerovironmentEVSE‐RSBoschPowerMaxChargePointCT2000,CT500,CT2100,CT4000SeriesClipperCreekLCSSeriesBDTGNS,BBRSeriesDeltaACandPedestalMountEatonPow‐R‐StationEcotalityBlinkEV‐ChargeAmericaEV2100,EV2200SeriesEvatranlevel2GeneralElectricWattStation,DuraStationGoSmartChargeSpotRFGreenGarageAssociatesJuiceBarGRIDbotUP‐100JLegrandLevel2LevitonEvr‐Green160,320,Level2Fleet,CTLevel2MilbankEVPedestalOpConnectEVCSParkPodPlug‐inElectricPower(PEP)Level2SchneiderElectricEVlinkOutdoor,SquareDIndoorSemaConnectChargePro620SiemensSmartGridEVSE,VersiChargeSPXPowerXpressTelefonixL2PowerPostEVSEVoltaChargingEVSE

16A‐ 75A3.6kW‐20kWMostprovide30A‐32A,7.2kW‐7.6kW

$400‐$6,500

DCFast ABBTerra51FastChargerAerovironmentFleetFastLine,DCFastChargeAkerWadeLevelIIIFastChargerAndromedaPowerORCA‐MobileDeltaEVDCQuickChargerEatonPow‐R‐StationDCQuickChargerEcotalityBlinkDCFastChargerEfacecQC50EpyonPowerTerra50.XSystem,50.1ChargeStationEVTECMobileFastCharger,PublicFastChargerFujiFRCH50B‐2‐01NichiconQuickChargerNissanNSQC‐44SeriesSchneiderElectricFastChargerTeslaMotorsSupercharger

60A‐550A20kW‐60kWMostare125A50kW

$10,000‐$40,000

Page 19: City of Vancouver EV Infrastructure Strategy Report · 2017-08-14 · Institute of Transportation Studies University of California, Davis 1605 Tilia Street Davis, California 95616

18

Next‐Gen

Fast

ExpectedchargingforPorscheMission‐E(Fastned)

Upto300kW Unknown

Plug‐In Electric Vehicles – Power and Energy Requirements

Chargingspeedisnotonlygovernedbythepowerlevelofthechargingequipment,

butalsolimitedbythesizeoftheonboardchargerandthecapacityofthebattery

pack.The2011and2012model‐yearplug‐inelectricvehiclessuchasNissanLeaf

andChevyVolthavea3.3kWonboardACcharger;by2013,Leafhadofferedthe

6.6kWchargingasanoption.HondaFitandFordFocusEVssupportchargingat6.6

kW.TeslaModelScomesstandardwitha10kWonboardACchargeroranoptional

dualACchargerof20kW.Inthecurrentmarket,mostautomakersbringcompact

PEVswithEPA‐ratedrangesof120‐130km,whichhaveabatterycapacityof20‐24

kWh.TheTeslaModelShaseithera60kWhor85kWhbatterypack,which

providesanestimatedrangeof270kmand354km,respectively.

Thebatterypackincludesthebatterymanagementsystem(BMS)thatintegratesthe

batteryandbatterycoolingsystem.TheBMSmonitorsthekeybatteryoperating

parametersofvoltage,currentandtemperature,calculatesthebatterystateof

charge(SOC),andcontrolsthechargingrate.Usually,thebatteryisfirstchargedata

constantcurrentandthenaconstantvoltage.TheBMSprovidestherequired

currenttothecharger.Figures2through6showseveraldailychargingpower

profilesmeasuredfromaworkplace6.6kWACLevel2charger,withcharging

electricityconsumptionrangeof6‐60kWhperchargingevent.Thesedifferent

chargingprofilesarejust4examplesmeasuredatasinglechargeratUCDavis.

DifferentEVmanufacturersusevarioustypesofbatterychargersbasedonthe

batterychemistryandthemethodtocontrolthechargingrate.Allthecharging

startswithaconstantcurrentcharginguntilthevoltagereachesasetvalue.Then,

someonboardchargersstopchargingimmediately,whilesomechangetoaconstant

voltagecontrolandcontinuechargingattaperedpowertoensurethebatteryisfully

charged.Figure7Figure4illustratesthetypicalmonthlyusageofaworkplaceLevel

2chargingstation.Theseprofileshelpidentifythevariationofchargingpower

Page 20: City of Vancouver EV Infrastructure Strategy Report · 2017-08-14 · Institute of Transportation Studies University of California, Davis 1605 Tilia Street Davis, California 95616

19

demandacrosshoursanddaysandmayhelphostorganizationsplanforthe

chargingdemandandutilizationrulesaheadofinstallation.

Figure3:DailychargingloadprofileofaGEchargeratWestVillage(Twovehiclechargingat3.5and6kW,eachwithdrawing12‐13kWh)

Figure4:DailychargingloadprofileofaGEchargeratWestVillage(Twochargingat6kW,eachwithdrawing12‐13kWh)

0

1

2

3

4

5

6

7

6 8 10 12 14 16

ChargingPow

er(kW)

Time(Hour)

0

1

2

3

4

5

6

7

8 10 12 14 16 18

ChargingPow

er(kW)

Time(Hour)

Page 21: City of Vancouver EV Infrastructure Strategy Report · 2017-08-14 · Institute of Transportation Studies University of California, Davis 1605 Tilia Street Davis, California 95616

20

Figure5:DailychargingloadprofileofaGEchargeratWestVillage(OnepossibleTeslachargingat6.6kW,withdrawing50kWhelectricity)

Figure6:DailychargingloadprofileofaGEchargeratWestVillage(Twovehiclechargingat6kWand3.5kW,withdrawing5kWhand10kWh,respectively)

0

1

2

3

4

5

6

7

8

6 8 10 12 14 16 18

ChargingPow

er(kW)

Time(Hour)

0

1

2

3

4

5

6

7

6 8 10 12 14 16

ChargingPow

er(kW)

Time(Hour)

Page 22: City of Vancouver EV Infrastructure Strategy Report · 2017-08-14 · Institute of Transportation Studies University of California, Davis 1605 Tilia Street Davis, California 95616

21

Figure7:ExampleofaWorkplaceChargingStationUtilizationoveraone‐monthperiod(February2015)

EVSE Installation – Cost and Siting

Ingeneral,installinganEVSEinvolvesfivesignificantsteps:

1. AssesstheinstallationsitefortheEVSE,

2. Obtainelectricalwiringpermits,

3. Coordinatewithlocalutilitycompanyforelectricitymetering,

4. InstallationoftheEVSEandtheelectricpanelupgrade,ifnecessary,bya

licensedelectricianorEVSEsupplycompany

5. OperatetheEVSE.

Thespecificsofeachofthesestepswillvarysignificantlybysite,andinstallation

type–whetherprivate,public(on‐road,orparkinglot)orsemi‐private(forexample

workplaces.Thecostsofinstallingchargingstationsincludeequipment,installation,

operatingandmaintenancecosts.Inthissection,EVSEinstallationdatagathered

overthepastfiveyearsispresentedasapointofreferencefortheVancouver

region.

‐1

0

1

2

3

4

5

6

7

8

0 5 10 15 20 25 30

ChargingPow

er(kW)

Time(Day)

Page 23: City of Vancouver EV Infrastructure Strategy Report · 2017-08-14 · Institute of Transportation Studies University of California, Davis 1605 Tilia Street Davis, California 95616

22

Installationcostsvarywidelyaccordingtocircumstancessuchastheavailability

andcapacityoftheutilitysupply.Theaveragelabor,materials,permit,trenching

andrepair,concreteworkcostsforinstallinganewchargingstationare

summarizedinTable3asof2013.Theparkingandelectricitypayment

managementcostsarenotincludedinTable3.Theexpectedlifetimeofthecharging

stationsis10yearsor10,000cycles,andincludemanufacturerwarrantiesof1‐3

years,thoughsomeanalysesuseEVSEsystemlifetimesofupto20years(Silver

SpringNetworks,2010).

Table3.InstallationCostsinUSdollarsforPubliclyAvailableEVSE/ChargeStationsasofSept.2013(EnergyStar,2013)

AnewreportfromtheUSDepartmentofEnergyinNov.2015,lookedataverage

installationcosts,aswellasprovidedtherangeofinstallationscostsperunit(Figure

8),andtheaverageinstallationcostbyregionsthatwerepartoftheEVProject

(Figure9).TheseshouldhelpprovidesomecontextfortheCityofVancouverto

considerwhenplanningforEVSEinstallations.

Page 24: City of Vancouver EV Infrastructure Strategy Report · 2017-08-14 · Institute of Transportation Studies University of California, Davis 1605 Tilia Street Davis, California 95616

23

Figure8:InstallationcostsasofNov.2015(NewWestTechnologiesforUSDOE,2015)

Figure9:AverageInstallationcostsforSpecificRegionsfromtheEVProject(NewWestTechnologiesforUSDOE,2015)

PubliclyavailableEVchargingstationsareACLevel2andDCFastchargingstations.

SitingofACLevel2chargingstationsdiffersfromDCFastchargingbecauseof

substantialdifferenceinchargingduration.MostDCFastchargingeventslast

approximately10–30minutes,whileACLevel2chargingeventslastfor1‐3hours.

Therefore,publicchargingstationsshouldbeplannedneardestinationswhere

activitiesappropriatelyfitthewaitingperiod.DCFastchargingstationsshouldbe

Page 25: City of Vancouver EV Infrastructure Strategy Report · 2017-08-14 · Institute of Transportation Studies University of California, Davis 1605 Tilia Street Davis, California 95616

24

locatedalongmajorhighwaysandalsoclosetoregionaldestinationswhere480V

electricgridsareavailable.Shoppingcenters,restaurants,workplaces,parks,and

theaters,etc.aregoodsitesforinstallingACLevel2chargingstations(Mayfield,

2012).

Commericalchargingstationsareoftennetworkedviatheinternet.Networked

chargingstationsallowPEVuserstomanagetheirchargingandreservestations

online,andalsogivechargingsystemoperatorsabilitytomultiplexdistribution

powertomultipleEVcharging.Thedegreeofintelligenceofthenetworkedcharging

stationscanhaveasignificantimpactonoperatingcost.

EV Charging Options by Location

ThePH&EVResearchCenteratUCDavishasinvestigatedfourprimarycharging

situationsandthreepricingscenarios(NicholasandTal,2013).Thecharging

situationsareprimarilyorganizedaccordingtotheirlocation‐home,work,public,

andfastcharging,andarefurtherdetailedbelow.Thepricingscenariosarefree,less

thanorequaltohomecharging,andmorethanhomecharging.

1. Homecharging–Primarilylevel1orlevel2,usedbytheresidentsofahome

ortheirguests.Insingle‐familyhomesthisisofteninthegarageorcovered

carport,andthereisnocompetitionfortheparkingspotoraccesstothe

EVSE.Inmulti‐unitdwellings(MUDs)theremaybeassignedspots,orthere

maybecompetitionforbothpriorityparkingandaccesstotheEVSE.

2. Workplacecharging–Level1orlevel2foremployeesofaspecificcompany.

Theavailabilityofchargingatworkmayenableemployeeswithlonger

commutestostilldriveusingonlyelectricitywhenchargingisavailableat

theworkplace.Freeworkplacechargingcanleadtoshiftingfromhometo

workplace,andcanleadtoagreaternumberofchargersneededtoprevent

congestionversusascenariothatispriced.

3. PublicCharging–Primarilylevel2chargingthatisplacedinshareduseor

Page 26: City of Vancouver EV Infrastructure Strategy Report · 2017-08-14 · Institute of Transportation Studies University of California, Davis 1605 Tilia Street Davis, California 95616

25

singlebusinesspublicparkinglotsorgarages,forpurposesotherthan

workplace.ProvidingaccesstoanEVSEmayencouragevisitsorlongerstays

atspecificbusinesses.TheEVSEisownedandmaintainedbythegarageor

businessanddecidesonthefeestructure,ifany.Publiccharging,asinthe

caseofadowntownparkinggarage,mayserveasbothworkplacechargingto

employeesofnearbybusinesses,andpublicchargingforcustomersofnearby

businesses.

4. Fast(Quick)Charging–AlsocalledDCFastCharging(andmistakenly

referredtoasLevel3),FastChargingprovidessignificantrangetothevehicle

inashortamountoftime.Thiscanbeusedenroutetoadestination,butcan

beasubstituteatadestinationwhenlevel2isunavailable.Additionally,

someusewillresultfromthosewhonormallychargeathomebutforgetto

chargeorhaveunusuallyhightravelneedsonoccasion.Customersprefer

FastCharginglocationsthatalsoprovideotheramenities.Duetothehigh

current,thisrequireselectricalserviceupgradesatmostlocations,and

wouldbethehighestcostperkWhtothecustomer.

Home Charging

Earlyscenariomodelingoftheroleofcharginginmeetingcurrenttraveldemand

showsthathomechargingmeets~71%ofcurrentVMTforaBatteryElectric

Vehiclewith80miles(129km)ofelectricdrivingrange(BEV80)annuallyfor

Californiadrivers.WhilethedetailsofVancouvertravelersmayalterthisfinding

somewhat,theratioofmilesprovidedbyhomechargingvs.publicvs.DCfast

chargingislikelytobesimilar.InVancouver,dailytraveldemandmaybelower,for

example,butavailabilityofhomechargingmayalsobelower.

Page 27: City of Vancouver EV Infrastructure Strategy Report · 2017-08-14 · Institute of Transportation Studies University of California, Davis 1605 Tilia Street Davis, California 95616

26

Figure10:Breakdownofmilesgainedversusfrequencyofpotentialchargingneed(Nicholasetal,DCFastChargingintheContextofBiggerBatteries,2013)

Inthisscenario,theassumptionisthateveryoneinthestateofCaliforniadrovea

BEV80foronedayandchargedateveryworkstopiftheyneededittocomplete

theirtravel,andincluded200QuickChargers(QC)distributedthroughout

California.Thisisapaidscenario.71%ofdrivingcouldbedonewithonlyhome

chargingassumingdriversarecomfortablewitharrivinghomewithatleast8km

left(changingthisto16kmreducesthe“home‐only”kilometrestolessthan71%).

Level1atworkenablesanadditional4.8%oftravelwhilefasterlevel2isneeded

foranadditional2.2%ofdriving.Forthosewhodidnotworkorneededadditional

chargingbeforeorafterworklevel2atstopslongerthan1.5hoursaddedan

additional4.2%ofkilometres.Fastcharging(orQuickCharging),whilelesslikelyto

beused,hasapotentialtoadd6%‐12%additionalkilometreswhenalllevel2has

beenexhausted.Although,thisgraphshowsthetechnicalpotentialofprovidingup

toanadditional29%ofkmforlowerrangeBEVs,thesechargingeventsonlyoccur

on5%oftoursperday.Atourisaroundtripfromhomebacktohome.This

Page 28: City of Vancouver EV Infrastructure Strategy Report · 2017-08-14 · Institute of Transportation Studies University of California, Davis 1605 Tilia Street Davis, California 95616

27

scenariogivesasenseoftherelativeroleeachtypeofchargingcanplayforaBEV,

however,adiscussionofeachcategoryisusefultogivefurthercontext.

Forhomechargingweseeatrendtowardslevel1eveninsomehomeswiththe

popularNissanLeafasshowninfigureA.

