7
Prism ... diffraction limited by entrance aperture Chromatic Resolving Power λ Δλ B · dn dλ Resolving Power chromatic resolving power Finesse instrumental width instrumental line profile ... Spectroscopic Resolution – some alternatives λ/Δλ F = FSR/FWHM Δ¯ = Δλ/λ 2 apparent spectral energy distribution for monochromatic light entering the device f FWHM transmission Δλ or Multi-Layer Coatings metal reflectance reflectance of commercial multi-layer coatings Multi-Layer Coatings anti-reflection coating

Chromatic Resolving Power Resolving Power...Chromatic Resolving Power ⇥ B · dn d Resolving Power chromatic resolving power Finesse instrumental width instrumental line profile

  • Upload
    others

  • View
    42

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Chromatic Resolving Power Resolving Power...Chromatic Resolving Power ⇥ B · dn d Resolving Power chromatic resolving power Finesse instrumental width instrumental line profile

Prism ... diffraction limited by entrance aperture

Chromatic Resolving Power

��⇥ B · dn

d�

Resolving Power

chromatic resolving powerFinesseinstrumental widthinstrumental line profile ...

Spectroscopic Resolution – some alternatives

�/��

F = FSR/FWHM

�⇥̄ = ��/�2

apparent spectral energy distribution for monochromatic light entering the device

f

FWHM

transmission

�� or

Multi-Layer Coatings

metalreflectance

reflectance ofcommercial

multi-layer coatings

Multi-Layer Coatings

anti-reflection coating

Page 2: Chromatic Resolving Power Resolving Power...Chromatic Resolving Power ⇥ B · dn d Resolving Power chromatic resolving power Finesse instrumental width instrumental line profile

Anti-Reflection Coating

• reflected waves out of step• equal amplitudes } destructive interference

Multi-Layer Coatings

single layer ➙ FPI

l

nT = nglassn1 = nlayern0 = nair

Multi-Layer Coatings

single layer ➙ circulating wave

l

nT = nglassn1 = nlayern0 = nair

incoming

reflected

transmitted

E�0, H

�0 E�

1, H�1

ET , HTE1, H1E0, H0

Multi-Layer Coatings

single boundaryn1 = nlayern0 = nair

E�0, H

�0 E�

1, H�1

E1, H1E0, H0

from Maxwell‘s equations

Z =Ex

Hy=

�µµ0

��0=

Z0

n

continuity of E and H

E0 + E�0 = E1 + E�

1

H0 + H �0 = H1 + H �

1

ExHy

kz

E’x

H’y

k’z

Page 3: Chromatic Resolving Power Resolving Power...Chromatic Resolving Power ⇥ B · dn d Resolving Power chromatic resolving power Finesse instrumental width instrumental line profile

