39
CIM Monolith Technology: Enabling Economic Vaccines Production Matjaž Peterka Vaccine Technology III, June 2010 Nuevo Vallarta, Mexico

CIM Monolith Technology: Enabling Economic Vaccines Production

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: CIM Monolith Technology: Enabling Economic Vaccines Production

CIM Monolith Technology: Enabling Economic Vaccines Production

Matjaž Peterka

Vaccine Technology III, June 2010

Nuevo Vallarta, Mexico

Page 2: CIM Monolith Technology: Enabling Economic Vaccines Production

Monoliths

Monoliths are chromatography media that are cast as a singleblock and inserted into a chromatography housing. They arecharacterized by a highly inter-connected network of channels,sometimes likened to a sponge.

Page 3: CIM Monolith Technology: Enabling Economic Vaccines Production

CIM Convective Interaction Media Monoliths

Made of highly cross-linked porous rigid monolithic poly(glycidylmethacrylate-co-ethylene dimethacrylate) or poly(styrene-divinylbenzene) polymers

Page 4: CIM Monolith Technology: Enabling Economic Vaccines Production

Why CIM Monoliths?

• Vaccines are based on large biomolecules and largecomposite biomolecules such as viruses

• Monoliths support high capacity and high resolution for suchmolecules

• Monoliths avoids generation of shear forces

Page 5: CIM Monolith Technology: Enabling Economic Vaccines Production

CIM Monoliths Structure

• Channel diameter is 1-2 µm

• Channels are interconnected

• Channel volume is 60%

The architecture of monoliths is fundamentally different from packed particle columns.

Page 6: CIM Monolith Technology: Enabling Economic Vaccines Production

CIM Monoliths Properties

• Convective transport

• High surface accesibility

• Low pressure drop

Page 7: CIM Monolith Technology: Enabling Economic Vaccines Production

Mass Transport in Chromatographic Supports

Mass transport refers to the way solutes move through achromatography column.

• Diffusion

– Migration of the solutes from an area of high to an area of lowconcentration

• Convection

– Movement indused by external force

Page 8: CIM Monolith Technology: Enabling Economic Vaccines Production

Mass Transport by Diffusion

Mass transport in packed porous particle columns is a combination ofconvective transport through the void volume, and diffusive transportfrom particle surfaces into the pores.

Page 9: CIM Monolith Technology: Enabling Economic Vaccines Production

Molecular Mass: Diffusivity

The larger the solute, the more slowly it diffuses. The more slowly itdiffuses, the longer the time required for it to enter or exit from a pore.

molecule MW D (cm2/s)

H+ 1 Da 1 x 10-4

NaCl 58 Da 1.4 x 10-5

BSA 66 kDa 6.1 x 10-7

IgG 150 kDa 4.2 x 10-7

TMV 40 000 kDa 5 x 10-8

DNA 4.4 kbp 1.9 x 10-8

DNA 33 kbp 4 x 10-9

Page 10: CIM Monolith Technology: Enabling Economic Vaccines Production

Convective Mass Transport

Laminar flow prevents the eddy formation that causes dispersion and shear in packed particle columns. In further contrast, the axis of flow in a monolith is determined by local channel orientation. This prevents formation of “flow-shadows” that occur below the abaxial particle surfaces in packed columns

Courtesy P. Gagnon www.validated.com

Page 11: CIM Monolith Technology: Enabling Economic Vaccines Production

Convective Transport: Consequences

• Flow independent properties

Podgornik et al., Anal. Chem. 72 (2000) 5693

0

10

20

30

40

50

60

0 50 100 150 200 250 300

Volume [ml]

Abs

orba

nce

at 2

80 n

m [m

AU

]

0

20

40

60

80

100

Buf

fer A

[%]

40 ml/min80 ml/min120 ml/min160 ml/min200 ml/min240 ml/min

12

3

0

50

100

150

200

250

300

0 100 200 300 400 500 600 700 800 900 1000

Elution volume (ml)

Abs

orba

nce

at 2

80 n

m (m

AU

)

35.9 ml/min

76.2 ml/min

152.7 ml/min

224.6 ml/min

681 ml/min

Flow rate

Page 12: CIM Monolith Technology: Enabling Economic Vaccines Production

Molecule Size: Surface Accesibility

Most porous particle chromatography media are optimized for proteinapplications. Average pore size among different products ranges from about 60 to100 nm. Many plasmids and virus particles are larger and cannot enter such pores.Since most of the surface area resides within the pores, this dramatically reducesbinding capacity