Figure11:AUCDavis2015Californiasurveyof~5000households

Thevehiclesareorderedbyelectricvehiclerange(lowtohighfromlefttoright)

andweseeageneraltrendforPHEVstohavelevel1athomeandBEVstohave

morelevel2athome.However,weseeasignificantnumberofpeoplemanaging

initiallywithonlylevel1andonlylaterswitchingtolevel2withotherhousehold

upgrades.Leasedvehiclesarealsomorelikelytoonlyhavelevel1athomeperhaps

signalinglesscommitmenttothetechnology

Workplace Charging

AdditionalresearchatUCDavis’Plug‐InHybrid&ElectricVehicleResearch

(PH&EV)Centerinvestigatedtheroleofchargingatworkplaces,andspecifically,the

impactofpayingforchargingatwork.BasedonasurveyofabouttwothousandCA

PEVusers,wefoundthatofcurrentPEVdriverswithworkplacecharging,78%

reportedthatworkplacechargingwasfreetouse.Therearebenefitsoffree

workplacechargingforboththeemployerandemployees.Fortheemployers,this

0%

20%

40%

60%

80%

100%

Home Charging Level 2015

Level 1 Level 2

Page 29: City of Vancouver EV Infrastructure Strategy Report · 2017-08-14 · Institute of Transportation Studies University of California, Davis 1605 Tilia Street Davis, California 95616

28

includessimplifiedEVSEinstallationandoperations/administrationcosts(no

serviceproviderneeded,sincenorevenueiscollected),avoidingtheimpressionof

pettinessinchargingforelectricityused,andanimproved“greenimage”forthe

company,(somethingthatprovidesatangiblebenefittoemployees).

Thebiggestdetrimentmaybethatitswitcheshomechargingtoworkplacecharging

forthosewhodon’tneedit,thereforenotincreasingelectricvehiclekilometres

traveled(eVKT)comparedtoapricedchargingscenario.Thiscanleadto

congestionatthechargers,andparticularlyforBEVdriverswhomayrelyonaccess

toworkplacecharging,asubsequentdecreaseindependability.ForallPEVdrivers,

thedemanddropsasthepriceforcharginggoesupfromfreetothesameashome

todoublethepriceofhomecharging.However,BEVdrivers,comparedtoPHEV

driversaremuchmorewillingtopaydoublethecostofhomechargingonan

infrequentbasis–inotherwords,theyarewillingtopayahighpricewhenthey

reallyneedtheelectricity.

Figure12:PotentialDemandforWorkplaceChargingbyVehicleTypewhenthecostisdoublethatofhomeelectricity(NicholasandTal,2013,ChargingforChargingatWork)

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

Toyota Plug‐In Prius Chevy Volt Nissan Leaf

Workplace Double Price As Home Electricity

more than 5 times a week

4‐5 times a week

2‐3 times a week

1 time or less a week

Never

Page 30: City of Vancouver EV Infrastructure Strategy Report · 2017-08-14 · Institute of Transportation Studies University of California, Davis 1605 Tilia Street Davis, California 95616

29

Amulti‐statesurveyconductedbyUCDresearchersattheendof2014ledtothe

conclusionsthat30%ofPEVdrivershavesomelevelofcongestionattheir

workplace,butthatpaidchargersare1.7timeslesslikelytoexperiencecongestion.

Oursurveyresultsshowedthatatleast53%ofpeoplewhodidnotneedworkplace

chargingchargedanywaywhentheyhadaccesstofree,uncongestedcharging

(Nicholas,SACOGSeminar2015).Thisledtotheconclusionthatmoderatefees

(slightlyhigherthanhomeelectricityprices,butlesspermilethanthecostof

gasoline)forworkplacechargingwillprovideaccesstochargersforthosewhoneed

it–eitherduetolongcommutesoralackofhomecharging–withminimal

congestioncausedbyunnecessaryuseoffreecharging.Figure13comparesthe

break‐evencostpermileofdifferentPHEVsandaNissanLeaf.

Figure13:Breakevencostofelectricityatvariousgasolineprices

Figure13showsthatworkplaceelectricitycanbenomoreexpensivethan$1.00

CAD/literor$0.25/kWhandshouldbeabovecurrenthomeelectricitypricesto

maximizetheuseofinfrastructure,withoutcausingunnecessarycongestionat

publiccharginglocations.

$0.00

$0.10

$0.20

$0.30

$0.40

$0.50

$0.60

$0.70

$0.70 $0.80 $0.90 $1.00 $1.10 $1.20 $1.30

Electricity Price in Dollars/kWh

Canadian Dollars/Liter of Gasoline

Break even Cost of Electricity at Various Gasoline Prices

Plug‐in Prius Ford C‐max Chevrolet Volt Leaf

Page 31: City of Vancouver EV Infrastructure Strategy Report · 2017-08-14 · Institute of Transportation Studies University of California, Davis 1605 Tilia Street Davis, California 95616

30

Basedonthissurvey,andtheassumptionthatachargercanchargetwovehiclesper

day,weestimatethatbetween8and12chargersareneededper100plug‐in

vehiclesintheworkplace.20Chargersshouldbesufficientifchargersserveless

thantwovehiclesperdayduetotimingandparkingcoordinationconstraints.With

freechargingthatnumberclimbsto40chargersassumingtwovehiclespercharger

eachday.25‐30chargersareneededper100pluginvehiclewithapriceequalto

home.ThisassumesamixofPHEVsandBEVs.Astherangeclimbsto200milesfor

aBEV,youwouldneed27iffree,16ifequaltohome,and2chargersifmorethan

homeelectricityprice.Inthiscaserangeisasubstituteforcharginginfrastructure.

Public Charging

Level2publicchargingmayprovideanaddedbenefittohelpbringcustomers,who

mayhavegonetoacompetitor,ortoincentivizecustomerstoshopforlongerin

ordertomaximizetheiruseofretailcharging,thoughinmanyretaillocationsthe

distancefromhomeisnotveryfar.Publicchargingfor30minuteswouldprovide

about4milesofrangeat3.3kWor8milesofrangeat6.6kW.PH&EVCenter

analysisofCalifornia’sDepartmentofTransportation(Caltrans)dataconcludesthat

publicchargingatretaillocationsiscomplementarytoworkplacecharging,andhas

anadditiveeffectintermsofelectrickilometresenabled,butdoesnotsubtractfrom

theneedforeitherhomeorworkcharging(researchinprogresspresentedby

MichaelNicholasatEVRoadmap8,July29‐30,2015).

Allpublicchargingisnotequalandneedcanbeestimatedbydistancefromhome

anddwelltimeasshowninFigure14andFigure15.

Page 32: City of Vancouver EV Infrastructure Strategy Report · 2017-08-14 · Institute of Transportation Studies University of California, Davis 1605 Tilia Street Davis, California 95616

31

Figure14:NeedforchargingforPHEV20s(20mior32kmofelectricdrivingrange)

Figure15:NeedforchargingforBEV80s(80milesof129kmrange)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Need by Activity Type For PHEV 20

PHEV 20 Does Not Need PHEV 20 Needs and Gets PHEV 20 Dwell Time Too Short

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Need by Activity Type For BEV 80

BEV80  Does Not Need BEV80 Needs and Gets BEV 80 Needs Too Far/Short Dwell

Page 33: City of Vancouver EV Infrastructure Strategy Report · 2017-08-14 · Institute of Transportation Studies University of California, Davis 1605 Tilia Street Davis, California 95616

32

Figure14showstheneedforPHEVchargingwherethedistanceismorethan16km

(10miles)fromhomeandthedwellorparkingtimeisenoughtoreturntheuser

homeonelectricityorthedwelltimeissufficienttogetatleast16kmofrange

additional.Manytripsdonotmeetthesecriteria.Allroundtripsinbluearetoo

shorttorequirecharging.Alltripsingreyarefarenoughaway,butdwelltimeistoo

short.Linkedtrips(aseriesoftripsthatlinkwithoutareturntohomebetween

them)willchangethisestimation,buttherelationshipsshouldberepresentative.

Forexample,sportingeventshavelongdistancestoreachthemandhavelongdwell

time.Thesearegoodplacesforchargers.

Thereareafewpotentialbusinessmodelsforoperatingpubliccharging.Parking

garagesownedbythecity/localgovernment,mayofferfreechargingwithpaid

parkingforPEVdriversasanincentivetoincreaseadoption.Insomecases,likethe

cityofSacramento,electricityisfree,andtheparkingspotisdiscountedforPEV

drivers.Inprivatelyownedparkinggaragesormulti‐tenantretaillocations,the

ownerpurchasestheEVSE,butoperationandbillingissubcontractedouttoa

networkoperator.Finally,insomecaseswithstandaloneretailers(oranchorstores

inmultitenantlocations),theretailersownthechargersandoffertheuseforfree,

someofferupto2hoursoffreeelectricity,afterwhichtheuserpaysasetrateper

hourorperkWh.Theoptionsforinfrastructureownersandoperatorsisdiscussed

furtherinthe“BasicModelsofInfrastructureOwnership”sectionbelow.

Fast Charging

DCfastchargingprovidesapproximately80%stateofcharge(SOC)toacurrent

electricvehicleinapproximately20minutes.Thismakesfastchargingbettersuited

toconnectingneighboringregionsbyprovidingchargingenrouteorateitherendof

alongerdrivingtour.Alessobvious,butequallyimportantfunctionoffastcharging

isactingasabackuptocongestedlevel1orlevel2chargers,andasacommunity

resourceforthosewithouthomeand/orworkcharging.Usingbothreal‐world

Page 34: City of Vancouver EV Infrastructure Strategy Report · 2017-08-14 · Institute of Transportation Studies University of California, Davis 1605 Tilia Street Davis, California 95616

33

traveldataandsurveyanswers,UCDavisresearchershaveinvestigatedtheroleof

DCfastchargingextensively.

AsshowninFigure10above,fastcharging(oneortwoeventsperday)canallowfor

approximately10%moremilestraveledonelectricityinthecaseofan80mile(129

km)rangeBEVundercurrentCaliforniausagepatterns.Thereasonwelookatthe

roleoffastchargingunderthisrestrictionisbasedonsurveyresponsesfrom

currentBEVdrivers.100%arewillingtofastchargeonceperdayonoccasional

longtours,thisdripsto49%whowouldbewillingtostoptwiceonanoccasional

longtour,andevenmoresignificantly,only12.5%ofcurrentPEVdriverswouldbe

willingtostopthreetimesinasingletour.AstherangeofBEVsincreaseswith

comingvehiclemodels,homeandworkplacechargingwillstillbethemost

significantsourceofelectricityforthevehicles,butfastchargingwillallowforthe

rarelongrangetourstobeaccomplishedusinganelectricvehicleandreducesthe

numberofmilesthatareseenasunlikelytobeservedorunservedforshorterrange

vehicleswithamoderatechargingnetwork(Nicholasetal2013,CAStatewide

Charging).

The Impact of Demand Charges on Fast Charging Costs

Utilitiesmustmeetthedemandforbothpower(kW)andenergy(kWh)ontheir

grid.Whiletypicalresidentialandcommercialloadsrampupanddownslowlyover

thecourseofaday,intermsoftheirpowerdemand,fastcharginginsertsasudden

briefspikeindemand.Tomanagehighpeakpowerdemand,utilitiesemploy

demandchargesthatarebasedonthepeakmonthlydemandthatacustomer

requires.WhiletheloadprofileofFastChargersisnotlikelytobeaproblemfor

utilitiesintermsofload,theyarestillsubjecttodemandcharges,andtheirload

factorislowerthantypicalcommercialusers.Thus,whiletheenergy(kWh)costs

maybeslightlylower,thefixedpowerdemandchargewouldbethesamewhetherit

isdividedoveronechargingeventpermonthor300chargingeventspermonth.

Page 35: City of Vancouver EV Infrastructure Strategy Report · 2017-08-14 · Institute of Transportation Studies University of California, Davis 1605 Tilia Street Davis, California 95616

34

TheElectricPowerResearchInstitute(EPRI)performedasimpleanalysisofthe

potentialelectricitycostpercharge,fora50kWchargerproviding20kWhper

charge,fromanexampleCAutilityusingtwosamplerates,oneofwhichincluded

demand‐basedcharges.Theirresultsshowedthatforwinterfastcharging,acostof

approximately$5perchargecouldbeachievedwith15‐25chargespermonthonan

energy‐onlyrate,butwouldrequire100‐150chargespermonthtoreachthesame

costduringthewinteronanelectricityratewithdemandcharges.Interestingly,on

anenergy‐onlyrateduringthesummer,evenwith300chargespermonth,the

expenseswouldstillnotdropto$5percharge.Onandenergy+demandrate,after

250chargespermonththecostswoulddropbelow$5permonth(EPRI,2014).

Thisanalysisdemonstratestheneedforadditionalcriticalthinkingonappropriate,

ortailoredelectricityratesfortheuniqueoperatingprofilesofFastChargers,which

canhelpleadtobotheconomicalcostsforconsumersandoperationsfortheowner

andutilities,especiallyearlyinthemarketwhenutilizationoffastchargersisstill

low.

The Business of Charging

Inthischapter,wewillpresentthevariousbusinessmodelsthathavebeen

successfullyandnot‐so‐successfullyimplementedinthenascentEVcharging

market,aswellaspotentialfutureopportunitiestobuildasuccessfulbusinesscase

aroundpubliccharging.Specifically,someearlyconcepts,suchasvideooraudio

advertisingattheEVSEmaynolongerbeviable,sincethesmartphonehasbecome

ubiquitousanddivertstheattentionofdriverswhiletheywaitfortheirvehicleto

charge.However,thereareotherpotentialrevenuesaroundthedatagatheredfrom

thedevices,andimprovedgridintegrationtoprovidesomedemand‐sideload

management,whichstillneedtobeexplored.Finally,wepresenttheworkplace

Page 36: City of Vancouver EV Infrastructure Strategy Report · 2017-08-14 · Institute of Transportation Studies University of California, Davis 1605 Tilia Street Davis, California 95616

35

charginginvestmentmodel,whichisimplementedasacomponentofacomplete

humanresourcesbenefitspackagetoretainandrecruitemployees.

Infrastructure Operation Business Models

WediscussbrieflythreeEVSEoperatingmodels:EVSEnetworkoperators,EVSE

infrastructureowner&operator,andfinancialleaseconstruction.

EVSENetworkOperatorsincludingcurrentcompaniesChargePoint,Semaconnect,

andLibertyPlugins,generaterevenuebysellinghardware(inthecaseof

ChargePoint),aswellasthroughnetworkfeespaidbysitehoststomanagethe

billingandaccesstotheEVSE.Inthiscase,thehostpaysfortheelectricityuse,and

thenetworkoperatormanagesbillingofcustomers–the“back‐end”oftheEVSE

networksystem.Fornetworkoperators,thehostdecidesonthepricingterms,and

canhavefree,time‐limitedfree,orfee‐basedelectricity.Networkoperatorsmaybe

interestedinexpandingtheirnetworksinordertohavethemostcomprehensive

chargingcoveragetooffertheircustomers.Thisoffersthemacompetitive

advantageoverotherEVSEnetworkproviders,whichcanhelpthemrecruitnew

customers.Theyexpandtheirnetworksinoneoftwoways,andearnrevenuebased

onhostsitespayingthemtomanagetheaccessandbillingofcustomers.

Inthefirstcase,thenetworkcanpaysitestoplacetheircharger.Thisapproachmay

beusedwhenexternal(governmental)fundingisavailabletoinstallEVSEs,orfor

sitesthatmaybeseenas“critical”sitesforcustomersatisfaction.

Inthesecondcase,theEVSEhostpurchasestheEVSEandthenpaysthenetwork

operatoreitherasetmonthlyfeeorapercentageofrevenuegeneratedbyuseof

theircharger.

ChargePointnetworkoperatesexclusivelytheirownchargerswhichtheysellto

hostlocations.ChargePointmaybecontractedformaintenanceofthechargers,but

isnotresponsibleforkeepingthemoperationaloncetheyhavebeensold.In

Page 37: City of Vancouver EV Infrastructure Strategy Report · 2017-08-14 · Institute of Transportation Studies University of California, Davis 1605 Tilia Street Davis, California 95616

36

contrasttoChargePoint,LibertyPlugInscanoperatethecustomer

billing/networkingformanydifferentEVSEmanufacturers.

