149
Chiral Diamine-Based Reduction and Oxidation Catalysts by Ari Cuperfain A thesis submitted in conformity with the requirements for the degree of Master of Science Department of Chemistry University of Toronto © Copyright by Ari Cuperfain 2014

Chiral Diamine-Based Reduction and Oxidation Catalysts · Chiral Diamine-Based Reduction and Oxidation Catalysts ... Table 2.3: Relative energies ... HOMO and LUMO orbitals of cis-2-butene

  • Upload
    lydien

  • View
    252

  • Download
    1

Embed Size (px)

Citation preview

Chiral Diamine-Based Reduction and Oxidation Catalysts

by

Ari Cuperfain

A thesis submitted in conformity with the requirements for the degree of Master of Science

Department of Chemistry University of Toronto

© Copyright by Ari Cuperfain 2014

ii

Chiral Diamine-Based Reduction and Oxidation Catalysts

Ari Cuperfain

Master of Science

Department of Chemistry University of Toronto

2014

Abstract

Asymmetric catalysis remains one of the most significant ways for introducing chirality into

prochiral molecules. There is much interest in elucidating mechanistic details and optimizing

conditions for preexisting systems. Using a combination of experimental and computational

methods, we separately explored two reactions: asymmetric transfer hydrogenation and alkene

epoxidation. For the diamine-based hydrogenation catalyst, a series of diphenylethylenediamine

derivatives were synthesized and used to test the electronic effect of diamine ligands on the rate

of hydrogenation. Contrary to previous findings, we report virtually no difference in catalytic

activity between the various ligands. Computational analysis consolidates our results. For the

manganese-salen catalyzed epoxidation, we present an original mechanism to explain the

observed stereoselectivity. Instead of the traditional “side-on approach”, we propose that

epoxidation proceeds through a planar transition state with sp2 hybridized manganese-oxo

oxygen. This model correctly predicts the sense and degree of stereoselectivity for a number of

catalyst and substrate systems.

iii

Acknowledgments

First and foremost, I would like to thank my supervisor, Dr. Jik Chin, for all of his support and

guidance. He is truly the best supervisor a student could possibly hope for. I have learned much

from him about science, business and the world. Thank you as well to the external reviewer of

this thesis, along with the entire University of Toronto Department of Chemistry faculty and staff

for fostering an academic environment of intellectual curiosity and cutting-edge research.

I would also like to thank my fellow group members, Jon Lau and Kimia Moozeh, for all of their

support. I am grateful for all our time together, and our numerous discussions (both chemistry

and otherwise). As we all graduate this year, I wish them luck and success in their future careers.

I would like to express a special thank you to Dr. Soon Mog So for all of his help in the lab. This

research would not have been possible without him.

On that note, I wish to thank all of the NMR staff including Darcy, Dmitry and Joel for keeping

the facilities running smoothly and always being there – even on weekends – to help with any

troubleshooting issues. Big thanks as well to all the Chem Store workers, especially Ken, Giordi,

and Jim, for making Chem Store the most amusing place in the entire Department. Thank you

also, Giordi, for collecting my NMR tubes every morning.

Lastly, and most importantly, I would like to thank my wonderful friends and family. To my

friends – both in and out of the department – thank you for always being there for me and having

my back. I know we will continue to rely on each other wherever life takes us. And to my family,

there are no words to express how thankful I am to have you all. It was definitely nice to be back

home this year after living abroad for university. I love you guys!

iv

Table of Contents

Acknowledgments .......................................................................................................................... iii  

Table of Contents ........................................................................................................................... iv  

List of Tables ................................................................................................................................. vi  

List of Figures ............................................................................................................................... vii  

List of Appendices ........................................................................................................................ xii  

Chapter 1 Electronic Effects on Asymmetric Transfer Hydrogenation Reactivity ........................ 1  

1.1   Introduction ......................................................................................................................... 1  

1.1.1   Chiral Diamines in Catalysis .................................................................................. 1  

1.1.2   Asymmetric Transfer Hydrogenation and the Noyori Catalyst .............................. 3  

1.1.3   Synthetic Applications of Resonance Assisted Hydrogen Bonds ........................... 7  

1.2   Research Goals .................................................................................................................... 9  

1.3   Results and Discussions ...................................................................................................... 9  

1.3.1   Synthesis of Monotosylated Daughter Diamine Derivatives as Catalyst Precursors ................................................................................................................ 9  

1.3.2   Technique for Monitoring Hydrogenation Kinetics ............................................. 12  

1.3.3   Electronic Effect of Monotosylated Diamine Substituents on Catalytic Activity ................................................................................................................. 13  

1.3.4   Computational Studies .......................................................................................... 15  

1.3.5   Contribution of Resonance Assisted Hydrogen Bonding Towards Rate of Hydrogenation ....................................................................................................... 18  

1.4   Conclusions and Future Work .......................................................................................... 20  

1.5   Experimental ..................................................................................................................... 20  

1.5.1   General Considerations ......................................................................................... 20  

1.5.2   General Procedure for Daughter Diamine Synthesis ............................................ 21  

1.5.3   General Procedure for Monotosylation of Daughter Diamines ............................ 22  

1.5.4   General Procedure for Asymmetric Transfer Hydrogenation Reactions .............. 22  

v

1.5.5   Energy Calculations For Catalysts, Reaction Intermediates and Transition States ..................................................................................................................... 24  

1.5.6   Characterization Data ............................................................................................ 27  

Chapter 2 The Origin of Stereoselectivity in the Jacobsen-Katsuki Epoxidation ........................ 32  

2.1   Introduction ....................................................................................................................... 32  

2.1.1   Structural Considerations of the Jacobsen-Katsuki Epoxidation Catalyst With Respect to Stereoselectivity .................................................................................. 32  

2.1.2   The Mechanism of Manganese-salen Catalyzed Epoxidation .............................. 36  

2.1.3   The Nature of the Manganese-Oxide Bond and the Active Catalytic Species ..... 39  

2.2   Research Goals .................................................................................................................. 40  

2.3   Results and Discussion ..................................................................................................... 41  

2.3.1   Challenges With the Prevailing Model ................................................................. 41  

2.3.2   Agreement of Computational Modeling with Experimental Observations .......... 45  

2.3.3   Advantages Offered By Considering A Planar Transition State .......................... 51  

2.3.4   The Hybridization of the Axial Oxygen Ligand ................................................... 56  

2.4   Conclusions and Future Work .......................................................................................... 59  

2.5   Experimental ..................................................................................................................... 60  

2.5.1   General Considerations ......................................................................................... 60  

2.5.2   Energy Calculations On Bent Geometry Transition State Analogs ...................... 60  

2.5.3   Energy Calculations for Different Quadrants ....................................................... 63  

2.5.4   Energy Calculations on Planar Geometry Transition States ................................. 64  

2.5.5   Alignment of Crystal Structure with Computed Structure ................................... 67  

2.5.6   Energy Calculations on Manganese-Oxo Hybridization ...................................... 68

2.5.6   Calculation of Predicted Enantiomeric Excess ..................................................... 68

References ..................................................................................................................................... 70  

Appendix A: 1H and 13C NMR Spectra ........................................................................................ 74

Appendix B: Cartesian Coordinates of Computed Complexes…………………………………..82

vi

List of Tables

Table 1.1: Synthesis of substituted diimines. ................................................................................ 10  

Table 1.2: Synthesis of substituted diamine hydrochloride salts. ................................................. 11  

Table  1.3:  Synthesis  of  TsDPEN  and  other  substituted  monotosyl  diamines. ........................ 12  

Table 1.4: Rate of hydrogenation of acetophenone and TOF using variously substituted

monotosylated diamines as ligands ............................................................................................... 14  

Table 1.5: Energies for the different species participating in asymmetric transfer hydrogenation

....................................................................................................................................................... 16  

Table  2.1:  Comparison  of  literature  experimental  results  with  computational  prediction  for  

a  variety  of  catalysts .................................................................................................................... 53  

Table 2.2: Comparison  of  literature  experimental  results  with  computational  prediction  for  

a  variety  of  substrates ................................................................................................................. 55  

Table 2.3: Relative energies and other computed physical properties of potential (salen)Mn=O

species ........................................................................................................................................... 56  

Table  2.4:  Calculated  energies  using  DFT  B3LYP/6-­‐31G*  of  products  and  reactants  involved  

in  oxygen  transfer  epoxidation. ................................................................................................. 58  

vii

List of Figures

Figure 1.1: Chiral diamines used in various asymmetric catalysis reactions ................................. 2  

Figure 1.2 Chemical structures of the most common chiral diamines used in catalysis, DPEN and

dach ................................................................................................................................................. 3  

Figure 1.3: Industrially relevant applications of asymmetric transfer hydrogenation .................... 4  

Figure 1.4: Mechanism for ATH using formic acid/triethylamine and aryl alkyl ketone .............. 5  

Figure 1.5: Relative activity of monotosyl diamines for ATH in the Johnson Matthey patent ...... 6  

Figure 1.6: Resonance assisted hydrogen bonding in β-diketone enols leads to particularly strong

H-bonds ........................................................................................................................................... 7  

Figure 1.7: Synthetic applications of resonance assisted hydrogen bonding .................................. 8  

Figure 1.8: Mechanism and scheme for the diaza-Cope rearrangement ......................................... 9  

Figure 1.9: Relative catalytic activity for a series of substituted monotosylated diamine ligands 14  

Figure 1.10: Model structures used for computational analysis of hydrogenation reaction

pathway for variously substituted diamine analogs. ..................................................................... 16  

Figure 1.11: Rate of hydrogenation using various substrates ....................................................... 19  

Figure 2.1: Jacobsen’s Mn(III) asymmetric epoxidation catalyst ................................................. 32  

Figure 2.2: Side-on approach of alkene to the manganese-oxo complex ..................................... 34  

Figure 2.3: The salen step, engendered by the absolute stereochemistry of the diamine ............. 35  

Figure 2.4: Proposed mechanisms for Mn-catalyzed epoxidation of Z-alkenes ........................... 36  

Figure 2.5: Radical clock ring opening of ((Z)-1-((1S,2S)-2-phenylcyclopropyl)prop-1-en-1-

yl)benzene. .................................................................................................................................... 37  

Figure 2.6: Corey’s proposed pathway for Jacobson epoxidation of indene ................................ 38  

viii

Figure 2.7: Manganese-oxo compound used for the calculation performed by Houk et al. ......... 40  

Figure 2.8: Experimental observations and computed relative energies of epoxide enantiomers

bound to the SS-Jacobsen catalyst ................................................................................................. 42  

Figure 2.9: Aerial view of alkene approach to manganese-oxo complex as part of the proposed

pathway invoked by Jacobsen to explain the observed sense of stereoselectivity ........................ 43  

Figure  2.10:  NMR  competition  reaction  between  (2R,3S)-­‐2-­‐phenyl-­‐3-­‐methylaziridine  (4)  

with:  A)  (R,R)-­‐3;  B)  (S,S)-­‐3;  and  C)  equal  mixture  of  (S,S)-­‐3  and  (R,R)-­‐3 ................................ 45  

Figure  2.11:  Computed  relative  energies  of  aziridine  enantiomers  bound  to  the  SS-­‐Jacobsen  

catalyst  ........................................................................................................................................................................  45  

Figure  2.12:  Crystal  structures  of  (2R,3S)-­‐2-­‐phenyl-­‐3-­‐methylaziridine  bound  to  both  

enantiomers  of  the  Jacobsen  catalyst.  ...........................................................................................................  46  

Figure  2.13:  a)  (R,R)-­‐3,  with  the  corresponding  cartoon  Lewis  representation  used  

throughout.  b)  Four  possible  orientations  of  (2R,3S)-­‐2-­‐phenyl-­‐3-­‐methylaziridine  bound  to  

(S,S)-­‐3 ........................................................................................................................................... 48  

Figure  2.14:  Side  view  (top)  and  aerial  view  (bottom)  of  (2R,3S)-­‐4  bound  to  (S,S)-­‐3.  Crystal  

(left)  and  computed  (right)  structures  are  compared ............................................................. 49  

Figure 2.15: Side view (top) and aerial view (bottom) of (2R,3S)-4 bound to (R,R)-3. Crystal

(left) and computed (right) structures are compared ..................................................................... 50  

Figure  2.16:  Aligned  structures  of  (S,S)-­‐3  and  (R,R)-­‐3  bound  to  (2R,3S)-­‐4  determined  by  

both  X-­‐ray  crystallography  (gray)  and  molecular  modeling  computation  (red) ................... 51  

Figure  2.17:  Experimental  observations  and  computed  relative  energies  of  epoxide  

enantiomers  bound  to  the  SS-­‐Jacobsen  catalyst ....................................................................... 51  

Figure 2.18: HOMO and LUMO orbitals of cis-2-butene and the Jacobsen manganese-oxo

catalyst, respectively ..................................................................................................................... 57  

ix

List of Abbreviations

δ chemical shift

% v/v percent volume over volume

Å Angstrom

ACDC asymmetric counteranion-directed catalysis

ATH asymmetric transfer hydrogenation

B3LYP Becke, three-parameter, Lee-Yang-Parr

br broad

CD3CN deuterated acetonitrile

CDCl3 deuterated chloroform

conc concentration

d doublet

dach trans-1,2-diaminocyclohexane

DCM dichloromethane

DCR diaza-Cope rearrangement

DFT density functional theory

DMSO dimethyl sulfoxide

DMSO-d6 deuterated dimethyl sulfoxide

DPEN 1,2-diphenylethylenediamine

ee enantiomeric excess

eq equivalent

ESI-MS electrospray ionization-mass spectrometry

Et ethyl

EtOAc ethyl acetate

g grams

H-bonds hydrogen bonds

HKR hydrolytic kinetic resolution

HOMO highest occupied molecular orbital

hpen 1,2-Bis(2-hydroxyphenyl)ethylenediamine

x

hr hour

Hz Hertz

IP intellectual property

J coupling constant

kcal kilocalorie

LUMO lowest unoccupied molecular orbital

M molar

m multiplet

Me methyl

Me-dach 1,2-dimethylcyclohexane-1,2-diamine

mg milligrams

min minutes

MM molecular mechanics

mmol millimoles

MS-MS mass spectrometry-mass spectrometry

NMe2 dimethylamino

NMR nuclear magnetic resonance

OMe methoxy

Ph phenyl

plc public limited company

ppm parts per million

q quartet

RAHB resonance-assisted hydrogen bond

RMSD root mean squared devation

rt room temperature

s singlet; second

S/C substrate-to-catalyst ratio

t triplet

t-Bu tertiary-butyl

THF tetrahydrofuran

TLC thin layer chromatography

TS transition state

xi

Ts Tosyl-

UV Ultraviolet

xii

List of Appendices

Appendix A: 1H and 13C NMR Spectra

Appendix B: Cartesian Coordinates of Computed Complexes

1

Chapter 1 Electronic Effects on Asymmetric Transfer Hydrogenation

Reactivity

1

1.1 Introduction

1.1.1 Chiral Diamines in Catalysis

Chiral 1,2-diamines are a common class of molecules possessing C2-symmetry and are often

used as ligands or as organocatalysts in asymmetric catalysis.1,2 In asymmetric catalysis, chiral

products are synthesized from prochiral reactants in a stereoselective fashion. The catalysts for

these reactions are themselves chiral and can therefore favour the formation of a particular

enantiomer through interaction with the substrate. Since the energies of enantiomers are equal,

there is no thermodynamic preference for forming only one enantiomer; if a chiral compound is

in equilibrium with its enantiomer, a racemic mixture will eventually be reached. Rather,

stereoselectivity is dictated by kinetics and occurs when the barrier of formation is lower for one

enantiomer compared to the other. Thus an effective catalyst for stereoselective reactions must

preferentially accelerate the formation of one enantiomer over the other, while simultaneous

accelerating the reaction sufficiently such that background reactions are insignificant. In other

words, the activation energy for formation of the desired product must be lower than that for the

opposite product, as well as in the absence of the catalyst altogether.3 Chiral diamines have been

shown to facilitate both of these aspects and have been widely successful in synthetic

application.

The reactions in which chiral diamines are employed are diverse. Figure 1.1 shows a series of

widely used catalysts bearing chiral diamine scaffolds, along with the reaction type they

catalyze.

2

N

O

N

O

tButBu

tButBu

Epoxidation/Hydrolysis

M

Ar2P

PAr2

Ru

H2N

NH2Cl

Cl

Hydrogenation

X

X

NP

N O

N

Aldol Reaction

N

H2N

TsRu

Cl

Transfer Hydrogenation

N N

Ph Ph

R

R

Ru

PCy3Cl

Cl

R

Metathesis

N

N

R

X

XPPh3

PdL L

Heck reaction

HNNHO O

PPh2

PPh2

Alkylation

N NH

Ph Ph

PAr2

PAr2

Fe

CO

Cl

Transfer Hydrogenation

N

NR

Ph N

Ph

NP NN

PhPh

N

NR

H

Amination

Pd

Figure 1.1: Chiral diamines used in various asymmetric catalysis reactions. The diamine

scaffold is highlighted in red.

The most commonly used chiral diamines are 1,2-diphenylethylenediamine (DPEN) and trans-

1,2-diaminocyclohexane (dach) (Figure 1.2). This is likely due to a combination of successful

precedents and ease of synthesis and production. Diaminocyclohexanes are produced from the

hydrogenation of 1,2-diaminobenzene, and stereoisomers can be isolated through resolution.

There are a number of known methods for the synthesis of DPEN, many of which are carried out

3

in industrial settings. The most prevalent route remains that developed by Corey;4 the initial

reagents for this method are inexpensive benzil and cyclohexanone.

 

Figure 1.2 Chemical structures of the most common chiral diamines used in catalysis, DPEN

and dach. Enantiomers not shown.

Two distinct Noyori catalysts are capable of facilitating direct H2 hydrogenation or transfer

hydrogenation, respectively, both of which containing DPEN.5,6 The Jacobson catalyst is derived

from a salen-type ligand bearing a chiral diamine based diimine, which imparts stereoselectivity

to the catalyst.7 Depending on the transition metal and other reaction conditions, the catalyst

could be used in asymmetric olefin epoxidation or epoxide hydrolysis. A similar tetradentate

chiral diamine has been used by Morris to achieve asymmetric transfer hydrogenation using iron

as the metal.8 Grubbs also developed a sterically bulky diamine ruthenium catalyst for

asymmetric ring closing metathesis.9 The Trost ligand also contains dach and can be used for

stereoselective allylic alkylations.10

There are countless other instances of chiral diamines participating in asymmetric catalysis. This

chapter will focus on the role of the diamine ligand in asymmetric transfer hydrogenation with

the Noyori catalyst. The second chapter will look at the origin of stereoselectivity for the

Jacobsen epoxidation catalyst.

1.1.2 Asymmetric Transfer Hydrogenation and the Noyori Catalyst

One of the applications of chiral diamines is in asymmetric transfer hydrogenation (ATH).

Specifically, chiral N-p-Tosyl-1,2-diphenylethylenediamine is used as a ligand for Noyori’s

ATH catalyst (Figure 1.1), and it is this moiety that engenders stereoselectivity during the

reaction.11 ATH remains one of the cornerstone reactions for introducing chiral centres from

prochiral compounds. One of the major advantages of ATH lies in its versatility; both ketones

4

and imines can be hydrogenated, often in excellent yields and stereoselectivities. Indeed, a

number of industrially significant reactions are attainable through Noyori’s ATH (Figure 1.3).12

N

O

NH2O

N

OH

NH2O

oxcarbazepine eslicarbazepine

SOTs

OS

OTs

OHS

O

NH

(S)-duloxetine(Cymbalta)

MeO

OTs

MeO

OTs

HO

HN

OHO OH

OMe

OMedenopamine

O

NBoc

OH

NBoc

NH

O

CF3

(R)-fluoxetine(Prozac)

ClCl

N

ClCl

NH

sertraline

Figure 1.3: Industrially relevant applications of asymmetric transfer hydrogenation.

Noyori’s ATH differs from direct hydrogenation in the nature of the reducing agent. In direct

hydrogenation, molecular hydrogen is used as the hydrogen source.13 In ATH, on the other hand,

a separate donor molecule is used such as formic acid or isopropanol. In the case of formic acid,

5

a hydride is transferred from a formate anion to the ruthenium catalyst, accompanied by

decarboxylation. The mechanism for ATH using formic acid as terminal reducing agent appears

in Figure 1.4. 11,14

RuNTsH2N

Cl

Et3N

Et3N.HCl

RuHN NTs

-H+

+H+Ru

NTsH2N[ ]

CO2

HCOO-

RuNTsH2N

H

Ph

Ph

Ph

Ph Ph

Ph

Ph

Ph

Ar

O

Ar

OH

- Transition State

RuNTsNH

H

PhPh

R

HCO

Ar

Me RuNTsNH

H

PhPh

R

HCO

Me

Ar

favoured TS disfavoured TS

Figure 1.4: Mechanism for ATH using formic acid/triethylamine and aryl alkyl ketone.

There is significant interest of late with regards to using hydrogenation as a means for carbon

dioxide capture. The triple hydrogenation of CO2 to methanol is thermodynamically favourable

and is a potential way to convert waste into fuel by means of the high energy H2 molecule.

Minimizing the global carbon footprint will be a major challenge over the next few years.15

Because cost and energy efficiency in CO2 capture is the most significant current limitation,

hydrogenation catalysts stand to play an important role in overcoming these current barriers. Of

course, none of the derivatives of CO2 are chiral, and the hallmark of Noyori’s hydrogenation

catalyst is its stereoselectivity, but similar catalysts could be employed for efficient CO2

hydrogenation. A number of successful systems for CO2 reduction have been reported in the

literature.16-18

For purposes of CO2 capture, and for more traditional synthetic applications, there is much

interest in developing new hydrogenation catalysts, and in understanding the intricate details of

known hydrogenation pathways. Recent publications have described new and innovative

6

hydrogenation catalysts,19-22 and yet others have used old catalysts towards new applications.23

Others still have probed deeper into the underlying mechanisms of ATH.24-26 Furthermore, a

number of comprehensive reviews have been written on the subject.27,28

Considering the great interest in hydrogenation, and its wide industrial applicability, it is not

surprising that ATH has occupied a significant niche in the intellectual property (IP) portfolio of

many chemical firms. Johnson Matthey plc holds one such patent for the use of substituted

diamine (DPEN) ligands.29 In this patent, Johnson Matthey reported that Ts(pOMe)DPEN was

more active as a ligand than the traditional TsDPEN (Figure 1.5). Using α-tetralone as substrate,

under otherwise identical reaction conditions, the reaction was 70% complete after 5 hours with

Ts(pOMe)DPEN as monotosyl diamine ligand, while only 45% complete after 6 hours with

TsDPEN. This rate-enhancing activity is not obvious; it is important to notice that the aryl rings

are not conjugated with the amine ligand electron donors.

