47
Pharmaceu)cal Process Development Chromatography Department of Chemical Engineering and Chemical Technology Richard Esco<, 2014

Chromatography Oct 2014

Embed Size (px)

DESCRIPTION

cr

Citation preview

Page 1: Chromatography Oct 2014

Pharmaceu)calProcessDevelopment

Chromatography

DepartmentofChemicalEngineeringandChemicalTechnology

RichardEsco<,2014

Page 2: Chromatography Oct 2014

Slide 2

PharmaceuticalProcess

DevelopmentChromatography

Content– History&Background– Types

• HPLC&uHPLC– Normalphase– ReversedPhase– Prepara)ve– SimulatedMovingBed– IonExchange– SizeExclusion

• GC– Packed– Capillary

• SuperCri)calFluid• ThinLayer• CapillaryElectrophoresis• Chiral

• Toillustratetherangeandscopeofthetechniques,instrumenta)onandapplica)ons.• Provideanapprecia)onoftheadvantagesandlimita)onsforuse‐op)misa)on.• TounderstandthesynergieswithengineeringprinciplesforTheore)calPlatesandScale‐up.

LectureAims:

Page 3: Chromatography Oct 2014

Slide 3

PharmaceuticalProcess

DevelopmentChromatography‐HistoryTowritewithcolours‐literallytranslatedfromitsGreekrootschromaandgraphein.

1903‐ChromatographywasfirstdevelopedbytheRussianbotanistMikhailTswe<‐heproducedasepara)onofplantpigmentsusingacolumnofcalciumcarbonate

1927‐DrHeinrichWieland(NobelLaureate)“Uptonowwehavelearnedwithmuchefforttodis)ll,crystalliseandrecrystallise,andnowtheycomealongandjustpourthestuffthroughatube!”

1938‐IzmailovandShraiberimplementedTLC

1941‐ArcherJohnPorterMar)nandRichardLaurenceMillingtonSyngedevelopedliquid‐liquidpar))onchromatographysepara)ngvariousaminoacids

1944‐AJPMar)ncreatedpaperchromatography

1947‐FritzPriorandErikaCremerseparatedoxygen&carbondioxide‐gaschromatography

1952‐AJPMar)ndevelopedGas‐Liquidchromatography(NobelPrize)

1956‐J.J.VanDeemterintroducedtheequa)onwhichshowsthedependenceofthetheore)calplateheight(HETP)onthemobilephaselinearvelocity.OriginallyintroducedforGC,butithappensthatthesamephysicalprocessesoccursinHPLC.

1960‐JohnKnox(Edinburgh)introducedIon‐pairchromatography,reducedparametersandporousgraphi)ccarbon.

1963‐JCGiddingsusedsilicagelofsmallspecifiedpar)clestoachievehighresolu)onandspeed.

1966‐Hovarthcoined“HPLC”

1972‐Chemicallymodifiedsta)onaryphases(reversedphase)wereprepared

1973‐Merckintroducedsphericalpar)cles

Page 4: Chromatography Oct 2014

Slide 4

PharmaceuticalProcess

DevelopmentChromatography‐Types

Thebasisofalltypesofchromatographyisthepar))onofthesamplecompoundsbetweenasta)onaryphaseandamobilephasewhichflowsoverand/orthroughthesta)onaryphase.Differentmechanismsfromdifferentcombina)onsofgaseous,solidorliquidphasesgiverisetothemaintypesofchromatography

•Adsorp)on•Par))on•IonExchange•SizeExclusion

Page 5: Chromatography Oct 2014

Slide 5

PharmaceuticalProcess

DevelopmentChromatography‐Types

• Adsorp'onChromatographyusesasolidsta)onaryphaseeg,silicagel,ac)vatedcarbonandaliquidorgaseousmobilephase.Solutesareseparatedaccordingtotheirdifferentadsorp)oncharacteris)csontothesta)onaryphase.

• Par''onChromatographyisbasedonathinfilmformedonthesurfaceofasolidsupportbyaliquidsta)onaryphase.Solutesequilibratebetweenthemobilephaseandthesta)onaryliquidphase.

• IonExchangeChromatographyaresin(thesta)onarysolidphase)isusedtocovalentlya<achanionsorca)onsontoit.Soluteionsoftheoppositechargeinthemobileliquidphasearea<ractedtotheresinbyelectrosta)cforces.