Infrastructureowner/operatorcompanies(EVGo,CarChargingGroup(formerly

BlinknetworkownedbyEcotality),andTesla):Underthismodel,acompany

suppliesandownstheinfrastructureandtheback‐endnetworkingandbilling

capabilities,anddeterminesthefeesforuse.Thismodelhasbeencomparedtothat

ofmobiletelecommunicationscompanies,whichinvestininfrastructureandthen

chargeclientsfortheuseofthatinfrastructureviatheirmobiledevices.Obviously,

thesuccessofthetelecommunicationsindustrydoesnotimplythatthesamemodel

cansuccessfullybeusedforelectricvehiclecharginginfrastructure.Companies

adoptingthismodelinitsmostgeneralformtypicallyhaverelativelylargecapital

expenses,andfixedcostsdominatevariablecosts,andthusreturnoninvestment

(ROI)isstronglydependentonhigheruserthroughput(i.e.infrastructure

utilization).Theprimarysourceofincomeisthemonthlysubscriptionfeesthat

userspaytotheinfrastructurecompany,regardlessofwhethertheyuseelectricity

inagivenmonth.Theinfrastructurecompanythenchargesareducedratefor

chargingformonthlysubscriberscomparedtothegeneralpublic,oralltheir

chargingmaybeincludedinthe“premiumtiers”ofmembership.

InthecaseofTesla,theyrequestbidsfromprospectivehostlocationsina

competitiveprocess.Thehostsitethenhasthebenefitofthechargerattheirplace

ofbusinessatacosttheydeemacceptable,sinceTesladoesnotchargethe

customersforuseoftheelectricity.Inthiscase,thecostofinstallationand

operationwouldbepartofthecompetitivebidthatahostproposes.Thismay

includethehostsiteprovidingan“install‐ready”location,premierparkinglocation,

orfreeelectricity.

Inthefinancialleaseconstructionbusinessmodel(usedbyBlink),organizations

simplyenteraleaseagreementwithasupplierbywhichthechargingequipmentis

installedintheorganization’sfacilitiesandused(saybyemployeesorcustomers)

forafee(typicallymonthlyorannual).Thiswasnotapopularoptionforhostsites

Page 38: City of Vancouver EV Infrastructure Strategy Report · 2017-08-14 · Institute of Transportation Studies University of California, Davis 1605 Tilia Street Davis, California 95616

37

duetothetermsbeingoffered,whichincludedthehostsitepreparingthesitefor

installation,payingfortheelectricity,andrentingtheuseofthechargeronanon‐

goingbasis.Thismayhavebeeneconomicallyfeasiblewithlargegovernment

supportforinstallinginfrastructure,butisunlikelytobeaviablebusinessplanin

thelongterm.

WhileLangezaalandBouman(2011)projecttheemergenceofcorporate

investmentoncharginginfrastructurebyofferingaccesstosuchinfrastructurefora

monthlyfee,similartothecaseofmobiletelecommunication,wedonotseethis

beingthecase,particularlyintheearlystageofEVmarketdevelopment.Forone,

celltowersandchargingstationsdifferintheuserthroughputtheycan

accommodate.EVSEoffer“physical”accesstooneuseratatime,whilecelltowers

offer“airwave”accesstomultipleuserssimultaneously.Whileonecelltoweris

sufficienttoprovideconnectivityforitsareaofcoverageintothebroadernetwork,

onesinglechargingstationcannotguaranteecoveragetoallprospectiveusersina

givenarea.Corporationspursuingamonthly‐feemodelwouldneedtoplanon

significantinvestmentstoensureadequateservicetoendusers,andacompetitive

scenarioinvolvingmultiplecorporationswillleadtooverlappinginvestments.

Subscription‐basedmodelsareattractiveforearlystagemarketsbecausetheyhelp

withrevenuebenchmarking,thoughforthisparticularmarketenduserswould

needtosubscribetomultiplesuppliersinordertoensureaccesstocharging

services.EVGohastriedthesubscriptionmodelwithvaryinglevelsofsuccess.

Revenue flows vs. value proposition

AstudypreparedfortheStateofWashingtonsaysthat“Ataminimum,apromising

EVchargingprojectmustshowthatthechargingstationowner‐operatorwill

receivedirectandindirectrevenuesthataresufficientlygreaterthanthetotal

projectcosttogenerateprofit”(C2ES,2015,p.36).Wewanttoexpandbeyondthis

argumentandofferthreebroadconsiderations:

Page 39: City of Vancouver EV Infrastructure Strategy Report · 2017-08-14 · Institute of Transportation Studies University of California, Davis 1605 Tilia Street Davis, California 95616

38

a‐ Webelievethatastand‐aloneEVSEprojectwillnotbeabletopassthis

financialtestearlyinthePEVmarketdevelopment,furtherdevelopmentof

themarketwilleventuallyleadtoahighenoughnumberofpaying

customers.

b‐ Webelievethatdirect(netpresentvalue)revenuescannotoffsetthe(net

presentvalueofthe)projectcost,particularlywhenthefinancialprojections

accountforuncertaintyindemand;

c‐ WebelievethatwhentheEVSEindustrywillpassthistestnopublic

interventionwillbeneededsimilartothegasstationindustrytoday.

Forexample,ona$5,000installation,paidbackover10years,abusinesswould

needtorecover$1.37perday.Asaconsequence,weproposethatEVSEinvestments

oughtnottobeassessedonthebasisofconventionalrevenuesflows,butratheron

thebasisofvalueproposition.

Wedefinethechargingstationasthecombinationofthechargingequipment,

embedded/relatedinformationtechnology(asapplicable),andthespaceassigned

forthevehiclewhilecharging.Weconsiderdirectrevenuesastherevenuesarising

fromthedurationoftheuseofthechargingstation.Differentfromtheseareindirect

revenues,whichweheredefineasthoserevenuesarisingfromtheavailabilityofthe

station.

Chargingservicesasastand‐alonebusinesswillbeeconomicallychallenging.Like

liquidfuelsales,electricityfuelsaleswilllikelyhaveasmallprofitmargin,and

requirehighutilizationoftheinvestment.Unlikeliquidfuels,manyPEVdrivers,

especiallyintheearlymarket,willhaveahomerefuelingoption(Axsenand

Goldberg,2016)thatlargelysatisfiestheirdailydrivingneeds.Inamulti‐statestudy

ofcurrentPEVownersconductedinlate2014,57%ofrespondentsreportedonly

pluggingintheircarathomewithinthelast30dayspriortocompletingthestudy,

leavinglessthanhalfofthePEVbuyingpopulationthateitheroccasionallyusesor

reliesuponawayfromhomechargingtomeettheirtravelneeds(EPRI,2016).This

isaverydifferentutilizationratethanourcurrentliquidfuelingsystem.

Page 40: City of Vancouver EV Infrastructure Strategy Report · 2017-08-14 · Institute of Transportation Studies University of California, Davis 1605 Tilia Street Davis, California 95616

39

Thecapitalandoperatingcostsoftheequipmentandinstallationexceedthe

possiblediscountedrevenuesfromtheuseoftheequipmentprojectedoverits

lifetime,evenatmaximumeconomicutilizationrate.Wedefineeconomicutilization

rateastheratiobetweentheactualutilizationoftheequipmenttothe(realistic)

revenue‐maximizingutilization.Thelatterisgenerallyrenderedwhenthe

equipmentiscontinuouslyused,althoughthemaximumfeasiblerealisticrevenue

underacontinuous‐operationscenariowilldependonthebillingsystem(e.g.it

wouldbedifferentforasystemthatchargesperkilowatt‐hourcomparedtoonethat

chargesfortheaccesstotheequipment).Asimplefinancialanalysisconfirmingthis

conclusionwasincludedin(C2ES,2015).

Ifthepriceofelectricityis,forexample,$0.15perkWh,thentheelectricitycostof

toppinganonboardbatterycouldwellbeintheorderof$1.5.Letusfirstrecognize

thatconsumersunderstandpricesdifferentlydependingonthecontext.For

example,consumersmayassessthe“goodness”ofa$1.5dealbycomparingtowhat

theywouldpaychargingathome,ortheycouldassessitcomparedtowhatthey

wouldhavespentonacomparableamountofliquidfuel.Theformerismorelikely

thecaseamongPEVusers,whilethelattermaybemorelikelyamongprospective

PEVowners.

Thedistinctionisimportantforbusinessandpolicydecisions.Iftheresidential

electricityrateisthementalreferenceforprospectiveusersofpublic‐access

charginginfrastructure,thenprogramsorpoliciesthataffectthedifferencebetween

ratesforpublicandresidentialchargingcanleaduserstowardoneofthe

alternatives.Forexample,apreferredelectricityrateforPEVresidentialcharging

woulddiminishthebusinesscaseforpublic‐accessinfrastructure.Similarly,policies

tosupportthewidespreaddeploymentofsolargenerationcapacitywilltendto

deflatepricesduringdaylighthoursthus,potentially,placepublicchargingratesata

competitiveadvantagevis‐à‐visresidentialcharging.WhileweexpectPEVowners

tobebettereducatedonelectricityratesandpricing,therecentEPRI‐UCDavis

multi‐statesurveyofPEVdriversshowedthattherewerestill16%ofrespondents

Page 41: City of Vancouver EV Infrastructure Strategy Report · 2017-08-14 · Institute of Transportation Studies University of California, Davis 1605 Tilia Street Davis, California 95616

40

whodidnotknowwhatelectricalratestructuretheyhadfortheirhome.Onthe

otherhand,21%hadmovedtoaTime‐ofuseorspecificEVratefortheirvehicleor

vehicleandhomeelectricityuse,and8.1%ofrespondentshadchangedtheirratein

somewayafterpurchasingtheirPEV,indicatingthatsomeeducationandawareness

ofrateshadoccurred(EPRI,2016).

ConsideringtheframeofreferenceofprospectivePEVownersisalsoimportantto

understandbusinessmodelsforcharginginfrastructure.Totheextentthataccessto

charginginfrastructureatadvantageousrates(comparedtogasoline)helpswith

PEVmarketuptake,itmakesbusinessandpolicysensetothinkaboutthevalueof

infrastructureinconjunctionwiththevalueofnewplug‐invehiclesales.This,of

course,istheperspectivethatgovernmentshavetakenoverthelastfewyears—

financinginfrastructureasaninvestmenttoincentmarketadoptionofplug‐in

vehicles.Itisalsothestrategythatgovernmentsaretryingtotransitionfrom,into

modelsthatarenotdependentongovernmentsubsidies.Forcorporateentitieswith

avestedinterestinthemarketdevelopmentforplug‐invehicles,ontheotherhand,

investmentsininfrastructureareanaturalcomponentoftheirstrategy.This,it

shouldbehighlighted,ismorethecaseforcompaniescommittedtosellingbattery

electricvehicles.NissanandTeslahavedemonstratedthiswithinvestmentsin

chargingequipment,particularlyhigh‐powerequipment(50kWandhigher),to

supportlonger‐distancetravel.InthecaseofNissan,theyhaveinstalledDCcharging

atmanyoftheirNissandealershipsinareaswithsignificantLeafsales.Teslahas

installed602SuperchargerstationsthroughouttheUS,CanadaandEurope,

operating3,519Superchargers(www.teslamotors.com/superchargerFeb.2016).

Corporationswithastrongerfocusonplug‐inhybridelectricvehicleofferingswill

notfaceastrongincentivetoinvestininfrastructurebecausetheircustomersvalue,

butdonotactuallydependon,accesstocharging.

Fromapublic‐privatepartnershipperspective,understandingcorporate

motivationsisimportant.Governmentsinterestedinthedevelopmentofcharging

networksand/orcorridorswilltypicallyfindwillingpartnersinPEV‐oriented

Page 42: City of Vancouver EV Infrastructure Strategy Report · 2017-08-14 · Institute of Transportation Studies University of California, Davis 1605 Tilia Street Davis, California 95616

41

companies.TheycouldalsothinkaboutcreativewaystoinvitePHEV‐oriented

companiestojoinsuchpartnerships.Forexample,stateandmunicipalincentives

forPEVs(e.g.salestaxexemptions)couldbetiedinsomeformtothelevelof

engagementbythecarcompaniesintheprocessofplanninganddeploymentof

charginginfrastructure.

IntheearlydaysofPEVmarketdeployment(2009‐2012),itwascommonlythought

thatbusinesseswouldbeinterestedinleveragingcharginginfrastructuretoa)

attractcustomersandb)marketthemselvesasgreenandinnovative.Afteran

investmentofafewthousanddollarstoinstalltheequipment,businesseswouldbe

inapositiontoofferfreecharging(possiblyalongwithparkingvalidation),

absorbingthesmalloperationscostsandpackagingthemas“complimentary”,on

hopesthatuserswouldspendmoretimeandmoneywiththem.Theneedtowaitfor

thebatterytorechargecouldactasanincentiveforcustomerstostayatthestore

longerthantheyotherwisewould.

Inthisearlymarkethowever,therewereafewhurdlesforhostbusinessesto

overcome.Thelargesthurdleisthatthehostsareunfamiliarwiththecosts,risks

andbenefitsofinstallingandoperatingachargingstationtheseinclude:

LiabilityassociatedwithEVSEoperation,

ReliabilityoftheEVSE,includingthepotentialforupsetcustomers

Maintenancecosts,partsandlaborforhardwarefailures,andongoing

networkfees

Electricitycosts,specificallythepotentialfortriggeringsteepdemand

charges,

Potential“imageboost”tothehostcompany

Additionalcustomerexpenditureswhilecharging,(ie.Increaseinaverage

transactionamountforcustomerswhochargewhiletheyshop)customers

maymakeadditionalunplannedvisitstoastore,spendadditionaltimeata

store,orchooseonestoreoveracompetitorwhodoesn’toffercharging)

Page 43: City of Vancouver EV Infrastructure Strategy Report · 2017-08-14 · Institute of Transportation Studies University of California, Davis 1605 Tilia Street Davis, California 95616

42

Legalrequirementsgoverningdisabledpersons’accesstochargingin

parkingspots

Technologyturnover,ie.whethertheEVSEscurrentlyavailablewillmeetthe

needsofPEVsproducedin5‐10years

Forworkplacecharging,thebenefit,orperceivedvalueforemployeesof

havingworkplacechargingavailable.

Averagepaybacktimeforinvestmentcosts

Thislackofresourcesandexperienceisenoughtoscareoffmanybusinessowners.

ThesecondreasonisthattherearerelativelyfewPEVowners,toattractinthese

earlyyears.Onestrategythatcitiesorregionscouldemployintryingtoencourage

companiestoinstallandhostEVSEswouldbetocreateaninformationalresourcethat

addressestheseunknownsbasedonthepastfiveyearsofexperience.Thisresource

couldincludespecificlocalutilityinformation,localexperiencedelectricians,

informationonthelocalrequirementsforinstallationandinspection,andmore

generalinformationoncosts,reliabilityandnon‐financialbenefits.Specifically,

additionalresearchevaluatingthepotentialincreaseinrevenuesforstoresor

shoppingcentersbycustomerswhochargewhiletheyshop,andperceivedvalueof

workplacechargingasanemployeebenefit,couldbeinstrumentalinencouraging

retailandworkplacelocationstoinstallEVSEs.

IT and Data: An important part of the value underlying EV charging infrastructure.

InformationTechnology(IT)definestheintelligenceofthecharginginfrastructure

andhowitintegratesintoanetworkandintoabroadersystemofelectricitysupply

anddemand.ThelatentvalueofITinthecreationoffuturesuccessfulbusiness

modelsforinfrastructurecannotbeoveremphasized.Indeed,thehardwareinvolved

inprovidingchargingservicesis“offtheshelf”technologyandabusinessthatwas

predominantlybuiltaroundtheequipmentwouldhaveessentiallynobarriersto

entry.Unfortunately,whiletheEVSEtechnologyisavailable,thedemandfor

chargingisstilllimited.Consumersarealsounwillingtopayveryhighpricesfor

Page 44: City of Vancouver EV Infrastructure Strategy Report · 2017-08-14 · Institute of Transportation Studies University of California, Davis 1605 Tilia Street Davis, California 95616

43

electricity,especiallycomparedtoeithergasolineorhomeelectricity,asdiscussed

previously.Inregionswithhighgasolinepricesandlowelectricityprices,like

Vancouver,chargeraccesscanbepricedtoallowforasmallnetrevenue.Inplaces

withlowgasprices,chargingcannotbepricedhighenoughtoallowforanear‐term

revenuestream,withoutturningawaycustomers.