Molecule nm

Proteins 1-3

IgM 25

Plasmids 150-250

Rotavirus 130

Poxvirus 200 x 500

T4 220 x 85Courtesy P. Gagnon www.validated.com

Page 13: CIM Monolith Technology: Enabling Economic Vaccines Production

Surface accesibility fo CIM Monoliths

• High capacity for viruses and DNA

Molecule Column Capacity

Plasmid DNA CIM DEAE 8 mg/mL

Genomic DNA CIM DEAE 15 mg/mL

Endotoxins CIM QA >115 mg/mL

ToMV CIM QA 2.0E+14 vp/mL

Influenza virus CIM QA 2.0E+10 vp/mL

Adenovirus CIM QA 3.0E+12 vp/mL

Ad3 VLPs CIM QA 7.3E+16 VLP/mL

Page 14: CIM Monolith Technology: Enabling Economic Vaccines Production

Porosity

• Low pressure drop

Page 15: CIM Monolith Technology: Enabling Economic Vaccines Production

CIM Monoliths Properties

• Flow independent properties

• High capacity for viruses and DNA

• Low pressure drop

• Fast separations

• Low buffer consumption

• High concentration factor

Process economics

Page 16: CIM Monolith Technology: Enabling Economic Vaccines Production

CIM Monoliths Bed Configuration

Small scale columns

CIM disks

16 mm

12 mm

3 mm

Large scale column CIM Tubes

Page 17: CIM Monolith Technology: Enabling Economic Vaccines Production

CIM Monoliths Applications AreaVirus

Plasmid DNA

Endotoxin

Large proteins

DNA depletion

CIM

Page 18: CIM Monolith Technology: Enabling Economic Vaccines Production

CIM DEAE for Plasmid DNA Purification

• High and flow independant dynamic binding capacity• 8 mg of pDNA per ml of CIM DEAE

• Separation of open circular and super coild plasmid DNA

– RNA

– OC pDNA

– SC pDNA

Poster 35

Page 19: CIM Monolith Technology: Enabling Economic Vaccines Production

CIM C4 HLD for Plasmid DNA Purification

• Separation of isoforms and genomic DNA

M L OC SC gDNA

Page 20: CIM Monolith Technology: Enabling Economic Vaccines Production

CIM Based Plasmid DNA Purification Process

Results Specs

pDNA (μg/mL) 300 -

pDNA (mg) 34 -

Homogeneity (%SC) 98 >95

Endotoxins (EU/mg pDNA) 1.1 <100

Host cell proteins (μg/mL) 1.1 <10

gDNA (μg/mg pDNA) 3.4 <50

RNA (μg/mL) 0 <4%

Yield (%) 90% -

E. coli culture with plasmid

Cell harvest

Alkaline lysis with adjustment to0.5 M CaCl2

Clarification

CIM® DEAE

CIM® C4

Buffer exchange

Adjustment to binding conditions

Adjustment with (NH4)2SO4

Page 21: CIM Monolith Technology: Enabling Economic Vaccines Production

Productivity of CIM Plasmid DNA Purification Process

Process SC (%) Productivity

Monoliths 98 3.48 g l-1 h-1

Particles 98 0.35 g l-1 h-1

Page 22: CIM Monolith Technology: Enabling Economic Vaccines Production

Plasmid DNA Purification: Large Plasmids

Dynamic binding capacity ofCIM DEAE for 39.4 kbp plasmid

Linear velocity

cm/h

q39.4kb 50%

mg/mL

119.4 13.5

238.7 12.4

334.2 12.8

AFM picture of 39.4 kbp plasmid

Page 23: CIM Monolith Technology: Enabling Economic Vaccines Production

Plasmid DNA Purification: Large Plasmids

Low shear forces: 39.4 kbp plasmid remain intact in sc form

M CTR E E E

Page 24: CIM Monolith Technology: Enabling Economic Vaccines Production

Replication Defficient Influenza Virus Vaccine

Page 25: CIM Monolith Technology: Enabling Economic Vaccines Production

CIM QA vs CIM SO3

Influenza A (H1N1) CIM QA CIM SO3

TCID50 (%) 74.3 63.3

Proteins (%) 17.4 5.5

DNA (%) 0.53 2.8

DBC (TCID50/mL) 2.0E+10 9.0E+08

Page 26: CIM Monolith Technology: Enabling Economic Vaccines Production

AIEX: Robustness

-200

0

200

400

600

800

1000

1200

0 1 2 3 4 5 6 7 8

Time (minutes)

A28

0 (m

Au)

Virus: Influenza A H1N1Column: CIM QA-8FFlow rate: 43 ml/min

-300

200

700

1200

1700

2200

0 2 4 6 8 10

Time (minutes)

UV2

80

Virus: Influenza A H5N1Column: CIM QA-8FFlow rate: 43 ml/min

-200

0

200

400

600

800

1000

1200

0 1 2 3 4 5 6 7 8

Time (minutes)

A28

0 ( m

Au)

Virus: Influenza BColumn: CIM QA-8FFlow rate: 43 ml/min

-200

0

200

400

600

800

1000

1200

1400

0 1 2 3 4 5 6 7 8

Time (minutes)

A28

0 (m

Au)

Virus: Influenza A H3N2Column: CIM QA-8FFlow rate: 43 ml/min

H1N1 H3N2

H5N1 Influenza B

Page 27: CIM Monolith Technology: Enabling Economic Vaccines Production

CIM QA for Influenza A and B

%

Virus yield 75 25

DNA depletion 72 10

Protein depletion 95 3

• H1N1, H5N1, H3N2, FluB

Page 28: CIM Monolith Technology: Enabling Economic Vaccines Production

Host cell DNA Removal

• CIM Monoliths have high ligand density

ExpDNA

conc.(ng/ml)Load volume

(ml)DNA conc.