• MolecularorSizeExclusionChromatographyalsoknownasgelpermea)onorgelfiltra)on,thistypeofchromatographylacksanya<rac)veinterac)onbetweenthesta)onaryphaseandsolute.Theliquidorgaseousphasepassesthroughaporousgelwhichseparatesthemoleculesaccordingtotheirsize.Thesmallporesexcludethelargersolutemolecules,butallowsmallermoleculestoenterthegel,causingthemtoberetained.Thiscausesthelargermoleculestopassthroughthecolumnatafasterratethanthesmallerones.

Page 6: Chromatography Oct 2014

Slide 6

PharmaceuticalProcess

DevelopmentChromatography‐Techniques

• HPLC&uHPLC– Normalphase(Polarsta)onaryphase&non‐polarmobilephase)

– ReversedPhase(Non‐polarsta)onaryphase&polarmobilephase)

– Prepara)ve(Columndiametersof2cm‐1m)

– SimulatedMovingBed(con)nuouscountercurrentchromatography)

– IonExchange(polymerphaseswhichexchangeionswithsolutes)

– SizeExclusion(eghighlycrosslinkedpolymethacrylatecolumns)

• GC– Packed(Carbowax‐PEG,Chromosorb‐diatomaceousearth)

– Capillary(CoatedegPEGorsiloxanes)• SuperCri)calFluid(Normalphasewithsupercri)calCO2+egMeOH)

• ThinLayer(sta)onaryphaseiscoatedonasolidsupportegglass)• CapillaryElectrophoresis(separatesionsbasedontheirelectrophore)cmobility

withtheuseofanappliedvoltage)

• Chiral(thesta)onaryphasecontainsasingleenan)omerofachiralcompound)

Page 7: Chromatography Oct 2014

Slide 7

PharmaceuticalProcess

DevelopmentReversedPhase

• Thetechniqueofusingalkylchainscovalentlybondedtothesolidsupportcreatesahydrophobicsta)onaryphase,whichhasastrongeraffinityforhydrophobiccompounds.Theuseofahydrophobicsta)onaryphasecanbeconsideredtheopposite,or"reverse",ofnormalphasechromatography‐hencetheterm"reversedphasechromatography”

• Alkyl(R)bondedphasesaresilicabasedandarepreparedbyreac)ngthehydroxylgroupsonthesurfaceofthesilicawithorganicsilylchloridesorsilylesters.Anyremainingunreactedsilanolgroupsareblockedbysubsequentmethyla)onwithegtrimethylsilazane.

• Themostpopularcolumnisanoctadecylcarbonchain(C18)bondedsilica.ThisisfollowedbyC8bondedsilica,puresilica,cyanobondedsilicaandphenylbondedsilica.

• NotethatnotallC18columnshaveiden)calreten)onproper)es.Surfacefunc)onalisa)onofsilicacanbeperformedinamonomericorapolymericreac)onwithdifferentshort‐chainorganosilanesusedinasecondsteptocoverremainingsilanolgroups(end‐capping).Whiletheoverallreten)onmechanismremainsthesame,subtledifferencesinthesurfacechemistriesofdifferentsta)onaryphaseswillleadtochangesinselec)vity.

• Commonapplica)onsinclude:Materialpurityassessment,reac)onmonitoring,purifica)on,iden)fica)onofimpuri)es,andqualitycontrol.

Page 8: Chromatography Oct 2014

Slide 8

PharmaceuticalProcess

DevelopmentInstrumenta)on‐HPLC

Agilent 1200

Page 9: Chromatography Oct 2014

Slide 9

PharmaceuticalProcess

DevelopmentInstrumenta)on‐GC

Page 10: Chromatography Oct 2014

Slide 10

PharmaceuticalProcess

DevelopmentExampleApplica)onGCSepara)onof3,4,5‐TrimethoxybenzaldehydeandImpuri)es

Column:25metres;,0.3mmIDfusedsilica,0.14umOV‐1701

Temperature:130oCisothermal

Page 11: Chromatography Oct 2014

Slide 11

PharmaceuticalProcess

DevelopmentExampleApplica)on

GCSepara)onStandardMixtureofReferenceMaterialsusingFIDdetec)on

Page 12: Chromatography Oct 2014

Slide 12

PharmaceuticalProcess

DevelopmentExampleApplica)onGCSepara)onofInsec)cidePermethrin

Page 13: Chromatography Oct 2014

Slide 13

PharmaceuticalProcess

DevelopmentExampleApplica)onGCSepara)onofPharmaceu)calRawMaterialandIntermediates