↑ ↓

↓ ↑

Thepotentialbusinesscase,andcompetitivefrontier,likelyliesonthedevelopment

oftechnologiesthatgoverntheoperationoftheinfrastructureandtheprocessingof

massiveamountofreal‐timedata.However,chargingoperationsanddata

processingcanbedoneeitherattheequipmentoratthevehicle.Infact,because

chargingcontrolis(orcanbe)ultimatelyundertheonboardcharger,anIT‐based

businesscaseforcharginginfrastructuremaybeunderminediftheautomakers

choosetoactonthis.

Controlofchargingoperationsisacomplexundertakingandcouldbedesignedand

implementedwithmultipleendgoals.Upstreamstakeholders,predominantly

electricutilities,willbeinterestedinchargingcontrolalgorithmsthatcontributeto

thevaluechainofthedeliveryofelectricity,deliveryofgridstabilityandhigher

margins.Astemptingasthisroutecanbe,itiscriticaltokeeptheenduseratthe

forefrontbecausethesocialgoalisultimatelytosupportPEVmarketuptakeand

utilization(i.e.electrickilometrestraveled).PEVuserswillwanttoknowthattheir

chargingandmobilityneedswillbemet.Onthedownstreamside,controlof

chargingoperationscanbeimplementedtomaximizemarginsonthecharging

serviceand/ortomaximizeendusersatisfaction(e.g.bycoordinatingcharging

throughputwithinstantaneouselectricityratesorbyintegratingelectricityfrom

cleangenerationsources).Fordownstreamcontrol,thefrontendoftheITsolution

Page 45: City of Vancouver EV Infrastructure Strategy Report · 2017-08-14 · Institute of Transportation Studies University of California, Davis 1605 Tilia Street Davis, California 95616

44

takescenterstage,astheuserisprovidedwithinformation,interactivityand

controloptions.

Intheearlystageoftheindustry,ITapplicationsrelatedtocharginginfrastructure

werecenteredonbasicelementssuchasbilling,mapping,andnavigation.

ApplicationstoinformEVusersaboutthelocationofchargingpointsemerged

quicklyastheimmediateideacontributingtothevaluechain.Companiesadded

valuebyprovidinginformationabout,orbasedon,thelocationofchargingpoints

(e.g.PlugShare).Thereisapossibleinversevalueadded:Thechargingpoint

generatingrevenuefrommakinginformationavailabletotheITcompany.Tothe

extentofourknowledge,thisreversevaluedirectionhasnotbeentested.Oneform

thatthiscouldtakeischargingstationownerscouldcapitalizeondatageneratedby

equipmentattheirlocation.Salesofuserdwell‐timedatatocarmanufacturers,

businesses,oradvertiserscouldleadtoadditionalrevenuefortheEVSEowneror

operator.Sampletravel(origin‐destination)datahasbeenusedtomodelpotential

demandforchargingandassistwithchargestationplanninginresearch

applications,withexplicitpermissionfromparticipants.Theautomakersmayhave

moretraveldataavailable,thoughthisdataisheavilyguardedforprivacyreasons

withineachautomakerandisunlikelytobeshared.EVSEcompanieswouldhave

datafromeachlocationintheirnetwork,butnotthecompletepictureofusertravel

aroundchargingevents,thougheventheirlimitedinformationcouldprovide

valuableinsightstohostlocationsandresearchers.

Oneadditionalpotentialsourceofrevenue,thattoourknowledgehasnotyetbeen

implemented,ischarginganadditionalfeeforuserstowanttoreserveacharging

stationtobeavailableataspecifictimeandforasetchargingduration.A

“reservation”feewouldoffsetthecostofimplementingareservationsystemand

anypotentiallostrevenueforaspontaneouschargingevent,butareservation

wouldlikelybearelativelylow‐costsystemtoimplement.

Page 46: City of Vancouver EV Infrastructure Strategy Report · 2017-08-14 · Institute of Transportation Studies University of California, Davis 1605 Tilia Street Davis, California 95616

45

Grid Integration

Inthecurrentstageofmarketdevelopment,theITfocushasexpandedonto

applicationsforgridintegration.Theapplicationstoryline,inthiscase,isaboutthe

valueofchargecontrolormodulationtoa)mitigateloadpeakingfromsimultaneous

chargingofplug‐invehiclesinlargenumberswithinagivendistributionlineor

morebroadlywithintheinterconnection,andb)absorbgenerationpeaks,suchas

thoseresultingfromlargescalenon‐dispatchablecapacity(e.g.windandsolar).

Weemphasizeagainthatitisnotclearthateconomicplayersupstreamfromthe

chargingconnectorcanassertjurisdictionoverthecontrolofcharging.Thisisa

spacethatcanbeclaimedbytheautomanufacturersandthird‐partySoftwareasa

Service(SaaScompanies).Chargecontrolfromsmartchargingequipmentcantake

theformoftellingtheonboardchargerhowmuchpowerisavailabletotakeata

givenmoment.Ontheotherhand,theonboardchargerultimatelydecideshow

muchofthatavailablepoweritwilltakeatanygiventime.Thus,smartcharging

equipmentcancontrolmaximumpowerdrawbutcannotcontrolactualpower

draw.Conversely,theonboardchargecancontrolactualpowerdrawuptothe

maximumspecifiedbythechargingstation.Fromavalueperspective,charging

equipmentoperatorscanhelpmitigateEVloadpeaking,whileonboardcharger

controller(third‐partyorautomaker)canhelpabsorbpowergenerationpeaks

throughchargingcontrolandschedulingwhichcanthenleadtolowerinstallation

orpanelupgradingcosts.

Table4:TableofGridSystemManagementTechniquesandpotentialbenefits.

SystemManagement

Technique

Function Benefits

LoadManagementor

Demand‐Side

Management(DSM)

Theprocessofcontrollingthedemandforpowerratherthantheproductionofelectricity.Canbeimplementedaspre‐scheduledorinterruptedchargingforPEVs.

Allowsforgridtomeetreduceddemandratherthanrequiringadditionalproductiontobebroughtonline.

Page 47: City of Vancouver EV Infrastructure Strategy Report · 2017-08-14 · Institute of Transportation Studies University of California, Davis 1605 Tilia Street Davis, California 95616

46

LoadSharing Distributingpoweracrossmorethanonevehiclesimultaneouslythroughamicroprocessor‐controlledEVSE.CanbedistributedbasedonvehicleSOC,orderofconnectingtothegrid,andsystemcapacity.

Allowsformultiplevehiclestobepluggedinandchargedinparallelorseries.Usefulforapplicationswherevehicleswillbepluggedinforlongerperiodsoftime,suchasworkplacesorairports.

LoadShedding ThesystematicreductionofsystemDemandbytemporarilydecreasingtheSupplyofEnergytoLoadsinresponsetotransmissionsystemorareacapacityshortages,systeminstability,orvoltagecontrolconsiderations.(CalISO)

Real‐timesignalstocutloadcanresultinamorestablegrid,withtemporaryreductionsindemandwhennecessary.

SmartCharging Vehiclechargingcanbestartedandstoppedbasedontimeofuse,real‐timedemandandbatterystateofchargethroughanintelligentcontrolstrategyorwirelesssignals.

Smartchargingcanintegrateallorsomeoftheabovesystemmanagementtechniques,aswellasvehicleinput,andallowforeasierintegrationofvehiclesandrenewablestotheelectricitygrid.

Beyondthecurrentstageofthemarket,weexpectinnovativeITapplicationsto

enterthevaluechain.Thesecouldbegearedtowardenhancingtheoverall

economicsofEVownershiporintegratingtheindividualvehicleintonetworksof

transactiveenergy.Wewillnotspeculatehereaboutthefuture,butweventureto

saythatthepathwayofITapplicationswillinvolvesomeformofaggregation,or

integrationofthechargingpointsintoorganicnetworks.Thisisconsistentwithour

earlierassertionthatbusinessmodelsaroundastand‐alonecharginglocationare

notcompetitiveinthelongrun.

EarlyEVSEsuppliersconsideredprovidingvideo,audioandstaticadvertisingonthe

EVSEsthatuserswouldviewwhilecharging.Whiletherapidadoptionof

smartphoneshaslargelyeliminatedthe“captiveaudience”thatEVSEsmayhave

Page 48: City of Vancouver EV Infrastructure Strategy Report · 2017-08-14 · Institute of Transportation Studies University of California, Davis 1605 Tilia Street Davis, California 95616

47

beenabletocapitalizeon,staticadvertisingor“EVSEsponsorship”maystillplaya

roleinfundingchargers.

Workplace Charging Investment Models

Theparticipationofemployersinthesupplyofcharginginfrastructuremayhave

significantimplicationsforthemarketuptakeofplug‐invehicles.Employersmaybe

motivatedtoinvestinchargingequipmentattheworkplaceforavarietyofreasons,

mostimportantlyemployeesatisfactionandretention.Inthisinstance,thebusiness

caseislinkedtotheoverallhumanresourcesstrategyofthehostorganization.The

decisiontoinstallchargingequipmentmaydependonavarietyoffactors,including

costofequipment,costofinstallation,sizeoftheorganization,financialsofthe

organization,characteristicsoftheemployeepool,supportfromcompany

leadership,etc.

Employersmayadoptdifferentmodelsfortheuseofchargingequipment,which

wouldbroadlyfallintotwocategories:freeofchargeorchargeforafee.Thepros

andconsofeachmodelwerediscussedbyNicholasandTal(2013),andmore

succinctlyinavideoat

http://zeroemissionmap.ucdavis.edu/category/multimedia/.Freechargingatwork

leadstomoreworkplacecharging,butnotnecessarilymoreelectricmilestraveled,

andrequiresfourtimesasmanychargerstobeinstalled.However,availabilityof

workplacechargingmayhelptogrowthePEVmarketbyprovidedthatasan

additionalperktopotentialPEVbuyersorallowingcustomerswithouteasyorlow‐

costaccesstohomechargingtohaveareliabledailycharginglocation.

ProgramsliketheoneinstitutedbytheStateofMassachusettscouldbeevenmore

effectiveinspurringPEVadoptioniftheexistenceoftheprogramwas

communicatedtoprospectivevehiclebuyersbeforetheymaketheirchoiceof

vehicle.Newvehicledealerscouldplayanimportantroleinsuchcommunication.

However,themarginalvalueofadvertisingtheprogramatthedealershipmaybe

smallbecause,asrecentresearchsuggests,mostPEVbuyersmaywalkinthe

Page 49: City of Vancouver EV Infrastructure Strategy Report · 2017-08-14 · Institute of Transportation Studies University of California, Davis 1605 Tilia Street Davis, California 95616

48

dealershipalreadystronglyinclinedtobuyaPEV(Cahill,webinarJune4,2015)

(http://zeroemissionmap.ucdavis.edu/wp‐content/uploads/2015/06/EC‐

slides.pdf)Abetterstrategywouldbetoworkdirectlywithemployerswhomaybe

inclinedtoinvestincharginginfrastructure,andletthemadvertisetheprogram

amongemployees.

Oneexampleofaprogramencouraginginstallationofworkplacechargingisthe

MassachusettsElectricVehicleIncentiveProgram(MassEVIP),whichisanopen

grantprogramadministeredbytheMassachusettsDepartmentofEnvironmental

Protection,whichprovidesincentivestoemployersfortheacquisitionofLevel1

andLevel2electricvehiclechargingstations,andlaunchedinApril,2013(Mass

EVIPdocuments).Thisprogramwillprovideemployerswith15ormoreemployees

50%ofthefunding(upto$25,000)forhardwarecostsforemployersinstalling

Level1and2charging,andisofferedonafirst‐come,first‐servedbasis.

(http://www.mass.gov/eea/agencies/massdep/air/grants/workplace‐

charging.html)

Dependingonthemodelthattheemployeradoptsfortheuseofthecharging

stations,theeconomicbenefitstoend‐useremployeescanbesignificant.Areport

onworkplaceswithchargingpublishedbytheCaliforniaPlug‐inElectricVehicle

Collaborative(PEVC,2013)foundthatemployersthathaveinstalledcharging

stationstoserveemployeeshaveseenincreasednumbersofemployeeswithplug‐in

vehicles.ThestateofCaliforniahasadoptedanumberofprogramstoencourage

infrastructuredeploymentbybusinesses.Ontheeasierendofthescalethereisthe

CoolCaliforniaClimateLeaderandSmallBusinessAwardsprogram,whichgives

awardsto15businesseseveryyearinrecognitionfortheirinitiativestocutenergy

consumptionanddemonstratemeasurablegreenhousegasemissionsreductions,

EVchargingstationscounttowardtheseinitiatives.Theseawardwinnersdocument

theircostsavings,returnoninvestments,andotherbenefitsreceivedfromtaking

specificactions.Thisawardprovidesprestigeandvisibilityforsmallbusinesses,and

Page 50: City of Vancouver EV Infrastructure Strategy Report · 2017-08-14 · Institute of Transportation Studies University of California, Davis 1605 Tilia Street Davis, California 95616

49

canbeagoodpromotionaltoolforthem(CoolCalifornia).Asimilarprogramof

recognizingforward‐thinkingcompaniescouldbeimplementedatlowcostand

couldleadtoalocalbusinesscultureofenergyconscientiouscompanies.

IncorporatingEVchargingintheevaluationcriteriacansimultaneouslyhelpbuilda

localchargingnetwork.

AmoreelaborateprogramistheElectricVehicleChargingStationFinancing

Program,institutedbytheCaliforniaPollutionControlFinancingAuthority(CPCFA).

Thisprogramisfundedbythestate,butinsteadofgivingfundingdirectlyto

businessowners,thefundingisusedtoreducetheburdenandriskofbusinessloans

forallcostsincludedintheinstallationofcharginginfrastructureattheworkplace.

Thestatepays20%(30%formulti‐unitdwellingsordisadvantagedcommunities)

oftheprincipalbalanceintoalossreserveaccountatthetimeofloanapproval.

Aftertheborrowerpaysbacktheloan(or48months,whicheveroccursfirst),they

areeligibleforarebateequaltohalfthedeposittothelossreserveaccount.This

programmitigatestherisktolendersandalsomitigatesthefinancialburdenon

non‐defaultingborrowers.TheEVCSFinancingProgramisapilotprojectwithinitial

fundingof$2,000,000,fromtheCaliforniaEnergyCommission,whichlaunchedin

mid‐2015,andisadministeredbytheCaliforniaPollutionControlFinancing

Authority(CPCFA).ItwillbeevaluatedbytheCaliforniaEnergyCommissionand

theCaliforniaPollutionControlFinancingAuthorityaftertheinitialfundingis

exhausted.AprogrambrochureisincludedinAppendix1.

ThevalueofworkplacechargingtosupportEVmarketsneedstobebetterstudied,

butthereismountinganecdotalevidencethatthisvaluemaybesignificant.Thereis

alsoatheoreticalrationalethatlendscredibilitytothisevidence,whichwediscuss

later.However,workplaceprogramsarenotalwayseasytoimplement.Employers

facechallenges,twoofwhichwehighlighthere:employeereticencetouseplug‐in

vehiclesinthefleet,andtheunknownsrelatedtoinstallingcharginginfrastructure.

TheStateofWashingtonhasdevelopedaguidancedocumentthatanswers

questionsfacingemployersandemployeesinregardtoplug‐invehiclesand

Page 51: City of Vancouver EV Infrastructure Strategy Report · 2017-08-14 · Institute of Transportation Studies University of California, Davis 1605 Tilia Street Davis, California 95616

50

charginginfrastructure(Miller‐Crowley,MoultonandJensen,2014).Thedocument

isclearlywrittenandorganized,andbeginswithafocusonthekeydeterminantfor

fleetoperators,thetotalcostofownership:“Thebottomline,baseduponthetotal

costofownership,ispublicfleetmanagersshouldthinkofbatteryelectricvehicles

astheirdefaultchoiceforsedanreplacement,onlymovingontoplug‐inhybridor

hybridvehiclesafterthey’vedeterminedthatabatteryelectricvehicleisnot

practicalfortheirtypicaldailyuse”.Itprovidesinformation,guidelines,and

additionalresourcestodecisionmakersorganizedaroundtovehicle,charging

equipment,andoperationsoptions.