(S,S)-TsDPEN

HNH2N SO

O

MeO OMe(S,S)-Ts(pOMe)DPEN

O OH[RuCl2(p-cymene)]2

(S,S)-TsDPENHCOOH/Et3N

S/C = 50060oC

6 hours 45%98 ee

O OH[RuCl2(p-cymene)]2

(S,S)-Ts(pOMe)DPENHCOOH/Et3N

S/C = 50060oC

5 hours 70%98 ee

HNH2N SO

O

Figure 1.5: Relative activity of monotosyl diamines for ATH in the Johnson Matthey patent

By the end of the reaction (22 hours) Ts(pOMe)DPEN led to 90% conversion, while TsDPEN

only led to 70% conversion. The ee for both reactions was reported at 98%. In terms of practical

synthesis involving Ts(pOMe)DPEN, this ligand has been used in asymmetric transfer

hydrogenation of oxcarbazepine to eslicarbazepine, followed by acetylation to give

espicarbazepine acetate.30

7

1.1.3 Synthetic Applications of Resonance Assisted Hydrogen Bonds

Hydrogen bonds are probably the most thoroughly studied non-covalent interaction in all of

chemical space. Hydrogen bonds (H-bonds) arise from the significant dipole formed through the

bonding of hydrogen to highly electronegative atoms such as oxygen, nitrogen and fluorine. This

polarization leads to a charge differential along the bond that can be stabilized through non-

covalent interactions of the hydrogen with corresponding H-bond acceptor partners.31

Although the general framework for hydrogen bonding is well understood, there is considerable

variation among different types of hydrogen bonds. The geometric and thermodynamic

parameters of hydrogen bonds can vary depending on the precise nature of the interaction, and

many classes of H-bonds are known. The properties of these different H-bonds are often unique,

and pave the way for interesting developments in chemistry.

In seminal reports by Gilli and co-workers, hydrogen bonds were categorized into a number of

classes based on their chemical and structural origins. Broadly speaking, H-bonds can fall into

either the strong, moderate or weak categories, with further subdivisions accompanying these

distinctions. One of the strong types of H-bonds is termed resonance assisted hydrogen bonds

(RAHB), or alternatively, π-cooperative H-bonds.32 RAHBs arise when a hydrogen bond can be

stabilized through a resonance structure as with β-diketone enols (Figure 1.6). The result of the

RAHB is a particularly strong H-bond interaction with an O⋯O bond distance of between 2.39 –

2.55 Å and the energy of a RAHB is calculated at approximately 2.7 kcal/mol greater than weak

H-bonds.33

Figure 1.6: Resonance assisted hydrogen bonding in β-diketone enols leads to particularly

strong H-bonds.

8

Because of the energetic favourability of RAHB compared to typical (weak) H-bonds, allowing

these two types of H-bonds to equilibrate would lead to virtually complete formation of the

RAHB. A number of key syntheses have been enabled due to the energetic stabilization of

RAHB species.

Biologically, RAHBs are utilized in amino acid biosynthesis through transamination reactions

carried out by the cofactor, pyridoxal phosphate.34 In a similar vein, Shi et al. have developed a

synthetic method for producing primary amines that relies on the stabilization of RAHB.35,36

Additionally, Chin et al. reported a method, the diaza-Cope rearrangement (DCR), for making

chiral diamines starting from achiral substituted aldehydes, and a general chiral diamine. This

diamine, named the “Mother Diamine,” is capable of rearranging to form two RAHBs, and this

pushes the equilibrium almost exclusively towards the direction of the products (Figure 1.7).37,38

Figure 1.7: Synthetic applications of resonance assisted hydrogen bonding.

The diaza-Cope rearrangement method is particularly well suited for making a diverse set of

catalysts for Noyori’s asymmetric transfer hydrogenation reaction, which bears a monotosylated

diamine. The first step in the DCR involves formation of a diimine between the Mother Diamine

and two equivalents of aldehyde. The key mechanistic step in the diaza-Cope rearrangement is a

[3+3] sigmatropic rearrangement,39 which correspondingly generates two RAHBs along with a

single bond to connect the initial aldehydes. Furthermore, this rearrangement occurs

stereoselectively with overall inversion of absolute stereochemistry. Subsequent acid hydrolysis

of the diimine yields the desired chiral diamine derivative, along with two equivalents of

9

salicylaldehyde (Figure 1.8). In this way, many different diamines may be synthesized using one

general and facile method.

NH2

NH2

OH

OH

2Ar

ON

N

OH

OH

Ar

Ar [3+3] N

N

OH

OH

Ar

Ar NH2Ar

NH2Ar

Hydrolysis

Figure 1.8: Mechanism and scheme for the diaza-Cope rearrangement.

1.2 Research Goals

The aim of this research is to investigate the effects of electronic substitutions on the catalytic

activity of Noyori’s asymmetric transfer hydrogenation catalyst. A patent issued to Johnson

Matthey plc described the enhanced rate of hydrogenation for an electron-rich monotosylated

diamine. Our research challenges their observations and investigates other substituted diamines,

most easily accessed synthetically through the diaza-Cope rearrangement.

1.3 Results and Discussions

1.3.1 Synthesis of Monotosylated Daughter Diamine Derivatives as Catalyst Precursors

Four distinct para-substituted monotosylated diphenylethylenediamines were synthesized and

tested as ligands in ruthenium-catalyzed asymmetric transfer hydrogenation. Both electron

donating and electron withdrawing derivatives were explored. The following section describes

the synthesis of these ligands starting from Mother Diamine and the corresponding aldehyde.

The diaza-Cope rearrangement provides a general synthetic route for obtaining the desired

daughter diamines, as shown in the scheme above (Figure 1.8). Starting with (R,R)-hpen

(“Mother Diamine”), a series of aldehyde substrates were reacted to form the rearranged RAHB-

stabilized diimine in excellent yield (Table 1.1). The absolute stereochemistry of the product is

reversed during the DCR.

10

NH2

NH2

OH

OH

(R,R)-hpen

2.2 eq

EtOH60oC, 1 hr

R

O

N

N

OH

OH R

R

R %yield

OMe >99%

NMe2 >99%

F 81.9%

Table 1.1: Synthesis of substituted diimines.

The presence of a highly downfield peak (~13 ppm) representing the phenolic acidic proton

confirmed the identity of the rearranged diamine. Such downfield shifts are characteristic of

RAHBs, and will only be apparent following successful rearrangement.

Following the DCR, the diimine was hydrolyzed overnight in acidic organic solvent, to produce

a white or yellow precipitate of the daughter diamine salt that could be recovered by vacuum

filtration (Table 1.2).

N

N

OH

OH R

R

conc. HCl

Solvent20 min at 50oC

rt ON

NH3

NH3

R

R

Cl

Cl

OH O

11

R Solvent/HCl (%v/v) %yield

OMe THF/3% HCl 76.5%

NMe2 EtOH/5% HCl 75.6%

F THF/3% HCl 78.9%

Table 1.2: Synthesis of substituted diamine hydrochloride salts.

The diamine salt was then tosylated using p-toluenesulfonic acid. At least one additional

equivalent of base was required to neutralize the generated HCl. Two distinct but similar

methods were employed for the tosylation. Broadly, either the neutral form of the diamine was

first isolated and subsequently tosylated (Method A), or alternatively, the diamine salt was

deprotonated and tosylated in a single-pot reaction (Method B). The yield and method used for

the various tosylation reactions appears in Table  1.3. The products were used directly in the

hydrogenation with the active catalyst formed in situ, as will be described.

NH3

NH3

R

R

Cl

Cl

SO

OCl

Base

CH2Cl2 or CHCl30oC 2 hr

rt ONNH

NH2

R

R

SO

O

 

R   %yield   Method  

H   41.3%   Method  A  

OMe   48.8%   Method  A  

NMe2   34.1%   Method  A  

F   53.0%   Method  B  

12

Table  1.3:  Synthesis  of  TsDPEN  and  other  substituted  monotosyl  diamines.  

1.3.2 Technique for Monitoring Hydrogenation Kinetics

Before testing the monotosylated daughter diamines directly, it was necessary to develop an

experimental protocol by which to monitor the reaction kinetics. Noyori’s asymmetric transfer

hydrogenation has been realized in a number of different solvent systems using various reducing

agents. Furthermore, some of these reactions are performed in heterogenous mixtures involving

two-phase aqueous/organic suspensions. Since we were interested in detecting the influence of

electronic substituents on hydrogenation activity, it was important that the reaction be carried out

homogeneously. Otherwise, it would be impossible to assign any differences in catalytic activity

independently to electronic effects as opposed to other factors such as solubility.

Working off of a similar protocol to that of Kacer,40 we designed a method by which to measure

the hydrogenation kinetics. The reaction was carried out in a formic acid/triethylamine azeotrope

with a small amount of acetonitrile-d3 added to allow for 1H-NMR analysis. In this system,

formic acid functions as hydride donor with decarboxylation of carbon dioxide. Conditions were

chosen such that the molar ratio of formic acid to triethylamine was 6:7. Most reaction

conditions call for a 5:2 formic acid:triethylamine molar ratio,41 but there is precedent for

altering the azeotropic concentrations.42 For our purposes, a slightly basic solution was desired as

some of the diamine derivatives contained basic moieties that could otherwise become

protonated. The substrate to catalyst ratio (S/C) ranged from 100 to 500 and was optimized for

each reaction. The reaction was heated to 40°C and monitored by NMR.

Preliminary experiments were conducted to ensure that the experimental protocol was robust.

Using (R,R)-DPEN as diamine catalyst precursor and acetophenone as substrate, a series of

reactions were conducted to determine the degree of reproducibility. For the reproducibility tests

and catalyst loading optimizations, the reaction was monitored by recording the 1H-NMR spectra

at various time points. It was found that the results were quite reproducible under these

conditions.

Once the optimized reaction conditions were determined for the respective hydrogenations, the

time points were shortened and aliquots were transferred to NMR solvent to be analyzed. A

quenched flow technique was used with formic acid added to the NMR solvent. The acidic

13

environment deactivated the catalyst by shifting the equilibrium in favour of the protonated

ruthenium catalyst, preventing further hydrogenation.43 The relative integration of the methyl

singlet of the starting material and the methyl doublet of the product detected by 1H-NMR was

used to measure the yield of the reaction at each time point.

1.3.3 Electronic Effect of Monotosylated Diamine Substituents on Catalytic Activity

Using the protocol described in Section 1.3.2, we next set out to analyze the activity of the para-

substituted diamines in asymmetric transfer hydrogenation. The following charts show the

relative catalytic activities for a series of substituted diamines (Figure 1.9). Assuming first-order

rate kinetics, the units for the y-axis are –ln[acetophenone], where [acetophenone] represents the

percent of reactant at a given time point. The rate constant derived from the line of best fit of all

eleven time points is shown in Table 1.4.

Ph CH3

O[(cymene)RuCl2]2

Ligand

Ph CH3

OH

*40oC  

   

14

   

Figure 1.9: Relative catalytic activity for a series of substituted monotosylated diamine ligands:

a) TsDPEN; b) Ts(pOMe)DPEN; c) Ts(pNMe2)DPEN; and d) Ts(pF)DPEN.

Ligand   Rate  constant  (min-­‐1)   TOF  (s-­‐1)   Relative  Rate  

(R,R)-­‐TsDPEN   1.71*10-­‐3   0.0057   1  

(S,S)-­‐Ts(pOMe)DPEN   1.63*10-­‐3   0.0054   0.95  

(S,S)-­‐Ts(pNMe2)DPEN   1.59*10-­‐3   0.0053   0.93  

(S,S)-­‐Ts(pF)DPEN   1.67*10-­‐3   0.0056   0.98  

Table 1.4: Rate of hydrogenation of acetophenone and TOF using variously substituted

monotosylated diamines as ligands. S/C = 200.

For the different catalysts, the rate of hydrogenation is remarkably similar. From our results,

there is no detectable electronic influence on the hydrogenation kinetics. Additionally, there is

excellent linear fit, suggesting that the pseudo first-order kinetics model is appropriate, even as

the reaction progresses. Any small deviation in observed catalytic activity is likely the result of

systematic uncertainties, such as ligand impurities and minute temperature fluctuations

(duplicates were performed so as to minimize random error). Furthermore, it is possible that for

Ts(pNMe2)DPEN, a fraction of the ligand will be protonated despite the basic environment, and

this could have greater influence on the outer-sphere catalyst-substrate interaction due to the

presence of counter-anions. Therefore, within the experimental error of this system, we conclude

15

that the electronic effect of DPEN substituents is negligible for the rate of asymmetric transfer

hydrogenation.

These findings are surprising in light of the patent issued to Johnson Matthey; in their patent,

they report a significantly higher rate of reaction for Ts(pOMe)DPEN relative to the TsDPEN

control. Intuitively, however, these results can be justified by remarking that the aromatic ring π-

system is not conjugated with the amine N-ligand electron donors. Since our reactions were

performed using acetophenone as substrate instead of α-tetralone, we cannot preclude a steric

influence of their ligand in the reaction. However, our results suggest that there is no general

electronic effect imparted by aromatic substituents on the monotosylated DPEN ligand.

1.3.4 Computational Studies

The activation energy for asymmetric transfer hydrogenation for ruthenium compounds with

different DPEN substituents was calculated at the level of DFT B3LYP/6-31G*. For ease of

calculation, simplified model systems were investigated. First, an oxygen atom was substituted

for the N-tosyl monotosylation site as shown in Figure 1.10. This compound has also been

shown to be active experimentally,44 and there is general agreement that oxygen is an acceptable

substitute for N-tosyl.45 Second, benzene was substituted for p-cymene as the η6-ligand, a change

that has also been previously documented.46 Third, instead of modeling acetophenone as the

substrate, as was performed experimentally, the much simpler formaldehyde was used. Although

this choice precludes the investigation of stereoselectivity, we are only interested in the effect of

diamine substituents on overall rate, and not selectivity. Fourth, instead of HCOOH�Et3N as the

H2 source with corresponding release of CO2, methanol was used which produced formaldehyde

as byproduct. Similar to the previous substitutions, there is experimental precedent to validate

this approximation. Isopropanol has been used widely in transfer hydrogenation with the Noyori

catalyst, and was actually the first reported system that was used.5 It is true that dehydrogenation

of methanol will be considerably more unfavourable, but since we are more interested in

differences imparted by the variously substituted ligands, rather than absolute activation

energies, this too is a valid approximation. Additionally, using methanol as H2 source has the

added advantage that the transition state for both hydrogen transfer steps are identical, further

reducing computational cost. The complete scheme is shown in Figure 1.10 below.

16

RuONH

XCH3OH

RuO

NH

X

X

CH2O

H

H

RuONH2

X

XCH2=O

H RuO

NH

X

X

CH2O

H

H

RuONH

X

XCH3OH

X

[A] [A-B]TS [B] [B-A']TS [A']

Figure 1.10: Model structures used for computational analysis of hydrogenation reaction

pathway for variously substituted diamine analogs.

Table 1.5 shows the relative energies for the different species. The energy of free methanol and

free formaldehyde is incorporated into the energy value for [A] and [B], respectively. These data

are displayed graphically in Figure 1.w. Only the energies for [A], [B] and [A-B]TS are shown for

ease of visual interpretation; since the energies for [B-A’]TS is identical to [A-B]TS and [A’] is

identical to [A], the graph would simply be symmetrical about energy [B].

X=  [A]  

(kcal/mol)  

[A-­‐B]TS  

(kcal/mol)  

[B]  

(kcal/mol)  

[B-­‐A’]TS  

(kcal/mol)  

[A’]  

(kcal/mol)  

F   0   5.87   5.98   5.87   0  

H   0   6.17   5.69   6.17   0  

OMe   0   6.01   5.53   6.01   0  

NMe2   0   5.87   5.37   5.87   0  

Table 1.5: Energies for the different species participating in asymmetric transfer hydrogenation.

For each substituent, [A] has been assigned an energy value of zero.

17

Figure 1.11: Energy values (kcal/mol) for hydrogenation starting material and transition state.

The activation energy differences are predicted to fall within a narrow 0.3 kcal/mol range.

Furthermore, there is no obvious electronic trend seen with these values. Using the TsDPEN

analog as ligand, the reaction is predicted to have the slowest rate. In other words, both electron-

donating and electron-withdrawing ligands are predicted to have marginally accelerated rates.

Furthermore, there is no obvious steric trend. As the least sterically hindering ligand, the

TsDPEN analog would be expected to be an outlier with the Ts(pF)DPEN ligands closely

following. However, based on calculations, TsDPEN is predicted to be the slowest, while Ts(pF)

DPEN is predicted to be nearly identical with Ts(pNMe2)DPEN as the fastest, with

Ts(pOMe)DPEN in between. The most likely analysis is that, as in the experimental results, any

predicted differences in reaction rate are superficial, and that ligand substituents have little

impact on the rate of hydrogenation.

18

1.3.5 Contribution of Resonance Assisted Hydrogen Bonding Towards Rate of Hydrogenation

A corollary of our investigations into substituted monotosyl diamines led us to investigate the

effects of resonance-assisted hydrogen bonding on activation towards hydrogenation. An

experiment was carried out to assess the relative rates of hydrogenation between 2’-

hydroxyacetophenone and 4’-hyroxyacetophenone. The former is capable of RAHBs with the

hydroxyl group in the ortho position, while para-hydroxyacetophenone cannot. We found that

the rate of hydrogenation is significantly faster using 2’-hydroxyacetophenone as substrate.

The rate of ketone hydrogenation is intimately connected to the degree of activation of the C=O

bond. A greater partial positive charge on the carbonyl carbon leads to faster hydrogenation.

Generally, electron-donating groups such as hydroxyls decrease the rate of hydrogenation by

adding a negative charge to the carbonyl, while electron-withdrawing groups accelerate the rate.

Based on this logic, it would be expected that electron-donating hydroxyl substituents should be

expected to react more slowly than acetophenone, and indeed, the rate of 4’-

hydroxyacetophenone is about one half that of acetophenone. For 2’-hydroxyacetophenone,

however, the rate is nearly six times faster than for acetophenone, as shown in Figure 1.12.

19

Ar CH3

O

Ar CH3

OH

[(cymene)RuCl2]2(R,R)-TsDPEN

40oC*  

Ar   Rate  constant  (min-­‐1)   Relative  Rate  

 

1.71*10-­‐3   1  

HO  

0.761*10-­‐3   0.44  

OH

 

10.2*10-­‐3   5.96  

 

Figure 1.12: Rate of hydrogenation using various substrates. S/C = 200.

20

The accelerated rate observed with 2’-hydroxyacetophenone compared to 4’-

hydroxyacetophenone derives from the resonance-assisted hydrogen bond. As shown in Figure

1.6, a significant resonance structure for 2’-hydroxyacetophenone places a positive charge on the

2’–OH group. Presumably this decreases the activation energy required to reach the transition

state for outer-sphere coordination of the substrate with the ruthenium catalyst, and subsequent

hydrogenation to the diol. Interestingly, the influence of the RAHB is more significant than the

electron-donating capacity of the hydroxyl substituent.

1.4 Conclusions and Future Work

Four monotosylated diphenylethylenediamine derivatives of various electronic substituents were

synthesized and applied towards the asymmetric transfer hydrogenation reaction developed by

Noyori. In spite of prior art describing the enhanced catalytic activity of Ts(pOMe)DPEN as

ligand relative to TsDPEN, we found that this activity was not general across different carbonyl

substrates. Computation likewise predicts only a very modest difference – if at all – in activation

energy associated with the different ligands.

Future work will be aimed at applying our technology platform for diamine synthesis towards

other applications, whether restricted to other hydrogenations, or expanded to unrelated systems.

We will continue to use the principles of molecular recognition to guide our pursuit of

identifying more robust diamines and introducing them into synthetic applications. Additionally,

although this was not the focus of the current project, the effect of DPEN substituents on the

stereoselectivity of the transfer hydrogenation reaction could also be investigated in the future.

1.5 Experimental

1.5.1 General Considerations

Commercial reagents were purchased from Sigma Aldrich, Fisher or Alfa Aesar and used

without further purification. Solvents were likewise purchased from commercial sources.

Columns were packed with SiliaFlash® F60 40-63µm silica (Quebec City, QC, CA). 1H, 13C

and 19F NMR spectra were recorded on either a Bruker Avance III 400, Varian Mercury 400 or

Varian VnmrS 400 spectrometer. NMR spectra were referenced to the residual solvent peak.

Data for 1H NMR are reported as follows: chemical shift (δ ppm), multiplicity (s = singlet, d =

doublet, t = triplet, q = quartet, m = multiplet, br = broad), coupling constant (Hz), integration.

21

Data for 13C NMR are reported in terms of chemical shift (δ ppm). Data for 19F NMR are

reported as follows: chemical shift (δ ppm), multiplicity (d = doublet, t = triplet, q = quartet),

coupling constant (Hz).

For computational analysis, all calculations were performed using Spartan ’08 or Spartan ’10

from Wavefunction Inc. DFT computation at the B3LYP/6-31G* level was used to calculate the

optimized geometry and corresponding energies of starting material and transition states, where

indicated.

1.5.2 General Procedure for Daughter Diamine Synthesis

Diimine synthesis:

(1R,2R)-1,2-Bis(2-hydroxyphenyl)ethylenediamine (hpen) was added to ethanol (2.5 M) to give

a brown slurry. The corresponding aldehyde (2.2 eq) was added to solubilize the mixture. The

reaction was heated at 60°C for one hour and then allowed to cool to room temperature. The

resulting yellow precipitate was washed thoroughly with hexanes or ethanol and dried over

vacuum to yield the rearranged diimines.

Hydrolysis:

Method A: The diimine was dissolved in THF (0.1 M) and conc. HCl was added such that the

final concentration of the solution was 3% v/v HCl. The reaction was heated at 50°C for twenty

minutes, and then allowed to spin at room temperature overnight. The resulting white precipitate

was recovered by vacuum filtration.

Method B: The diimine was dissolved in ethanol (0.1 M) and conc. HCl was added such that the

final concentration of the solution was 5% v/v HCl. The reaction was heated at 50°C for twenty

minutes, and then allowed to spin at room temperature overnight. The resulting yellow

precipitate was recovered by vacuum filtration.

Deprotonation:

The diamine hydrochloride salt was dissolved in a minimum of deionized water. A small amount

of a concentrated aqueous NaOH solution was added such that the total moles of hydroxide was

0.5 equivalents greater than HCl. The mixture was extracted twice with methylene chloride,

22

dried over magnesium sulphate and evaporated under vacuum to yield the neutral diamines as

crystalline solids.

1.5.3 General Procedure for Monotosylation of Daughter Diamines

General Procedure A: The neutral diamine was dissolved in methylene chloride (100 mM)

along with triethylamine (100 mM) and was placed on ice. Under heavy spinning, a methylene

chloride solution of identical volume containing p-toluenesulfonyl chloride (100 mM) was added

dropwise over 20 minutes. The reaction was left to spin on ice for two hours and then allowed to

warm to room temperature and continued reacting overnight. Once finished, the contents were

washed with deionized water and then extracted twice with brine. The organic layer was dried

over magnesium sulphate and the solvent was removed under vacuum to produce a powder. The

crude solid was then subject to column chromatography. Optimized solvent systems were

determined using TLC, and typically ranged from 0–50% hexanes in ethyl acetate.