Column:OV‐7Detector:FIDTemperature:180oCto270oC

andE/Zisomersof

Page 14: Chromatography Oct 2014

Slide 14

PharmaceuticalProcess

DevelopmentExampleApplica)onGCSepara)onofOilofSassafras

Column:25meterby0.3mmIDfusedsilica, 0.14umpolyethyleneglycol20M

Temperature:60oCfor4mins,5OCperminto180oC

Detector:FID

Thisfragrantoilisdis)lledfromtherootbarkisextensivelyusedinthemanufactureofthecoarserkindsofperfume,andforscen)ngthecheapergradesofsoap.Theoilusedinperfumesisalsoextractedfromthefruits

Page 15: Chromatography Oct 2014

Slide 15

PharmaceuticalProcess

DevelopmentExampleApplica)onGCSepara)onPolychlorinatedBiphenyls‐PCBs

100ppmofAroclor1015and1260

Column:OV‐73

Temperature:60oCto275oC

Detector:ElectronCapture

PCBswerewidelyusedasdielectricandcoolantfluids,forexampleintransformers,capacitors,andelectricmotorss

Page 16: Chromatography Oct 2014

Slide 16

PharmaceuticalProcess

DevelopmentSimulatedMovingBed

Page 17: Chromatography Oct 2014

Slide 17

PharmaceuticalProcess

DevelopmentCESimula)on

Page 18: Chromatography Oct 2014

Slide 18

PharmaceuticalProcess

Development

• Many commercial instruments now perform both supercritical fluid chromatography and ultra high-performance/pressure liquid chromatography (uHPLC).

• This provides two orthogonal techniques and higher component selectivity.

• With operating pressures up to 600 bar (9000 psi) capability small particle HPLC and SFC can be used.

• Using gaseous CO2 as the mobile phase makes interfacing with mass spectrometers relatively straight forward.

Instrumenta)on‐SFC

Page 19: Chromatography Oct 2014

Slide 19

PharmaceuticalProcess

Development

Page 20: Chromatography Oct 2014

Slide 20

PharmaceuticalProcess

Development

• Theore)calAspects

– Efficiency‐reducedparametersandVanDeemterplots

– Resolu)on‐Theore)calPlates

– ColumnLoadingsandcycle)mes.

• Detectors

– FID,TCD,UV‐DA,MS,ECD,Fluorescence

• Quan)ta)on/Calibra)ons– ResponseFactors

– Rela)veResponseFactors

– InternalStandards

– StandardAddi)on

– Prepara)veScale‐up

H = A + B/u + Cu

h = H

dp

v =udp

Dm

Theore)calAspects

Page 21: Chromatography Oct 2014

Slide 21

PharmaceuticalProcess

DevelopmentTheore)calAspectsReten)on

Compoundswillspendsome)meinthesta)onaryphase,andsome)meinthemobilephase.The)mespentbyanindividualmoleculeineachofthe2phasesiscalledthecapacityorreten)onfactork.Thera)oof)mespentinthe2phasesisequaltothera)oofthemassofthecompoundsinthe2phases.

k=)mespentinthesta)onaryphase=massinthesta)onaryphase)mespentinthemobilephase massinthemobilephase

Thera)ooftheconcentra)onofacompoundinthe2phasesiscalledthepar))oncoefficient(K)

K = molar concentration in the stationary phase

molar concentration in the mobile phase

ThefactorskandKarerelatedtoeachotherbasedonanotherparametercalledthephasera)oβ.

β = volumeofmobilephase volumeofsta)onaryphase k = K/βand

Whichshowsthatthemassra)oisafunc)onoftheconcentra)oninthetwophasesandtherela)vevolumeofthetwophases

Page 22: Chromatography Oct 2014

Slide 22

PharmaceuticalProcess

DevelopmentTheore)calAspectsReten)on

The)meittakesforacompoundtotravelthroughthecolumn(fromwhenananalyteisinjectedtowhenitreachesthedetector)isknownasthereten'on'me(tr).Ifacompoundisnotretainedatall,itwills)lltake)metotravelthroughthecolumn.Therefore,inordertomakearela)onshipbetweenkandreten)on)me,anadjustmentmustbemadeforthistravel)me.