(ng/ml)Elution

volume (ml)DNA removal

(%)

LC1-1 8527 1300 25,4 120 99,97LC1-2 10153 1300 110,5 120 99,90R&D3 1510 1350 1,5 115 99,99LPC1 1273 1400 4,4 120 99,97LPC2 1843 1300 8,73 120 99,96

Page 29: CIM Monolith Technology: Enabling Economic Vaccines Production

Purification of Replication Defficient Influenza Vaccine: The Process

Expansion of Vero cells

Harvest and Clearance

TFF

CIM QA

SEC

Infection

Purified Vaccine Bulk

Benzonase

Poster 36

Page 30: CIM Monolith Technology: Enabling Economic Vaccines Production

Purification of Ad3 Dodecahedron Particles (VLP)

0

100

200

300

400

500

600

700

800

0 1 2 3 4 5 6 7 8

t [min]

A [m

AU]

0

20

40

60

80

100

120

grad

ient

[% B

]

E5

E4

FT

E1E2

E3

E6

E7E8

M L FT E1 E2 E3 E4 E5 E6 E7 E8CIMac QA20 mM Tris + 1 mM EDTA + 5% glicerol, pH 7.5; 20 mM Tris + 1 mM EDTA + 5% glicerol + 1 M NaCl, pH 7.5Flow: 1 mL/minV inj. = 60 μL

Page 31: CIM Monolith Technology: Enabling Economic Vaccines Production

IgM Purification

• Polishing step on CIM SO3

Load: 43 mL QA eluate pool

Column: 8 mL SO3 monolith

Flow rate: 30 mL/min; 3.75 CV/min

B. A: 10 mM Na phosphate, 2 M Urea, pH 7.0

B. B: 500 mM Na phosphate, pH 7.0

Courtesy P. Gagnon www.validated.com

Page 32: CIM Monolith Technology: Enabling Economic Vaccines Production

IgM Purification

Heavy chain

Light chain

Courtesy P. Gagnon www.validated.com

Page 33: CIM Monolith Technology: Enabling Economic Vaccines Production

CIM Monoliths for Analytics and IPC

CIMac SO3 Analytical ColumnTM (5.2 mm I.D. x 5.0 mm)Buffer A: 20 mM phosphate, pH 6.0Buffer B: 20 mM phosphate + 1.0 M NaCl, pH 6.0Linear gradient from 0 to 25 % buffer B in 20 CVInjection volume: 10 μl(1)myoglobin,(2)trypsinogen,(3)ribonuclease A,(4)alpha-chymotrypsinogen A,(5)cytochrome C,(6)lysozyme

0,00 0,35 0,700

50

100

150

0,00 0,25 0,500

50

100

150

6

54

32

1

Rela

tive

abso

rban

ce a

t 280

nm

(mAU

)

Time (min)

4 mL/min

6 mL/min

Page 34: CIM Monolith Technology: Enabling Economic Vaccines Production

CIMac Based Analytics of Plasmid DNA

-2

8

18

28

38

48

58

68

78

0 2 4 6 8 10 12 14 16 18Time [min]

Rela

tive

Abso

rban

ce A

260n

m [m

AU]

0

20

40

60

80

100

120

alkaline lysate alkaline lysate with 0.5 M CaCl2 Buffer B [%]

Buff

er B

[%]

-22

-2

18

38

58

78

98

0 2 4 6 8 10

Time [min]

Rela

tive

Abso

rban

ce A

260

mAU

0

20

40

60

80

100

120

pDNA final controlgradient

Buffe

r B

E. coli culture with plasmid

Cell harvest

Alkaline lysis with adjustment to0.5 M CaCl2

Clarification

CIM® DEAE

CIM® C4

Buffer exchange

Adjustment to binding conditions

Adjustment with (NH4)2SO4

Page 35: CIM Monolith Technology: Enabling Economic Vaccines Production

Virus Quantification by Monolith Chromatography

Page 36: CIM Monolith Technology: Enabling Economic Vaccines Production

Virus Quantification by Monolith Chromatography

Page 37: CIM Monolith Technology: Enabling Economic Vaccines Production

Conclusions

• CIM Monoliths– Large channels (1.5 um)

– Convective mass transport

– High surface accesibility

– Low pressure drop

– Chemical resistant

• Designed for large proteins, DNA and viruses

Page 38: CIM Monolith Technology: Enabling Economic Vaccines Production

Acknowledgments

BIA Separations SloveniaFran SmrekarMarko BanjacPetra KrambergerAleš PodgornikMiloš BarutAleš Štrancar

BIA Separations USATony Brazzale

BIA Separations AustriaChristina Paril