General Procedure B: The diamine hydrochloride salt was dissolved in deionized water

(250mM) and a saturated aqueous NaOH solution was added until the concentration of NaOH

reached 2 N. With mixing, chloroform was added at a ratio of 2.5:1 v/v relative to the water. The

reaction was placed on ice with heavy stirring. An equal volume of p-toluenesulfonyl chloride in

chloroform (100mM) was added dropwise over the course of 20 min such that the molar ratio of

diamine to sulfone was 1:1. The reaction was left to spin on ice for two hours and then allowed

to warm to room temperature and continued reacting overnight. Once finished, the contents were

washed with deionized water and then extracted twice with brine. The organic layer was dried

over magnesium sulphate and the solvent was removed under vacuum to produce a powder. The

crude solid was then subject to column chromatography. Optimized solvent systems were

determined using TLC, and typically ranged from 0–50% hexanes in ethyl acetate.

1.5.4 General Procedure for Asymmetric Transfer Hydrogenation Reactions

General Procedure For Testing Substituted Monotosyl Diamines:

In a 2D vial, 5.1mg of dichloro(p-cymene)ruthenium(II) dimer (0.0083 mmol) was added along

with 0.0166 mmol of monotosyl diamine. The precatalyst compounds were dissolved in 1mL of

acetonitrile-d3 (16.6mM catalyst) and heated at 40°C for at least one hour. In a separate vial, an

23

azeotropic mixture was formed by adding 113µL of formic acid and 490µL of triethylamine

(HCOOH:Et3N molar ratio of 6:7). 300µL of the precatalyst solution was added to the mixture (5

mM), followed by 117µL of acetophenone (1 mmol, 1 M). The solution was shaken gently,

transferred to a NMR vial and heated at 40°C. The cap of the NMR tube was punctured to allow

for evolution and escape of CO2.

The reaction was monitored either by recording NMR on the reaction vial itself, or by taking

aliquots. For the latter method, one drop of reaction solution was transferred to external NMR

solvent (CDCl3) at the following time points: 0, 20, 40, 60, 80, 100, 120, 150, 180, 210 and 240

minutes. The CDCl3 NMR solvent contained 1% v/v formic acid to quench the reaction. The

yield at each time point was determined by relative integration of the reactant acetophenone CH3

singlet and the product 1-phenyl-1-ethanol upfield shifted CH3 doublet. Since one peak of the

CH3 doublet overlapped with a spinning sideband of triethylamine, the integration for the other

peak was determined and multiplied by two throughout. Duplicate reactions were run for all

ligand (except for Ts(pNMe2)DPEN) and the plots were generated by averaging the results of the

two at each time point. A sample of the NMR spectrum with relevant peaks outlined appears

below. Peak A is the CH3 singlet for the acetophenone reactant; Peak B is the CH3 doublet for

the 1-phenyl-1-ethanol product.

General Procedure For Testing Substrates With Resonance Assisted Hydrogen Bonds:

In a 2D vial, 5.1mg of dichloro(p-cymene)ruthenium(II) dimer (0.0083 mmol) was added along

with 6.1 mg of (R,R)-TsDPEN (0.0166 mmol). The precatalyst compounds were dissolved in

1mL of acetonitrile-d3 (16.6mM catalyst) and heated at 40°C for at least one hour. In a separate

24

vial, an azeotropic mixture was formed by adding 113µL of formic acid and 490µL of

triethylamine (HCOOH:Et3N molar ratio of 6:7). 300µL of the precatalyst solution was added to

the mixture (5 mM), followed by 60µL of 2’-hydroxyacetophenone and 68mg of 4’-

hydroxyacetophenone (0.5 mmol, 0.5 M each). The solution was shaken gently to fully dissolve

the substrates, transferred to a NMR vial and heated at 40°C. The cap of the NMR tube was

punctured to allow for unrestricted evolution and escape of CO2.

The reaction was monitored either by recording NMR on the reaction vial itself, or by taking

aliquots. For the latter method, one drop of reaction solution was transferred to external NMR

solvent (DMSO-d6) at the following time points: 0, 20, 40, 60, 80, 100, 120, 150, 180, 210 and

240 minutes. The DMSO-d6 NMR solvent contained 1% v/v formic acid to quench the reaction.

For the conversion of 2’-hydroxyacetophenone, the yield at each time point was determined by

relative integration of the reactant CH3 singlet and the product 1-(2-hydroxyphenyl)ethan-1-one

upfield shifted CH3 doublet. The reduced product of 4’-hydroxyacetophenone, 4-(1-

hydroxyethyl)phenol, was insoluble in the NMR solvent. Therefore, to monitor this reaction, the

integration of the 4’-hydroxyacetophenone CH3 singlet was compared relative to the summed

integrations of the 2’-hydroxyacetophenone CH3 and the 1-(2-hydroxyphenyl)ethan-1-one CH3

doublet.

1.5.5 Energy Calculations For Catalysts, Reaction Intermediates and Transition States

Using Spartan ’08, structures were drawn as shown in the Tables below. Equilibrium Geometry

was calculated using DFT B3LYP/6-31G* for the staring material [A] and [B], including

methanol and formaldehyde. Transition State Geometry, also at the level of DFT B3LYP/6-

31G*, was used to calculate the energy of the four transition states. These were computed

following the determination of the Equilibrium Conformer at the level of Molecular Mechanics

MMFF (for starting material/intermediates) and Equilibrium Geometry at the level of Semi-

Emperical PM3 (for transition states) as starting point. For all calculations involving the catalyst,

a pseudopotential was used to model the ruthenium metal centre. The raw energy values for the

various computed starting material and intermediate structures appear below.

Table  1:  

25

Entry   Compound:   Energy  (Ha):  

a   [A]TsDPEN  

-­‐997.42768  RuONH

 

b   [A]Ts(pOMe)DPEN  

-­‐1226.472442  RuONH

OMe

MeO

 

c   [A]Ts(pNMe2)DPEN  

-­‐1265.359319  

RuONH

NMe2

Me2N

 

d   [A]Ts(pF)DPEN  

-­‐1195.895531  

RuONH

F

F

 

e   [B]TsDPEN  

-­‐998.632528  RuONH2

H

 

26

f   [B]Ts(pOMe)DPEN  

-­‐1227.677544  

RuONH2

H

OMe

MeO

 

g   [B]Ts(pNMe2)DPEN  

-­‐1266.565676  

RuONH2

H

NMe2

Me2N

 

h   [B]Ts(pF)DPEN  

-­‐1197.099924  RuONH2

H

F

F

 

i   Methanol   -­‐115.714395   CH3OH  

j   Formaldehyde   -­‐114.500474   CH2=O  

The raw energy values for the transition state structures appear in the Table below.

Table  2:  

Entry   Compound:   Energy  (Ha):  

a   [A-­‐B]TSTsDPEN  

-­‐1113.132246  Ru

ONH

CH2O

H

H

 

27

b   [A-­‐B]TSTs(pOMe)DPEN  

-­‐1342.177262  

RuO

NH

CH2O

H

H

OMe

MeO

 

c   [A-­‐B]TSTs(pNMe2)DPEN  

-­‐1381.064362  

RuO

NH

CH2O

H

H

NMe2

Me2N

 

d   [A-­‐B]TSTs(pF)DPEN  

-­‐1311.600573  

RuO

NH

CH2O

H

H

F

F

 

1.5.6 Characterization Data

N

N

MeO

MeO HO

HO 2,2'-((1E,1'E)-(((1S,2S)-1,2-bis(4-methoxyphenyl)ethane-1,2-

diyl)bis(azanylylidene))bis(methanylylidene))diphenol: Synthesized using 6.6 mmol (1.61 g)

hpen. The product was obtained as a yellow powder (3.34 g, >99%). Characterization data: 1H

NMR (400 MHz, CDCl3) δ 13.34 (s, 2H), 8.30 (s, 2H), 7.32 – 7.21 (m, 2H), 7.14 (dd, J = 7.7,

1.7 Hz, 2H), 7.12 – 7.07 (m, 4H), 6.95 (dd, J = 8.4, 1.1 Hz, 2H), 6.83 – 6.73 (m, 6H), 4.66 (s,

2H), 3.75 (s, 6H). 13C NMR (100 MHz, CDCl3) δ 165.92, 161.07, 159.01, 132.60, 131.83,

131.79, 129.05, 118.84, 118.78, 117.00, 113.90, 79.74, 55.34.

28

N

N

Me2N

Me2N HO

HO 2,2'-((1E,1'E)-(((1S,2S)-1,2-bis(4-(dimethylamino)phenyl)ethane-1,2-

diyl)bis(azanylylidene))bis(methanylylidene))diphenol: Synthesized using 4.0 mmol (983 mg)

hpen. The product was obtained as a yellow powder (2.49 g, >99%). Characterization data: 1H

NMR (400 MHz, CDCl3) δ 13.55 (s, 2H), 8.28 (s, 2H), 7.29 – 7.20 (m, 2H), 7.13 (dd, J = 7.7,

1.7 Hz, 2H), 7.10 – 7.04 (m, 4H), 6.93 (dd, J = 8.3, 1.0 Hz, 2H), 6.78 (td, J = 7.4, 1.1 Hz, 2H),

6.65 – 6.54 (m, 4H), 4.66 (s, 2H), 2.89 (s, 12H). 13C NMR (100 MHz, CDCl3) δ 165.38, 161.20,

149.97, 132.29, 131.70, 128.73, 127.85, 118.97, 118.62, 116.97, 112.54, 79.70, 40.69.

N

N

F

F HO

HO 2,2'-((1E,1'E)-(((1S,2S)-1,2-bis(4-fluorophenyl)ethane-1,2-

diyl)bis(azanylylidene))bis(methanylylidene))diphenol: Synthesized using 6.6 mmol (1.61 g)

hpen. The product was obtained as a yellow powder (2.467 g, 81.9%). Characterization data: 1H

NMR (400 MHz, DMSO-d6) δ 13.16 (s, 2H), 8.53 (s, 2H), 7.38 – 7.31 (m, 8H), 7.10 (ddt, J =

9.1, 6.1, 2.5 Hz, 4H), 6.89 – 6.83 (m, 4H), 5.10 (s, 2H). 13C NMR (100 MHz, CDCl3) δ 166.54,

160.96, 135.12, 132.95, 131.99, 129.54, 119.06, 118.57, 117.06, 115.63, 79.67. 19F NMR (400

MHz, DMSO-d6) δ -114.87 (ddd, J = 14.8, 9.5, 5.6 Hz).

29

NH3H3N

OMeMeO

Cl Cl

(1S,2S)-1,2-bis(4-methoxyphenyl)ethane-1,2-diaminium chloride: Synthesized using 3.6

mmol (1.727 g) diimine. The product was obtained as a white solid (970 mg, 6.5%). 1H NMR

(400 MHz, DMSO-d6) δ 9.19 (s, 6H), 7.31 – 7.22 (m, 4H), 6.87 – 6.77 (m, 4H), 5.00 (s, 2H),

3.69 (s, 6H). 13C NMR (100 MHz, DMSO-d6) δ 159.42, 130.11, 125.19, 113.79, 56.26, 55.15.

NH3H3N

NHMe2Me2HN

Cl Cl

ClCl (1S,2S)-1,2-bis(4-(dimethylammonio)phenyl)ethane-1,2-diaminium chloride: Synthesized

using 3.7 mmol (1.86 g) diimine. The product was obtained as a yellow solid (1.23 g, 75.6%).

Characterization data: 1H NMR (400 MHz, D2O) δ 7.50 – 7.39 (m, 4H), 7.40 – 7.31 (m, 4H),

5.06 (s, 2H), 3.08 (d, J = 0.9 Hz, 12H). 13C NMR (100 MHz, D2O) δ 143.48 , 133.09 , 130.38 ,

121.49 , 56.23 , 46.05 .

H3N NH3

FF

ClCl

(1S,2S)-1,2-bis(4-fluorophenyl)ethane-1,2-diaminium chloride: Synthesized using 5.3 mmol

(2.4 g) diimine. The product was obtained as a white solid (1.33 g, 78.9%). Characterization

data: 1H NMR (400 MHz, DMSO-d6) δ 9.30 (s, 6H), 7.43 – 7.33 (m, 4H), 7.16 – 7.05 (m, 4H),

30

5.09 (s, 2H). 13C NMR (100 MHz, DMSO-d6) δ 160.91, 131.11, 129.50, 115.53, 55.99. 19F NMR

(400 MHz, DMSO-d6) δ -112.35 (ddd, J = 13.8, 8.6, 5.3 Hz).

HNH2N SO

O

(1R,2R)-N-p-Tosyl-1,2-diphenylethylenediamine: Synthesized with General Procedure A

using 1.9 mmol (411 mg) of neutral diamine. The product was obtained as a white powder (293

mg, 41.3%). Characterization data: 1H NMR (400 MHz, CDCl3) δ 7.32 (d, J = 8.3 Hz, 2H), 7.19

– 7.09 (m, 10H), 6.97 (d, J = 7.9 Hz, 2H), 4.40 (d, J = 5.6 Hz, 1H), 4.17 (d, J = 5.6 Hz, 1H), 2.32

(s, 3H). 13C NMR (100 MHz, CDCl3) δ 142.59, 141.55, 139.41, 129.21, 128.49, 128.32, 127.51,

127.44, 127.10, 126.94, 126.91, 126.65, 63.36, 60.64, 21.51.

HNH2N SO

O

OMeMeO N-((1S,2S)-2-amino-1,2-bis(4-methoxyphenyl)ethyl)-4-methylbenzenesulfonamide:

Synthesized with General Procedure A using 0.8 mmol (215 mg) of neutral diamine. The product

was obtained as a white powder (164 mg, 48.8%). Characterization data: 1H NMR (400 MHz,

CDCl3) δ 7.37 – 7.29 (m, 2H), 7.08 – 6.95 (m, 6H), 6.72 – 6.63 (m, 4H), 4.31 (d, J = 5.6 Hz,

1H), 4.09 (d, J = 5.6 Hz, 1H), 3.75 (d, J = 7.1 Hz, 6H), 2.33 (s, 3H). 13C NMR (100 MHz,

CDCl3) δ 158.98, 158.93, 142.55, 137.36, 133.71, 131.52, 129.16, 128.24, 127.62, 127.05,

113.80, 113.75, 62.88, 60.02, 55.36, 55.28, 21.53.

31

HNH2N

NMe2Me2N

SO

O

N-((1S,2S)-2-amino-1,2-bis(4-(dimethylamino)phenyl)ethyl)-4-methylbenzenesulfonamide:

Synthesized with General Procedure A using 1.0 mmol (290 mg) of neutral diamine. The product

was obtained as an orange powder (120 mg, 34.1%). Characterization data: 1H NMR (400 MHz,

CD3CN) δ 7.37 – 7.31 (m, 2H), 7.10 – 7.03 (m, 2H), 6.97 – 6.90 (m, 2H), 6.88 – 6.82 (m, 2H),

6.54 – 6.48 (m, 2H), 6.48 – 6.42 (m, 2H), 4.13 (d, J = 7.2 Hz, 1H), 3.89 (d, J = 7.2 Hz, 1H), 2.83

(d, J = 9.1 Hz, 12H, 2.32 (s, 3H). 13C NMR (100 MHz, CD3CN) δ 149.79, 137.49, 129.23,

128.90, 127.83, 127.29, 127.16, 126.99, 112.34, 112.32, 62.70, 59.72, 40.64, 40.53, 21.41.

HNH2N SO

O

FF N-((1S,2S)-2-amino-1,2-bis(4-(fluoro)phenyl)ethyl)-4-methylbenzenesulfonamide:

Synthesized with General Procedure B using 2.3 mmol (743 mg) diamine hydrochloride. The

product was obtained as a beige powder (493 mg, 53.0%). Characterization data: 1H NMR (400

MHz, CDCl3) δ 7.36 – 7.30 (m, 2H), 7.12 – 7.07 (m, 2H), 7.07 – 7.00 (m, 4H), 6.91 – 6.77 (m,

4H), 4.31 (d, J = 5.4 Hz, 1H), 4.09 (d, J = 5.5 Hz, 1H), 2.35 (s, 3H). 13C NMR (100 MHz,

CDCl3) δ 129.32, 128.76, 128.68, 128.12, 128.04, 126.98, 115.56, 115.47, 115.34, 115.25,

62.78, 60.02, 21.52. 19F NMR (400 MHz, CDCl3) δ -114.52 (dq, J = 8.9, 4.6, 3.2 Hz), -114.90

(tt, J = 9.2, 5.2 Hz).

2

32

Chapter 2 The Origin of Stereoselectivity in the Jacobsen-Katsuki

Epoxidation

2.1 Introduction

2.1.1 Structural Considerations of the Jacobsen-Katsuki Epoxidation Catalyst With Respect to Stereoselectivity

Stereoselective catalysis employing transition metals bound to chiral ligands has been one of the

most revolutionary achievements in recent organic synthesis.47 A number of pioneers in the field

have been acknowledged with Nobel Prizes for developing such catalyst, all of which have

become household names amongst synthetic chemists. In 2001, the Nobel Prize was shared by

Sharpless, for his work in asymmetric epoxidation, along with Noyori and Knowles, for their

contributions to asymmetric hydrogenation. These systems are currently used widely in the fine

chemical industry to synthesize many important compounds such as pharmaceuticals,

agrochemicals, polymers and intermediates thereof.48

Following Sharpless’s breakthroughs, Jacobsen and Katsuki independently reported a new

catalyst for asymmetric epoxidation, which employed chiral, bulky manganese (III) salen

complexes. This catalyst was termed the Jacobsen catalyst (Figure 2.1). Kochi had shown

previously that achiral Mn(III) salen complexes could be used as catalysts for epoxidation.49 By

using a chiral diamine instead, epoxidation occurred stereoselectively, and Jacobsen’s catalyst

exhibited even greater selectivity and broader substrate scope than the previously identified

epoxidation catalysts.50

Figure 2.1: Jacobsen’s Mn(III) asymmetric epoxidation catalyst.

33

By exchanging the manganese metal centre for cobalt, and adjusting for appropriate reaction

conditions, the modified catalyst was effective in the stereoselective hydrolysis of unsymmetrical

epoxides. This reaction is proposed to proceed through hydrolytic kinetic resolution (HKR)

whereby only the matched epoxide undergoes hydrolysis while the unmatched epoxide does not

react.51

Notwithstanding the high selectivities carried out through these reactions, the origin of

stereoselectivity remains largely elusive. Considerable effort has gone into elucidating the

mechanism for both epoxidation and HKR, as well as the underlying origin of stereoselectivity.

Most explanations are either speculative or controversial, or incomplete with respect to

rationalizing the high degree of observed stereoselectivity.52 Nonetheless, a number of key

features have emerged that seem certain to be involved in the stereoselective communication

pathway. Furthermore, careful experiments have been conducted that help identify some

necessary elements for the selectivity.

The salen ligand binds the metal in a tetradentate square planar geometry with the two imine-

nitrogen atoms mutually cis, and the phenolic oxygen atoms cis as well. The remaining two

coordination sites (which when filled lead to an octahedral geometry) are variable depending on

the particular system, and the point along the reaction coordinate.

According to a number of early publications by the Jacobsen group, the stereoselectivity of the

epoxidation reaction is imparted by a restricted approach of the olefin substrate to the active

manganese oxide complex.50 Supposedly, the substrate approaches the manganese oxide bond in

a side-on manner (Figure 2.2). Because of steric reasons, the olefin must approach from only a

single side. Subsequent steric interaction between the catalyst and the olefin substituents leads to

the observed stereoselectivity.

34

N

N

H

HOMn

OO

Figure 2.2: Side-on approach of alkene to the manganese-oxo complex53

This depiction was the prevailing mechanistic explanation for Jacobsen’s asymmetric

epoxidation reaction until the new millennium, with some reports citing this mechanism as late

as 2008.54 Although a possible consequence of the chiral catalyst, the side-on approach alone

does not sufficiently explain the high level of stereoselectivity observed in the reaction, for

which the enantiomeric excess is often greater than 90%. Indeed, for any given reaction, it is

generally understood that the relative energies of the possible transition states, and not the

trajectory of approach, determines the stereoselectivity of a reaction.55 Thus a significant

difference in relative transition state energies would be a more likely explanation.

In light of this shortcoming, additional theories were proposed to explain the origin of

stereoselectivity in Jacobsen’s epoxidation reactions. Importantly, the crystal structure of a salen-

cobalt complex bound to aziridine56 showed that the salen ligand was tilted, or “canted” with

respect to the plane.57 One of the tBu-phenol groups points below the plane and the other tBu-

phenol group is directed above the plane. The salen step was not appreciated prior to this report,

but is now unanimously considered a crucial element in the origin of stereoselectivity for both

the cobalt- and manganese-salen catalysts.58 The direction of the respective phenyl group

orientations is dictated by the chiral diamine (Figure 2.3). This is particularly essential for

stereoselective epoxidation, as the salen step is locked with respect to the manganese oxide

(Mn=O).

35

MnO

N N

O MnO

N N

O

NH2

NH2

(R,R)-dach

H2NH2N

(S,S)-dach

(P) salen step (M) salen step

Figure 2.3: The salen step, engendered by the absolute stereochemistry of the diamine.

Realizing the relevance of the salen step in the stereoselectivity of the epoxidation, and the

importance of considering the transition state energies as opposed to the trajectories, the task

turned to harmonizing the newfound data with a novel catalytic mechanism. Most propose a

side-on manganese epoxide-bound transition state, with the alkene substituents oriented in the

direction of the bottom salen step. Such considerations appear in the following references.59,60

Interestingly, it has been shown that an achiral variant of Jacobsen’s catalyst can facilitate

asymmetric epoxidation in the presence of chiral nonracemic donor ligands. Katsuki showed that

chiral amines could be used with achiral Mn-salen catalysts to yield epoxides with good

enantioselectivity.61 More recently, List used his versatile chiral phosphate as donor ligand

through asymmetric counteranion-directed catalysis (ACDC),62 where both activity and

selectivity were marginally improved over the chiral version of Jacobsen’s catalyst in some

instances.63 The reasoning behind both of these observations is the same: for achiral Jacobsen

catalysts, the salen step is still present, but can be directed in either direction and may even be in

equilibrium between the two forms. The role of the chiral diamine is to lock the salen step in a

particular position, which then enables the stereoselectivity. Likewise, in the traditional Jacobsen

epoxidation and hydrolysis reactions, the chiral donor ligand serves to lock the salen step in

place. These findings emphasize the importance of the salen step feature in imparting

stereoselectivity.