The)meittakesforanunretainedcompoundtotravelthroughthecolumnisouenknownasthedead'me(to).

Usingthedead)me,thereten)onfactor(k)foracompoundcanberelatedtothereten)on)me.

k = (tr – to)/ to Wheretr=thereten)on)meofthecompound,andto=thedead)me

Selec)vityα α =k2

k1

Page 23: Chromatography Oct 2014

Slide 23

PharmaceuticalProcess

Development

Alsoknownascolumnefficiency,thenumberoftheore)calplatesisamathema)calconceptanditisanindirectmeasureofpeakwidthforapeakataspecificreten)on)me.

Theore)calAspectsNumberofTheore)calPlates(N)

N = 5.54 tR

wh

2

N=numberoftheore)calplatestr=reten)on)mewh=peakwidthathalfheight()me)

Acolumnwithahighnumberoftheore)calplateswillhaveanarrowerpeakatagivenreten)on)methanacolumnwithalowerNnumber.

Highcolumnefficiencyisbeneficialsincelesspeaksepara)on(meaningloweralpha,α‐selec)vity)isrequiredtocompletelyresolvecomponents.Onsta)onaryphaseswherethealphas(α)aresmall,more efficient columns are needed. Column efficiency is a func)on of the column dimensions(diameter, length and film thickness), the type of carrier gas and its flow rate or average linearvelocity, and the compound and its reten)on. For column comparison purposes, the number oftheore)calplatespermeter(N/m)isouenused.

Page 24: Chromatography Oct 2014

Slide 24

PharmaceuticalProcess

Development

Anothermeasureofcolumnefficiencyistheheightequivalenttoatheore)calplate‐Handusuallyreportedinmillimeters.Theshortereachtheore)calplate,themoreplatesare"contained"inanylengthofcolumn.This,ofcourse,translatestomoreplatespermeterandahighercolumnefficiency.

Theore)calAspectsHeightEquivalenttoaTheore)calPlate(H)

H = L

N

N=numberoftheore)calplatesL =Lengthofcolumn(mm)

Page 25: Chromatography Oct 2014

Slide 25

PharmaceuticalProcess

Development

Thehighertheresolu)on,thelesstheoverlapbetweentwopeaks.Separa)onisonlythedistanceor)mebetweentwopeakmaxima(alpha,α).Resolu)ontakesintoconsidera)onbothalpha(α)andthewidthofthepeaks.Itiscalculatedusingeitheroftheequa)onsbelow.Baselineresolu)onusuallyoccursatresolu)onnumberof1.50;however,thereisnovisiblebaselinebetweenthetwopeaks.Numbersgreaterthan1.50indicatethereisbaselinebetweenthepeaksandnumberslessthan1.50indicatethereissomedegreeofco‐elu)on.

Theore)calAspectsResolu)on‐R

R = 1.18 t

R2 - t

R1

wh1

+ wh2

R = 2 t

R2 - t

R1

wb1

+ wb2

tR1 = retention time of first peaktR2 = retention time of second peakWh1 = peak width at half height of first peak (time)Wh2 = peak width at half height of second peak (time)Wb1 = peak width at base pf first peak (time)Wb2 = peak width at base of second peak (time)

Page 26: Chromatography Oct 2014

Slide 26

PharmaceuticalProcess

DevelopmentResolu)onandEfficiency

Resolu)onisrelatedtothesepara)onorcolumnefficiencyandalsotheselec)vity(α).

Theeffectofchangingtheseparameterscanbeeasilyassessedusingtheequa)on:

k2 = retention factor of second peak

Selec)vity α =k2

k1

R = N

4

- 1

k2

k2 + 1

α

α

Page 27: Chromatography Oct 2014

Slide 27

PharmaceuticalProcess

DevelopmentExample1

2 3

)me tR1 tR2 tR3

N = 5.54 tR

wh

2

t0

Wh1

Wh2

Wh3

Average N = 6931

(104) (146) (152)

(3.7)

(3.7)

(4.0)

(61.5)

N1 = 5.54

104

3.7

2

= 4377

N2 = 5.54

146

3.7

2

= 8626

N3 = 5.54

152

4.0

2

= 7791

Page 28: Chromatography Oct 2014

Slide 28

PharmaceuticalProcess

DevelopmentExample1

2 3

t0

)me tR1 tR2 tR3

Wh1

Wh2

Wh3

(104) (146) (152)