Public Private Partnerships

Thepotentialofpublic‐privatepartnership(PPP)approachestohelpthegrowthof

infrastructurethatsupportsnewtechnologieshasbeendemonstrated.TheStateof

Washington,havingawell‐establishedPPPofficeinthestateDepartmentof

Transportation,iswellpositionedtoexploretheseapproaches.Corporate‐

sponsoredinstallationsarethesimplestPPPmodelexploredtodate.InWashington,

theUS‐2EVcorridoroffersamoreadvancedexampleofaPPPapproach,where

publicfundingwascomplementedwithprivateinvestmentsinanintegrated

corridordevelopment.TheWestCoastElectricHighwayisanetworkofEVchargers

linkingWashington,Oregon,andCaliforniaonInterstate‐5.Itisledby

governmentalagenciesineachstate,butimplementationandoperationisby

privateEVSEcompanies(WestCoastGreenHighway).Similarstrategiescanbeused

toincentEVSEinstallationsalongothercorridors,includingcommutecorridors.In

urbanareas,publicfastchargersthatareco‐locatedatornearapartmentscan

provideservicetobothvisitorsandresidents.Thissolutionmayallowcharger

owner/operatorstomaximizetheirrevenuebyprovidingasteadystreamof

customersthroughoutthedayandnight.YetanotherPPPapproachinvolvesthe

adoptionofregulatoryincentivesinreturnforinfrastructureinvestments.For

example,aninfrastructureinstallermaybegivenabreakontaxes,orelectricity

ratesinordertoincentivizeinstallationwithoutprovidingacashincentive.This

Page 52: City of Vancouver EV Infrastructure Strategy Report · 2017-08-14 · Institute of Transportation Studies University of California, Davis 1605 Tilia Street Davis, California 95616

51

requiresajustificationbasedonthebroadercarbonbenefitsandeventualreduction

inelectricityratesandforallratepayersorresidents.Inspecificinstancesearlyin

themarketthiscouldhelpjumpstartthePEVmarketwhichcouldleadtobenefits

forallratepayers.

OneexampleofPPPistheStateofMassachusetts’sMassEVIPprogramasdiscussed

above.Thisprogramoffersemployerswith15ormoreemployeestopartnerwith

thestateinsharingthecostofinstallingchargingequipment.Undertheprogram,

thestatecovershalfofthecostoflevel1orlevel2equipmentandthehost

organizationcoverstheotherhalfaswellasthecostofinstallation.Thehost

organizationretainsthefreedomtoselectthetypeandbrandofequipment.The

stateintegratedthisprogramwithitsvehiclerebateprogrambytellingaboutthe

existenceofthisprogramtoeverypersonwhoclaimstherebate.Thismotivates

PEVadopterstoapproachtheiremployersandrequestthattheyinstallcharging

equipmentinpartnershipwiththestate.

Case study: Overview of charging infrastructure development in France

TheEUParliamentestablishedinMarch2014agoalofinstalling800,000public

accesschargingstationsacrossEuropeby2020,withindividualtargetssetforeach

MemberState(Evolution,2014).

Someprojectssupportingelectricmobilityintheregionareinprogress.One

exampleistheEuropeanProjectLong‐distanceElectricCleanTransportRoad

InfrastructureCorridor(ELECTRIC)withprivatepublicinvestmentof8.4million

euro(effortispartofEuropeanUnion'sTrans‐EuropeanTransportNetworks)in

infrastructurepolicyaimedatconnectingEUmemberstatesbetweeneastandwest,

northandsouth(ABB).

Franceinvested60millionEurosbetween2009and2012toinstall1,250public

chargingpointsinabout20largeurbanareas(Leurent,Fabienetal.,2011).The

electricutilityElectricitédeFrance(EDF)establishedanextensivenetworkof

Page 53: City of Vancouver EV Infrastructure Strategy Report · 2017-08-14 · Institute of Transportation Studies University of California, Davis 1605 Tilia Street Davis, California 95616

52

publicchargingstationsinFrance.Themostsignificantdevelopmentoccurredin

citieswithmoreintensiveEVadoptionlikeParisandLaRochelle.Thereare

currently9,400chargingpointsinstalledthroughoutFranceandgovernment

projectionsexpectthisnumbertoclimbto40,000by2020(Lesechos,2015).

Frenchdecisionmakersrecognizethatadensechargingstationnetworkalonedoes

notensurethatmotoristshaveaccesstochargingbecauseofthevarietyofsockets,

communicationsstandardsandpaymentmethods.InMarch2015,France

establishedtheAssociationforRoamingElectricVehicleCharging(Afirev),withthe

goaltoensurethatelectriccardriverscantravelandchargeseamlesslyacrossthe

territoryregardlessoftheoperatorofthechargingstation(e.g.EDF,Mallore,Vinci,

Bouygue,etc.)

Tosupportelectricmobility,thecityofPariscreatedtheAutolibcarsharingscheme

in2011,currentlyoperatingover2,000electriccars,andaround4,000charging

stationsaroundthecityandsurroundingregion.Thisisanannualsubscription

basedprogramallowingmemberstorentthevehiclesfromonerentalstationand

returnthemtoanyotherrentalstationforvarying30‐minuterentalrates

(dependingonthemembershiptype).Itisreportedthatonatypicalday,electric

carsintheAutolibsystemserveabout10,000trips.Autolibalsoofferscharging

servicestoprivatevehicleownerswithaspecialsubscription,andfreeuseofthe

AutolibchargingstationswasincludedinRenaultEVsalesasofearly2014.These

multiplerevenuestreamsappearlikelytocreateasuccessfulbusinesscase.The

FrenchgroupBolloreannouncedaninvestmentof150millioneurostodeploy

16,000publicaccesschargingstationsthroughoutFrance,tobuildacharging

network.Inthisplan,themaximumdistancebetweenachargingpointandthenext

willbe41kilometers(25miles).NowthegovernmentofFrance,ledbytheMinistry

ofFinanceandtheMinistryofEnvironment,isconsideringapackageoftax

incentivestosupportBollore’sinitiative,inadditiontoexpandingtherebateoffered

forelectricdrivevehiclepurchases,from6,000to10,000euros(Bollore.com).In

June,2013AutolibjoinedwithIndianapolis,IndianatoformBlueIndy,which

Page 54: City of Vancouver EV Infrastructure Strategy Report · 2017-08-14 · Institute of Transportation Studies University of California, Davis 1605 Tilia Street Davis, California 95616

53

openedtothepublicinSeptember2015,andasimilarprogramwaslaunchedin

LondoninMarch2015usingtheexistingnetworkofchargersthere.

Theoretically,thisnetworkwillbeintegratedwithaseparateinfrastructureproject

co‐sponsoredbytheTrans‐EuropeanTransportNetworkExecutiveAgency(TEN‐T

EA,nowtheInnovationandNetworksExecutiveAgency,INEAundertheEuropean

Commission).ThisprogramwasestablishedbytheEuropeanCommissionto

supporttheconstructionandupgradingofvarioustransportationinfrastructuresin

theEUandincludesprojectsinalltransportmodes–air,rail,road,maritime,and

logisticsandintelligenttransportationsystems.Thisprojectwasdesignedas

consistingofthreephases.Inthefirstphase,5millioneurosareinvestedtoinstall

andtest200interoperableandmulti‐standardfastchargersonthehighwaysof

Francebytheendof2015.Thesecondphasewillbuildupontheexperienceofthe

firstone,todeveloprecommendationsregardinginteroperability,tosupportthe

integrationofchargingandhydrogenrefuelingnetworksacrossFranceandEurope.

Thethirdandfinalphasewillbeconcernedwiththediscoveryandvalidationof

innovativebusinessmodelsforsustainablechargingnetworks.Wehighlightthe

integrationoftheinvestmentforthisprojectintoabroaderframeworkthatis

orientedtowardexperimentationandlearning.Suchapproachesrepresentagreat

improvementrelativetoinvestmentsthatstopatthedeploymentoftheequipment.

Projectstoinstallfast‐chargingnetworksinFrance,IrelandandtheUK(2011‐

2012),Denmark,theNetherlands,SwedenandGermany(2013)aimtonotonlyhelp

developlocalinfrastructure,butalsoimprovedrivers’acceptanceofEVsand

improveconnectivityandcompatibilitythroughouttheEuropeanUnionmember

states.Intheseprojects,theEuropeanCommissionfundsapproximately50%of

totalprojectcostswhilethemembercountriesorprivatepartnersfundthe

remainingamount(EuropeanCommission).

SuccessfulEuropeanexperienceshaveintegratedthedeploymentoftheequipment

intobroaderlonger‐termplansthatincludethesustainedreliabilityofthe

equipmentaswellasexperimentationandopenlearning.Webelievetheseshould

Page 55: City of Vancouver EV Infrastructure Strategy Report · 2017-08-14 · Institute of Transportation Studies University of California, Davis 1605 Tilia Street Davis, California 95616

54

bepillarsofanyinfrastructureinvestment,tosupportgooduserexperience,

productlegitimation,testingofnewideas,innovationandultimatelyfinancial

sustainability.

Therearetwocomplementaryprograms(“EcoCities”and“Villededemain”)and

fundsfortheimplementationofinfrastructureforEVsfromtheMinistryofEcology

andSustainableDevelopmentandEnergy,whichallocated50millioneurosto

supporttheinstallationofpublicchargersforEVsincitieswithover200,000

inhabitants(Ministère,2015).In2016,anewprogram“ProgrammeAdvenir”allows

forfinancingofprivatechargingpointsthroughenergysavingscertificates.This

programisfocusedonsharedchargingoncompanyproperty,privateareasthat

wouldbeaccessibletothepublic(suchasstoreparkinglots),andprivatecharging

oncollectivehousingproperties(http://www.developpement‐durable.gouv.fr/Le‐

renforcement‐de‐l.html).

Successfulprojectshavealsoincludedconsumereducationprograms:Such

programsincludedinformationinareaslikebenefitsofusingplug‐invehicles,best

practicesfortheuseofplug‐invehiclesandcharginginfrastructure(e.g.eco‐driving

tosaveenergyandusinglowerratestochargethebattery)andfamiliaritywiththe

technology.IntheUnitedStates,forexample,SanDiegoGas&Electriccreateda

websiteandhandoutsthatweredistributedtoregionalcardealershipswith

informationontheirlocalEVutilityrates,andlinkstoinformationonlocal,state,

andfederalincentives.Thisremovestheburdenofinformationfromthedealerfor

potentialbuyers(http://www.sdge.com/electric‐vehicles).

Legitimation of the EV Market

Consistentwithstudiesoftechnologyinnovation,therateofgrowthofplug‐in

vehiclemarketsincreasesthemoretheyareperceivedasamainstreamtechnology.

Ininnovationstudies,thisisoftenreferredtoaslegitimation.Onewayforthepublic

sectortoencouragelegitimationofplug‐invehiclesistoprovidecharging

Page 56: City of Vancouver EV Infrastructure Strategy Report · 2017-08-14 · Institute of Transportation Studies University of California, Davis 1605 Tilia Street Davis, California 95616

55

infrastructureaninstitutionalframeworkcomparabletootherelementsofthe

electricgridandelectricalappliances.Theneededcomponentsofsuchinstitutional

frameworkarefamiliartomoststakeholdersworkingonvehicleelectrification,but

maybeunexpectedtothosewhoarenewtotheindustry.Theyincludecertification,

permitting,inspection,electricalcodes,buildingcodes,developmentregulations,

compliancewithrequirementsfordisabledpersonaccess,consistentandhighly

visiblesignage,andavarietyofrulesandnormsthatoftenvaryacrossgovernment

jurisdictions,suchasbuildingefficiencystandards,appropriatedemandcharges,

rightofwayinthepublicspace,andothers.Theroleofgovernmentisextendedfor

installationsinpublic‐sectorfacilities,includingprocurementguidelinesand

funding.Thedevelopment,implementationandenforcementofsuchinstitutional

framework,andthedevelopmentofaregionally‐specificguidetotheappropriate

regulations,wouldsendaclearlegitimationsignaltosectorsoftheeconomy,

equivalenttoreducingthecostandriskofdoingbusinessinvolvingcharging

infrastructure.

Toillustratethenotionofalegitimizinginstitutionalframework,considerthecase

ofbuildingcodes.Someinitiativestorevisestatebuildingcodestoincludebasic

requirementsforcharginginfrastructure,suchaslayingoutconduitinparking

spaces,havebeenmetwithconcernsabouttheimpactofsuchrequirementson

buildingcosts.Alegitimizinginstitutionalframeworkprovidesforbuildingcodes

thatgiveequitabletreatmenttoplug‐invehicles,treatingthemasotherloadsthat

meetbasicneedsoftheoccupantsofthebuilding.Muchlikepowergeneration

increasinglycomesfromdistributedsources,vehiclerefuelingwillincreasinglybea

distributedactivity.Intheworldofvehicleelectrification,parkingfacilitiesarethe

newfuelstation.Thisisaparadigmchangethatgovernmentsneedtoacceptand

reflectinlegitimizedrulesandnorms.Includingregulationsinbuildingcodes,

creatingstreamlinedpermittingprocessesforinstallationofEVSEs,establishing

consistentsignageandrulesforpubliclyaccessedchargingwillalsohelp,andcanbe

doneatalocallevel.

Page 57: City of Vancouver EV Infrastructure Strategy Report · 2017-08-14 · Institute of Transportation Studies University of California, Davis 1605 Tilia Street Davis, California 95616

56

Wereferabovetopublicparkingfacilitiesinabroadsense,whichincludesallnon‐

residentialpublicallyavailablecharging.Thisincludeson‐streetparking,public‐

accessgarages,customerdedicatedparking,sharedpublic/workplaceparking,and

miscellaneousparking(e.g.recreationalspaces,restareas,andsuch).The

installationofequipmentinsomeofthesesettings,forexamplethoseinthepublic

rightofwayforon‐streetparking,maybefinanciallyimpracticalformostusers.The

Netherlandshasdealtwiththisissue,andthebiggesthurdlesarethatthecostsare

bornebyasingleowner/user,whoisthenrequiredtooffertheuseofthecharger

publically.Theyalsohaddelaysduetouncertaintiesaroundpermittingand

installationrequirements.Inthiscase,offeringpartialfundingforownerswhowant

toinstallon‐streetchargingthatwillbepublicallyavailable,aswellasclear

requirementsandprocessescanalleviatetheburdenontheinitialowner.Another

optionwouldbeiftheinitialownerfullyfundedinstallation,butthecitytookover

maintenance.Finally,thechargercouldbelockedsothatitisnotpublically

available,despitebeingon‐street.Howeverthechallengeisapproached,thesetof

rulesforinstallation,maintenance,anduseshouldbeclearforsuchcases.Arecent

studyexploresthequestionofcharginginfrastructureforgarageorphans(electric

vehicleownersorprospectiveownerswhodonothaveaccesstooff‐streetparking)

(NelsonNygaard,2014).ThecityofSanFranciscowillsoonbeembarkingonastudy

toevaluatethepotentialforaddinglevelonechargingatexistingstreetlamps,since

theyarestreet‐sideandalreadyhaveelectricityavailable,whichcouldhelpreduce

costsandaddchargingaccessforcitydwellers.Anothersolutionissupportforfast

charginglocationsthatcanserveasaback‐uptocongestedleveltwoandpublicand

multi‐unitdwellingparkinglocations.

Theintegrationoftheelectricvehiclewiththebuildingoffersopportunitiesfor

improvedeconomicsonthedeploymentofcharginginfrastructure.Incontrast,the

lackofintegrationmaypresentdeterrentsforinfrastructuredeploymentsand

ultimatelyforthegrowthoftheelectricvehiclemarket.