36

2.1.2 The Mechanism of Manganese-salen Catalyzed Epoxidation

In addition to a controversial binding geometry, one of the factors complicating the elucidation

of the origin of stereoselectivity in the epoxidation reaction is a controversial mechanistic

pathway. Specifically, there is much debate surrounding the oxygen transfer step (or steps)

leading ultimately to olefin oxidation. In the epoxidation reaction, one C=C double bond is

broken, while two C–O single bonds are formed. These transformations could be accomplished

in a stepwise fashion, where either a radical,64 cationic,65 or metallaoxetane66 intermediate is

generated. Alternatively, the reaction could proceed through a concerted mechanism, where both

C–O bonds are formed simultaneously (Figure 2.4). There is convincing evidence that the

reaction is stepwise, at least in some instances, since trans-epoxides can be generated from Z-

alkenes.65 Nevertheless, there is strong support that a concerted mechanism may be involved as

well.52

Figure 2.4: Proposed mechanisms for Mn-catalyzed epoxidation of Z-alkenes. Pathway A and

Pathway B – both stepwise – proceed through a metallaoxetane and radical intermediate,

respectively. Pathway C is concerted and both carbon-oxygen bonds are formed during a high-

energy transition state.

37

In the proposed radical mechanism, the stereoselectivity-determining step occurs during the

formation of the second C–O bond. Theoretically, it would be expected that the concerted

mechanism would lead to a higher degree of stereoselectivity, although it is possible for a radical

method to produce epoxides with high ee as well. The actual mechanism may be dependent on

the substrate; for instance, conjugated alkenes are more likely to form a radical intermediate, as

these can be stabilized through resonance. It is also possible that both stepwise and concerted

mechanisms compete to varying degrees depending on the substrate and other reaction

conditions.67,68

Quite comprehensive studies by Linde et al. investigating substrates bearing pendant radical

clocks such as ((Z)-1-((1S,2S)-2-phenylcyclopropyl)prop-1-en-1-yl)benzene (Figure 2.5) led to

some interesting conclusions.69 The researchers noted that following the reaction, there was a

mixture of epoxides – none having undergone cis/trans isomerization – and ring-opened

products. Since the presence of any radical intermediate would have been expected to lead to

ring opening instead of epoxidation, this suggested that two mechanisms were at play, namely

both a concerted and stepwise reaction. In the concerted pathway, epoxides were generated,

while in the stepwise, radical pathway, ring opening was observed.

Figure 2.5: Radical clock ring opening of ((Z)-1-((1S,2S)-2-phenylcyclopropyl)prop-1-en-1-

yl)benzene.

However, careful studies by Adam et al. on the relative kinetics of ring opening versus cis/trans

isomerization found that the radical clock ring opening is slow (3.6*108 s-1) relative to the

isomerization step (~1011 s-1).70 Although no data was reported for the rate of formation of the

second C–O bond, this implies that there may be sufficient time to form a radical followed

immediately by the second C–O bond formation before ring opening occurs, but not enough time

38

for isomerization followed by C–O bond formation. Such a situation would lead to similar results

observed by Linde.

A recent publication by Corey and co-workers71 advocated for a stepwise method with a

carbocation intermediate, but went on to rationalize the stereochemical preference in light of its

formation. According to their reasoning, in the case of a conjugated terminal alkene such as

styrene, the first C–O bond would preferentially be formed between the Mn-oxo complex and the

CH2 carbon. Correspondingly, positive charge would accumulate on the other carbon atom, with

delocalization of the charge throughout the aromatic ring. Moreover, the carbocation is further

stabilized by the phenoxy oxygen of the salen ligand. Due to the placement of the t-Bu groups

resulting from the salen step, only one of the two salen oxygen atoms is tenable with respect to

carbocation stabilization because of steric effects (Figure 2.6). Presumably, this same logic could

be applied to epoxidations leading to two chiral centres, such as with β-methyl styrene.

O

Mn N

N

OO

tBu

tBu

tBu

tBu

O

Figure 2.6: Corey’s proposed pathway for Jacobson epoxidation of indene.71

39

2.1.3 The Nature of the Manganese-Oxide Bond and the Active Catalytic Species

The active manganese oxide species in the epoxidation is fundamental to the asymmetric oxygen

transfer step, and by extension, the nature of the manganese-oxide bond will influence the active

species. Most of the discussions on the stereoselectivity of the epoxidation reaction focused on a

Mn(V)=O active species. The Mn(V) oxidation state – leading to a d2 manganese compound –

was the earliest putative oxidant, dating back to the initial publications by Jacobsen7 and Kochi.49

Early studies by Kochi using UV spectroscopy identified the presence of a transient manganese-

oxo intermediate. However, this species decomposed at a slower rate than the observed

epoxidation, suggesting that it was not the active species, but rather a catalyst sink. This species

was assigned as the µ-oxo Mn(IV) dimer, presumably formed between a Mn(III) compound and

the active oxidizing agent Mn(V)=O.49 Later attempts at characterization using ESI-MS and MS-

MS led to confirming identification of both the Mn(V)=O and µ-oxo Mn(IV) dimer species.72

The hybridization of oxygen in the Mn(V)=O species itself is also not conclusive. Oxo ligands

are most traditionally formally considered as X2-type ligands, meaning that the oxygen is most

accurately depicted as sp2 hybridized. However, a number of metal-oxo bonds, including

manganese-oxo bonds, consider the oxo ligand as a LX2 ligand. There have been crystal

structures reported in the literature that support this model.73 In such instances, the oxygen can

be considered as sp hybridized with a corresponding Mn(V)≡O bond.74

In addition to these two species, a number of additional putative active species have been

identified and suggested. Some of these are otherwise similar compounds to the Mn(V)=O

species, except that the oxo ligand is instead either a hydroperoxy or alkylperoxy ligand. This

could be generated on route to the Mn(V)=O complex, assuming the Mn(III) → Mn(V)

oxidation occurs with intermediate formation of a Mn(IV)–O2R species. It is also suggested that

Mn(IV)–OH or Mn(IV)–OCl compounds may be involved as well. Another possibility for the

active catalytic species involves Mn(IV)=O compounds. This compound could arise from the

elimination of HCl by Mn(IV)–OH (chloride is typically either coordinated to the metal, or is a

counterion).70 Despite the numerous possibilities, the strongest evidence points towards a formal

oxidation state of five for the active manganese oxidant.71

40

For computational analysis, the nature of the manganese-oxo bond has implications not only with

respect to selecting the correct structure to analyze, but also in assigning the correct electron

configuration and corresponding multiplicity. Not surprisingly, a number of theoretical studies

have focused on this issue and reported on the suspected most stable ground state electronic

configuration. Specifically, using DFT B3LYP, Houk75 concluded that the Mn(III) catalyst is a

quintet, while the putative Mn(V) active species is most likely to be a triplet. However, the

authors note that there is a huge influence on the relative spin-state stability of the Mn(V) oxo

complex and that even singlet multiplicities are attainable. Furthermore, it should be noted that

these calculation were performed using the Mn-salen model structure shown in Figure 2.7 below,

and the presence of the salen step that would be present in reality with the full ligand may in fact

change the spin-state significantly as the geometry around the metal center is altered from

planarity.

O

N N

OMn

X

O

Figure 2.7: Manganese-oxo compound used for the calculation performed by Houk et al.75

2.2 Research Goals

This chapter will present a novel interpretation for the origin of stereoselectivity seen with

Jacobson’s asymmetric epoxidation catalyst. Our research aims to harmonize experimental

observations described in the literature, along with our own observations, as well as

computational and theoretical considerations. Our proposed theory beautifully explains the

preferential formation of one epoxide diastereomer through the reaction. A more robust

understanding of the catalytic method – along with the origin of stereoselectivity – can aid in the

development of novel catalysts with enhanced activities and selectivities.

41

2.3 Results and Discussion

2.3.1 Challenges With the Prevailing Model

To depict the challenges with the prevailing model, a combination of computational and

experimental results was considered. In this section, the computational analysis will be presented

first, followed by the experimental.

As computational motivation, we endeavored to see whether the experimental stereoselectivity of

the reaction was reflected in the thermodynamics of the system. Using cis-β-methyl styrene 1 as

our model substrate, we began by calculating the relative energies of the two possible trans-

epoxides bound to Jacobsen’s catalyst, namely (2S,3R)-2 and (2R,3S)-2. Independent of the

precise mechanism for epoxidation (see Section 2.1.2), in a side-on approach of the alkene to the

metal, the hybridization of the partially bound epoxide would most resemble sp3. Therefore, as

an approximation, it is possible to consider the bent epoxide-bound structure as analogous to the

transition state.

Based on literature experimental observations,50 when using the SS-enantiomer of Jacobsen’s

catalyst in a two-phase aqueous/CH2Cl2 system with NaOCl as terminal oxidant, compound 1

undergoes epoxidation to form (2S,3R)-2 in 92% ee (Figure 2.8). Intuitively then, it would seem

logical for (2S,3R)-2 to bind more favorably to the SS catalyst than (2R,3S)-2, especially in light

of the prevailing rationalization for the origin of stereoselectivity. Specifically, the theory posited

by Jacobsen and others suggests that the olefin interacts with the catalyst in a side-on manner. By

extension, this implies that the catalyst can only accommodate one bound conformation of the

olefin, and that this ‘expected’ epoxide must bind to the catalyst with greater stability than its

enantiomer.

42

SS-dach-LMn-(2S,3R)-2

0 kcal/mol

MM-Global Minimum

SS-dach-LMn-(2R,3S)-2

-1.32 kcal/mol

MM-Global Minimum

Figure 2.8: Experimental observations and computed relative energies of epoxide enantiomers

bound to the SS-Jacobsen catalyst. The ‘expected’ bound epoxide SS-dach-LMn-(2S,3R)-2 has

been assigned an energy value of 0 kcal/mol.

Surprisingly, solving for the global energy minimum of the two structures, the opposite,

‘unexpected’ epoxide enantiomer is predicted. Using molecular mechanics (MM), the

unexpected epoxide (i.e. (2S,3R)-2) is predicted to be 1.32 kcal/mol more stable than the

predicted enantiomer. In all of the computed structures, the oxygen of the epoxide is bound side-

on with respect to the catalyst, consistent with an sp3 orbital hybridization.

One other consideration of note regarding the olefin trajectory theory for stereoselectivity is the

absolute epoxide stereochemistry observed when using DPEN compared to dach as chiral

diamine. According to the trajectory theory, for (S,S)-5 (catalyst with dach), the olefin

approaches the metal-oxo bond in a side-on manner, as depicted in Figure 2.9. Since the diamine

is unsymmetrical, the side of the olefin with the smaller substituent preferentially travels above

the more sterically hindered side, while the larger substituent travels above the less sterically

hindered side.

43

O

tBu

Me

N

Ph

N

Ph

O

tBu

MeO

O

tBu

tBu

N N

O

tBu

tBuO

a(favoured) b

c

d

b

c

d (favoured)

a

(S,S)-5 (R,R)-6

HMePh

H

H HHPh

Me H

Figure 2.9: Aerial view of alkene approach to manganese-oxo complex as part of the proposed

pathway invoked by Jacobsen to explain the observed sense of stereoselectivity. The bold O

represents the manganese-oxo oxygen.

Under the framework of the trajectory theory, (S,S)-5 could be considered comparable to (R,R)-6

(catalyst with DPEN).50 That is to say, in both cases, the steric contribution from the diimine

bridge is oriented downwards on the left side of the catalyst (as drawn), while the steric

contribution from the right side is oriented upwards, both with respect to the oxo bond. However,

over the course of the epoxidation, (S,S)-5 gives the opposite absolute stereochemistry to (R,R)-

6, albeit with very similar ee. As a justification for this observation, it was proposed that the

olefin can approach the metal-oxo bond from the side of the diimine bridge when dach is the

chiral diamine (approach d), but cannot approach from the same trajectory when the DPEN

scaffold is used, due to the greater steric influence of the two phenyl rings. Instead, the olefin

approaches from the side of the salen-phenol ligand, but specifically from the side where the

DPEN phenyl ring is oriented downwards (approach a). Furthermore, the larger phenyl group is

preferentially oriented away from the bulky tert-butyl group, which leads to the observed sense

of stereoselectivity.

Although not impossible, this explanation necessitates two distinct mechanistic pathways for

similar catalysts that coincidentally lead to very similar stereoselectivities. A more elegant

explanation might be that both versions of the catalyst operate in a similar manner. Specifically,

this argument is possible if the trajectory is not the dominating factor, and rather the significant

interaction arises from the differences in energy upon olefin binding to the catalyst at the

transition state. Assuming the trajectory is not the key feature for imparting stereoselectivity, it is

44

less compelling to equate (S,S)-5 with (R,R)-6. Indeed, the structural geometry of the two

catalysts (i.e. (S,S)-5 and (S,S)-6) is strikingly similar in the vicinity of the metal-oxo bond, as

predicted by computational modeling.

The experimental motivation for investigating the merits of the side-on, trajectory approach is

based on studies using aziridine. Aziridine, instead of epoxide, has often been used as a transition

state analog for epoxidation.76 Aziridines can bind to the Jacobsen catalyst in solution more

strongly than epoxides, which provides a means by which to monitor the interaction empirically

by experiment. NMR analysis was performed to determine the equilibrium concentrations of

chiral cis-aziridines between bound states to each respective Jacobsen catalyst enantiomer. Using

(2R,3S)-2-phenyl-3-methylaziridine 4 (1.5mM) with equal amounts of (R,R)-3 and (S,S)-3

(15mM each), the aziridine bound preferentially to (S,S)-3 in a ratio of 3:1 (Figure  2.10). In

nearly perfect agreement with the computational analysis above, this corresponds to 0.65

kcal/mol lower energy for the ‘unexpected’ enantiomer. Importantly, similar computational

calculations using cobalt and chiral cis-2-phenyl-3-methylaziridine enantiomers instead of

manganese and the corresponding epoxide returned similar results with respect to relative

energies (Figure  2.11). Specifically, the difference in energy was predicted as 0.85 kcal/mol

with the ‘unexpected’ enantiomer again the lower energy binder.

O

N N

O

tBu tBu

tButBuCo

(S,S)-3

NH

Me Ph

(2R,3S)-4

O

N N

O

tBu tBu

tButBuCo

(R,R)-3

Cl

ClO

N N

O

tBu tBu

tButBuCo

Cl

O

N N

O

tBu tBu

tButBuCo

Cl

NH

PhMe

NH

PhMe

 

45

 

Figure  2.10:  NMR  competition  reaction  between  (2R,3S)-­‐2-­‐phenyl-­‐3-­‐methylaziridine  (4)  

with:  A)  (R,R)-­‐3;  B)  (S,S)-­‐3;  and  C)  equal  mixture  of  (S,S)-­‐3  and  (R,R)-­‐3.  Results  show  a  3:1  

preference  for  the  mismatched  aziridine-­‐catalyst  complex.  

   

SS-­‐dach-­‐LCo-­‐(2S,3R)-­‐4  

0  kcal/mol  

MM-­‐Global  Minimum  

SS-­‐dach-­‐LCo-­‐(2R,3S)-­‐4  

-­‐0.85  kcal/mol  

MM-­‐Global  Minimum  

Figure  2.11:  Computed  relative  energies  of  aziridine  enantiomers  bound  to  the  SS-­‐Jacobsen  

catalyst.  The  ‘expected’  bound  aziridine  SS-­‐dach-­‐LCo-­‐(2S,3R)-­‐4  has  been  assigned  an  energy  

value  of  0  kcal/mol.  

2.3.2 Agreement of Computational Modeling with Experimental Observations

Whenever computational models are used, it is always prudent to question the accuracy of the

results with respect to describing the actual system. Fortunately, the computational findings for

the epoxide-bound Jacobsen catalyst can be supported by two key experimental observations,

46

both of which rely on the crystal structure of (2R,3S)-2-phenyl-3-methylaziridine 4 bound to both

(S,S)-3 and (R,R)-3, solved previously by our group (Figure 2.12).56

O

N N

O

tBu tBu

tButBuCo

3

NH

Me Ph

4  

O

N N

O

tBu tBu

tButBuCo

NH

NH

Me Ph

MePh

(S,S)-3-[(2R,3S)-4]2    

O

N N

O

tBu tBu

tButBuCo

NH

NH

Me Ph

MePh

(R,R)-3-[(2R,3S)-4]2      

Figure 2.12: Crystal structures of (2R,3S)-2-phenyl-3-methylaziridine bound to both

enantiomers of the Jacobsen catalyst.

47

First, we will use a statistical motivation. In both the crystal structure and the computation, the

four atoms making up the salen core are coplanar. The resulting plane can be split up into

quadrants as shown in Figure  2.13a. The C–C single bond of the bound aziridine straddles two

of these quadrants to avoid unfavourable steric interactions between the hydrogen atoms and the

salen core. For each diastereomer (i.e. (S,S)-3-[(2R,3S)-4]2 and (R,R)-3-[(2R,3S)-4)]2), there are

four possible orientations that the aziridine can bind (Figure  2.13b-c). Based on the crystal

structures, it is known which orientation is the most stable. For both diastereomers, computation

predicts the correct orientation. For (2R,3S)-4 bound to (R,R)-3, both computation and the crystal

structure showed the aziridine straddling quadrant I//II as the most stable orientation. This is a

strong intuitive support that the computational model is describing the system correctly.

This agreement can be verified by comparing the relative energies of the complex with the

aziridine straddling each quadrant. Starting from the equilibrium conformer solved at the level of

Molecular Mechanics, the cobalt-nitrogen bond was iteratively rotated 90° such that all four

possible orientations were surveyed. At each position, the local equilibrium geometry was

calculated. For the conformer with aziridine straddling quadrant III/IV, a local minimum could

not be reached, and so the dihedral angle was constrained to prevent the geometry from

diverging too significantly such that the aziridine straddled quadrants IV/I.

O

N N

O

tBu tBu

tButBuCo

Cl

a

 

 

N N

OOI

II

III

IV

RR-LCo  

 

48

N N

OONHPh

MeI

II

III

IV

b

 

N N

OONH

Ph

MeII

III

IV

I  

N N

OOHN Ph

Me

II

III

IV

I  

HN

PhMe

N N

OOII

III

IV

I  

+4.09  kcal/mol   +10.12kcal/mol   +9.14  kcal/mol   0  kcal/mol  

N N

OO

I

II

III

IVNHPh

Me

c

 

N N

OOI

II

III

IVNH

Ph

Me

 

HN Ph

MeN N

OOI

II

III

IV

 

N N

OOI

II

III

IVHN

Ph

Me

 

0  kcal/mol   +0.86  kcal/mol   +7.83  kcal/mol   +1.19  kcal/mol  

Figure  2.13:  a)  (R,R)-­‐3,  with  the  corresponding  cartoon  Lewis  representation  used  

throughout.  b)  Four  possible  orientations  of  (2R,3S)-­‐2-­‐phenyl-­‐3-­‐methylaziridine  bound  to  

(S,S)-­‐3.  The  lowest  energy  conformer  has  been  assigned  an  energy  value  of  0  kcal/mol.  c)  Four  

possible  orientations  of  (2R,3S)-­‐2-­‐phenyl-­‐3-­‐methylaziridine  bound  to  (R,R)-­‐3.  The  lowest  

energy  conformer  has  been  assigned  an  energy  value  of  0  kcal/mol.  

As seen from the Figure, for the lowest energy conformer of (2R,3S)-4 bound to (S,S)-3, the

aziridine straddles quadrants IV/I. For the lowest energy conformer of (2R,3S)-4 bound to (R,R)-

3, the aziridine straddles quadrants I/II. The same bonding mode is observed in the crystal

structures (Figure  2.14, Figure 2.15). From a statistical standpoint, any of the four possible

quadrant overlaps are theoretically attainable. This is likewise true for the second bound

aziridine, leading to sixteen possible conformations for the bis-ligated catalyst. Taking into

consideration the second diastereomer, another sixteen conformers are possible. The fact that the

computational analysis predicts the same orientation as is apparent in the crystal structure – for

both diastereomers – is promising.

49

   

   

Figure  2.14:  Side  view  (top)  and  aerial  view  (bottom)  of  (2R,3S)-­‐4  bound  to  (S,S)-­‐3.  Crystal  

(left)  and  computed  (right)  structures  are  compared.  

   

50

     

Figure 2.15: Side view (top) and aerial view (bottom) of (2R,3S)-4 bound to (R,R)-3. Crystal

(left) and computed (right) structures are compared.

Perhaps more compellingly, alignment of the crystal structure with the computed structure shows

a high degree of similarity. For the (S,S)-dach structure, the alignment score is calculated as 0.97

using Spartan, which is measured on a scale of 0 to 1. This corresponds to a RMSD of 0.60 Å for

all non-hydrogen atoms, which confirms the excellent agreement quantitatively. For the (R,R)-

dach structure, the alignment score could not be calculated, but the RMSD was 0.42  Å, again in

excellent quantitative agreement. The overlapping structures for each diastereomer appear below

(Figure  2.16).

   

(S,S)-­‐dach  

Calculated  RMSD:  0.60  Å  

(R,R)-­‐dach  

Calculated  RMSD:  0.42  Å  

51

Figure  2.16:  Aligned  structures  of  (S,S)-­‐3  and  (R,R)-­‐3  bound  to  (2R,3S)-­‐4  determined  by  

both  X-­‐ray  crystallography  (gray)  and  molecular  modeling  computation  (red).  Hydrogen  

atoms  have  been  excluded  for  clarity.  

2.3.3 Advantages Offered By Considering A Planar Transition State

With an appreciation of the limitations in the side-on transition state theory, and a working

computational model in hand, we ventured to address other possible origins of stereoselectivity

in the Jacobsen-Katsuki epoxidation. We found that by considering a novel binding mode,

computation gave the proper prediction for stereoselectivity. Specifically, if the epoxide was

considered to be planar rather than bent (as in the side-on mechanism), the proper

stereoselectivities were predicted computationally. Again using 2-phenyl-3-methylaziridine as

substrate, we calculated the global equilibrium conformer using molecular mechanics for both

diastereomers (Figure  2.17).

   

SS-­‐dach-­‐LCo-­‐(2S,3R)-­‐4  

0  kcal/mol  

MM-­‐Global  Minimum  

SS-­‐dach-­‐LCo-­‐(2S,3R)-­‐4  

+1.54  kcal/mol  

MM-­‐Global  Minimum  

Figure  2.17:  Experimental  observations  and  computed  relative  energies  of  epoxide  

enantiomers  bound  to  the  SS-­‐Jacobsen  catalyst.  The  ‘expected’  bound  deprotonated  

aziridine  SS-­‐dach-­‐LCo-­‐(2S,3R)-­‐4  has  been  assigned  an  energy  value  of  0  kcal/mol.  

It is important to note how the cyclic aziridine ring lies in the same plane as the metal and

chloride axial ligand. We refer to this structure as the planar transition state analog. In order to

make the aziridine planar, the N–H hydrogen of the aziridine nitrogen was removed. This was

52

meant to approximate a sp2-oxygen at the transition state; at the level of molecular mechanics,

oxygen was restricted to sp3 geometry (side-on), but higher level calculations do predict a planar

oxygen depending on the number of bonds at the transition state. Further expansion of these

calculations, as well as the rationale behind using deprotonated aziridine, will be discussed in

Section 2.3.4.

Using the planar transition state analog, the correct stereoselectivity is predicted with (2S,3R)-4

binding to (S,S)-3 more strongly than its (2R,3S)-4 enantiomer by 1.54 kcal/mol. In stark contrast

to the side-on transition state analog, not only does the planar model predict the correct

stereoselectivity, but it also agrees quite closely with experimental ee observations. The reactions

reported by Jacobsen were performed at 4°C. At this temperature, 1.54 kcal/mol corresponds to

an equilibrium constant of 16.5 in favour of the expected aziridine, which corresponds to a

predicted ee of 88.6%. The literature reported ee is 92%.