(3.7)

(3.7)

(4.0)

R = 1.18 t

R3 - t

R2

wh3

+ wh2

R = 1.18 152 - 146

4.0 + 3.7

=0.78

(61.5)

Page 29: Chromatography Oct 2014

Slide 29

PharmaceuticalProcess

DevelopmentExample1

2 3

t0

)me tR1 tR2 tR3

Wh1

Wh2

Wh3

(104) (146) (152)

(3.7)

(3.7)

(4.0)

(61.5)

α

1.47

1.37

= 1.07=

k2

= 152 - 61.5

61.5

= 1.47

R = 6921

4 1.07 - 1

1.07

1.47

1.47 + 1

=0.80

α =k2

k1

R = N

4

- 1

k2

k2 + 1

α

α

k1

= 146 - 61.5

61.5

= 1.37

Page 30: Chromatography Oct 2014

Slide 30

PharmaceuticalProcess

DevelopmentExample1

2 3

t0

)me tR1 tR2 tR3

Wh1

Wh2

Wh3

(104) (146) (152)

(3.7)

(3.7)

(4.0)

(61.5)

=1.5forbaselineresolu)on

1.5 = N

4 1.07 - 1

1.07

1.47

1.47 + 1

N = 24,068

R = N

4

- 1

k2

k2 + 1

α

α

Page 31: Chromatography Oct 2014

Slide 31

PharmaceuticalProcess

DevelopmentTheore)calAspectsVanDeemterrela)onship

H = L

N

ThevalueofHdependsprimarilyonfourfactors,1)thevelocityofthemobilephase,2)mul)pathdiffusion,3)thediffusionofthecompoundinthemobilephase,and4)thetransferofthecompoundbetweenthesta)onaryphaseandthemobilephase.Forcolumnspackedwithpar)cles(HPLCcolumns),thesefactorscanbeexpressedbythefollowingformula

H = A + B/u + (Cs + Cm) u

u is the average linear mobile phase velocity,A is a constant expressing diffusion due to non uniformity of the packing.B is a constant expressing the longitudinal diffusion coefficient in the mobile phaseCs is the mass transfer term in the stationary phaseCm is the mass transfer term in the mobile phase

Page 32: Chromatography Oct 2014

Slide 32

PharmaceuticalProcess

Development

TheATerm

Inpackedcolumns,peak‐broadeningistheresultofanumberoffactors.Asmoleculesoftheanalytemovethroughthecolumn,theytakemanydifferentpathsaroundthepackedpar)cles.Someofthesepathsareundoubtedlylongerthanotherssoasthemoleculesmovethroughthecolumn,theytendtospreadout.Theamountofspreadingisaffectedbythenatureofthecolumnmaterialandhowwellthecolumnispacked.Thisfactorisgenerallypropor)onaltothepar)clesizeofthepackingmaterial.Thisfactormustbetakenintoaccountforpackedcolumns,butforcapillarycolumns,thistermisnotneededsincetherearenopar)cles

12

Flow

Direction

Pathways of two molecules

during elution. Distance traveled

by molecule 1 is longer than

that traveled by molecule 2, thus

molecule 1 will take longer to

elute.

Theore)calAspects

Page 33: Chromatography Oct 2014

Slide 33

PharmaceuticalProcess

DevelopmentTheore)calAspects

TheLongitudinalDiffusionTermB/u

Longitudinaldiffusionalsocontributestopeakbroadening.Inthisprocess,analytesdiffusefromareasofhighconcentra)ontomorediluteareainfrontofandbehindthemovingband.Thedegreeoflongitudinaldiffusionisreducedtosomeextentbythepackingmaterial.Atlowveloci)eslongitudinaldiffusionhasanega)veeffectonresolu)on,butthiseffectisnegligibleathigherveloci)es.Thistermisveryimportantingaschromatographyasdiffusioncoefficientsingassesareordersofmagnitudehigherthaninliquids.Inliquidchromatography,thistermistypicallyclosetozerorela)vetotheotherterms.

TheMassTransferTermsCu.