Anti-Reflection CoatingnT = nglassn1 = nlayern0 = nair

E�0, H

�0 E�

1, H�1

ET , HTE1, H1E0, H0

�/4

Reflection

�E0

E�0

⇥= M01 · M�/4 · M1T ·

�ET

0

⇥= � i

2n1ET

�nT + n2

1

nT � n21

n1 �⇥

nTforR =����E�

0

E0

����2

=����nT � n2

1

nT + n21

����2

�⇥ 0

Anti-Reflection CoatingnT = nglassn1 = nlayern0 = nair

E�0, H

�0 E�

1, H�1

ET , HTE1, H1E0, H0

�/4

n1 �⇥

nTfor

Compare to Fabry-Perot Interferometer

R =����E�

0

E0

����2

=����nT � n2

1

nT + n21

����2

�⇥ 0

Iout = Imax

⇤1 +

�2F⇤

sin�

2

⇥2⌅�1

with � = 2kl cos ⇥

for � = 0 =� Iout = Imax if p⇥ = 2l l = �/2

l = �/4

AR-layer

FPI

Anti-Reflection CoatingnT = nglassn1 = nlayern0 = nair

E�0, H

�0 E�

1, H�1

ET , HTE1, H1E0, H0

�/4

n1 �⇥

nTfor

Compare to Fabry-Perot Interferometer

R =����E�

0

E0

����2

=����nT � n2

1

nT + n21

����2

�⇥ 0

Iout = Imax

⇤1 +

�2F⇤

sin�

2

⇥2⌅�1

with � = 2kl cos ⇥

for � = 0 =� Iout = Imax if p⇥ = 2l l = �/2

l = �/4

AR-layer

FPIphase jumps by π when reflecting of th

e optically thicker medium

Anti-Reflection Coating

reflection vs. layer thickness

Page 4: Chromatic Resolving Power Resolving Power...Chromatic Resolving Power ⇥ B · dn d Resolving Power chromatic resolving power Finesse instrumental width instrumental line profile

Multi-layer Stack�

E0

E⇥0

⇥=

⇤k⇧

l=1

Ml�1,l · M�/4

⌅· MnT ·

�ET

0

R =����(n1n3n5...nk�1)2nT � n0(n2n4...nk)2

(n1n3n5...nk�1)2nT + n0(n2n4...nk)2

����2

R =����(n1n3n5...nk)2 � n0nT (n2n4...nk�1)2

(n1n3n5...nk)2 + n0nT (n2n4...nk�1)2

����2

k odd

k even

Anti-Reflection Coating

Dielectric Mirror

reflection vs. number of layers

n1 = 2.3 and n2 = 1.35

reflectivities up to 99.9999%

Interference filter; composed of multi-layer stacks

Multi-Layer Coatings

Page 5: Chromatic Resolving Power Resolving Power...Chromatic Resolving Power ⇥ B · dn d Resolving Power chromatic resolving power Finesse instrumental width instrumental line profile

Interference Filter

single line

band pass

notch

edge

Impedance ... a sleeker way

�⌃ · �B = 0 �⌃ · �D = ⇤

�⌃⇤ �E = � ��t

�B �⌃⇤ �H = �j + ��t

�D

�D = �r�0 �E �B = µrµ0�H

c = 1/⇧

µ0�0 n = ⇧µr�r ⌅⇧

�r

Maxwell‘sequations

flux densities

speed

⇥2 ⌦E =1v2

⇤2 ⌦E

⇤t2; ⇥2 ⌦H =

1v2

⇤2 ⌦H

⇤t2; v =

c

n=

1�

µrµ0�r�0

wave equations for E and H

⇥2 ⌦E =1v2

⇤2 ⌦E

⇤t2; ⇥2 ⌦H =

1v2

⇤2 ⌦H

⇤t2; v =

c

n=

1�

µrµ0�r�0

�E(�r, 1) = �E0 ei(⌃k·⌃r��t); |�k| = k =2⇥

�; v =

k=

c

n

plane wave (same for H)

from Maxwell‘s equations: � ⇧B = ⇧k � ⇧E

Ex(z, t) = E0 ei(kz��t) =�

Ex

Hy= Z � k

|k| with Z =�

µrµ0

�r�0⇥ Z0

n

Impedance ... a sleeker way

Ex

Hy= Z � k

|k| with Z =�

µrµ0

�r�0⇥ Z0

n

Impedance ... a sleeker way

impedance Z; vacuum impedance Z0 = 377 Ω

continuity

E2 + E�2 = E3 + E�

3

H2 + H �2 = H3 + H �

3

E2

E�2

=Z3 � Z2

Z3 + Z2

Ex = E2 ei(k2z��t)

Hy = E2/Z2 ei(k2z��t)

H ⇥y = �E⇥

2/Z2 ei(�k2z��t)

E⇥x = E⇥

2 ei(�k2z��t)

0-l z

Z3Z1 Z2

Page 6: Chromatic Resolving Power Resolving Power...Chromatic Resolving Power ⇥ B · dn d Resolving Power chromatic resolving power Finesse instrumental width instrumental line profile

Impedance ... a sleeker way

E2

E�2

=Z3 � Z2

Z3 + Z2

Ex = E2 ei(k2z��t)

Hy = E2/Z2 ei(k2z��t)

H ⇥y = �E⇥

2/Z2 ei(�k2z��t)

