1

Chromatin Immunoprecipitation Sequencing...2020/01/18  · JNK_DN.V1_UP WNT_UP.V1_DN RB_DN.V1_DN U2932 SMMC-7721 Pfeiffer Reference: Huang X, Yan J, Zhang M, . Targeting Epigenetic

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Chromatin Immunoprecipitation Sequencing...2020/01/18  · JNK_DN.V1_UP WNT_UP.V1_DN RB_DN.V1_DN U2932 SMMC-7721 Pfeiffer Reference: Huang X, Yan J, Zhang M, . Targeting Epigenetic

ChIP-Seq provides genome-wide profiling of DNA targets for histone modifica-tion, transcription factors, and other DNA-associated proteins. It combines the selectivity of chromatin immuno-precipitation (ChIP) to recover specific protein-DNA complexes, with the power of next-generation sequencing (NGS) for high-throughput sequencing of the recovered DNA. Additionally, because the protein-DNA complexes are recovered from living cells, binding sites can be compared in different cell types and tissues, or under different conditions. Applications range from transcriptional regulation to developmental pathways to disease mechanisms and beyond.

At Novogene, we provide high-quality sequencing and comprehensive bioinfor-matics solutions for your ChIP-Seq projects.

Project Workflow

SamplePreparation

LibraryConstruction Sequencing Bioinformatics

Analysis

Sample QualityControl

Library QualityControl

Data QualityControl

Specifications

SAMPLE REQUIREMENTS• DNA quantity: ≥ 50 ng, main peak locates between 100 to 500 bp• Sample volume: ≥ 10 μl• OD260/280 = 1.8 to 2.0 without degradation or RNA contamination

SEQUENCING STRATEGY• 100-500 bp insert DNA library (depending on peak distribution)• NovaSeq platform, paired-end 150 bp

TURNAROUND TIME• 22 business days for 20 or fewer samples, from the time sample quality is verified*

RECOMMENDED DATA OUTPUT• ≥6 Gb per sample

Novogene Advantages

Cost-Effective and Quick Turnaround:Rapid and efficient genome-wide profiling of multiple samples at very competitive prices.

Comprehensive Analysis: Using the widely accepted MACS2 software and the latest programs for peak annotation, motif prediction, functional analysis and data visualization, we offer analysis solutions to meet your project needs.

Data and Analysis Guarantee:Our team of experienced scientists ensure the data and analysis quality to be publication ready.

Extensive Experience: Over 2000 projects successfully completed.

Chromatin Immunoprecipitation Sequencing

Page 2: Chromatin Immunoprecipitation Sequencing...2020/01/18  · JNK_DN.V1_UP WNT_UP.V1_DN RB_DN.V1_DN U2932 SMMC-7721 Pfeiffer Reference: Huang X, Yan J, Zhang M, . Targeting Epigenetic

Mutations or aberrant upregulation of EZH2 occur frequently in human cancers. In this study, the results of H3K27ac ChIP-seq, RNA-seq, and proteomics analysis demonstrated that H3K27ac upregulation, due to EZH2 inhibition, results in the transcrip-tional activation of multiple onco-pathways in a cell-context-dependent manner. This may also underline the resistance to EZH2i.

Analysis Pipeline

Targeting Epigenetic Crosstalk as a Therapeutic Strategy for EZH2-Aberrant Solid Tumors (Huang 2018)

* For projects without data analysis.For Research Use Only. Exclusive for Clients in North and South America.

Figure 1. Feedback H3K27 Acetylation Change Drives Oncogenic Transcriptional Reprogramming.