Themasstransfertermrelatestothefactthatequilibriumbetweenthemobileandsta)onaryphasesisneverrealisedinachromatographycolumn.Ittakes)meforanalytesinthemobilephasetomoveintothesta)onaryphase.Becausenoequilibriumisreached,someoftheanalytesaresweptaheadoftheofthemainband.Italsotakes)meformoleculestomoveoutofthesta)onaryphase,andsomeoftheanalytesmoleculeswillbeleubehindbytherapidlymovingmobilephase.Likethelongitudinalterm,themasstransfertermisbasedondiffusion.However,longitudinaldiffusiontakesplaceparalleltothedirec)onofflow,andthereforeisinverselyrelatedtothemobilephaseflowrate,whilemasstransferdiffusiontakesplaceperpendiculartotheflowrate.Asaconsequence,thefasterthemobilephasemoves,theless)methereisforequilibriumbetweenthephasesandthemasstransfereffectonpeakbroadeningisdirectlyrelatedtomobilephasevelocity.

Page 34: Chromatography Oct 2014

Slide 34

PharmaceuticalProcess

Development

Forhighresolu)on,thesediffusionfactorsshouldbeminimized(plateheightshouldbesmall).Thereisamop)mumatminimumH.TheVanDeemterplotshowsthattheeffectofthevariousband‐broadeningparametersonplateheight.Peakbroadeningduetomul)pathdiffusionisrela)velyconstantoverthenormalrangeofmobilephaseveloci)es,whilepeakbroadeningduetomobilephasemasstransferincreaseswithmobilephasevelocity.Onthecontrary,peakbroadeningduetolongitudinaldiffusionishighatlowveloci)esandhasalessereffectasmobilephasevelocityincreases.Theoveralleffectisthatthereisanintermediatevelocitythatyieldsthesmallestplateheightandhencethehighestresolu)on.However,intheinterestofspeedofanalysis,recommendedveloci)esareouensetsomewhathigherthatthis.

Linear Velocity, u

Pla

te H

eig

ht,

H

Multipath Term, A

Mass Transfer (both), Cu

Longitudinal diffusion, B/u

A + B/u + Cu

Theore)calAspects

Page 35: Chromatography Oct 2014

Slide 35

PharmaceuticalProcess

Development

Decreasingpar)clesizehasbeenobservedtolimittheeffectofflowrateonpeakefficiencysmallerpar)cleshaveshorterdiffusionpathlengths,allowingasolutetotravelinandoutofthepar)clefaster.Thereforetheanalytespendsless)meinsidethepar)clewherepeakdiffusioncanoccur.No)cethatasthepar)clesizedecreases,thecurvebecomesfla<er,orlessaffectedbyhighercolumnflowrates.Smallerpar)clesizesyieldbe<eroverallefficiencies,orlesspeakdispersion,acrossamuchwiderrangeofusableflowrates,butmuchhigherbackpressures

Theore)calAspects

Page 36: Chromatography Oct 2014

Slide 36

PharmaceuticalProcess

DevelopmentTheore)calAspectsGiddingsintroduceddimensionlessparametersforHandalsoforthelinearvelocityu.Dimensionlessparametersallowthedirectcomparisonoftheefficiencydifferentcolumnspackedwithdifferentpar)clesizepackingmaterials.Accordingtothetheory,awellpackedcolumnshouldhaveareducedplateheight(h)intherangeof2‐3atareducedvelocity(v)ofabout3.

ReducedmobilephasevelocityvAdimensionlessmeasureofthemobilephasevelocitycomparedtodiffusionintothepores.

h = H

dp

v =udp

Dm

H=heightequivalentofatheore)calplate(µm)dp=meanpar)clesize(µm)

u=linearvelocityofthemobilephasedp =par)clediameterDM=diffusioncoefficientofthesoluteinthemobilephase.

Withtheseparameters,anempiricalformoftheVanDeemterequa)onwasderivedbyProfJohnKnox(Edinburgh,1960)

h = B

v+ Av

1/ 3 + Cvh = 2

Page 37: Chromatography Oct 2014

Slide 37

PharmaceuticalProcess

Development

Page 38: Chromatography Oct 2014

Slide 38

PharmaceuticalProcess

Development

GCThermalConduc/vityDetector(TCD)

TheTCDisatrulyuniversaldetector.Itconsistsofaheatedsensorinathermostatedchamber,throughwhichtheeffluentflows.Heliumisusuallyusedasacarriergas,asithasthehighestthermalconduc)vityofanygas,exceptforhydrogen.Asthepeakselute,thethermalconduc)vityofthegasinthechamberchanges.Thischangestheheatflowfromtheheatedsensor,throughthegas,tothewalls.Sincethesensorisbeingheatedataconstantrate,itbecomesho<erasthethermalconduc)vityoftheeffluentdrops.Thechangeintemperatureofthesensingwirefilamentorthermistorchangesitsresistance.