E⇥x = E⇥

2 ei(�k2z��t)

0-l z

Z3Z1 Z2

ZL =�

Ex + E�x

Hy + H �y

0

=E2 + E�

2

E2 � E�2

Z2load impedance at z=0

input impedance at z=-l(for a λ/4 layer) Zin =

�Ex + E⇥

x

Hy + H ⇥y

�l

�⇥ Z22

ZL

at boundaries

ZL,m = Zin,m+1

Impedance ... a sleeker way

E2

E�2

=Z3 � Z2

Z3 + Z2

Ex = E2 ei(k2z��t)

Hy = E2/Z2 ei(k2z��t)

H ⇥y = �E⇥

2/Z2 ei(�k2z��t)

E⇥x = E⇥

2 ei(�k2z��t)

0-l z

Z3Z1 Z2

ZL =�

Ex + E�x

Hy + H �y

0

=E2 + E�

2

E2 � E�2

Z2load impedance at z=0

input impedance at z=-l(for a λ/4 layer) Zin =

�Ex + E⇥

x

Hy + H ⇥y

�l

�⇥ Z22

ZL

at boundaries

ZL,m = Zin,m+1

Impedance ... a sleeker way

ZL =�

Ex + E�x

Hy + H �y

0

=E2 + E�

2

E2 � E�2

Z2load impedance at z=0

input impedance at z=-l(for a λ/4 layer) Zin =

�Ex + E⇥

x

Hy + H ⇥y

�l

�⇥ Z22

ZL

at boundaries

ZL,m = Zin,m+1

input impedance at z=-l(for a λ/2 layer) Zin = ZL

Stack of λ/4 Layers

ZL =�

Ex + E�x

Hy + H �y

0

=E2 + E�

2

E2 � E�2

Z2load impedance at z=0

input impedance at z=-l(for a λ/4 layer) Zin =

�Ex + E⇥

x

Hy + H ⇥y

�l

�⇥ Z22

ZL

Zin,k = Z2k/ZL,k ⇥� ZL,k = ZT

...Zin,n = Z2

n/ZL,n ⇥� ZL,n = Zin,n+1...

E0 + E�0

E0 � E�0

Z0 = Zin ⇥� ZL = Zin = Zin,1

from the far side ....

Page 7: Chromatic Resolving Power Resolving Power...Chromatic Resolving Power ⇥ B · dn d Resolving Power chromatic resolving power Finesse instrumental width instrumental line profile

Stack of λ/4 Layers

Zin,k = Z2k/ZL,k ⇥� ZL,k = ZT

...Zin,n = Z2

n/ZL,n ⇥� ZL,n = Zin,n+1...

E0 + E�0

E0 � E�0

Z0 = Zin ⇥� ZL = Zin = Zin,1

from the far side ....

ReflectivityR =

����E�

0

E0

����2

=����Zin � Z0

Zin + Z0

����2

AR-Coating ⇔ impedance matching Z0=Zin

Mirror ⇔ impedance mismatch: Zin=0 or Zin >> Z0

Multi-layer Stack�

E0

E⇥0

⇥=

⇤k⇧

l=1

Ml�1,l · M�/4

⌅· MnT ·

�ET

0

R =����(n1n3n5...nk�1)2nT � n0(n2n4...nk)2

(n1n3n5...nk�1)2nT + n0(n2n4...nk)2

����2

R =����(n1n3n5...nk)2 � n0nT (n2n4...nk�1)2

(n1n3n5...nk)2 + n0nT (n2n4...nk�1)2

����2

k odd

k even

Multi-layer Stack

k=2p+1 (odd)

k=2p (even)Zin = (Z2/Z3)2pZT

Zin = (Z2/Z3)2p Z22/ZT

R =����E�

0

E0

����2

=����Zin � Z0

Zin + Z0

����2

Summary & Outlook

Multi-Layer CoatingsAR Coatings / FPI ComparisonImpedance & multiple layers

Polarisationlinear, circular, elliptical

Polarisation opticsuni-axial crystalspolarising prismswave plates (λ/2 and λ/4)

Interference with polarised light