Page 58: City of Vancouver EV Infrastructure Strategy Report · 2017-08-14 · Institute of Transportation Studies University of California, Davis 1605 Tilia Street Davis, California 95616

57

Models Based on EV‐Building Integration

IntheUnitedStates,aboutsixpercentofdirectcarbonemissionsin2013camefrom

commercialbuildings.Directemissionsincommercialbuildingsoriginateinthe

burningoffossilfuelsforheatingandcooking(55.3%),wastemanagement(34.5%),

andleaks(10.2%).Electricitygeneration,represented31.3%oftotaldirectcarbon

emissions.About20percentoftotalenergyconsumptionin2014wasattributable

tocommercialbuildings.WhileinBritishColumbiastationaryenergyloads(suchas

buildings)representasmallerfractionoftotalcarbonemissionsbecauseofthe

Province’sheavyrelianceonhydropower,energybenchmarkingofcommercial

buildingswithtransportationprovisionscouldofferopportunitiesforthissectorto

participateincarbonmitigationefforts.

OnespecificopportunitythatweidentifiedforEV‐buildingintegrationisincluding

theenergyandgreenhousegas(GHG)impactsfromtraveldemandgeneratedby

commercialbuildingsintobenchmarkingmethodologies.Studiessuggestthat

energybenchmarkingofcommercialbuildingisresultinginenergyusereductions

(PalmerandWalls,2012,U.S.EPA,2012).Partofthelogicisthatbenchmarking

providesinformationthatisotherwiseunavailabletobuildingownersandenergy

managersandenables/encouragesthemtoadopttargetedstrategiestoreduce

energyuse.Integratingbuildingwithvehiclewillencouragestrategiestoreduce

emissionsfromtransportation.ThecitiesofAustin,Boston,Chicago,theDistrictof

Columbia,Minneapolis,NewYorkCity,Philadelphia,SanFrancisco,andSeattlehave

enactedbuildingenergybenchmarkinglegislation.Asbuildingenergy

benchmarkingcontinuestoexpandthroughoutAmerica(andperhapstoBritish

Columbia)thereisneedtoensurethattheprogrampoliciesarestructuredto

supportcleantechnologies.Insomeregions,atechnology‐neutralsystemfor

evaluatingandscoringtransportationemissionsisused,thoughsomecountriesand

regionscanselectapreferredtechnologybasedonexistingnaturalresources,such

ascleanelectricityinBritishColumbia.Redefiningthebuildingenvelopetoinclude

relatedtravelbyPEVsorconventionalvehiclesmaybechallenging,butapotentially

Page 59: City of Vancouver EV Infrastructure Strategy Report · 2017-08-14 · Institute of Transportation Studies University of California, Davis 1605 Tilia Street Davis, California 95616

58

powerfulapproach.

Wedonotpresenthereadetailedanalysisofthisopportunity,butbelievethatthere

areopportunitiesforfurtherexplorationandpilots,withtheparticipationof

stakeholdersintheregion.Thestartingpointcouldbeonaccountingpracticesthat

encouragebuildingenergymanagersandcommercialpropertyownerstoreduce

energyandcarbonemissionsfromthetraveldemandgeneratedbytheirbuildings,

suchasemployeecommuteandcustomers’visits.Suchaccountingsystemswould

inducebuildingenergymanagersandcommercialpropertyownerstodevelop

strategiestoreduceenergyuseandemissionsfromtransportation.Forthe

purposesofthisparticularreport,thefocuscouldbeonstrategiestoencourage

energysavingsandemissionsabatementbydisplacingfossilfuelswithelectricityfuel

fortransportation.Probablythemostobviouselementofsuchstrategiesisthe

installationofelectricvehiclesupplyequipment(EVSE),althoughitshouldbe

complementedwithotherelements.

Wewouldnote,arevisionofenergyandemissionsaccountingprotocolsthat

providepropertyownerswithincentivestoinvestinsuchinfrastructure,wouldalso

havelegitimationpositiveexternalities,helpingfamiliarizethepublicwithEV

technologyandinturnsupportmarketadoptionande‐milesdisplacementoffossil

miles.IntheUS,thesebuildingenergyuseandemissionsstandardsaresetona

federalandstatebuildingcodelevel,andforecastedpriortoconstruction.Buildings

thatgoabovetheminimummayqualifyforaLEEDcertification(Leadershipin

EnergyandEnvironmentalDesign,developedbytheUSGreenBuildingCouncil,

USGBC),WealsonotetheimportanceofbalancingstrategiesthatsupportEV

adoptionsothattheydon’tresultininadvertentconsequences(suchashigher

emissionsfromsubstitutingchargingofEVsforbicycletripsorcreatingnew

electricitypeaks).Theseaccountingprocessesandgreenbuildingcertificationsare

setatafederal,ratherthancityorprovincelevel,butshouldbeencouragedto

considerthechangingtransportationsystem,particularlyEVcharging.

Adeeperexplorationofthebuilding‐EVintegrationconceptsthatwelaidoutabove

Page 60: City of Vancouver EV Infrastructure Strategy Report · 2017-08-14 · Institute of Transportation Studies University of California, Davis 1605 Tilia Street Davis, California 95616

59

couldaddressthefollowingareas:

o Cityandprovincialmotivationsforadoptinganenergybenchmarking

programandintegratingemissionsfromtransportationintothe

benchmarkingofcommercialbuilding

o Acomparativeassessmentofenergyconsumptionandcarbonemissions

arisingfromtravelattractiontocommercialbuildingsandothersourcesin

thebuilding

o Opportunitiestointegratesuchstrategiesintocity/provinceumbrella

strategies,suchastheCityofVancouver’sElectricVehicleStrategy(currently

underdevelopment),VancouverBuildingCodeupdatesandlongrange(2050)

emissionsreductionplanning

o ComparativeassessmentofthecapitalizationofEVSEinbuildingsand

alternativestrategiestoimproveenergyefficiencyandenvironmental

friendlinessofcommercialbuildings

o Fromtheperspectiveofthebuildingowner,investmentsincharging

infrastructureinthebuildingwillincreaseelectricitybills.Policyandbusiness

strategiesthatwouldlikelyneedtoprovidemeanstointernalizethese

additionalcosts.Quantifyingthebenefitthrougheitherincreasedrevenue

fromcustomers,orasapartofthebenefitspackageusedtorecruitandretain

employeescouldhelpjustifytheinvestment.

o EngagestakeholderstodiscussimplicationsofEV‐buildingintegration

programsfora)othertransportationprogramssuchcommutetripreduction,

b)regionalenergyplanning(e.g.gridreliability),c)regionaleconomy,andd)

environmentaljustice(e.g.mobileemissionsreductions).

The Possible Role of Electric Utilities

TheroleofelectricutilitiesinencouragingEVadoptionshouldbetokeepthefuel

costsforelectricitylowerthanthatofgasolinevehicles,whileallowingusersto

maintainthelifestyletowhichtheyareaccustomed.Therightcombinationofrates

Page 61: City of Vancouver EV Infrastructure Strategy Report · 2017-08-14 · Institute of Transportation Studies University of California, Davis 1605 Tilia Street Davis, California 95616

60

andmeterswillallowthehouseholdtooperateasusual,whileeasilyswitchingfrom

agasolinefuelsourcetoelectricityasafuel.Tothisend,theroleofratestructures

withinutilitiesistocreateavariablerateinordertomanagethechargingdemand

byusers.Ratescreatethepricesignalthatcustomerscanreactto.

WhiletotalelectricityconsumptionintheUnitedStateshasbeenstabilizingoverthe

lastdecadeorso,thetrendinCanadashowsdecreasingenergyusepercapita.The

reasonsforthesetrendsarelikelysimilar,includingslowereconomicgrowthand

theimplementationofenergyefficiencyprograms.However,BCHydromaysoonbe

experiencinganincreaseindemandduetotheelectrificationoftransportationand

heatingsystems.

Figure16:ElectricityConsumptionpercapitaforCanada,2004‐2013

BCHydroismandatedtobe93%renewable,andin2015served98%renewable.A

possibleshiftinthemandateto100%renewablepowerisunderconsideration,and

theregioniscurrentlydebatingtheshortandlong‐termfeasibilityofamandatefor

100%.BCHydroisforecastingsignificant(10‐15%,evenwithmassiveefficiency

measures)loadgrowthduetoincreasingelectrificationforprivateandpublic

transportationandbuildingthermalmanagement.Thismeansagrowingrolefor

on‐siterenewables–likerooftopsolar–inordertomeettheexpectedincreasein

17.2717.05

16.5616.77

16.46

15.5415.34

15.74

15.3215.52

15

15.5

16

16.5

17

17.5

2002 2004 2006 2008 2010 2012 2014

MWh/Capita

DataSource:http://www.iea.org/statistics/statisticssearch/

CanadianElectricityConsumption/populationMWh/capita

Page 62: City of Vancouver EV Infrastructure Strategy Report · 2017-08-14 · Institute of Transportation Studies University of California, Davis 1605 Tilia Street Davis, California 95616

61

demandandincreasedrequirementforrenewables.

Forsomeutilities,thesetrendshaveresultedinasurplusofgenerationcapacity.As

manyutilitiesprofitscomefromhighersalesofelectricity,thereutilizationof

strandedassetsintheindustrywouldprovidenewrevenuestreams—inthis

respect,theloadgrowththatwouldresultfromthelarge‐scaledeploymentofplug‐

invehiclesisattractivetotheindustry.Informalconversationswithutility

representativessuggestthattheindustryseesapossibleopportunity,butthata

businesscaseisnotyetclearlyseenbyallutilities.Someofthemseeabusinesscase

forcharginginfrastructurethatfocusesaroundhomecharging,whereabout70‐80

percentofthevehiclechargingoccurs.Thisbusinesscasehoweverreliesona

criticalmassofplug‐invehiclesinthemarketthatissignificantlylargerthanthe

currentone.Wehavenotbeenabletoobtainutilityestimatesofthecriticalmassof

plug‐invehiclesthatwouldmakeinfrastructuredeploymentslucrativetoutilities.

Anecdotally,someutilitiesseeamarginalincreaseinloadevenata5percent

marketpenetrationofplug‐invehicles.Ourpreliminaryassessmentistwofold:a)

theindustryispayingattentiontopossibleopportunitiesthatcanresultfromthe

marketsuccessofplug‐invehiclesbutbettermodelingmaybeneeded;andb)

whetherandtheextenttowhichelectricutilitiescanjustifyinvestmentstosupport

plug‐invehiclemarketsmaydependonarangeoflocalvariables.

Toencouragehigherelectricvehiclemarketadoption,addressingconsumer

concernsaboutvehiclerangelimitationswillbecritical.Animportantquestionis

theextenttowhichdeploymentsofpublicaccessDCFastorlevel2chargingcanbe

aneffectivestrategytoaddressrangeconcerns.Ifthisinfrastructurecould

significantlyaugmentthemarketappealofplug‐invehiclesandultimatelyincrease

revenueforutilities,theninvestmentsininfrastructuremaybewarranted.Moving

fromtheconceptualleveltoquantificationsisacomplexexercise.Theindustryis

interestedinquantitativeestimatesofplug‐invehicleadoptionresultingfrom

additionalchargingspots.StudiescurrentlyunderwayatUCDavisestimate2‐8%

morePEVsalesduetoavailabilityofworkplacecharging,butfurtherresearchis

Page 63: City of Vancouver EV Infrastructure Strategy Report · 2017-08-14 · Institute of Transportation Studies University of California, Davis 1605 Tilia Street Davis, California 95616

62

needed,especiallyontheimpactofawarenessofpublicchargingonfuturePEV

sales.

Intheremainderofthissection,wesummarizetheproposalsofthethreelarger

electricutilitiesinCaliforniatosupportdeploymentofcharginginfrastructure

financedwithincreasesinelectricityrates.Wealsoexplorepossiblewaysinwhich

electricutilitiescouldcreatefinancialmechanismstosupportinfrastructure

investments,withafocusonBCHydro,theelectricutilitythatservestheCityof

Vancouver.

Proposals from Utilities Conducting Pilot Programs

TheproposalsdevelopedbythethreelargerelectricutilitiesinCaliforniadonot

presentinnovativeideasrelatedtothefinancingofcharginginfrastructure,and

couldbegenerallycharacterizedassubsidies.Regardless,thefinancingofcharging

infrastructurethroughincreasedelectricityrateshasbeenreceivingincreasing

attention,andwebelieveitispertinenttoincludeasummaryoftheseproposalsas

onealternativefinancingpathway.TheCaliforniaPublicUtilityCommission,which

overseestheutilitiesgrantedapprovaltoSouthernCaliforniaEdisonandSanDiego

Gas&Electrictoproceedwiththephase1orpilotportionsoftheirproposalsin

early2016.Theseinvestmentsarepaidforwithrevenuefromutilityratesand

increasedutilityrates,justifiedbythefactthattheloweremissionsfromcleaner

electricdrivingprovidesabenefitintermsoflocalairqualityforallcustomers.

Pacific Gas & Electric

TheproposalsubmittedbyPacificGas&Electricincludesthefollowingelements:

Deploy,ownandmaintainapproximately25,000Level2(L2)EVcharging

stations;

Deploy,ownandmaintainapproximately100DCFastChargers(DCFC);

Targetpublicfacilities,workplacesandmulti‐unitdwellings;

OffereducationandoutreachmaterialstodriveEVadoption;

Page 64: City of Vancouver EV Infrastructure Strategy Report · 2017-08-14 · Institute of Transportation Studies University of California, Davis 1605 Tilia Street Davis, California 95616

63

Targetapproximately10percentofthecharginginfrastructurefor

disadvantagedcommunities;and

Usetime‐variantpricing.

Includingcapitalinvestments,operationandmaintenance,educationandoutreach

andotherexpenses,theprogramwouldhaverevenuerequirementscappedat

$653,846,000,orabout$26,000perchargingstation.Bytheyear2020,about25%

oftheproposed25,000Level2chargingstationsand100DCFastChargerswould

havebeendeployed,primarilyinworkplaces.

Southern California Edison

OnJan14,2016,SouthernCaliforniaEdison(SCE)receivedapprovalfromthe

CaliforniaPublicUtilitiesCommission(CPUC)fortheir“ChargeReady”Pilot

program.SCE’sproposalwasbrokendownintoaPhase1pilotandPhase2.Atthe

conclusionofthepilot,theywillseekpermissionfromtheCPUCtoproceedwith

expandingtheprogramtoatotalofnearly30,000chargingstationsintheSouthern

CaliforniaterritoryservicedbySCE(EdisonInternationalNewsroom).Moredetails

oftheirtwo‐phaseplanisprovidedbelow.

Deployinfrastructuretosupportupto30,000EVchargingstationsintheir

servicearea;

Targetdeploymentinareaswithlong‐timedwellsitesaswellasinstallingat

least10%ofthechargersindisadvantagedcommunities;

Two‐phaseprogram;

o Phase1:12‐monthpilottoinitiateinfrastructuredeploymentswith

upto1,500chargingstationsto“testseveralkeyassumptions

underlyingitsapproach”andstartamarketeducationcampaign“that

willtargetpotentialcarbuyersinSCE’sserviceterritorytoexpand

theirawarenessaboutEVsandthebenefitsoffuelingfromtheelectric

grid,”

Page 65: City of Vancouver EV Infrastructure Strategy Report · 2017-08-14 · Institute of Transportation Studies University of California, Davis 1605 Tilia Street Davis, California 95616

64

o Phase2:Completionoftheinstallationsof“upto30,000qualifiedEV

chargingstations”andbroadeningofeducationefforts.

Includingcapitalinvestments,operationandmaintenance,educationandoutreach

andotherexpenses,theprogramwouldhaverevenuerequirementscappedat

$653,846,000.Thepilotinphase1wouldrequire$18millionand$4millionin

capitalandO&Mexpenditures,respectively,whilephase2wouldrequire$324.5

millionand$8.25millionrespectivelyforcapitalandO&Mexpenditures.This

representsarevenuerequirementofabout$355million,orabout$12,000per

chargingstation(assumingthemaximumnumberof30,000stationsisdeployed).

SouthernCaliforniaEdisonproposestorecoverthesecoststhroughincreasesin

electricityrates.