Novogene Client Publication

H3K27ac

70

70EPZ

DMSO

2kb

CTNNB1

0

0

H3K27ac ChIP-seq

PTEN_DN.V2_UP

Enr

ichm

ent s

core NES=1.56

Q=0.02P=0.002

U2932

ControlEPZ

VEGF_A_UP.V1_UP

Enr

ichm

ent s

core

NES=1.60Q=0.002P=0

U2932

ControlEPZ

RNA-seq

KRAS.50_UP.V1_UP

Enr

ichm

ent s

core NES=1.78

Q=0.002P=0

SMMC-7721

ControlEPZ

MYC_UP.V1_UP

Enr

ichm

ent s

core

NES=1.69Q=0.0005P=0

U2932

ControlEPZ

Proteome

MEK_UP.V1_UP

Enr

ichm

ent s

core

NES=2.43Q=0.0008P=0

U2932

ControlEPZ

WNT_UP.V1_UP

Enr

ichm

ent s

core

NES=2.12Q=0.009P=0.001

SMMC-7721

ControlEPZ

RNA-seq

0 0.02 0.06 0.1FDR

ProteomeH3K27ac ChIP-seq

AKT_UP.V1_DNMTOR_UP.V1_UPATF2_UP.V1_DNSTK33_NOMO_DNSTK33_SKM_DNSTK33_DNE2F3_UP.V1_UPPIGF_UP.V1_UPYAP1_UPVEGF_A_UP.V1_DNRB_P130_DN.V1_DNTBK1.DF_DNKRAS.50_UP.V1_UPBCAT_BILD_ET_AL_UPNRL_DN.V1_DNTBK1.DF_UPP53_DN.V2_DNCRX_NRL_DN.V1_DNNFE2L2.V2PDGF_ERK_DN.V1_UPCAHOY_ASTROCYTICIL2_UP.V1_UPPTEN_DN.V2_DNESC_V6.5_UP_EARLY.V1_UPATF2_UP.V1_UPCYCLIN_D1_KE_.V1_UPAKT_UP_MTOR_DN.V1_DNRELA_DN.V1_UPCORDENONSI_YAP_CONSERVED_SIGNATURERB_P107_DN.V1_UPATM_DN.V1_DNGCNP_SHH_UP_EARLY.V1_DNGCNP_SHH_UP_LATE.V1_DNCTIP_DN.V1_UPSRC_UP.V1_UPNRL_DN.V1_UPALK_DN.V1_UPPDGF_UP.V1_DNRPS14_DN.V1_DNRB_DN.V1_UPEIF4E_UPHINATA_NFKB_IMMU_INFSIRNA_EIF4GI_UPSNF5_DN.V1_UPPRC2_SUZ12_UP.V1_UPATF2_S_UP.V1_UPSINGH_KRAS_DEPENDENCY_SIGNATURE_HOXA9_DN.V1_DNCAMP_UP.V1_UPMTOR_UP.N4.V1_UPCYCLIN_D1_UP.V1_UPESC_V6.5_UP_LATE.V1_DNCRX_DN.V1_UPRB_P130_DN.V1_UPMYC_UP.V1_UPKRAS.50_UP.V1_DNIL15_UP.V1_UPPRC2_EED_UP.V1_DNESC_J1_UP_LATE.V1_DNESC_J1_UP_EARLY.V1_DNPDGF_ERK_DN.V1_DNHOXA9_DN.V1_UPMTOR_UP.N4.V1_DNEGFR_UP.V1_DNMEK_UP.V1_DNSTK33_SKM_UPSTK33_UPBCAT.100_UP.V1_DNSTK33_NOMO_UPRPS14_DN.V1_UPKRAS.600_UP.V1_UPKRAS.300_UP.V1_UPPTEN_DN.V1_UPCAHOY_ASTROGLIALIL15_UP.V1_DNCSR_LATE_UP.V1_DNP53_DN.V1_DNESC_J1_UP_LATE.V1_UPESC_V6.5_UP_LATE.V1_UPMEK_UP.V1_UPKRAS.KIDNEY_UP.V1_UPRAF_UP.V1_DNATF2_S_UP.V1_DNCRX_DN.V1_DNMEL18_DN.V1_DNBMI1_DN_MEL18_DN.V1_DNBMI1_DN.V1_DNBCAT_GDS748_UPLEF1_UP.V1_DNIL2_UP.V1_DNKRAS.LUNG.BREAST_UP.V1_DNKRAS.LUNG_UP.V1_DNKRAS.600_UP.V1_DNKRAS.600.LUNG.BREAST_UP.V1_DNKRAS.300_UP.V1_DNRAF_UP.V1_UPKRAS.DF.V1_UPERB2_UP.V1_UPLTE2_UP.V1_UPEGFR_UP.V1_UPPTEN_DN.V1_DNCYCLIN_D1_UP.V1_DNAKT_UP_MTOR_DN.V1_UPCYCLIN_D1_KE_.V1_DNKRAS.PROSTATE_UP.V1_DNKRAS.LUNG_UP.V1_UPPTEN_DN.V2_UPRAPA_EARLY_UP.V1_UPKRAS.LUNG.BREAST_UP.V1_UPPRC2_EED_UP.V1_UPPRC2_EZH2_UP.V1_DNBRCA1_DN.V1_DNCAHOY_OLIGODENDROCUTICKRAS.600.LUNG.BREAST_UP.V1_UPPIGF_UP.V1_DNKRAS.KIDNEY_UP.V1_DNPKCA_DN.V1_UPRELA_DN.V1_DNBMI1_DN_MEL18_DN.V1_UPMEL18_DN.V1_UPWNT_UP.V1_UPIL21_UP.V1_DNJNK_DN.V1_DNTGFB_UP.V1_DNSNF5_DN.V1_DNLEF1_UP.V1_UPKRAS.PROSTATE_UP.V1_UPESC_V6.5_UP_EARLY.V1_DNBMI1_DN.V1_UPTGFB_UP.V1_UPJAK2_DN.V1_UPMTOR_UP.V1_DNVEGF_A_UP.V1_UPPRC1_BMI_UP.V1_UPKRAS.AMP.LUNG_UP.V1_DNNOTCH_DN.V1_DNATM_DN.V1_UPCRX_NRL_DN.V1_UPNOTCH_DN.V1_UPLTE2_UP.V1_DNP53_DN.V1_UPCTIP_DN.V1_DNE2F1_UP.V1_DNAKT_UP.V1_UPBCAT.100_UP.V1_UPESC_J1_UP_EARLY.V1_UPKRAS.BREAST_UP.V1_DNCAMP_UP.V1_DNCAHOY_NEURONALIL21_UP.V1_UPBRCA1_DN.V1_UPKRAS.BREAST_UP.V1_UPDCA_UP.V1_UPMYC_UP.V1_DNKRAS.DF.V1_DNP53_DN.V2_UPALK_DN.V1_DNE2F3_UP.V1_DNKRAS.AMP.LUNG_UP.V1_UPPRC1_BMI_UP.V1_DNCSR_EARLY_UP.V1_DNRAPA_EARLY_UP.V1_DNPRC2_SUZ12_UP.V1_DNPKCA_DN.V1_DNJNK_DN.V1_UPWNT_UP.V1_DNRB_DN.V1_DN

U2932SMMC-7721Pfeiffer

Reference: Huang X, Yan J, Zhang M, . Targeting Epigenetic Crosstalk as a Therapeutic Strategy for EZH2-Aberrant Solid Tumors[J]. , 2018, 175(1): 186-199.Cell

et al

et al,

8801 Folsom Blvd #290, Sacramento, CA 95826

916-252-0068-383 [email protected] en.novogene.com

Novogene Corporation Inc.

Follow us on LinkedIn

Copyright©2011-2020 Novogene Corporation. All Rights Reserved. Information and specifications are subject to change at any time without notice.

Only applicable for projects with comparable experimental groups.

Raw Data QualityControl

SCCAnalysis

MotifPrediction

Peak Calling PeakAnnotation

PeakAnnotation

ReferenceGenomeMapping

Differential Peak analysis

Functional Analysis of Peak-associated

Genes

Functional Analysis of Peak-associated

Genes