Thedetectorislimitedbyitsrela)velylowsensi)vity,comparedtootherdetectors,andusuallyhasafairlylargedeadvolume.Itis,therefore,notverysuitableforcapillarywork.

Detectors

Page 39: Chromatography Oct 2014

Slide 39

PharmaceuticalProcess

Development

GCFlameIoniza/onDetector(FID)

TheFIDisnearlyuniversallysensi)vetoorganiccompounds,andshowsgoodsensi)vityandexcellentlinearity.Thecolumneffluentisfedintoaflamefueledbyhydrogen,withaforcedairflow.Apoten)alofseveralhundredvoltsisimposedbetweenthe)poftheflameburnerandthecollectorwhichsurroundstheflame.Asthesamplecomponentsburn,theyproduceaburstofions.Theseproducea)nycurrentbetweentheflame)pandthecollector.

TheFIDdetectorhasanumberofadvantages.Theresponseisroughlypropor)onaltothenumberofcarbonatomsintheflameatany)me.Thedetectorisinsensi)vetoinorganicgases,water,carbondioxide,sulfurdioxide,nitrogenoxidesandothernon‐combus)blegases.Thedetectorhasaverywidelinearrange,overabout7ordersofmagnitude,hasalowdeadvolumeofabout1ml.

Detectors

Page 40: Chromatography Oct 2014

Slide 40

PharmaceuticalProcess

Development

Ultraviolet(UV)detectorsarefairlygeneralinapplica)on,sincemostorganiccompoundsabsorbatsomewavelengthsintheUVspectrum.However,theuseofwavelengthsbelow210nmisusuallynotuseableforanalysisbecausemostsolventswhichwouldbeusedaseluentswouldalsoabsorbintheseareas.TheresponseofthisdetectordependsonBeer'sLaw,andthereforegivesalinearresponseover4‐5ordersofmagnitude.Thedetec)onlimitsvarywidely,dependingonthesamplecomponentanditsex)nc)oncoefficientatthewavelengthbeingused.Inthemostfavorablecases,1ngorlessofacompoundmaybedetected.

DetectorsHPLC

Othercommonlyuseddetectorsinclude

Refrac)veIndexFluorescenceElectrochemicalMassSpec

Page 41: Chromatography Oct 2014

Slide 41

PharmaceuticalProcess

DevelopmentQuan)ta)onData from chromatograms may be used to obtain the relative or absolute concentration of components in amixture, providing good resolution is achieved. The Peak area, from integration of the detector signal duringelution of a component, is proportional to the amount of that component in the sample. However, the responseof a detector varies from one compound to another; for example, the HPLC ultraviolet detector depends onabsorption of electromagnetic radiation, the spectra of the components and the detection wavelength used.

There are four principal methods for obtaining quantitative information:

1. Normalising peak areas2. Internal standards3. External standards4. Standard addition methods.

1. Normalising peak areas is simply the area of an individual peak calculated as a percentage of the total areasrecorded for all peaks in the chromatogram.

Page 42: Chromatography Oct 2014

Slide 42

PharmaceuticalProcess

DevelopmentQuan)ta)on2. The internal standard method is a variation on the above, and is recommended for accurate quantitative work.

It eliminates the need for accurate injections since a reference standard is included in each sample analysed.An internal standard is selected which has a retention time such that it is eluted in a suitable 'gap' in thechromatogram.

The procedure involves analysing a test mixture sample containing known amounts of each component plus apredetermined amount of the internal standard (I.S.) to calculate the Response factor RF.

RF=((Ax)(Cis))/((Ais)(Cx))

Where:Ax=AreaofthecompoundofinterestCx=Concentra)onofthecompoundAis=AreaoftheinternalstandardCis=Concentra)onoftheinternalstandard

Oncetheresponsefactorisknown,analysisofanunknownmixtureisachievedbyaddinganaccuratelyknownamountofinternalstandardandthencarryingoutthechromatography.The concentration of each component iscalculated using the equation above, rearranged to give

Cx=(Ax/AIS)x(CIS/RF)