Another advantage of the planar epoxidation mechanism is that it explains the other experimental

results observed by Jacobsen and his group. As mentioned, a distinct mechanism was invoked to

explain the stereoselectivity preference of the Jacobsen catalyst bearing DPEN as chiral diamine.

As with the dach catalyst 3, the planar transition state analog predicts the correct

stereoselectivity, while the side-on transition state incorrectly predicts the unobserved

enantiomer. Similarly, computation correctly predicts the erosion of stereoselectivity observed

with the dimethyl-dach chiral diamine version when modeling the planar transition state analog.

Although the diminished stereoselectivity is not predicted to be as dramatic as experimentally

observed, the trend is identical such that (S,S)-dach produces the highest selectivity, followed

closely by (S,S)-DPEN, and then by (S,S)-Me-dach. The tabulated comparisons appear in Table  

2.1. For all computed calculations, global energy minimum structures were determined using the

Equilibrium Conformer search at the level of Molecular Mechanics.

53

Catalyst   TSa  

Experimental  

Epoxide  

Configuration  

Literature  ee,  

%  

Computed  

ΔE  

(kcal/mol)b  

Predicted  ee,  

%c  

(S,S)-­‐dach   Planar   (2S,3R)   92   +1.54   88.6  

(S,S)-­‐DPEN   Planar   (2S,3R)   84   +1.51   87.9  

(S,S)-­‐Me-­‐dach   Planar   (2S,3R)   55   +1.25   81.2  

(S,S)-­‐dach   Bent   (2S,3R)   92   -­‐0.85   Opposite  

(S,S)-­‐DPEN   Bent   (2S,3R)   84   -­‐0.89   Opposite  

(S,S)-­‐Me-­‐dach   Bent   (2S,3R)   55   -­‐2.14   Opposite  

O

tBu

N N

O

tBu

tButBuMn

Cl

(S,S)-dach

O

tBu

N N

O

tBu

tButBuMn

Cl

(S,S)-Me-dach

O

tBu

N N

O

tBu

MeMeMn

Cl

(S,S)-DPEN

Ph Ph

 

Table  2.1:  Comparison  of  literature  experimental  results  with  computational  prediction  

for  a  variety  of  catalysts.  Both  planar  and  bent  transition  states  are  considered.  aDeprotonated  sp2  aziridine  used  for  planar  transition  state  (TS),  sp3  aziridine  used  for  

bent  transition  state.  bDifference  in  energy  between  bound  (2R,3S)-­‐4  (not  observed)  and  

(2S,3R)-­‐4  (observed).  cSee  Experimental  section  for  predicted  ee  calculations.  

With the excellent agreement between experimental observations and the planar mechanism

using β-methyl styrene, along with the shortcomings of the bent, side-on approach at explaining

stereoselectivity, we decided to screen for additional substrates. In Jacobsen’s 1991 paper, six

54

substrates were analyzed for application in asymmetric epoxidation using (S,S)-dach as catalyst.

As shown in Table 2.2, the planar model is greatly superior to the bent model for predicting the

sense of stereoselectivity and by extension, the more stable transition state analog diastereomer.

Substrate   TSa  

Experimental  

Epoxide  

Configuration  

Literature  

ee,  %  

Computed  

ΔE  

(kcal/mol)b  

Predicted  

ee,  %c  

Ph Me  

Planar   (2S,3R)   92   +1.54   88.6  

Me p-ClC6H4  

Planar   (2S,3R)   92   +1.44   86.3  

O

 Planar   (1aS,7bS)   98   +1.14   77.6  

O

NC  

Planar   (1aS,7bS)   97   +1.43   86.2  

O

O

 Planar   (1R,6R)   94   -­‐0.04   Opposite  

MeO2C Ph  

Planar   (2S,3S)   89   +3.59   99.7  

Ph Me  

Bent   (2S,3R)   92   -­‐0.85   Opposite  

Me p-ClC6H4  

Bent   (2S,3R)   92   -­‐1.67   Opposite  

O

 Bent   (1aS,7bS)   98   -­‐0.14   Opposite  

55

O

NC  

Bent   (1aS,7bS)   97   -­‐1.43   Opposite  

O

O

 Bent   (1R,6R)   94   +6.56   >99.9  

MeO2C Ph  

Bent   (2S,3S)   89   -­‐3.47   Opposite  

Table 2.2: Comparison  of  literature  experimental  results  with  computational  prediction  for  

a  variety  of  substrates.  (S,S)-­‐dach  was  used  as  catalyst  throughout.  Both  planar  and  bent  

transition  states  are  considered.  aDeprotonated  sp2  aziridine  used  for  planar  transition  

state  (TS),  sp3  aziridine  used  for  bent  transition  state.  bDifference  in  energy  between  bound  

(2R,3S)-­‐4  (not  observed)  and  (2S,3R)-­‐4  (observed).  cSee  Experimental  section  for  predicted  

ee  calculations.

Undoubtedly, the planar transition state is superior at predicting the sense of stereoselectivity

compared to the prevailing bent model. Of the six substrates reported by Jacobsen, the sense of

stereoselectivity is predicted correctly for five of them using the planar TS model. Conversely,

the bent TS model predicts the incorrect sense of stereoselectivity for five of the six substrates. It

is also worth mentioning that the planar model obviates the need to consider the trajectory of the

incoming olefins, which could theoretically be quite different depending on the structure and the

resulting steric considerations.

For the one incorrectly predicted entry using the planar geometry, the substrate is very flexible

with many possible degrees of freedom. This complicates the global minimum calculation and

may be the source of the error. Furthermore, across the board, there is good agreement between

the predicted energy difference between the two enantiomeric bound aziridines, and the observed

ee.

56

2.3.4 The Hybridization of the Axial Oxygen Ligand

In order for the transition state to be planar, the oxygen must have sp or sp2 character at that time.

In this section, we will present computational analysis that supports this type of hybridization at

the transition state.

To start, it is important to identify which manganese-oxo compound is most stable, and whether

this is a likely compound to be involved in the epoxidation. With this goal in mind, we calculated

the energies of the different possible manganese compounds using DFT B3LYP/6-31G*

computation. Three potential electronic states are possible for octahedral manganese-oxo

compounds: singlet, triplet and quintet. These three multiplicities correlate roughly to triple,

double and single bond order, respectively, along the Mn–O bond.74

Multiplicity Bond Order Energy (kcal/mol) dMn–O (Å) Oxygen  Partial  Charge  

Singlet   Triple   +13.558   1.558   -­‐0.461  

Triplet   Double   0   1.757   -­‐0.451  

Quintet   Single   +2.380   1.773   -­‐0.505  

O

N N

O

tBu tBu

Mn

Cl

O

 

Table 2.3: Relative energies and other computed physical properties of potential (salen)Mn=O

species. Bond orders values are qualitative. The most stable, triplet species has been assigned an

energy value of 0 kcal/mol.

As can be seen in Table 2.3, the triplet is the most stable predicted state, nearly 2.5 kcal/mol

more stable than the quintet. The singlet is predicted to be over 10 kcal/mol less stable than both

the triplet and the quintet, and cannot be a significant player in the epoxidation reaction.

57

Additionally, the Mn–O bond lengths and the partial charge on the oxygen were determined. The

triplet species also has the least negative oxygen, which is important considering that the catalyst

is the electrophile. Parenthetically, these calculations validate those performed by Houk75 on the

simpler model systems (discussed in Section 2.1.3). For ease of calculation, the tert-butyl groups

in the para-position were not included in this analysis.

Aside from the calculated partial charges on the oxygen atom, the molecular orbitals generated

for the various structures also shed insight on the active manganese-oxo species. In the

asymmetric epoxidation reaction, the olefin double bond acts as the nucleophile, while the

manganese-oxo complex acts as the electrophile. Figure 2.18 shows the HOMO orbital for a

model olefin, cis-2-butene, along with the LUMO orbitals for the three manganese-oxo species.

Again, the orbitals of the triplet species seem to have the greatest complementary overlap with

the incoming olefin.

Figure 2.18: HOMO and LUMO orbitals of cis-2-butene and the Jacobsen manganese-oxo

catalyst, respectively. The LUMO for all three potential manganese multiplicity states are shown.

Seeing as the manganese-oxo triplet is the most stable species, and that the electronic situation

favours bonding of the olefin to this complex, our further analysis will focus on the triplet as the

active species. Importantly, based on the double bond nature of the Mn-oxo species, and the

HOMO-LUMO representations, at least early on in the reaction trajectory, the olefin should be

bound in a planar sp2 configuration.

58

Further calculation has identified the epoxidation as highly exothermic. The transfer of oxygen

from manganese to the alkene to form the epoxide is predicted to be downhill by at least 23

kcal/mol. During the transfer of oxygen from the manganese-oxo triplet to cis-2-butene, the

manganese could either remain in the triplet state, or cross over to the more stable quintet state in

a concerted fashion.74 Table  2.4 shows the calculated energies of the products and reactants,

along with the energy associated with the oxygen transfer.

O

N

tBu

N

O

tBu

MnO

N

tBu

N

O

tBu

MnO

Cl Cl

MeMe MeMe

O

L-MnCl=O L-MnCl dimethyloxiranecis-2-butene  

EL-­‐MnCl=O   Ecis-­‐2-­‐butene   EL-­‐MnCl   Edimethyloxirane   ΔEreaction  

-­‐1904519.572  

(triplet)  

-­‐98660.026   -­‐1857352.572  

(triplet)  

-­‐145851.090   -­‐23.834  

-­‐1904519.572  

(triplet)  

-­‐98660.026   -­‐1857375.963  

(quintet)  

-­‐145851.090   -­‐47.456  

Table  2.4:  Calculated  energies  (in  kcal/mol)  using  DFT  B3LYP/6-­‐31G*  of  products  and  

reactants  involved  in  oxygen  transfer  epoxidation.  ΔE  of  reaction  is  also  shown  for  two  

potential  pathways.

Due to the high exothermicity, according to the Hammond postulate, this would suggest a

relatively early transition state. In other words, the transition state should resemble the reactants.

Seeing as the initial manganese-oxo oxygen is sp2 hybridized, it follows that in an early

transition state, the oxygen would also be approximately sp2-hybridized. This would result in a

planar transition state. Therefore, a planar transition state not only explains the observed

stereoselectivity, but is also predicted based on electronic considerations.

59

2.4 Conclusions and Future Work

Here we have provided an alternative asymmetric epoxidation mechanism to the commonly held

side-on approach of the alkene. Instead of focusing on a bent transition state for epoxide

formation, the investigation of a planar transition state with an approximately sp2-hybridized

manganese-oxo oxygen was considered. Protonated or deprotonated aziridines bound to the

Jacobsen cobalt complex were used to represent bent or planar transition state analogs,

respectively. The planar transition state analog was superior with respect to predicting the

experimentally observed sense of stereoselectivity compared to the bent model. For all three

catalyst systems, and for five out of six substrates tested by Jacobsen, the planar model correctly

predicted the energetically preferred absolute stereochemistry.

It is important to note that a major advantage of our technique lies in its computational

simplicity. For each diastereomer, the calculations used to predict the global energy minimum

conformer can be run in less than one minute each on a standard desktop computer, and at the

level of molecular mechanics. The DFT calculations described are simply meant to validate the

method and are not necessary to determine the sense of stereoselectivity. This allows a facile

method for routinely screening substrate-catalyst pairs to predict the expected product

stereochemistry. Moreover, if a desired product displays poor stereoselectivity, this method

could be used to rationally design novel related catalysts that could be used instead of the

traditional Jacobsen catalyst. If the planar transition state analog does play a significant role in

the origin of epoxide stereoselectivity as our analysis suggests, similar explorative computational

modeling could obviate the need for high-throughput catalytic screening, and streamline the

implementation of optimized epoxidation catalysts.

Lastly, our work is not restricted to manganese-salen catalyzed epoxidation. We believe that our

computational modeling approach can be applied to other catalyst systems, as well. We are

currently working on a mechanistic explanation for cobalt-salen catalyzed epoxide hydrolysis as

a similar, but slightly different system. Ongoing efforts will be aimed at investigating yet other

organometallo- and organo-catalytic systems in the future. Our hope is that through this work,

more efficient catalysts will be developed and applied to practically relevant syntheses.

60

2.5 Experimental

2.5.1 General Considerations

All calculations were performed using Spartan ’08 or Spartan ’10 from Wavefunction Inc. MM

computation at the level of MMFF was used to calculate the equilibrium geometry, and global

equilibrium conformer, where indicated. DFT computation at the B3LYP/6-31G* level was used

to calculate the optimized geometry and corresponding energies of manganese-oxo complexes,

as well as olefin and epoxide energies, where indicated. Crystal structure and computed structure

RMSD values were calculated using VMD, developed by the Theoretical and Computational

Biophysics Group at the University of Illinois at Urbana-Champaign.77

2.5.2 Energy Calculations On Bent Geometry Transition State Analogs

The epoxidation catalyst was constructed using hexavalent mangenese bound to tetradentate 6,6'-

((1E,1'E)-(((1S,2S)-cyclohexane-1,2-diyl)bis(azanylylidene))bis(methanylylidene))bis(2,4-di-

tert-butylphenolate), and mutually axial chloride and 2-phenyl-3-methyloxirane. Equilibrium

conformers for both the (2S,3R)- and (2R,3S)-enantiomers were calculated and the energies were

compared.

Table  1:  

Entry   Compound:   Energy  (kJ/mol):  

a   (2S,3R)-­‐  2-­‐phenyl-­‐3-­‐methyloxirane   1031.1823  

O

N N

O

tBu tBu

tButBuCo

Cl

O

Me Ph

 

b   (2R,3S)-­‐  2-­‐phenyl-­‐3-­‐methyloxirane   1025.6393  

O

N N

O

tBu tBu

tButBuCo

Cl

O

Me Ph

 

The same calculation was also performed using cobalt as metal instead of manganese, and 2-

phenyl-3-methylaziridine instead of 2-phenyl-3-methyloxirane. The aziridine nitrogen was

drawn with tetrahedral geometry (including the Co–N bond) and is consequently modeled as sp3.

61

Table  2:  

Entry   Compound:   Energy  (kJ/mol):  

a   (2S,3R)-­‐  2-­‐phenyl-­‐3-­‐

methylaziridine  

687.7479  

O

N N

O

tBu tBu

tButBuCo

Cl

NH

Me Ph

 

b   (2R,3S)-­‐  2-­‐phenyl-­‐3-­‐

methylaziridine  

684.1726  

O

N N

O

tBu tBu

tButBuCo

Cl

NH

Me Ph

 

The Table below shows the absolute energies for the various catalyst and substrate pairs

discussed throughout the chapter:

Table  3:  

Entry   Catalyst:   Substrate:   Energy  (kJ/mol):  

a   (S,S)-­‐DPEN   (2S,3R)-­‐  2-­‐phenyl-­‐3-­‐

methylaziridine  756.2727  

O

N N

O

tBu tBu

MeMeCo

PhPh

Cl

NH

Ph Me

 

b   (S,S)-­‐DPEN   (2R,3S)-­‐  2-­‐phenyl-­‐3-­‐

methylaziridine  752.5520  

O

N N

O

tBu tBu

MeMeCo

PhPh

Cl

NH

Me Ph

 

c   (S,S)-­‐Me-­‐dach   (2S,3R)-­‐  2-­‐phenyl-­‐3-­‐

methylaziridine  824.8707  

O

N N

O

tBu tBu

tButBuCo

Cl

NH

MePh

 

62

d   (S,S)-­‐Me-­‐dach   (2R,3S)-­‐  2-­‐phenyl-­‐3-­‐

methylaziridine  815.9006  

O

N N

O

tBu tBu

tButBuCo

Cl

NH

PhMe

 

e   (S,S)-­‐dach   (2S,3R)-­‐2-­‐(4-­‐chlorophenyl)-­‐3-­‐

methylaziridine  698.3842  

O

N N

O

tBu tBu

tButBuCo

Cl

NH

Me

Cl

 

f   (S,S)-­‐dach   (2R,3S)-­‐2-­‐(4-­‐chlorophenyl)-­‐3-­‐

methylaziridine  691.3819  

O

N N

O

tBu tBu

tButBuCo

Cl

NH

Me

Cl

 

g   (S,S)-­‐dach   (1aS,7bS)-­‐2,2-­‐dimethyl-­‐1,1a,2,7b-­‐

tetrahydrochromeno[3,4-­‐

b]azirine  

791.5741  

O

N N

O

tBu tBu

tButBuCo

Cl

NH

O

 

h   (S,S)-­‐dach   (1aR,7bR)-­‐2,2-­‐dimethyl-­‐

1,1a,2,7b-­‐

tetrahydrochromeno[3,4-­‐

b]azirine  

790.9943  

O

N N

O

tBu tBu

tButBuCo

Cl

NH

O

 

i   (S,S)-­‐dach   (1aS,7bS)-­‐2,2-­‐dimethyl-­‐1,1a,2,7b-­‐

tetrahydrochromeno[3,4-­‐

b]azirine-­‐6-­‐carbonitrile  

856.2541  

O

N N

O

tBu tBu

tButBuCo

Cl

NH

ONC

 

63

j   (S,S)-­‐dach   (1aR,7bR)-­‐2,2-­‐dimethyl-­‐

1,1a,2,7b-­‐

tetrahydrochromeno[3,4-­‐

b]azirine-­‐6-­‐carbonitrile  

850.2630  

O

N N

O

tBu tBu

tButBuCo

Cl

NH

O CN

 

k   (S,S)-­‐dach   (1R,6R)-­‐7-­‐

azaspiro[bicyclo[4.1.0]heptane-­‐

2,2'-­‐[1,3]dioxolane]  

707.3456  

O

N N

O

tBu tBu

tButBuCo

Cl

NH

O

O

 

l   (S,S)-­‐dach   (1S,6S)-­‐7-­‐

azaspiro[bicyclo[4.1.0]heptane-­‐

2,2'-­‐[1,3]dioxolane]  

734.8075  

O

N N

O

tBu tBu

tButBuCo

Cl

NHO

O

 

m   (S,S)-­‐dach   methyl  (2S,3S)-­‐3-­‐

phenylaziridine-­‐2-­‐carboxylate  765.0462  

O

N N

O

tBu tBu

tButBuCo

Cl

NH

Ph CO2Me

 

n   (S,S)-­‐dach   methyl  (2R,3R)-­‐3-­‐

phenylaziridine-­‐2-­‐carboxylate  750.5353  

O

N N

O

tBu tBu

tButBuCo

Cl

NH

MeO2C Ph

 

2.5.3 Energy Calculations for Different Quadrants

The (salen)CoCl catalyst bound to (2R,3S)-2-phenyl-3-methylaziridine was entered into Spartan.

Identical calculations were performed for both the (S,S)- and (R,R)-salen enantiomers, as follows.

The Equilibrium Conformer was determined using Molecular Mechanics MMFF calculations.

The quadrants were assigned arbitrarily as shown in the figure (Figure  2.13). Local minima for

the axial aziridine place the C–C bond between two quadrants; an upper limit of four local

minima are thus attainable following rotation of the Co–N(aziridine) bond. For each diastereomeric

pair, the Co–N(aziridine) bond was iteratively rotated 90° such that all four possible orientations

64

were surveyed. For each diastereomer, only three unconstrained local minima were attainable.

For (R,R)-Co, the C(az,phenyl)-N(aziridine)-Co-N(salen) dihedral angle was constrained at -43.48°, while

for (S,S)-Co, the C(az,phenyl)-N(aziridine)-Co-N(salen) dihedral angle was constrained at 51.72°. The

absolute energies for the conformers appear in the Table below.

Table  4:  

N N

OONHPh

MeI

II

III

IV

b

 

N N

OONH

Ph

MeII

III

IV

I  

N N

OOHN Ph

Me

II

III

IV

I  

HN

PhMe

N N

OOII

III

IV

I  

664.8259  kJ/mol   689.9567  kJ/mol   685.9285  kJ/mol   647.7059  kJ/mol  

N N

OO

I

II

III

IVNHPh

Me

c

 

N N

OOI

II

III

IVNH

Ph

Me

 

HN Ph

MeN N

OOI

II

III

IV

 

N N

OOI

II

III

IVHN

Ph

Me

 

108.4031  kJ/mol   112.0156  kJ/mol   141.1657  kJ/mol   113.3730  kJ/mol  

2.5.4 Energy Calculations on Planar Geometry Transition States

The deprotonated aziridine nitrogen was drawn with trigonal planar geometry (including the Co–

N bond) and is consequently modeled as sp2.