San Diego Gas & Electric

OnJanuary28,2016,SanDiegoGas&ElectricreceivedapprovalfromtheCPUCfor

theirElectricVehicleGrid‐Integrationpilotproject,allowingthemtoownandinstall

thousandsofEVSEsintheirterritory(SDG&ENewsroom).Theirplanisoutlined

below:

Deploy3,500EVchargingstationsintheirservicearea

Targetdeploymentinworkplaceandmulti‐unitdwellings,theplanisto

install10chargersateachof350businessesandmulti‐familycommunities;

Atleast10%ofthechargerswillbeinstalledindisadvantagedcommunities

ImplementspecialEVratesthatencourageoff‐peakchargingandallowfor

maximizingrenewableenergyintegrationandminimizingtheneedfornew

fossil‐fuelpowerplants;

Thepilotprogramwouldhaverevenuerequirements$59millionand$44million

forcapitalandO&Minvestments,respectively,representingacostofabout$19,000

perstation.

Page 66: City of Vancouver EV Infrastructure Strategy Report · 2017-08-14 · Institute of Transportation Studies University of California, Davis 1605 Tilia Street Davis, California 95616

65

Eversource (East Coast Utility)

Eversource,theutilityservingMassachusetts,ConnecticutandNewHampshire,is

launchinganelectricvehiclepilotprogram,whichmayallowPEVbuyersto

purchaseaLevel2chargingstationatareducedcost.Theresearchfromthispilot

programwillalsohelpEversourcedesignaneffectivetimeofuse(TOU)rateforPEV

customers(Eversource,2016).

Possible approaches for BC Hydro

WestartwithaninspectionofBCHydro’sratestructures.Theutilityhasadopteda

steppricingratestructureforelectricityconsumption,summarizedinTable5.

Table5.SummaryofBCHydro’selectricityconsumptionratestructure

Rategroup Step1 Step2

Threshold Rate Threshold Rate

Residential 1,350kWh/60days(22,1918kWh/dayaverage)

$0.0797 Morethan1,350kWh/60days(22,1918kWh/dayaverage)

$0.1195

SmallGeneralServicecustomers

$0.1073/kWh

MediumGeneralServicecustomers

First14,800kWhofbaseline

$0.0989/kWh Upto20%overbaseline

$0.0990/kWh

Remainingofbaseline

$0.0690/kWh Upto20%underbaseline

‐$0.0990/kWh

SincetheearlydaysofsystematicdeploymentsofDCFastcharginginfrastructure

(DepartmentofEnergy’sEVProjectandStateofWashingtonElectricHighway),

demandchargeswereviewedasanimportantobstacle.Demandchargesarean

importantcomponentofthepricingoftheserviceprovidedbyelectricutilitiesand

waivingitaltogetherforcharginginfrastructureseemedimpractical.Atthesame

time,demandchargesseemedtogreatlycurtailanyhopestofindsustainable

businessmodelsfortheprovisionofDCFastcharginginfrastructure.

InTable6wesummarizethedemandchargestructureintheBCHydroterritory.

Page 67: City of Vancouver EV Infrastructure Strategy Report · 2017-08-14 · Institute of Transportation Studies University of California, Davis 1605 Tilia Street Davis, California 95616

66

Table6.SummaryofBCHydro’sdemandchargestructure

Maximumpowerbracket Demandcharge

0–35kW $035–150kW $5.50perkWOver150kW $10.55perkW

TotheextentthatBCHydrohascapacitysurplus,theincreaseinconsumptionfrom

vehicleelectrificationwouldgenerateadditionalrevenuestreamsfromthe

utilizationofexistingassetsandpotentiallyareductionintheper‐kilowattcostof

generation.ItisthenintheeconomicinterestofBCHydroandtheregiontosupport

marketuptakeofplug‐invehicles.Thismaybeincontrastwiththeconservation

goalsoftheregion,whichhaveresultedinthetieredpricingsystemforelectricity

consumptionanddemand.Onepossiblemodelthatsupportsbotheconomicand

conservationgoalsmightincludesmallchangestothedemandchargestructure.It

wouldfirstbebeneficialiftheCityofVancouverand/ortheProvinceofBritish

Columbiainstitutedrulesrecognizingandassessingtheconservationbenefitsfor

vehicleelectrification,arisingfromthedisplacementoffossilfuelconsumption.Such

ruleswouldlimitinstitutionalbarrierstocharginginfrastructuredeployment(andthe

supportofvehicleelectrificationmoregenerally).

Experiencefrompilotsconductedinthepastsuggeststhatcustomerconsumption

doesrespondtodemandcharges.Therangeofestimatesofthisresponseisvery

wide(Hledik,2014)andcertainlydependentonthestructureofthecharge.The

maintwoincentivesthatdemandchargescreateareloadshiftingandloweruse.A

reviewofexperimentsandstudiesontheimpactsofdemandchargesisbeyondthe

scopeofthisreport,butwepointoutthatdemandchargeshavereceivedattention

intheliteraturefordecades(seeforexample,BergandSavvides,1983andCaves,

ChristensenandHerriges,1984).Theviabilityandeffectsofdemandchargesis

betterassessedonacase‐by‐casebasis.Customerresponsetodemandchargesis

likelydependentonstructuralcharacteristicsofthelocaleconomyandotherlocal

factorsaffectingelectricityusepatterns.

Itisworthhighlightingthatresponsetodemandchargesarelikelydifferentfor

Page 68: City of Vancouver EV Infrastructure Strategy Report · 2017-08-14 · Institute of Transportation Studies University of California, Davis 1605 Tilia Street Davis, California 95616

67

residentialchargingandpublicaccesscharging.Residentialcustomersmayhave

moreflexibilitytorespondwithloadshiftingbychargingovernight,whilepublic

accesschargingoftenrespondstoanimmediateneedfortheirserviceandload

shiftingmaybelesspracticable.Thelimitedflexibilityofrespondingtodemand

chargesbypublic‐accessinfrastructure,particularlyDCFaststations,shouldbe

takenintoaccountinthehypotheticaldevelopmentofratestosupportplug‐in

vehicles.Inmanyinstances,publicaccesschargingisasuitablemarketforload

shiftingviasmartcharging.Itiscriticaltoremaincognizantoftheopportunities,

currentorfuture,forinnovativetechnologiestohelpaddressthesequestions(e.g.

underthebroadumbrellaofsmartcharging).Strategiespursuedtoaddressthe

connectionofplug‐invehiclesandthegridshouldpreserveamarketplacethatincents

startupsandotherinnovatorstodiscovernewwaystoaddressissues.Webelievethis

isimportanttomaximizeenvironmentalandeconomicbenefitsfromvehicle

electrification,aswellasenablefurtherlegitimationofplug‐invehiclesand

integrationintoregionaleconomies.

Twopossibilitiesaresummarizedbelow:

Page 69: City of Vancouver EV Infrastructure Strategy Report · 2017-08-14 · Institute of Transportation Studies University of California, Davis 1605 Tilia Street Davis, California 95616

68

Table7.IllustrativeexamplesofEVSEfinancingbasedoninnovationinratestructures

Model Concept Example structure Financing

Rampdemandcharge

Createademandchargescaleforthe0‐35kWbracket,therevenuesfromwhichcanbeusedinparttofinancecharginginfrastructure

$0.14perkWforfirst35kW

Greenconservationbank,withappropriationforEVSEdeploymentandresultingdemandcharges

AfterappropriationforEVSEbank,revenuesrecycledbacktocustomers(forexample,basedonincome,savingsbetweensuccessivebills,etc.)

Demandchargeexchange

Tradedemandchargesinabillingperiodfromcharginginfrastructuretoothercustomerbrackets.

$Xfromcharginginfrastructuredemandareabsorbedaccordingtoformulabycustomersinthefirstdemandchargebracket

Eliminatesdemandchargecostsfromcharginginfrastructure

Theexamplesinthetableareincludedforthepurposeofdiscussionandtoexpand

uponbyincludingotherpossibleconfigurations.Weemphasizethattheproposed

modelbuildsuponabalancebetweenconservationandeconomicbenefitsfrom

increaseduseofexistinggenerationcapacity.Themodelthusworksonlyifthe

resourcesallocatedtocharginginfrastructureultimatelyresultinincreased

kilowatt‐hourconsumption.Increasedconsumptioncanresultfirstfromgrowthin

theregionalplug‐invehiclemarketandalsofrommoree‐milesdrivenplug‐in

vehiclehouseholds.Thus,itisnotclearthatresourcesfromutilityfinancingoughtto

bededicatedtocharginginfrastructureexclusively.Ideally,thebestallocationof

resourceswouldresultfromanunderstandingoftherelativestrengthofvarious

instrumentsinspurringmoreplug‐invehicleelectricityuse.Suchinstrumentscould

includefinancingofcharginginfrastructureaswellasfinancingofplug‐invehicles.

Wearenotawareofexistingelectricutilitiesprogramsthatofferfinancial

Page 70: City of Vancouver EV Infrastructure Strategy Report · 2017-08-14 · Institute of Transportation Studies University of California, Davis 1605 Tilia Street Davis, California 95616

69

incentivesfortheadoptionofplug‐invehicles.Wesuggest,contingenton

conservationrulesthatintegrateelectricitywithothertransportationfuels,thatsuch

incentivescouldbethoughtofasanextensionoftheappliancereplacementprograms

thatarecommoninmanyelectricutilities.

Itisimportanttoemphasizethatthevalueofcharginginfrastructureinsupporting

plug‐invehicleadoptionanduseisdependentoneffectivedeploymentplanning,

particularlylocationandreliability.

Noticethatintheprecedingdiscussions,institutionalframeworkdoesnotinclude

directfinancingofchargingequipmentorequipmentinstallation.Innovationis

generallynotsupportedbyexcessivemarketpower,andthismayoccasionallybe

theresultofwell‐intendedpolicydecisions.

The integration of the electric vehicle with the grid

The concept of the smart grid suggests developing IT based communication and

controlsolutionsonthegrid,allowinggridoperatorstobalanceelectricitysupplyand

demandinareliableandefficientmanner.ThegrowingloadofPEVshasthepotential

forbothcreatingchallenges,andifmanagedproperly,actingasahelpfulresourcefor

thegridoperations.PreviousscientificliteratureonPEV‐gridintegrationevaluated

thetechnicalandenvironmentalaspectsofthePEVcharging,aswellastheviability

ofusingPEVsasaresourcefortheenergyandancillaryservicesonthegrid.Thisis

researchareathathasalreadybeenextensivelyanalyzed,inparticularbythePacific

NorthwestNationalLab(Gerkensmeyeretal,2010,Kintner‐Meyeretal,2007)aswell

asresearchersattheElectricPowerResearchInstituteandUniversityofCalifornia,

Berkeley.Assuch,thisreportdoesnotincludeadiscussionofthegridcapacity,load

impacts, and upgrading necessary, but focuses conceptually on the potential new

developmentsthatcouldcomefromvehiclegridintegration.

GiventhepotentialforthenumberofPEVstogrowrapidlyinthenearterm,PEV

loadshavebecomeoneofthemajorfocusesforthesmartgriddevelopers.For

Page 71: City of Vancouver EV Infrastructure Strategy Report · 2017-08-14 · Institute of Transportation Studies University of California, Davis 1605 Tilia Street Davis, California 95616

70

instance,Mogheetal(2011)illustratedthatadaptingcontrolledPEVchargingmay

increasethelifeexpectancyofanaverage50kVAneighborhoodtransformerbyup

tosixtimesdependingontherateofPEVadoptioninthatarea.Ontheotherhand,

PEVloadisalsoseenasausefulresourceforthegridoperationsinapplications

suchasfrequencyregulation,powergeneration,andrenewableelectricity

integration.Thus,utilizingDemand‐SideManagement(DSM)tomanagethegrowing

loadofPEVsmaycreateaneconomicbenefitforconsumersandutilitieswhile

reducingthenegativeimpactsongridcapacity.Earlydevelopmentofactive“PEV‐

gridintegration”shouldspecificallyfocusonthePEVdemandsidemanagement

strategiesandpotentialancillaryserviceopportunitiessuchasfrequencyregulation.

SomemajorissuessuchasconsumerPEVchargingbehavior,thecompetitivenessof

theDSMrelativetowholesaleelectricity,anddevelopmentsincommunication

technologieswillvarybasedonthemostrecentPEVandelectricitymarketdata.

Thesefactorsvarywidelybyregion,andneedtobethoroughlyevaluated,though

learningsfromearlypilotprogramsandcoordinationbetweenutilities,car

companies,andstandardizingorganizationswillbecriticaltothefuturesuccessof

PEV‐gridintegration.

OneearlyprojectthatwillprovidesomeinsightsistheBMW‐PG&Ecollaboration

calledtheiChargeForwardProgramlaunchedinAugust2015intheSanFrancisco

BayArea.Thissmall18‐monthpilotprogramincentivizesBMWi3driverswho

participateinamanagedchargingprogramwhichaimstomeetconsumerneeds

whilealsoallowingforgrid‐loadreductions.BMWwillmanagetheat‐home

chargingofenrolledconsumers,includinguptoaone‐hourchargingdelayattheir

homecharger.Consumerssetapreferenceforbatterystateofchargeanddeparture

time,butaregiventheoptionofopting‐outofeachmanaged‐chargingevent.Their

incentivewillvarybasedontheirparticipation.Thisprojectallowsforatest‐runof

earlynetworkingandremotechargingcontrolsoftware,andattheend,BMWand

PG&Ewillhaveabetterunderstandingofconsumercomplianceandgrid‐load

modification(BMWUSA,2015).Thisprojectison‐goingthroughDecember2016.

ProjectresultswhichwouldberelevanttoutilitiesandEVSEnetworkoperatorswill

Page 72: City of Vancouver EV Infrastructure Strategy Report · 2017-08-14 · Institute of Transportation Studies University of California, Davis 1605 Tilia Street Davis, California 95616

71

follow.

Conclusion

Infrastructureinvestmentsinthecurrentmarketshouldbemadewithaneye

towardfuturePEVmarketdevelopments.Considerationsincludeexpandingvehicle

range,increasingadoption,fastercharging,andincreasinggrid‐connectionand

chargingcontrol.Expandingvehiclerangeswillleadtoaneedforageographically

expandingchargingnetwork.IncreasingPEVadoptionwillleadtomorecharger

demandovertime,andinlessprimelocations‐requiringhomeorworkplace

chargingtomeettheneedsofownerswholiveinmulti‐unitdwellingsandolder

homeswithouttheoptionfordedicatedhome‐basedcharging.Intheshortterm,

planningshouldbeforlimitedEVSEinstallations,butsitingandconduitwhichwill

allowforeasierexpansionofthenumberofchargersatexistinglocationswillallow

foreconomicexpansionwhenchargercongestionbecomesanissue.

Thevehiclesonthemarkethavealreadymovedfrom3.3kWchargingintheearly

modelsto6.6to10kWforcurrentmodelPEVs.TheTeslaSuperChargercancharge

upto120kWcurrently,buttherehavealreadybeenannouncementsfrom

automakersthattheAudiE‐TronQuattroandthePorscheMission‐Ewillbeableto

chargeatspeedsofupto300kW,andforward‐thinkingchargingcompaniesare

alreadypreparingforthis(InsideEVs,2015).Finally,whilesomelimitedabilityto

schedulecharging–forexampleatimeronthecharger,oradelayedchargingstart

timeinthevehiclecontrolarecurrentlyavailable,thenextwaveofdevelopment

willbeformorespecificdemandmanagementofthechargingload,eitheratan

aggregatednetworkoperatorlevel,orautility‐controlleddemandmanagement

system.Thiswillallowformoreefficientuseandintegrationofrenewableswiththe

electricalgrid.Beyonddemandmanagement,itcouldleadtotheuseofPEVsas

Page 73: City of Vancouver EV Infrastructure Strategy Report · 2017-08-14 · Institute of Transportation Studies University of California, Davis 1605 Tilia Street Davis, California 95616

72

distributedstorageforahighlyvariable,renewable‐dependentelectricalgrid.