Page 43: Chromatography Oct 2014

Slide 43

PharmaceuticalProcess

Development

3. External Standard Method

Automated sample injection systems and multiport injection valves(HPLC) have good reproducibility so that a series of injections can bemade with a variation in sample volume of < 1 %. A set of standardmixtures containing known concentrations of the analytes is analysedand their peak areas recorded. A calibration graph of area versusconcentration can be drawn for each analyte to confirm a linear detectorresponse and from which the amount of the analyte in a mixture can bedetermined

Quan)ta)on

Concentra)on

4.StandardAddi'on.Thestandardsolu)on(solu)onofknownconcentra)onofanalyte)isaddedtotheunknownsolu)on.Atypicalprocedureinvolvespreparingseveralsolu)onscontainingthesameamountofunknown,butdifferentamountsofstandard.Forexample,five25mLvolumetricflasksareeachfilledwith10mLoftheunknown.Thenthestandardisaddedindifferingamounts,suchas0,1,2,3,and4mL.Theflasksarethendilutedtothemarkandmixedwell.

Theideaofthisprocedureisthatthetotalconcentra)onoftheanalyteisthecombina)onoftheunknownandthestandard,andthatthetotalconcentra)onvarieslinearly.Ifthesignalresponseislinearinthisconcentra)onrange,thenaplotsimilartothatshownisgenerated

Page 44: Chromatography Oct 2014

Slide 44

PharmaceuticalProcess

DevelopmentScale‐up

Onceadesiredanaly)calsepara)onhasbeenachieved,aloadingstudyisouenperformedtodeterminethecapacityofthepackingmaterialandthescale‐upfactorcalculated:

Scale - up factor = Diameter Prep( )2

X Length Prep

Diameter Analytical( )2 X Length Analytical

Thisfactorisusedtocalculatetheprepara)vecolumnloading,egforcolumnsofthesamelengthbutwith3.9and19mmIDa24mgloadingcanbeusedfroma1mganaly)calloading

Theequivalentflowraterequiredforthesamelinearvelocityiscalculatedfrom:

Flow Rate Prep( ) = Flow Rate Anal( ) X Diameter Prep( )2

Diameter Anal( )2

Page 45: Chromatography Oct 2014

Slide 45

PharmaceuticalProcess

DevelopmentScale‐upPrepara)vechromatographyisgenerallycarriedoutundermassand/orvolumeoverloadedcondi)onsinordertoincreasetheproductthroughput.Involumeoverloading,thesampleconcentra)onismaintainedinthelinearregionoftheisothermandthevolumeisincreasedun)lthethroughputisop)mized.Inmassoverloading,thesampleconcentra)onisincreasedbeyondthelinearadsorp)onregion,resul)nginasymmetricbandprofiles,withself‐sharpeningfrontsandtailingrearboundaries.Acombina)onofvolumeandmassoverloadingiscommonlyusedtomaximisethroughputinprepara)veelu)onchromatography.

Page 46: Chromatography Oct 2014

Slide 46

PharmaceuticalProcess

DevelopmentChromatography

• Tounderstandthebasicprinciplesofthedifferentmajortypesofcommonlyusedchromatographictechniquesandhowtoassesschromatographicperformance.

• Tobeabletoapplytheore)calconsidera)onstoprac)calexamples,forexample– Useandselec)onofquan)ta)veprocedures.– Scale‐updecisionsandprocedures.

LearningOutcomes

ExampleQues)ons:

• ExplaintheA,BandCtermsoftheVanDeemterequa)onandhowyoucancomparetheperformanceofdifferentHPLCcolumnspackedwithdifferentpar)clesizematerialswiththeore)calvalues.

• Foragivensepara)oncharacterisethechromatographicperformanceintermsofN,Rsanda.

• Describehowyouwouldcalculatetherela)veresponsefactorforcomponentB.• Inscalingupthesepara)onfroman4.5mmidanaly)caltoa76.2mmid

prepara)vecolumn;fromthegivendatawhatflowratewouldyouuse;b)whatsamplemass/columnloadingwouldyouuse?

FurtherReadingsugges)ons:

PRINCIPLESANDPRACTICEOFCHROMATOGRAPHY,RaymondP.W.Sco<,Chrom‐EdBookSeries‐on‐lineIntroduc)ontoModernLiquidChromatography,LloydR.Snyder,JosephJ.KirklandandJohnW.Dolan

Page 47: Chromatography Oct 2014

Slide 47

PharmaceuticalProcess

Development

• Semba BioSciences

Acknowledgement