Table  5:  

Entry   Catalyst:   Substrate:   Energy  (kJ/mol):  

a   (S,S)-­‐dach   (2S,3R)-­‐  2-­‐phenyl-­‐3-­‐

methylaziridine  505.4850  

O

N N

O

tBu tBu

tButBuCo

Cl

N

Ph Me

 

65

b   (S,S)-­‐dach   (2R,3S)-­‐  2-­‐phenyl-­‐3-­‐

methylaziridine  511.9451  

O

N N

O

tBu tBu

tButBuCo

Cl

N

Me Ph

 

c   (S,S)-­‐DPEN   (2S,3R)-­‐  2-­‐phenyl-­‐3-­‐

methylaziridine  570.5242  

O

N N

O

tBu tBu

tButBuCo

PhPh

Cl

N

Ph Me

 

d   (S,S)-­‐DPEN   (2R,3S)-­‐  2-­‐phenyl-­‐3-­‐

methylaziridine  576.8436  

O

N N

O

tBu tBu

tButBuCo

PhPh

Cl

N

Me Ph

 

e   (S,S)-­‐Me-­‐dach   (2S,3R)-­‐  2-­‐phenyl-­‐3-­‐

methylaziridine  656.4849  

O

N N

O

tBu tBu

tButBuCo

Cl

N

MePh

 

f   (S,S)-­‐Me-­‐dach   (2R,3S)-­‐  2-­‐phenyl-­‐3-­‐

methylaziridine  661.6967  

O

N N

O

tBu tBu

tButBuCo

Cl

N

PhMe

 

g   (S,S)-­‐dach   (2S,3R)-­‐2-­‐(4-­‐chlorophenyl)-­‐

3-­‐methylaziridine  520.4126  

O

N N

O

tBu tBu

tButBuCo

Cl

N

Me

Cl

 

66

h   (S,S)-­‐dach   (2R,3S)-­‐2-­‐(4-­‐chlorophenyl)-­‐

3-­‐methylaziridine  526.4416  

O

N N

O

tBu tBu

tButBuCo

Cl

N

Me

Cl

 

i   (S,S)-­‐dach   (1aS,7bS)-­‐2,2-­‐dimethyl-­‐

1,1a,2,7b-­‐

tetrahydrochromeno[3,4-­‐

b]azirine  

568.8642  

O

N N

O

tBu tBu

tButBuCo

Cl

N

O

 

j   (S,S)-­‐dach   (1aR,7bR)-­‐2,2-­‐dimethyl-­‐

1,1a,2,7b-­‐

tetrahydrochromeno[3,4-­‐

b]azirine  

573.6297  

O

N N

O

tBu tBu

tButBuCo

Cl

N

O

 

k   (S,S)-­‐dach   (1aS,7bS)-­‐2,2-­‐dimethyl-­‐

1,1a,2,7b-­‐

tetrahydrochromeno[3,4-­‐

b]azirine-­‐6-­‐carbonitrile  

640.2074  

O

N N

O

tBu tBu

tButBuCo

Cl

NH

ONC

 

l   (S,S)-­‐dach   (1aR,7bR)-­‐2,2-­‐dimethyl-­‐

1,1a,2,7b-­‐

tetrahydrochromeno[3,4-­‐

b]azirine-­‐6-­‐carbonitrile  

646.1995  

O

N N

O

tBu tBu

tButBuCo

Cl

N

O CN

 

m   (S,S)-­‐dach   (1R,6R)-­‐7-­‐

azaspiro[bicyclo[4.1.0]hepta

ne-­‐2,2'-­‐[1,3]dioxolane]  

544.3616  

O

N N

O

tBu tBu

tButBuCo

Cl

N

O

O

 

67

n   (S,S)-­‐dach   (1S,6S)-­‐7-­‐

azaspiro[bicyclo[4.1.0]hepta

ne-­‐2,2'-­‐[1,3]dioxolane]  

544.1984  

O

N N

O

tBu tBu

tButBuCo

Cl

NO

O

 

o   (S,S)-­‐dach   methyl  (2S,3S)-­‐3-­‐

phenylaziridine-­‐2-­‐

carboxylate  

499.5152  

O

N N

O

tBu tBu

tButBuCo

Cl

N

Ph CO2Me

 

p   (S,S)-­‐dach   methyl  (2R,3R)-­‐3-­‐

phenylaziridine-­‐2-­‐

carboxylate  

514.5559  

O

N N

O

tBu tBu

tButBuCo

Cl

N

MeO2C Ph

 

2.5.5 Alignment of Crystal Structure with Computed Structure

The computed structure geometry of the bis-(2R,3S)-2-phenyl-3-methylaziridine bound to the

salen cobalt complex was calculated by computing the Equilibrium Conformer using Molecular

Mechanics. Both the (R,R)- and (S,S)- catalysts were considered. The crystal structure

coordinates were loaded into Spartan. The catalyst was co-crystalized with formic acid and

methylene chloride, so these molecules were deleted. The computed structure was aligned to the

crystal structure using the Align function on Spartan ’08; the alignment was performed

considering all non-hydrogen atoms. The Alignment Score was returned by Spartan, and is

measured on a scale of 0 to 1 (a score of 1 represents an identical match). The RMSD for both

diastereomers was determined using VMD as follows. PDB structures for computed and crystal

structures were generated by Spartan following the alignment. The following code was used to

align the two structures in the VMD Tk Console:

set sel0 [atomselect 0 all]

set sel1 [atomselect 1 all]

set M [measure fit $sel0 $sel1]

$sel0 move $M

68

The RMSD was then returned using the RMSD Calculator function.

2.5.6 Energy Calculations on Manganese-Oxo Hybridization

The following manganese-oxo structure was drawn in Spartan.

O

N N

O

tBu tBu

Mn

Cl

O

 

The Equilibrium Conformer was found using Molecular Mechanics MMFF. Working off of that

structure, DFT B3LYP/6-31G* computation and basis set was used to find the Equilibrium

Geometry and corresponding energy for the following three multiplicity states: singlet, triplet

and quintet. A neutral charge was assigned to all three species. The absolute energies (in

Hartrees) for the three species appear in the Table below. The manganese-oxo bond distance was

measured; as well, the partial charge on the oxygen atom (i.e. Mn=O) was determined. These

values appear in the text body.

Table  6:  

Entry   Multuplicity   Energy  (Ha)  

O

N N

O

tBu tBu

Mn

Cl

O

 

a   Singlet   -­‐3035.023040  

b   Triplet   -­‐3035.045152  

c   Quintet   -­‐3035.041359  

The equilibrium geometries and energies for cis-2-butene and cis-2,3-epoxybutane were

calculated using DFT B3LYP/6-31G* as model olefin and epoxide substrates.

Table  7:  

Entry   Compound   Energy  (Ha)  

69

a   cis-­‐2-­‐butene   -­‐157.224760  

b   2,3-­‐dimethyloxirane   -­‐232.428509  

The energies for the different multiplicity states of the catalyst lacking the oxygen is shown as

well.

Table  8:  

Entry   Multuplicity   Energy  (Ha)  

O

N

tBu

N

O

tBu

Mn

Cl

 

a   Singlet   -­‐2959.837978  

b   Triplet   -­‐2959.879385  

c   Quintet   -­‐2959.917029  

2.5.7 Calculation of Predicted Enantiomer Excess

The difference in energy, ∆G, for the two cis-diastereomer was determined. The ee was

determined as follows:

; with

70

References

(1) Kizirian, J.-C. Chem. Rev. 2008, 108, 140.

(2) Steward, K. M.; Corbett, M. T.; Goodman, C. G.; Johnson, J. S. J. Am. Chem. Soc. 2012, 134, 20197.

(3) Mahatthananchai, J.; Dumas, A. M.; Bode, J. W. Angew. Chem. Int. Ed. 2012, 51, 10954.

(4) Corey, E.; Lee, D.-H.; Sarshar, S. Tetrahedron: Asymmetry 1995, 6, 3.

(5) Hashiguchi, S.; Fujii, A.; Takehara, J.; Ikariya, T.; Noyori, R. J. Am. Chem. Soc. 1995, 117, 7562.

(6) Ohkuma, T.; Doucet, H.; Pham, T.; Mikami, K.; Korenaga, T.; Terada, M.; Noyori, R. J. Am. Chem. Soc. 1998, 120, 1086.

(7) Zhang, W.; Loebach, J. L.; Wilson, S. R.; Jacobsen, E. N. J. Am. Chem. Soc. 1990, 112, 2801.

(8) Zuo, W.; Lough, A. J.; Li, Y. F.; Morris, R. H. Science 2013, 342, 1080.

(9) Funk, T. W.; Berlin, J. M.; Grubbs, R. H. J. Am. Chem. Soc. 2006, 128, 1840.

(10) Trost, B. M.; Machacek, M. R.; Aponick, A. Acc. Chem. Res. 2006, 39, 747.

(11) Václavík, J. i.; Kuzma, M.; Přech, J.; Kacer, P. Organometallics 2011, 30, 4822.

(12) Buitrago, E.; Lundberg, H.; Andersson, H.; Ryberg, P.; Adolfsson, H. ChemCatChem 2012, 4, 2082.

(13) Noyori, R. Angew. Chem. Int. Ed. 2002, 41, 2008.

(14) Noyori, R.; Yamakawa, M.; Hashiguchi, S. The Journal of organic chemistry 2001, 66, 7931.

(15) Lewis, N. S.; Nocera, D. G. Proceedings of the National Academy of Sciences 2006, 103, 15729.

(16) Balaraman, E.; Gunanathan, C.; Zhang, J.; Shimon, L. J.; Milstein, D. Nature chemistry 2011, 3, 609.

(17) Dobrovetsky, R.; Stephan, D. W. Angew. Chem. 2013, 125, 2576.

(18) Smieja, J. M.; Sampson, M. D.; Grice, K. A.; Benson, E. E.; Froehlich, J. D.; Kubiak, C. P. Inorg. Chem. 2013, 52, 2484.

71

(19) Sheeba, M. M.; Muthu Tamizh, M.; Farrugia, L. J.; Endo, A.; Karvembu, R. Organometallics 2014, 33, 540.

(20) Kisic, A.; Stephan, M.; Mohar, B. Org. Lett. 2013, 15, 1614.

(21) Touge, T.; Hakamata, T.; Nara, H.; Kobayashi, T.; Sayo, N.; Saito, T.; Kayaki, Y.; Ikariya, T. J. Am. Chem. Soc. 2011, 133, 14960.

(22) Jin, W.; Wang, L.; Yu, Z. Organometallics 2012, 31, 5664.

(23) Zhang, Q.; Ma, B.-W.; Wang, Q.-Q.; Wang, X.-X.; Hu, X.; Xie, M.-S.; Qu, G.-R.; Guo, H.-M. Org. Lett. 2014, 16, 2014.

(24) Nova, A.; Taylor, D. J.; Blacker, A. J.; Duckett, S. B.; Perutz, R. N.; Eisenstein, O. Organometallics 2014.

(25) Hu, Y.; Norton, J. R. J. Am. Chem. Soc. 2014.

(26) Su, Y.; Tu, Y.-Q.; Gu, P. Org. Lett. 2014.

(27) Václavík, J.; Šot, P.; Vilhanová, B.; Pecháček, J.; Kuzma, M.; Kačer, P. Molecules 2013, 18, 6804.

(28) Václavík, J.; Kačer, P.; Kuzma, M.; Červený, L. Molecules 2011, 16, 5460.

(29) DOMINGUEZ, B.; ZANOTTI-GEROSA, A.; GRASA, G. A.; MEDLOCK, J. A.; WO Patent 2,006,054,115: 2006.

(30) SanMartin, R.; Churruca, F. 2011.

(31) Grabowski, S. J. Chem. Rev. 2011, 111, 2597.

(32) Bertolasi, V.; Gilli, P.; Ferretti, V.; Gilli, G. J. Am. Chem. Soc. 1991, 113, 4917.

(33) Gilli, P.; Bertolasi, V.; Ferretti, V.; Gilli, G. J. Am. Chem. Soc. 2000, 122, 10405.

(34) Park, H.; Kim, K. M.; Lee, A.; Ham, S.; Nam, W.; Chin, J. J. Am. Chem. Soc. 2007, 129, 1518.

(35) Xiao, X.; Xie, Y.; Su, C.; Liu, M.; Shi, Y. J. Am. Chem. Soc. 2011, 133, 12914.

(36) Xie, Y.; Pan, H.; Xiao, X.; Li, S.; Shi, Y. Organic & biomolecular chemistry 2012, 10, 8960.

(37) Kim, H.; Nguyen, Y.; Yen, C. P.-H.; Chagal, L.; Lough, A. J.; Kim, B. M.; Chin, J. J. Am. Chem. Soc. 2008, 130, 12184.

(38) So, S. M.; Kim, H.; Mui, L.; Chin, J. Eur. J. Org. Chem. 2012, 2012, 229.

(39) So, S. M.; Mui, L.; Kim, H.; Chin, J. Acc. Chem. Res. 2012, 45, 1345.

72

(40) Václavík, J.; Pecháček, J.; Vilhanová, B.; Šot, P.; Januščák, J.; Matoušek, V.; Přech, J.; Bártová, S.; Kuzma, M.; Kačer, P. Catal. Lett. 2013, 1.

(41) Fujii, A.; Hashiguchi, S.; Uematsu, N.; Ikariya, T.; Noyori, R. J. Am. Chem. Soc. 1996, 118, 2521.

(42) Zhou, X.; Wu, X.; Yang, B.; Xiao, J. J. Mol. Catal. A: Chem. 2012, 357, 133.

(43) No increase in reaction yield was observed for several hours following the aliquot transfer to the quenching solvent.

(44) Noyori, R.; Hashiguchi, S. Acc. Chem. Res. 1997, 30, 97.

(45) Alonso, D. A.; Brandt, P.; Nordin, S. J.; Andersson, P. G. J. Am. Chem. Soc. 1999, 121, 9580.

(46) Yamakawa, M.; Yamada, I.; Noyori, R. Angew. Chem. Int. Ed. 2001, 40, 2818.

(47) Federsel, H.-J. Nature Reviews Drug Discovery 2005, 4, 685.

(48) Hawkins, J. M.; Watson, T. J. Angew. Chem. Int. Ed. 2004, 43, 3224.

(49) Srinivasan, K.; Michaud, P.; Kochi, J. K. J. Am. Chem. Soc. 1986, 108, 2309.

(50) Jacobsen, E. N.; Zhang, W.; Muci, A. R.; Ecker, J. R.; Deng, L. J. Am. Chem. Soc. 1991, 113, 7063.

(51) Tokunaga, M.; Larrow, J. F.; Kakiuchi, F.; Jacobsen, E. N. Science 1997, 277, 936.

(52) McGarrigle, E. M.; Gilheany, D. G. Chem. Rev. 2005, 105, 1563.

(53) Pospisil, P. J.; Carsten, D. H.; Jacobsen, E. N. Chemistry-A European Journal 1996, 2, 974.

(54) Pinto, L. D.; Dupont, J.; de Souza, R. F.; Bernardo-Gusmão, K. Catal. Commun. 2008, 9, 135.

(55) Houk, K.; Cheong, P. H.-Y. Nature 2008, 455, 309.

(56) Bobb, R.; Alhakimi, G.; Studnicki, L.; Lough, A.; Chin, J. J. Am. Chem. Soc. 2002, 124, 4544.

(57) This geometric feature of salen will henchforth be referred to as the 'salen step'.

(58) Ford, D. D.; Nielsen, L. P.; Zuend, S. J.; Musgrave, C. B.; Jacobsen, E. N. J. Am. Chem. Soc. 2013, 135, 15595.

(59) Jacobsen, H.; Cavallo, L. Organometallics 2006, 25, 177.

73

(60) Linde, C.; Koliai, N.; Norrby, P. O.; Åkermark, B. Chemistry-A European Journal 2002, 8, 2568.

(61) Hashihayata, T.; Ito, Y.; Katsuki, T. Tetrahedron 1997, 53, 9541.

(62) Mahlau, M.; List, B. Angew. Chem. Int. Ed. 2013, 52, 518.

(63) Liao, S.; List, B. Angew. Chem. Int. Ed. 2010, 49, 628.

(64) Irie, R.; Noda, K.; Ito, Y.; Matsumoto, N.; Katsuki, T. Tetrahedron Lett. 1990, 31, 7345.

(65) Lee, N. H.; Jacobsen, E. N. Tetrahedron Lett. 1991, 32, 6533.

(66) Norrby, P.-O.; Linde, C.; Åkermark, B. J. Am. Chem. Soc. 1995, 117, 11035.

(67) Adam, W.; Roschmann, K. J.; Saha-Möller, C. R.; Seebach, D. J. Am. Chem. Soc. 2002, 124, 5068.

(68) Silva, A. R.; Freire, C.; de Castro, B. New J. Chem. 2004, 28, 253.

(69) Linde, C.; Arnold, M.; Åkermark, B.; Norrby, P. O. Angewandte Chemie International Edition in English 1997, 36, 1723.

(70) Adam, W.; Mock-Knoblauch, C.; Saha-Möller, C. R.; Herderich, M. J. Am. Chem. Soc. 2000, 122, 9685.

(71) Kürti, L. s.; Blewett, M. M.; Corey, E. Org. Lett. 2009, 11, 4592.

(72) Feichtinger, D.; Plattner, D. A. Chemistry-a European Journal 2001, 7, 591.

(73) Miller, C. G.; Gordon-Wylie, S. W.; Horwitz, C. P.; Strazisar, S. A.; Peraino, D. K.; Clark, G. R.; Weintraub, S. T.; Collins, T. J. J. Am. Chem. Soc. 1998, 120, 11540.

(74) Linde, C.; Åkermark, B.; Norrby, P.-O.; Svensson, M. J. Am. Chem. Soc. 1999, 121, 5083.

(75) Strassner, T.; Houk, K. Org. Lett. 1999, 1, 419.

(76) We will later propose that aziridine is actually a poor analog but under the framework of side-on reactions, it can be thought of as similar to sp3 oxygen.

(77) Humphrey, W., Dalke, A. and Schulten, K., "VMD - Visual Molecular Dynamics", J. Molec. Graphics, 1996, vol. 14, pp. 33-38

74

Appendix A: 1H and 13C NMR Spectra

N

N

MeO

MeO HO

HO 1H-NMR

13C-NMR

75

N

N

Me2N

Me2N HO

HO 1H-NMR

13C-NMR

76

N

N

F

F HO

HO 1H-NMR

13C-NMR

77

NH3H3N

OMeMeO

Cl Cl

1H-NMR

13C-NMR

78

NH3H3N

NHMe2Me2HN

Cl Cl

ClCl 1H-NMR

13C-NMR

79

H3N NH3

FF

ClCl

1H-NMR

13C-NMR

80

HNH2N SO

O

1H-NMR

13C-NMR

81

HNH2N SO

O

OMeMeO 1H-NMR

13C-NMR

82

HNH2N

NMe2Me2N

SO

O

1H-NMR

13C-NMR

83

HNH2N SO

O

FF 1H-NMR

13C-NMR

84

Appendix B: Cartesian Coordinates of Computed Complexes Chapter 1 Table 1, Entry a H 3.781091 -2.369029 -1.130808 C 3.795989 -1.326742 -0.831405 C 3.731398 1.412063 -0.018580 C 3.767773 -0.978550 0.546575 C 3.633437 -0.303647 -1.796352 C 3.593950 1.073624 -1.389499 C 3.786839 0.396549 0.955981 H 3.753044 -1.759313 1.299360 H 3.524958 -0.556939 -2.845490 H 3.435810 1.851414 -2.127733 H 3.762352 0.646632 2.010351 H 3.628923 2.446838 0.289114 Ru 1.975304 -0.050300 -0.354707 N 0.445541 -1.144078 -0.750737 H 0.443322 -2.029141 -1.256395 C -0.736356 0.643360 0.309728 O 0.525747 1.239572 0.109112 H -0.786248 0.199954 1.322071 C -0.889332 -0.528178 -0.694733 H -1.132972 -0.099708 -1.682565 C -1.848390 1.672458 0.185658 C -3.925753 3.547546 -0.087888 C -1.722656 2.750578 -0.699346 C -3.023449 1.551507 0.936912 C -4.057805 2.478789 0.800175 C -2.753096 3.681222 -0.835077 H -0.799422 2.857442 -1.260188 H -3.128926 0.723873 1.634548 H -4.963192 2.369140 1.392287 H -2.639063 4.517152 -1.521528 H -4.727282 4.274748 -0.192054 C -1.973907 -1.528669 -0.339799 C -3.999766 -3.363285 0.331509 C -1.799776 -2.432700 0.718985 C -3.176456 -1.562177 -1.057471 C -4.183491 -2.469623 -0.724630 C -2.803419 -3.342002 1.052521 H -0.864980 -2.420652 1.272742 H -3.323776 -0.867365 -1.881001 H -5.109853 -2.480246 -1.293386 H -2.651321 -4.036862 1.874866 H -4.780971 -4.073973 0.588767 Lig 3.718231 0.045549 -0.422213 Table 1, Entry b H 4.554750 -2.411839 -1.104531 C 4.576554 -1.370637 -0.801700 C 4.529021 1.366115 0.018958 C 4.528277 -1.026412 0.576757

C 4.440731 -0.342863 -1.765770 C 4.410234 1.033489 -1.354946 C 4.555166 0.347312 0.990821 H 4.493529 -1.809172 1.326886 H 4.347402 -0.591404 -2.817542 H 4.274654 1.815222 -2.093536 H 4.515840 0.594537 2.045429 H 4.433739 2.401121 0.328220 Ru 2.761227 -0.076860 -0.351535 N 1.229841 -1.156636 -0.773044 H 1.226318 -2.043283 -1.276019 C 0.046266 0.636825 0.276595 O 1.316663 1.224463 0.095679 H -0.019597 0.190877 1.287220 C -0.101719 -0.530353 -0.731764 H -0.329367 -0.098130 -1.722016 C -1.054406 1.674925 0.143918 C -3.118255 3.574177 -0.144640 C -2.236206 1.571856 0.878589 C -0.918791 2.757470 -0.738607 C -1.932681 3.695961 -0.883801 C -3.269953 2.504085 0.742496 H -2.362650 0.747151 1.576174 H 0.007335 2.862826 -1.294958 H -1.828864 4.540386 -1.559129 H -4.171737 2.387916 1.333439 C -1.195190 -1.525397 -0.395968 C -3.241620 -3.362163 0.239192 C -2.367706 -1.590985 -1.151802 C -1.066174 -2.405877 0.692777 C -2.070065 -3.310734 1.009847 C -3.390324 -2.495366 -0.847896 H -2.493593 -0.919024 -1.997605 H -0.157713 -2.379149 1.288231 H -1.971887 -3.993892 1.848238 H -4.284065 -2.515996 -1.461292 O -4.165971 -4.292139 0.628005 C -5.362371 -4.399876 -0.124057 H -5.938758 -3.465021 -0.105173 H -5.945571 -5.191830 0.349941 H -5.161297 -4.674180 -1.168684 O -4.055667 4.551226 -0.356599 C -5.266695 4.479680 0.372996 H -5.823017 3.558411 0.150588 H -5.859717 5.341200 0.058404 H -5.092982 4.537399 1.456365 Lig 4.506664 0.001167 -0.389313 Table 1, Entry c H 4.844260 -2.418594 -1.123402 C 4.858023 -1.390018 -0.779758 C 4.785008 1.312279 0.150433

85

C 4.786218 -1.100482 0.610638 C 4.733748 -0.324884 -1.704084 C 4.688706 1.033640 -1.238032 C 4.802570 0.254902 1.080928 H 4.744997 -1.912535 1.328654 H 4.660236 -0.530212 -2.766745 H 4.560249 1.844000 -1.946565 H 4.746188 0.458411 2.143998 H 4.678102 2.333617 0.498671 Ru 3.029869 -0.119638 -0.309297 N 1.505864 -1.167672 -0.826762 H 1.514174 -2.016414 -1.391728 C 0.302531 0.567101 0.290312 O 1.578956 1.162244 0.168337 H 0.218562 0.054435 1.267683 C 0.179130 -0.529710 -0.794442 H 0.000391 -0.024486 -1.760385 C -0.792290 1.613758 0.208141 C -2.875677 3.558872 0.017841 C -0.669506 2.730567 -0.624959 C -1.968704 1.496309 0.952986 C -2.990222 2.439391 0.869317 C -1.677864 3.685603 -0.719905 H 0.249511 2.863012 -1.188370 H -2.094538 0.646752 1.620801 H -3.874866 2.298020 1.479395 H -1.521368 4.539645 -1.369044 C -0.941353 -1.526115 -0.578377 C -3.079940 -3.382261 -0.170270 C -0.857382 -2.537125 0.388224 C -2.120213 -1.461195 -1.329304 C -3.169950 -2.353104 -1.133085 C -1.894035 -3.442647 0.595754 H 0.044399 -2.620430 0.989817 H -2.228706 -0.685341 -2.083972 H -4.060573 -2.244052 -1.740649 H -1.773716 -4.200290 1.361164 N -4.109855 -4.308451 0.002121 N -3.907787 4.497661 -0.095155 C -4.971416 4.481987 0.893805 H -5.514937 3.530709 0.866765 H -5.686788 5.273331 0.658636 H -4.609988 4.636463 1.924910 C -3.622536 5.771777 -0.732124 H -3.316649 5.626961 -1.774481 H -2.828889 6.345045 -0.223080 H -4.532310 6.376758 -0.739763 C -4.079206 -5.184333 1.160316 H -3.178019 -5.808302 1.152906 H -4.940758 -5.855010 1.124639 H -4.105109 -4.638889 2.118773 C -5.404057 -4.035202 -0.598765 H -5.323603 -3.974374 -1.690211 H -5.858034 -3.096653 -0.239433 H -6.085318 -4.856885 -0.367238 Lig 4.775712 -0.035760 -0.313312