TheearlyEVSEsupplierandnetworkoperatormarketwasfloodedwithoptions,

thoughthathasnowcalmed.Ifgovernmentfundsforincentivizinginfrastructure

areused,fundingdistributionshouldconsiderthepastperformanceofEVSE

suppliersand/ornetworkoperatorsintermsoftheirreliability,maintenanceand

downtimes,plansforfutureexpansionandoperations,andtheirabilitytoadaptand

operatedemandmanagementstrategiesandeventuallyvehicle‐to‐grid(V2G)

capabilitieswithtwo‐wayelectricityflow.

InordertoincreasePEVsales,thereneedstobeanecosystemofsupporting

infrastructureandpoliciestosupportthedevelopingmarket.InsuccessfulPEV

marketsworldwide,thisincludesfinancialsubsidiesforprivatepurchaseofPEVS,

freeandpriorityparkinglocationsinbusycities,busorcarpool‐laneaccess,

governmentinvestmentincharginginfrastructure,vehicleemissionsregulations

andgovernmentsalesgoals,utilitysupportofteninthecaseofspecialtime‐of‐use

ratesforEVdrivers,educationandoutreachprograms.Thesuiteofsupporting

policiesvaries,butwhatiscommonisthatsuccessfulmarketsdonotrelyonjust

oneortwoincentivesforPEVbuyers,butcombinemanyincentivestohelpgrowthe

PEVmarket.BritishColombiaisalreadywell‐suitedcomparedtomanyother

provincesinCanadaincreatingasuiteofsupportivepoliciesandincentives.

Onewaytomakethefundingstretchfurtherwouldbebymotivatingcar

manufacturerstoengageinpartnershipswithstateandlocalgovernmentsforthe

planninganddeploymentofcharginginfrastructure,bytyinggovernment

incentivestothisengagement.

Page 74: City of Vancouver EV Infrastructure Strategy Report · 2017-08-14 · Institute of Transportation Studies University of California, Davis 1605 Tilia Street Davis, California 95616

73

Figure17:CanadianPEVPolicyAssessment(MeltonandGoldberg,inprogress)

Asacity,Vancouvercantakeseveralactionsthatcanhelpcreatetheecosystemto

encouragebothPEVadoptionandEVSEinstallations.Adoptingclearbuildingcodes,

andimplementingastreamlinedEVSEinstallationandinspectionprocess,forboth

publicandhomechargerinstallationsissomethingthatcanhaveanimpactandbe

managedatthecitylevel.InstallingEVSEsatdesirablecitylocations,witheither

freeordiscountedparkingandcharging,isanothercityinitiativethatcanhavean

impactonPEVadoptionanduse.ThecityofVancouvercanprovidestrategic

investmentscontingentonprivatematchfundingforcharginginfrastructure

installation,whichshouldfocusonovernightandworkplacechargingwhichcan

satisfythebulkofPEVchargingneeds,similartotheMassachusettsworkplace

chargingprogram.

Finally,educatingalltheparticipantsinthedecisionchain–fromcityinspectors

andelectricians,todealersandendconsumersmaybethelargesthurdleto

overcome.Someofthemosteffectivemethodsarebyrequiring,versusjustoffering,

dealertrainingaboutnewtechnologiesandvehiclemodels,providingclearand

consistentregulationsandlocalpermittingprocesses,andhavingeasyto

understandinformationregardingchargingcostsandrateoptionsprovidedbythe

Page 75: City of Vancouver EV Infrastructure Strategy Report · 2017-08-14 · Institute of Transportation Studies University of California, Davis 1605 Tilia Street Davis, California 95616

74

localutility.Usingsomeoftheavailableresourcesonaneducationalcampaigncan

helpincreasePEVadoption.

Page 76: City of Vancouver EV Infrastructure Strategy Report · 2017-08-14 · Institute of Transportation Studies University of California, Davis 1605 Tilia Street Davis, California 95616

75

References

ABB(2011)TowardWinningBusinessModelsfortheEVChargingIndustry.

https://library.e.abb.com/public/472865366f28bfc9c1257990003fbda2/4EVC200

801‐AREN_TowardsWinningBusinessModels.pdf

Axsen,J.(2010).InterpersonalInfluencewithinCarBuyers'SocialNetworks:

ObservingConsumerAssessmentofPlug‐inHybridElectricVehicles(PHEVs)andthe

SpreadofPro‐SocietalValues.InstituteofTransportationStudies,Universityof

California,Davis,ResearchReportUCD‐ITS‐RR‐10‐15

Axsen,J.,S.Goldberg,J.Bailey,G.Kamiya,B.Langman,J.Cairns,M.Wolinetz,andA.

Miele(2015).ElectrifyingVehicles:InsightsfromtheCanadianPlug‐inElectric

VehicleStudy.SimonFraserUniversity,Vancouver,Canada

Axsen,J.,S.Goldberg(2016)HowFuturePlug‐InElectricVehicleBuyersDifferfrom

PresentOwners.TransportationResearchBoardAnnualMeeting2016Paper#16‐

5702.http://pubsindex.trb.org/view/2016/C/1394120

Bailey,J.,A.Miele,J.Axsen(2015)Isawarenessofpublicchargingassociatedwith

consumerinterestinplug‐inelectricvehicles?TransportationResearchPartD361‐9.

Berg,SanfordandAndreasSavvides(1983).ThetheoryofmaximumkWdemand

chargesforelectricity.EnergyEconomics.

Bohn,Theodore(2013)PEVChargingStandardsStatusIncludingAC,DCandWireless

Technologies,SAEGovernment&IndustryMeeting,January31.

http://www.sae.org/events/gim/presentations/2013/pev_charging_standards_stat

us.pdf

Bollore.com“ElectricVehicles–Solutions”http://www.bollore.com/en‐

us/activities/electricity‐storage‐and‐solutions/electric‐vehicles‐solutions

Page 77: City of Vancouver EV Infrastructure Strategy Report · 2017-08-14 · Institute of Transportation Studies University of California, Davis 1605 Tilia Street Davis, California 95616

76

Caves,Douglas,LauritsChristensen,andJosephHerriges(1984)Modeling

alternativeresidentialpeak‐loadelectricityratestructures.JournalofEconometrics,

vol.26,pp.249‐268.

CoolCalifornia(2015)SmallBusinessAwardsProgram

http://www.coolcalifornia.org/article/small‐business‐awards‐programAccessed

June13,2016.

C2ES(2015)BusinessModelsforFinanciallySustainableEVChargingNetworks.

ReportfortheWashingtonStateLegislature’sJointTransportationCommittee.

EnergyStar(2013)EnergyStarMarketandIndustryScopingReport:ElectricVehicle

SupplyEquipment,September.

https://www.energystar.gov/sites/default/files/asset/document/Electric_Vehicle_

Scoping_Report.pdf

EPRI(2016)Plug‐InElectricVehicleMulti‐StateMarketandChargingSurvey.Electric

PowerResearchInstitute,February.

http://www.epri.com/abstracts/pages/productabstract.aspx?productId=00000000

3002002931

EuropeanCommissionTEN‐TProjectInformation.http://ec.europa.eu/inea/ten‐

t/ten‐t‐projects/ten‐t‐projects‐year/projects‐2007‐2013‐financial‐framework

EVCSFinancingProgramInformation

http://www.treasurer.ca.gov/cpcfa/calcap/evcs/index.asp

Evolution(2014)ElectricvehiclesinEurope:Gearingupforanewphase?Amsterdam

RoundTableincollaborationwithMcKinsey&Company

http://www.mckinsey.com/netherlands/our‐insights/electric‐vehicles‐in‐europe‐

gearing‐up‐for‐a‐new‐phase

Page 78: City of Vancouver EV Infrastructure Strategy Report · 2017-08-14 · Institute of Transportation Studies University of California, Davis 1605 Tilia Street Davis, California 95616

77

Francfort,Jim(2010).ElectricVehicleChargingLevelsandRequirementsOverview,

IdahoNationalLaboratory,December10

https://avt.inl.gov/sites/default/files/pdf/presentations/CleanCitiesWedinarCharg

ing12‐15‐10.pdf

Fuller,Micah(2016).WirelesscharginginCalifornia:Range,recharge,andvehicle

electrification.TransportationResearchPartCEmergingTechnologies67:343‐

356·May2016

GerkensmeyerC,MCWKintner‐Meyer,andJGDeSteese(2010).Technical

ChallengesofPlug‐InHybridElectricVehiclesandImpactstotheUSPowerSystem:

DistributionSystemAnalysis .PNNL‐19165,PacificNorthwestNational

Laboratory,Richland,WA.

Hledik,Ryan(2014).Rediscoveringresidentialdemandcharges.TheElectricity

Journal27(7):82–96.

InsideEVs(2015).FastNEDReadiesfor150kW,300kWCharging.

http://insideevs.com/fastned‐readies‐for‐150‐kw‐300‐kw‐charging/(accessed

6/20/2016).

Ji,Wei,MichaelA.Nicholas,GilTal(2015).ElectricVehicleFastChargerPlanningfor

MetropolitanPlanningOrganizations:AdaptingtoChangingMarketsandVehicle

Technology.TransportationResearchRecord2502,134–143.

Kintner‐MeyerMCW,KPSchneider,andRGPratt(2007).ImpactsAssessmentof

Plug‐inHybridVehiclesonElectricUtilitiesandRegionalUSPowerGrids:Part1:

TechnicalAnalysis.OnlineJournalofEUEC1:paper#04.

Kurani,K.S.,N.Caperello,J.TyreeHageman(2016).NewCarBuyers’ValuationofZer‐

EmissionVehicles:California.March31,reportforCaliforniaAirResourcesBoard

Agreement12‐332.http://www.arb.ca.gov/research/apr/past/12‐332.pdf

Page 79: City of Vancouver EV Infrastructure Strategy Report · 2017-08-14 · Institute of Transportation Studies University of California, Davis 1605 Tilia Street Davis, California 95616

78

Langezaal,MichielandCrijinBoumann(2011).TowardWinningBusinessModelsfor

theEVChargingIndustry,ABBAugust

https://library.e.abb.com/public/472865366f28bfc9c1257990003fbda2/4EVC200

801‐AREN_TowardsWinningBusinessModels.pdf

Leurent,FabienandElisabethWindisch(2011).Triggeringthedevelopmentof

electricmobility:areviewofpublicpolicies.EuropeanTransportResearchReview,

2011,3(4),pp.221‐235.<10.1007/s12544‐011‐0064‐3>https://hal‐enpc.archives‐

ouvertes.fr/hal‐00652472

Logios(2013).LessonsfromEarlyDeploymentsofElectricVehicleChargingStations:

CaseStudiesfromtheNortheastandMid‐AtlanticRegions.Reportforthe

TransportationandClimateInitiative.https://www.nyserda.ny.gov/Researchers‐

and‐Policymakers/Electric‐Vehicles/Resources/Best‐Practice‐Guides‐for‐Charging‐

Stations

Mayfield,David(2012).SitingElectricVehicleChargingStations,April.Sustainable

TransportationStrategiesReportforCleanFuelsOhio.http://vacleancities.org/wp‐

content/uploads/Siting‐EV‐Charging‐Stations‐FINAL‐11.pdf

Miller‐Crowley,MoultonandJensen(2014).ElectricVehiclesforWashington’sPublic

FleetsandFacilities:Addressingcommonquestionstohelppublicsectorfacilityand

fleetmanagersmakepurchasingandoperatingdecisions.

http://www.commerce.wa.gov/Documents/Agency%20EV‐

EVSE%20Guide%20%28Oct%202014%29.pdf

NationalAssociationforConvenienceandFuelRetailing.

http://www.nacsonline.com/Research/FactSheets/motor%20fuels/pages/motorfu

elsales.aspxAccessedJune20,2016.

TransportationResearchBoardandNationalResearchCouncil(2015).Overcoming

BarrierstoDeploymentofPlug‐inElectricVehicles.Washington,DC:TheNational

AcademiesPress.doi:10.17226/21725.

Page 80: City of Vancouver EV Infrastructure Strategy Report · 2017-08-14 · Institute of Transportation Studies University of California, Davis 1605 Tilia Street Davis, California 95616

79

NelsonNygaardConsulting(2014).RemovingBarrierstoElectricVehicleAdoptionby

IncreasingAccesstoChargingInfrastructure.ReportfortheSeattleOfficeof

Sustainability&Environment.

http://www.seattle.gov/Documents/Departments/OSE/FINAL%20REPORT_Remov

ing%20Barriers%20to%20EV%20Adoption_TO%20POST.pdf

NewWestTechnologiesforUSDOEVehicleTechnologiesOffice(2015)Costs

AssociatedWithNon‐ResidentialElectricVehicleSupplyEquipment.

http://www.afdc.energy.gov/uploads/publication/evse_cost_report_2015.pdf

Nicholas,MichaelA.,GilTal,JustinWoodjack(2013)CaliforniaStatewideCharging

AssessmentModelforPlug‐inElectricVehicles:LearningfromStatewideTravel

Surveys.InstituteofTransportationStudies,UniversityofCalifornia,Davis,Working

PaperUCD‐ITS‐WP‐13‐01

Nicholas,MichaelandGilTal(2013)ChargingforCharging:TheParadoxofFree

ChargingandItsDetrimentalEffectontheUseofElectricVehicles.Instituteof

TransportationStudies,UniversityofCalifornia,Davis,WorkingPaperUCD‐ITS‐WP‐

13‐02.

Nicholas,MichaelA.,GilTal,MatthewKing(2013)DCFastChargingintheContextof

BiggerBatteries.InstituteofTransportationStudies,UniversityofCalifornia,Davis,

PresentationSeriesUCD‐ITS‐PS‐13‐03

Nicholas,MichaelA.andGilTal(2013)ChargingforChargingatWork:Increasing

theAvailabilityofChargingThroughPricing.InstituteofTransportationStudies,

UniversityofCalifornia,Davis,WorkingPaperUCD‐ITS‐WP‐13‐02

Nicholas,MichaelA.andGilTal(2013)ChargingforCharging:TheParadoxofFree

ChargingandItsDetrimentalEffectontheUseofElectricVehiclesWorkingPaper.

UCD‐ITS‐WP‐13‐02,October2013.

Page 81: City of Vancouver EV Infrastructure Strategy Report · 2017-08-14 · Institute of Transportation Studies University of California, Davis 1605 Tilia Street Davis, California 95616

80

Palmer,KarenandMargaretWalls(2012)CanBenchmarkingandDisclosureLaws

ProvideIncentivesforEnergyEfficiencyImprovementsinCommercialBuildings?

WhitePaperpreparedfortheMITEnergyInitiativeSymposium,Large

Opportunities,ComplexChallenges:SeizingtheEnergyEfficiencyOpportunityinthe

CommercialBuildingsSector.May12.

PEVC(2013)AmpingupCaliforniaWorkplaces:20casestudiesonplug‐inelectric

vehiclechargingatwork.Plug‐inElectricVehicleCollaborative,November

http://www.pevcollaborative.org/sites/all/themes/pev/files/WPC_Report4web.pd

f

SilverSpringNetworks(2010)Whitepaper:TheDollars–andSense–ofEVSmart

Charging,ThinkingThroughtheOptionsforUtilityIntegrationofElectricVehicles.

http://www.silverspringnet.com/wp‐content/uploads/SilverSpring‐Whitepaper‐

EVSmartChargingBiz.pdf

U.S.EnvironmentalProtectionAgency(2012)BenchmarkingandEnergySavings.

Summaryreportavailableonlineat

http://www.energystar.gov/ia/business/downloads/datatrends/DataTrends_Savin

gs_20121002.pdf?3d9b‐91a5

WestCoastGreenHighway(2016)

http://www.westcoastgreenhighway.com/electrichighway.htmAccessedJuly22,

2016.

EV‐Sales.blogspot.com2015and2014CanadiansalesdataaccessedFebruary2016.

http://ev‐sales.blogspot.com/search/label/Canada

Page 82: City of Vancouver EV Infrastructure Strategy Report · 2017-08-14 · Institute of Transportation Studies University of California, Davis 1605 Tilia Street Davis, California 95616

81

Appendix1:ElectricVehicleChargingStationFinancingProgram

http://www.treasurer.ca.gov/cpcfa/calcap/evcs/index.asp