Table 1, Entry d H 4.176689 -2.365086 -1.150546 C 4.188838 -1.324833 -0.844183 C 4.118413 1.408682 -0.013215 C 4.164888 -0.985346 0.536007 C 4.020559 -0.295968 -1.802073 C 3.977169 1.078283 -1.385946 C 4.180910 0.387089 0.954247 H 4.154915 -1.770769 1.283963 H 3.909413 -0.541978 -2.852635 H 3.813789 1.860261 -2.118588 H 4.159557 0.630173 2.010324 H 4.014166 2.441167 0.301358 Ru 2.366212 -0.057069 -0.353621 N 0.837680 -1.154543 -0.752775 H 0.838025 -2.031941 -1.271614 C -0.344338 0.621688 0.322739 O 0.911851 1.226697 0.118317 H -0.385384 0.167005 1.330817 C -0.497259 -0.540426 -0.692041 H -0.742706 -0.102515 -1.675470 C -1.460846 1.647633 0.219901 C -3.519615 3.508535 -0.006024 C -1.346010 2.736179 -0.654155 C -2.628010 1.519574 0.982287 C -3.667762 2.444197 0.874270 C -2.372262 3.673026 -0.773542 H -0.429681 2.851714 -1.223851 H -2.728275 0.686021 1.672944 H -4.575085 2.354893 1.463162 H -2.292736 4.525919 -1.440617 C -1.581943 -1.543200 -0.345322 C -3.591731 -3.359054 0.313030 C -1.407613 -2.457360 0.705133 C -2.788065 -1.568792 -1.058125 C -3.801386 -2.472288 -0.735414 C -2.407198 -3.369027 1.041529 H -0.471384 -2.454963 1.255740 H -2.939294 -0.869070 -1.876205 H -4.737948 -2.498621 -1.282975 H -2.281949 -4.081871 1.850347 F -4.563284 -4.243015 0.631475 F -4.517229 4.417298 -0.111760 Lig 4.108463 0.044651 -0.425860 Table 1, Entry e H 3.610935 -2.201180 -1.484986 C 3.685494 -1.188121 -1.099908 C 3.745213 1.422769 -0.072982 C 4.209588 -0.981314 0.201953 C 3.412421 -0.078467 -1.981552 C 3.424753 1.208903 -1.460739 C 4.203771 0.346140 0.726731 H 4.521326 -1.818503 0.815446 H 3.116423 -0.259338 -3.009868 H 3.115031 2.051733 -2.070487 H 4.499287 0.525546 1.754464

86

H 3.673293 2.417763 0.350330 Ru 2.127883 -0.118173 0.111845 H 1.794641 -0.428384 1.644566 N 0.443002 -1.458426 -0.171271 H 0.553640 -2.145846 -0.916859 H 0.353933 -1.993801 0.690917 C -0.662036 0.622846 0.464842 O 0.564749 1.190072 0.173918 H -0.738656 0.310811 1.527849 C -0.818925 -0.672722 -0.397102 H -0.787071 -0.347078 -1.442094 C -1.795198 1.604699 0.177541 C -3.884593 3.389359 -0.417962 C -1.645391 2.566565 -0.828570 C -2.999579 1.556323 0.889197 C -4.039284 2.439212 0.593022 C -2.681955 3.452019 -1.125511 H -0.696728 2.618469 -1.352838 H -3.124414 0.821938 1.681313 H -4.967810 2.388706 1.156680 H -2.549178 4.196949 -1.906775 H -4.691831 4.080942 -0.646439 C -2.055293 -1.511941 -0.162962 C -4.358679 -3.081614 0.244332 C -2.296885 -2.127711 1.076046 C -2.992705 -1.692168 -1.188215 C -4.134797 -2.468405 -0.988989 C -3.436106 -2.906822 1.277968 H -1.597567 -1.987855 1.898366 H -2.827465 -1.211479 -2.149546 H -4.848962 -2.594671 -1.798528 H -3.604886 -3.374556 2.244468 H -5.246121 -3.689091 0.400486 Lig 3.780207 0.121652 -0.614416 Table 1, Entry f H 4.418719 -2.160591 -1.503228 C 4.470160 -1.215002 -0.971243 C 4.449204 1.220184 0.425389 C 4.854041 -1.208129 0.394607 C 4.297277 0.017746 -1.701698 C 4.273770 1.217712 -1.004824 C 4.816858 0.032608 1.102788 H 5.092003 -2.132502 0.907760 H 4.107084 -0.007009 -2.770175 H 4.043481 2.147023 -1.515855 H 5.010413 0.056159 2.169413 H 4.340622 2.145215 0.979639 Ru 2.806273 -0.292261 0.234302 H 2.331224 -0.866201 1.649781 N 1.122643 -1.492098 -0.430428 H 1.273414 -1.973253 -1.316789 H 0.992095 -2.224474 0.265343 C 0.025416 0.459599 0.565700 O 1.274367 1.035407 0.420540 H -0.094121 -0.031752 1.553569 C -0.131225 -0.659660 -0.512833

H -0.091459 -0.157394 -1.485061 C -1.072933 1.506531 0.419862 C -3.097428 3.442323 0.096128 C -0.888636 2.606953 -0.419754 C -2.291937 1.397398 1.103525 C -3.294898 2.346644 0.947326 C -1.885080 3.572402 -0.589940 H 0.064430 2.715528 -0.927886 H -2.459479 0.554661 1.769723 H -4.237804 2.265669 1.479878 H -1.702080 4.416469 -1.246313 C -1.376709 -1.510989 -0.420328 C -3.708470 -3.098592 -0.240872 C -1.643311 -2.286004 0.715577 C -2.310751 -1.550655 -1.467509 C -3.459070 -2.327711 -1.385274 C -2.790660 -3.076236 0.815938 H -0.952602 -2.273229 1.556556 H -2.137708 -0.952697 -2.359391 H -4.182092 -2.352761 -2.194802 H -2.957530 -3.657042 1.716122 O -4.862484 -3.827709 -0.254055 C -5.171521 -4.611942 0.886737 H -4.410597 -5.383678 1.065084 H -6.127352 -5.092461 0.669972 H -5.273685 -3.992229 1.787348 O -4.141558 4.325774 0.012535 C -3.988913 5.459956 -0.820478 H -3.154119 6.095723 -0.494541 H -4.921498 6.022329 -0.738056 H -3.830749 5.176269 -1.870240 Lig 4.526885 0.010853 -0.292497 Table 1, Entry g H 4.849246 -2.100307 -1.279569 C 4.877316 -1.150973 -0.752031 C 4.796605 1.290498 0.631811 C 5.253944 -1.130530 0.616229 C 4.688598 0.073660 -1.492292 C 4.631352 1.275136 -0.798626 C 5.176855 0.110689 1.317776 H 5.508037 -2.047060 1.135674 H 4.507870 0.040490 -2.561972 H 4.381172 2.196322 -1.315193 H 5.357527 0.142832 2.386539 H 4.666267 2.216115 1.180166 Ru 3.183906 -0.255594 0.421313 H 2.685434 -0.790467 1.845898 N 1.556228 -1.527001 -0.238218 H 1.755637 -2.056073 -1.086900 H 1.406569 -2.219760 0.493304 C 0.368673 0.445297 0.600050 O 1.616589 1.036635 0.501959 H 0.192697 0.004578 1.603252 C 0.288937 -0.730317 -0.425170 H 0.363770 -0.280963 -1.421036 C -0.727738 1.469356 0.332873

87

C -2.766262 3.378345 -0.242440 C -0.510144 2.513816 -0.575465 C -1.976584 1.402702 0.950343 C -2.978916 2.336747 0.678301 C -1.502034 3.442171 -0.864771 H 0.464186 2.592449 -1.047765 H -2.177945 0.610325 1.667985 H -3.922116 2.254302 1.206725 H -1.298298 4.216113 -1.598436 C -0.940862 -1.603303 -0.343879 C -3.286513 -3.236597 -0.175632 C -1.241972 -2.340056 0.811508 C -1.844792 -1.698613 -1.407800 C -2.991050 -2.484488 -1.334155 C -2.378569 -3.136136 0.903116 H -0.585495 -2.284520 1.678236 H -1.659796 -1.129253 -2.316308 H -3.658250 -2.505415 -2.187505 H -2.559413 -3.673150 1.826716 N -4.415561 -4.049937 -0.100532 N -3.776790 4.308461 -0.581113 C -5.095779 4.106602 -0.010888 H -5.431970 3.081697 -0.192645 H -5.799496 4.785292 -0.504337 H -5.145749 4.301217 1.076764 C -3.406317 5.718059 -0.641780 H -2.469534 5.854192 -1.182709 H -3.289655 6.170225 0.359887 H -4.184816 6.272138 -1.177949 C -4.809490 -4.580794 1.193901 H -4.025860 -5.227251 1.605210 H -5.705232 -5.192952 1.071037 H -5.026083 -3.794198 1.935393 C -5.453226 -3.901853 -1.107816 H -5.065081 -4.135057 -2.105848 H -5.882312 -2.886787 -1.138048 H -6.258197 -4.609145 -0.897324 Lig 4.904112 0.078080 -0.079522 Table 1, Entry h H 4.068316 -2.180440 -1.447953 C 4.129124 -1.217672 -0.948673 C 4.135718 1.262007 0.365495 C 4.536765 -1.166528 0.408954 C 3.943031 -0.010532 -1.717113 C 3.933373 1.212107 -1.059819 C 4.513821 0.097061 1.075555 H 4.783912 -2.073156 0.948632 H 3.734478 -0.071604 -2.780604 H 3.695873 2.124868 -1.596734 H 4.727105 0.156832 2.136942 H 4.040651 2.205369 0.890495 Ru 2.486721 -0.251153 0.254232 H 2.036881 -0.769058 1.699973 N 0.789273 -1.476014 -0.333467 H 0.929846 -2.000233 -1.196624 H 0.666600 -2.171871 0.400136

C -0.289813 0.522752 0.586532 O 0.957105 1.087430 0.408538 H -0.407604 0.074242 1.594927 C -0.458432 -0.641471 -0.444388 H -0.421489 -0.180439 -1.436701 C -1.386473 1.567020 0.398989 C -3.380990 3.467203 -0.010250 C -1.185758 2.634564 -0.485280 C -2.605778 1.482185 1.080703 C -3.613096 2.427398 0.881164 C -2.179292 3.589990 -0.697941 H -0.226643 2.716106 -0.985897 H -2.775176 0.667120 1.779504 H -4.560456 2.372287 1.407862 H -2.033088 4.425290 -1.375904 C -1.711563 -1.476853 -0.309995 C -4.032456 -3.007168 -0.058783 C -1.962777 -2.222294 0.854418 C -2.660295 -1.520607 -1.340285 C -3.824113 -2.280921 -1.224570 C -3.117675 -2.991180 0.988134 H -1.255443 -2.197945 1.680701 H -2.491900 -0.943249 -2.245915 H -4.563428 -2.315376 -2.018258 H -3.318326 -3.567021 1.885840 F -5.153659 -3.747760 0.064082 F -4.349784 4.391811 -0.208011 Lig 4.198639 0.029407 -0.312600 Table 1, Entry i C -0.654873 0.036044 0.000000 H -1.017141 0.568882 -0.893118 H -1.017141 0.568882 0.893118 H -1.095539 -0.964597 0.000000 O 0.753064 -0.138353 0.000000 H 1.158065 0.741499 0.000000 Table 1, Entry j C 0.000000 0.000000 0.530643 H 0.937819 0.000000 1.125678 H -0.937819 0.000000 1.125678 O 0.000000 0.000000 -0.675892 Table 2, Entry a H 2.634854 -0.308157 2.847688 C 3.091086 -0.397406 1.867620 C 4.171745 -0.615667 -0.745300 C 3.656908 0.752259 1.224557 C 3.096986 -1.649208 1.193326 C 3.672466 -1.773583 -0.105226 C 4.206479 0.644878 -0.071203 H 3.613878 1.719791 1.714060 H 2.601125 -2.502918 1.642817 H 3.613955 -2.714597 -0.639260 H 4.569386 1.526931 -0.586351 H 4.507144 -0.676211 -1.775665

88

Ru 2.054609 -0.162945 -0.065663 H 1.653999 0.454261 -1.882486 N 0.549376 1.235846 0.246773 H 0.739193 1.930083 0.972047 H 0.500785 1.830140 -0.814665 C -0.778244 -0.651737 -0.417418 O 0.444784 -1.330141 -0.276612 H -0.892832 -0.237944 -1.435197 C -0.745236 0.554802 0.554236 H -0.667223 0.134860 1.566954 C -1.936415 -1.601773 -0.152489 C -4.082942 -3.342225 0.362869 C -1.789422 -2.668193 0.743080 C -3.170190 -1.420872 -0.789899 C -4.237736 -2.281705 -0.532636 C -2.854203 -3.532648 0.999393 H -0.823806 -2.822379 1.214606 H -3.295893 -0.597144 -1.488311 H -5.188738 -2.127380 -1.037065 H -2.722569 -4.361323 1.691849 H -4.911508 -4.018354 0.558595 C -1.950346 1.475907 0.514229 C -4.239529 3.110851 0.481321 C -2.239008 2.273600 -0.605324 C -2.821361 1.514592 1.612178 C -3.958723 2.322914 1.598290 C -3.375802 3.082949 -0.615928 H -1.556304 2.279034 -1.451886 H -2.611217 0.897516 2.483546 H -4.622005 2.336485 2.459378 H -3.584510 3.698235 -1.487649 H -5.123399 3.743586 0.466739 C 1.283362 1.294894 -2.643251 H 0.730935 0.682430 -3.382928 H 2.243783 1.622971 -3.086290 O 0.577249 2.246477 -2.023010 Lig 3.649278 -0.506454 0.560629 Table 2, Entry b H -3.136834 0.793770 2.817973 C -3.666884 0.598973 1.892309 C -4.923576 0.058836 -0.589051 C -4.132699 -0.722752 1.588198 C -3.875390 1.645321 0.949089 C -4.527333 1.389898 -0.285462 C -4.787814 -0.990577 0.363755 H -3.939785 -1.532770 2.284429 H -3.450157 2.625358 1.137568 H -4.612789 2.170991 -1.031317 H -5.081834 -2.001826 0.107948 H -5.322770 -0.166886 -1.572723 Ru -2.738700 -0.008368 -0.007216 H -2.361076 -0.794886 -1.780117 N -1.157507 -1.300625 0.390300 H -1.278546 -1.906241 1.204064 H -1.134940 -2.012601 -0.595224 C 0.039642 0.539652 -0.574646

O -1.200748 1.191574 -0.426130 H 0.095077 0.002977 -1.538371 C 0.116459 -0.532459 0.539345 H 0.061615 0.014009 1.491786 C 1.169222 1.552437 -0.523423 C 3.268444 3.430080 -0.418829 C 1.068748 2.698263 0.266983 C 2.344423 1.363034 -1.265550 C 3.384553 2.282866 -1.215827 C 2.102446 3.636859 0.326496 H 0.154129 2.869754 0.825763 H 2.446205 0.478042 -1.888902 H 4.293633 2.138963 -1.792042 H 1.983338 4.520072 0.944619 C 1.357098 -1.402673 0.563178 C 3.711624 -2.951374 0.654178 C 1.620214 -2.365734 -0.419866 C 2.299448 -1.230917 1.589866 C 3.461910 -1.988641 1.641364 C 2.784442 -3.137771 -0.377901 H 0.897413 -2.531642 -1.215090 H 2.121356 -0.483032 2.359386 H 4.190451 -1.854738 2.435093 H 2.952562 -3.880950 -1.149369 C -2.003067 -1.715977 -2.444297 H -1.501408 -1.190429 -3.280784 H -2.971483 -2.119526 -2.799537 O -1.241869 -2.567975 -1.746830 O 4.338723 4.284212 -0.441916 C 4.249043 5.479391 0.312317 H 3.414007 6.109233 -0.024773 H 5.189302 6.010476 0.148930 H 4.131351 5.275562 1.385495 O 4.875738 -3.655076 0.793541 C 5.195537 -4.617563 -0.196771 H 4.441210 -5.414165 -0.246162 H 6.154331 -5.047292 0.099966 H 5.295513 -4.157639 -1.189027 Lig -4.318949 0.329950 0.653140 Table 2, Entry c H -3.700196 0.210474 2.742711 C -4.143260 0.309318 1.757522 C -5.184695 0.551306 -0.868605 C -4.719517 -0.830100 1.107189 C -4.122175 1.564529 1.087660 C -4.682823 1.700171 -0.217551 C -5.239395 -0.712636 -0.199294 H -4.694417 -1.799843 1.593286 H -3.624857 2.411462 1.547963 H -4.604624 2.641790 -0.747934 H -5.599727 -1.589569 -0.724872 H -5.503506 0.618114 -1.903579 Ru -3.082716 0.073331 -0.156469 H -2.671625 -0.625216 -1.962087 N -1.580736 -1.314768 0.215767 H -1.772208 -1.970857 0.975028

89

H -1.543004 -1.957923 -0.814306 C -0.254715 0.530726 -0.547634 O -1.476625 1.225464 -0.418815 H -0.164724 0.063071 -1.544373 C -0.280039 -0.624598 0.482907 H -0.353327 -0.155379 1.474843 C 0.900213 1.494711 -0.365244 C 3.080985 3.307759 -0.013074 C 0.887348 2.460896 0.646087 C 2.015598 1.463408 -1.205257 C 3.082246 2.343886 -1.043876 C 1.942889 3.350167 0.822627 H 0.016494 2.536947 1.291212 H 2.054721 0.738800 -2.015664 H 3.914391 2.274879 -1.734691 H 1.869239 4.086939 1.613902 C 0.921118 -1.546917 0.487257 C 3.253664 -3.196960 0.525159 C 1.186775 -2.451105 -0.551728 C 1.845977 -1.483032 1.536414 C 2.989437 -2.275033 1.561037 C 2.321996 -3.256044 -0.534700 H 0.489015 -2.535328 -1.381230 H 1.680335 -0.783437 2.353664 H 3.672525 -2.176939 2.396386 H 2.481638 -3.932035 -1.366206 C -2.300591 -1.498823 -2.677857 H -1.716865 -0.930491 -3.429837 H -3.255626 -1.825519 -3.134457 O -1.631610 -2.441408 -2.002608 N 4.380226 -4.023849 0.561721 N 4.164218 4.175377 0.177485 C 3.981034 5.337946 1.030818 H 3.682395 5.036285 2.040539 H 3.223921 6.044732 0.648399 H 4.933187 5.867771 1.117474 C 5.122552 4.327450 -0.905437 H 4.667509 4.702234 -1.838156 H 5.615439 3.375407 -1.128070 H 5.898479 5.031305 -0.595511 C 4.700206 -4.818808 -0.611610 H 3.861223 -5.471803 -0.873654 H 5.555595 -5.460276 -0.384448 H 4.948850 -4.211089 -1.498574 C 5.493600 -3.636075 1.413692 H 5.205493 -3.644134 2.471014 H 5.885716 -2.632947 1.177273 H 6.303852 -4.358938 1.293044 Lig -4.681977 0.430431 0.444487 Table 2, Entry d H -3.367558 -0.916284 2.644423 C -3.668142 -0.350247 1.768246 C -4.335536 1.128833 -0.568340 C -4.321575 -1.009244 0.691593 C -3.372849 1.048110 1.696203 C -3.739971 1.784030 0.526301

C -4.574709 -0.283177 -0.496037 H -4.494091 -2.078998 0.724765 H -2.863918 1.543098 2.515570 H -3.452799 2.826663 0.440645 H -4.948070 -0.804477 -1.371403 H -4.524306 1.665051 -1.491077 Ru -2.398525 0.045224 0.001158 H -1.981621 -0.769207 -1.756673 N -0.834833 -1.260990 0.440837 H -0.973317 -1.840990 1.270136 H -0.833807 -1.999406 -0.513499 C 0.383310 0.570517 -0.530526 O -0.848956 1.233268 -0.386347 H 0.441648 0.041967 -1.498638 C 0.451521 -0.512339 0.576752 H 0.419108 0.024707 1.535081 C 1.520560 1.575933 -0.462965 C 3.603019 3.416929 -0.324184 C 1.422950 2.701905 0.363687 C 2.684245 1.396849 -1.219920 C 3.735326 2.311990 -1.155506 C 2.461452 3.629397 0.439728 H 0.510616 2.858278 0.929730 H 2.773467 0.528308 -1.867070 H 4.639941 2.183987 -1.741237 H 2.395358 4.511585 1.068839 C 1.687959 -1.392368 0.563165 C 4.023483 -2.909850 0.546558 C 1.905365 -2.354777 -0.437737 C 2.668624 -1.213527 1.549274 C 3.842638 -1.966638 1.550115 C 3.072417 -3.118255 -0.445693 H 1.144578 -2.522027 -1.196965 H 2.519321 -0.466597 2.325410 H 4.607233 -1.832072 2.308402 H 3.249723 -3.870650 -1.207665 C -1.681027 -1.735978 -2.384065 H -1.162392 -1.275355 -3.247847 H -2.673688 -2.101438 -2.713162 O -0.958396 -2.595407 -1.656642 F 5.154910 -3.649439 0.538444 F 4.609912 4.317891 -0.263183 Lig -4.002130 0.386384 0.60299

Chapter 2 Table 1, Entry a Mn -0.246146 0.342838 -0.690074 N -1.327316 2.166623 -0.612878 N -1.804006 -0.111647 -2.061072 C -0.728939 3.238603 -0.212743 H -1.323226 4.168123 -0.234035 C -1.968913 -1.327226 -2.458805 H -2.774773 -1.508044 -3.190750 C 0.681215 3.376020 0.223790 C 3.275424 4.012577 1.022282 C 1.594117 2.345622 0.515244

90

C 1.089762 4.714991 0.345861 C 2.386836 5.062694 0.746122 C 2.921569 2.647639 0.920422 H 0.396744 5.527152 0.121004 H 4.285774 4.275793 1.326488 C -1.213342 -2.513375 -2.003529 C 0.024496 -4.933676 -1.423374 C -1.883062 -3.726165 -2.221891 C 0.079833 -2.517918 -1.452611 C 0.755882 -3.741496 -1.214471 C -1.293645 -4.957592 -1.908077 H -2.882197 -3.735154 -2.660943 H 0.507644 -5.890080 -1.234231 C -2.696529 2.036629 -1.235392 H -3.306114 1.529419 -0.474936 C -2.548365 1.129142 -2.496176 H -1.902903 1.612343 -3.241706 O 1.273198 1.016063 0.503098 O 0.776492 -1.380044 -1.160482 C -3.919186 0.849122 -3.104539 H -3.825628 0.254491 -4.020728 H -4.540822 0.271426 -2.408363 C -3.352516 3.361424 -1.607985 H -2.716287 3.928313 -2.299755 H -3.500509 3.986421 -0.719349 C -4.715434 3.113263 -2.259705 H -5.146607 4.067609 -2.582742 H -5.400475 2.691844 -1.513362 C -4.627348 2.161566 -3.452048 H -5.635181 1.946445 -3.824973 H -4.086318 2.657260 -4.267824 C 3.984803 1.551874 1.233544 C 2.262847 -3.820970 -0.816625 C 3.530352 0.685564 2.429601 H 4.308582 -0.032529 2.714596 H 2.633953 0.098369 2.217888 H 3.315470 1.308483 3.305881 C 4.217900 0.661398 -0.008359 H 5.011570 -0.072589 0.175490 H 4.516998 1.265555 -0.873087 H 3.332683 0.091936 -0.300330 C 2.520623 -3.144683 0.544901 H 1.876644 -3.567497 1.323486 H 2.353876 -2.066288 0.518043 H 3.560287 -3.283714 0.865166 C 3.128706 -3.141960 -1.903784 H 2.944243 -3.588293 -2.888164 H 4.197188 -3.252805 -1.683406 H 2.939813 -2.068221 -1.990345 C 2.807968 -5.267778 -0.681748 H 2.717129 -5.825016 -1.621536 H 2.286141 -5.824628 0.105377 H 3.872514 -5.266937 -0.416585 C 5.380630 2.109587 1.620515 H 6.089560 1.296820 1.821505 H 5.335118 2.721177 2.529272 H 5.812795 2.714828 0.814969

O -1.329300 -0.699731 1.110783 C -0.447588 -1.288055 1.929881 C -1.168386 0.012300 2.248708 H 0.616061 -1.242704 1.756077 H -0.542846 0.898241 2.232954 C -0.883593 -2.612254 2.465624 H -1.967729 -2.690150 2.603089 H -0.404881 -2.797636 3.432417 H -0.579904 -3.412429 1.783238 C -2.223502 0.064649 3.327110 C -4.150057 0.172301 5.388531 C -3.591576 0.233056 3.038454 C -1.852576 -0.032256 4.681361 C -2.804915 0.017499 5.700400 C -4.544238 0.282089 4.059807 H -3.962725 0.329919 2.022981 H -0.808964 -0.148740 4.975731 H -2.500993 -0.062146 6.744420 H -5.602739 0.407490 3.832517 C -2.065621 -6.275836 -2.151057 C -1.307757 -7.545730 -1.701356 H -1.065685 -7.513051 -0.632650 H -0.374670 -7.680079 -2.260764 H -1.911364 -8.445936 -1.868954 C -3.398342 -6.248075 -1.369990 H -3.223169 -6.101030 -0.297605 H -3.948007 -7.188757 -1.492421 H -4.062972 -5.445749 -1.707971 C -2.361538 -6.427810 -3.658313 H -1.434802 -6.423664 -4.244300 H -2.994772 -5.619400 -4.039874 H -2.883276 -7.369420 -3.865634 C 2.794772 6.549824 0.861737 C 4.253548 6.773491 1.321517 H 4.486514 7.843020 1.389683 H 4.970645 6.333675 0.618602 H 4.435179 6.341572 2.312592 C 2.642236 7.235400 -0.513558 H 2.957737 8.284414 -0.469434 H 1.606099 7.228307 -0.868902 H 3.253963 6.734604 -1.273329 C 1.883221 7.257836 1.887915 H 2.173466 8.307186 2.016631 H 1.943374 6.772193 2.869134 H 0.831229 7.253165 1.582743 Cl 0.820626 1.296736 -2.476044 H -4.891776 0.210953 6.186496 Table1, Entry b Mn -0.385394 0.705319 -0.552167 N -1.336130 2.584472 -0.297710 N -2.015526 0.463237 -1.894024 C -0.650497 3.582874 0.150047 H -1.178892 4.549264 0.217141 C -2.271754 -0.701914 -2.383129 H -3.108941 -0.769677 -3.098918 C 0.780506 3.594230 0.537229 C 3.438933 3.994445 1.275279

91

C 1.627692 2.486214 0.722094 C 1.286689 4.890362 0.732959 C 2.618176 5.119667 1.104722 C 2.985958 2.667378 1.095553 H 0.645758 5.761663 0.589955 H 4.475233 4.165949 1.556957 C -1.585171 -1.967381 -2.050404 C -0.507400 -4.504028 -1.694187 C -2.346348 -3.111176 -2.333786 C -0.279652 -2.102252 -1.547019 C 0.313981 -3.384408 -1.425586 C -1.838671 -4.400428 -2.129200 H -3.356776 -3.017713 -2.735750 H -0.088766 -5.502921 -1.589822 C -2.732745 2.591513 -0.871023 H -3.346811 2.065579 -0.126998 C -2.690245 1.779464 -2.202371 H -2.040699 2.277937 -2.934195 O 1.213059 1.186315 0.630464 O 0.502743 -1.040463 -1.191357 C -4.097447 1.636473 -2.774491 H -4.076292 1.112094 -3.736931 H -4.731031 1.045729 -2.100396 C -3.311965 3.980771 -1.113878 H -2.664771 4.558898 -1.785919 H -3.385614 4.541707 -0.174649 C -4.710843 3.872354 -1.726373 H -5.088756 4.874809 -1.957262 H -5.395334 3.437463 -0.987311 C -4.728801 3.014639 -2.990913 H -5.761353 2.894190 -3.337910 H -4.185455 3.538166 -3.787542 C 3.978440 1.481889 1.293116 C 1.821795 -3.600137 -1.086179 C 3.503197 0.566308 2.443630 H 4.237595 -0.221581 2.649581 H 2.561077 0.058020 2.226324 H 3.361771 1.139031 3.367773 C 4.106839 0.667325 -0.014374 H 4.852367 -0.130152 0.088904 H 4.418977 1.309085 -0.846795 H 3.174413 0.181450 -0.310426 C 2.164367 -3.057071 0.315151 H 1.507712 -3.490610 1.076929 H 2.083172 -1.970328 0.375803 H 3.197188 -3.300172 0.592543 C 2.703585 -2.896106 -2.144135 H 2.460791 -3.247113 -3.154126 H 3.767115 -3.097698 -1.968738 H 2.589368 -1.808451 -2.139043 C 2.265849 -5.087281 -1.084991 H 2.106152 -5.559317 -2.061535 H 1.730407 -5.668469 -0.325024 H 3.335424 -5.181224 -0.859692 C 5.422173 1.914120 1.664404 H 6.077827 1.042598 1.783298 H 5.449789 2.462248 2.613480

H 5.869716 2.543248 0.886017 O -1.471853 -0.402379 1.218749 C -0.591607 -1.133438 1.938163 C -1.196728 0.187022 2.391078 H 0.457031 -1.090925 1.668162 H -0.530734 1.031682 2.484401 C -0.976518 -2.424236 2.621151 C -1.655048 -4.832695 3.930860 C -1.705162 -3.433253 1.963384 C -0.582666 -2.670773 3.949597 C -0.922473 -3.858894 4.599037 C -2.042830 -4.623247 2.612592 H -2.016954 -3.338210 0.927582 H 0.007544 -1.944731 4.508753 H -0.607883 -4.035367 5.627643 H -2.600454 -5.401832 2.092855 C -2.351349 0.270743 3.334123 H -1.992171 0.241152 4.367766 H -3.079972 -0.537002 3.203160 H -2.878288 1.220187 3.191133 Cl 0.681524 1.722118 -2.303056 C -2.713581 -5.640091 -2.427759 C -3.074129 -5.666403 -3.928097 H -2.171387 -5.688230 -4.550032 H -3.659008 -4.790393 -4.229120 H -3.671383 -6.551766 -4.175532 C -4.011126 -5.570833 -1.591709 H -3.786397 -5.510817 -0.520165 H -4.633189 -6.459093 -1.752936 H -4.626274 -4.701596 -1.848025 C -2.036151 -6.988531 -2.093255 H -1.755056 -7.046408 -1.035152 H -1.135721 -7.150325 -2.697129 H -2.710046 -7.829826 -2.295408 C 3.134599 6.563722 1.303265 C 2.984395 7.351643 -0.016330 H 3.375013 8.370961 0.085292 H 1.938861 7.440263 -0.330824 H 3.532698 6.863810 -0.830973 C 2.311249 7.259958 2.408972 H 2.679632 8.275479 2.595939 H 2.370121 6.704618 3.352576 H 1.251800 7.348656 2.145268 C 4.620415 6.654358 1.719893 H 4.931051 7.698081 1.850114 H 5.280027 6.216086 0.961879 H 4.804553 6.143410 2.672152 H -1.912126 -5.763084 4.436893 Table 2, Entry a Co -0.296700 0.381491 -0.672456 N -1.281967 2.151332 -0.391067 N -1.973182 -0.019567 -1.788886 C -0.621859 3.185630 -0.000814 H -1.200398 4.113556 0.139622 C -2.241365 -1.239223 -2.102892 H -3.177090 -1.413424 -2.659065

92

C 0.828959 3.277606 0.227332 C 3.525452 3.772473 0.673412 C 1.716126 2.197369 0.318764 C 1.301817 4.593184 0.363101 C 2.655922 4.870434 0.585741 C 3.098583 2.428140 0.551350 H 0.611010 5.433734 0.294184 H 4.578277 3.976641 0.848728 C -1.438924 -2.428447 -1.782922 C -0.098750 -4.833927 -1.459571 C -2.115045 -3.646644 -1.949649 C -0.089786 -2.411591 -1.412336 C 0.630579 -3.630294 -1.301287 C -1.468312 -4.874313 -1.766208 H -3.168199 -3.654331 -2.229995 H 0.421056 -5.782146 -1.352587 C -2.723998 2.053578 -0.766623 H -3.212882 1.520611 0.057500 C -2.770048 1.215452 -2.063887 H -2.247021 1.731383 -2.880717 O 1.309609 0.891183 0.272163 O 0.607373 -1.255169 -1.200083 C -4.216979 0.954470 -2.472471 H -4.260737 0.395819 -3.414927 H -4.731164 0.348817 -1.714867 C -3.418558 3.395524 -0.977252 H -2.890060 3.993151 -1.731241 H -3.425508 3.980082 -0.049602 C -4.866319 3.178491 -1.425850 H -5.333537 4.146366 -1.640040 H -5.434424 2.726488 -0.603115 C -4.964987 2.277778 -2.656496 H -6.018510 2.075942 -2.880839 H -4.551369 2.807666 -3.523672 C 4.140467 1.278895 0.671386 C 2.168243 -3.690583 -1.065583 C 3.809084 0.380471 1.882552 H 4.563043 -0.405536 2.009274 H 2.846264 -0.124654 1.791233 H 3.780627 0.966755 2.808755 C 4.167606 0.446968 -0.628910 H 4.920982 -0.347860 -0.575079 H 4.409667 1.077595 -1.492702 H 3.215404 -0.039706 -0.843681 C 2.549934 -3.039968 0.277722 H 1.998678 -3.494952 1.108255 H 2.351670 -1.968400 0.293050 H 3.620194 -3.156620 0.486170 C 2.902621 -2.978714 -2.224945 H 2.647250 -3.434800 -3.188946 H 3.990328 -3.045312 -2.103270 H 2.660298 -1.915445 -2.296426 C 2.751057 -5.128615 -1.017018 H 2.574394 -5.670529 -1.953569 H 2.323569 -5.710730 -0.192145 H 3.837119 -5.110391 -0.862825 C 5.600996 1.757827 0.890894

H 6.289888 0.906612 0.958008 H 5.706676 2.324231 1.823642 H 5.951118 2.384733 0.062373 N -1.172992 -0.409042 0.932125 C -0.352535 -1.155534 1.793245 C -0.957015 0.192015 2.186865 H 0.723250 -1.170378 1.677475 H -0.229619 0.995600 2.269782 C -0.835447 -2.442014 2.384501 H -1.926360 -2.494810 2.453471 H -0.419665 -2.573635 3.388202 H -0.502421 -3.282658 1.768536 C -2.053908 0.267952 3.228207 C -4.020846 0.469446 5.256877 C -3.426607 0.268699 2.923404 C -1.704594 0.370536 4.588098 C -2.671951 0.470076 5.591126 C -4.399901 0.366355 3.923098 H -3.764838 0.166919 1.899532 H -0.655969 0.366992 4.883265 H -2.371923 0.541528 6.634943 H -5.457337 0.350174 3.668056 H -4.775118 0.538739 6.038330 H -2.067824 -0.863766 0.769938 C -2.246586 -6.197539 -1.932584 C -1.404988 -7.465529 -1.662168 H -1.002896 -7.472619 -0.642322 H -0.565933 -7.551111 -2.362438 H -2.010127 -8.372997 -1.776616 C -3.435331 -6.226665 -0.946478 H -3.091077 -6.116303 0.088729 H -3.984060 -7.173210 -1.016567 H -4.156711 -5.425498 -1.140365 C -2.780822 -6.303484 -3.377168 H -1.961813 -6.256366 -4.104674 H -3.482576 -5.498120 -3.620051 H -3.312162 -7.249553 -3.533685 C 3.139687 6.330388 0.726724 C 4.659916 6.473794 0.966905 H 4.947612 7.528179 1.058018 H 5.241112 6.053080 0.138055 H 4.971394 5.975324 1.892260 C 2.809014 7.111622 -0.563785 H 3.173026 8.144086 -0.505093 H 1.731447 7.163497 -0.753734 H 3.275097 6.642682 -1.438505 C 2.426479 6.998002 1.922773 H 2.776773 8.026675 2.067859 H 2.615485 6.446971 2.851705 H 1.340894 7.046912 1.784727 Cl 0.546498 1.248002 -2.459293 Table 2, Entry b Co -0.436059 0.661941 -0.514526 N -1.431927 2.420905 -0.217176 N -2.100296 0.281177 -1.665427 C -0.773490 3.463011 0.155265

93

H -1.354619 4.390126 0.290471 C -2.323563 -0.917167 -2.076620 H -3.238105 -1.069953 -2.672833 C 0.677838 3.561583 0.377683 C 3.370662 4.062571 0.834841 C 1.563694 2.482490 0.494109 C 1.150313 4.879260 0.490300 C 2.503240 5.159539 0.716262 C 2.943536 2.716239 0.737231 H 0.460536 5.718598 0.400434 H 4.422227 4.269269 1.014878 C -1.504286 -2.108145 -1.823016 C -0.153784 -4.518240 -1.586526 C -2.144694 -3.318976 -2.134992 C -0.183740 -2.102665 -1.361583 C 0.541786 -3.322228 -1.282104 C -1.493826 -4.550101 -2.000755 H -3.175753 -3.318190 -2.488725 H 0.371354 -5.466331 -1.509355 C -2.878834 2.303552 -0.561900 H -3.338237 1.732922 0.256548 C -2.929481 1.507865 -1.884112 H -2.432751 2.061730 -2.692588 O 1.155229 1.176322 0.459861 O 0.488169 -0.961339 -1.026507 C -4.378700 1.227158 -2.273312 H -4.430089 0.703842 -3.235324 H -4.861705 0.580629 -1.529134 C -3.607185 3.635192 -0.713391 H -3.110870 4.268182 -1.460402 H -3.603909 4.189882 0.232521 C -5.059208 3.398056 -1.136272 H -5.554086 4.360721 -1.307481 H -5.597621 2.904989 -0.317230 C -5.163125 2.536856 -2.394342 H -6.216128 2.316138 -2.602835 H -4.782305 3.106156 -3.251536 C 3.982593 1.568744 0.892930 C 2.056834 -3.390475 -0.928621 C 3.627303 0.682386 2.106492 H 4.384654 -0.094990 2.263022 H 2.672678 0.165737 1.995479 H 3.568969 1.279733 3.024133 C 4.034231 0.722618 -0.396657 H 4.783553 -0.073976 -0.318609 H 4.295342 1.342415 -1.262709 H 3.084075 0.237690 -0.623531 C 2.337575 -2.783564 0.459805 H 1.703893 -3.242380 1.227011 H 2.172482 -1.706626 0.486083 H 3.382083 -2.936003 0.757155 C 2.870011 -2.642041 -2.008711 H 2.707122 -3.085072 -2.998592 H 3.944708 -2.687775 -1.796466 H 2.606403 -1.584084 -2.083964 C 2.638832 -4.829006 -0.879269 H 2.551223 -5.337589 -1.846545

H 2.139964 -5.440205 -0.117915 H 3.706774 -4.815444 -0.628319 C 5.438182 2.050384 1.136990 H 6.124795 1.200083 1.232832 H 5.523135 2.631985 2.062480 H 5.807541 2.663353 0.306405 N -1.323628 -0.142379 1.073458 C -0.516965 -0.882102 1.969092 C -1.137829 0.477414 2.312342 H 0.558493 -0.871406 1.828994 H -0.420871 1.276429 2.464676 H -2.239179 -0.556000 0.910505 C -1.028889 -2.131332 2.654337 C -1.901705 -4.473321 3.984112 C -1.764804 -3.123434 1.986138 C -0.732844 -2.362085 4.010770 C -1.166172 -3.514526 4.671201 C -2.199633 -4.280040 2.639807 H -2.005752 -3.010217 0.936667 H -0.148898 -1.634499 4.571889 H -0.923783 -3.667024 5.720943 H -2.765620 -5.036026 2.100713 H -2.235459 -5.373723 4.495577 C -2.288768 0.620865 3.256536 H -1.937713 0.573689 4.291882 H -3.052779 -0.149740 3.113521 H -2.766634 1.594298 3.106676 Cl 0.423568 1.544767 -2.285672 C -2.235507 -5.864544 -2.325295 C -2.666466 -5.861327 -3.807741 H -1.799999 -5.746339 -4.469760 H -3.363949 -5.047822 -4.035286 H -3.168842 -6.798271 -4.075365 C -3.488928 -5.986053 -1.430673 H -3.218580 -5.958757 -0.368585 H -4.017077 -6.928709 -1.616129 H -4.207149 -5.178289 -1.608055 C -1.392997 -7.140123 -2.096824 H -1.065058 -7.225336 -1.054196 H -0.504471 -7.158283 -2.738624 H -1.972157 -8.042469 -2.327307 C 2.988053 6.621586 0.829596 C 2.665075 7.376412 -0.478488 H 3.030164 8.409420 -0.439254 H 1.588578 7.425739 -0.675055 H 3.135033 6.888921 -1.340907 C 2.269325 7.314458 2.007804 H 2.619863 8.345613 2.133353 H 2.452975 6.782646 2.948931 H 1.184516 7.361368 1.863101 C 4.507191 6.768318 1.074595 H 4.795807 7.824082 1.144332 H 5.092115 6.328925 0.258152 H 4.813193 6.289762 2.012207 Table 3, Entry a Co 0.213765 0.132598 -0.581231

94

N -0.726060 1.902323 -0.315343 N -1.460336 -0.290061 -1.634663 C -0.071477 2.916649 0.133935 H -0.653453 3.833318 0.332650 C -1.686759 -1.500035 -2.014213 H -2.599847 -1.672512 -2.609969 C 1.375763 3.011491 0.354578 C 4.081762 3.486050 0.777296 C 2.263476 1.928528 0.411339 C 1.844882 4.323219 0.514011 C 3.195868 4.567106 0.736291 C 3.652608 2.149099 0.631116 H 1.170443 5.178993 0.466665 H 5.133092 3.724456 0.937389 C -0.875869 -2.686200 -1.720969 C 0.499091 -5.080719 -1.439464 C -1.537305 -3.904107 -1.928363 C 0.470444 -2.662175 -1.334702 C 1.208748 -3.875636 -1.241836 C -0.863260 -5.107701 -1.755048 H -2.584764 -3.938863 -2.229071 H 0.999893 -6.045913 -1.367229 C -2.174995 1.882503 -0.698710 H -2.683031 1.487906 0.188725 C -2.335100 0.900506 -1.895539 H -1.919413 1.338596 -2.812282 O 1.844491 0.627302 0.350139 O 1.148709 -1.498406 -1.100766 C 4.692484 0.998215 0.715524 C 2.742651 -3.924905 -0.993352 C 4.380107 0.085838 1.920874 H 5.126026 -0.712147 2.015946 H 3.407102 -0.402617 1.847994 H 4.383981 0.658076 2.856311 C 4.694780 0.184774 -0.595859 H 5.443739 -0.615379 -0.564728 H 4.927352 0.825735 -1.454650 H 3.735919 -0.291789 -0.802189 C 3.108938 -3.277056 0.355004 H 2.550806 -3.735578 1.179058 H 2.906841 -2.206543 0.369968 H 4.177499 -3.390055 0.573844 C 3.478071 -3.203549 -2.145283 H 3.244806 -3.668360 -3.110766 H 4.565089 -3.247882 -2.008807 H 3.212872 -2.146380 -2.225244 C 3.333319 -5.359486 -0.944219 H 3.176293 -5.896559 -1.886994 H 2.894201 -5.949486 -0.131154 H 4.416520 -5.335637 -0.771877 C 6.156463 1.474518 0.914891 H 6.846591 0.622699 0.956264 H 6.279425 2.027204 1.853700 H 6.490227 2.114785 0.089865 N -0.641677 -0.644821 1.044176 C 0.187395 -1.410623 1.879749 C -0.384636 -0.055614 2.297428

H 1.260114 -1.441057 1.740828 H 0.356973 0.735382 2.371333 C -0.302168 -2.695603 2.468805 H -1.391241 -2.727530 2.572142 H 0.142763 -2.849880 3.456646 H -0.005358 -3.533451 1.830749 C -1.454932 0.027051 3.364395 C -3.375714 0.232347 5.434918 C -2.826101 0.155695 3.083890 C -1.081677 0.007191 4.721283 C -2.026736 0.107299 5.745170 C -3.777448 0.255168 4.103954 H -3.179620 0.159488 2.061575 H -0.032546 -0.093535 4.996797 H -1.709587 0.083223 6.786122 H -4.835741 0.341506 3.867345 H -4.112737 0.304304 6.232480 H -1.548975 -1.083277 0.903928 C -1.558515 -6.419617 -1.992583 C 3.712151 5.972842 0.873373 Cl 1.027149 0.987923 -2.386177 C -3.795065 0.537267 -2.126095 C -6.483419 -0.109126 -2.619801 C -4.395329 0.856047 -3.356426 C -4.571686 -0.107490 -1.143519 C -5.906249 -0.428113 -1.394491 C -5.730516 0.532780 -3.598244 H -3.849781 1.368962 -4.148630 H -4.173287 -0.382135 -0.169057 H -6.509347 -0.925212 -0.635203 H -6.194184 0.787533 -4.550955 H -7.527308 -0.354665 -2.812147 C -2.732213 3.261229 -1.021671 C -3.791669 5.808594 -1.546110 C -3.738907 3.802157 -0.202807 C -2.267962 4.021466 -2.112990 C -2.797410 5.287016 -2.368327 C -4.262403 5.067804 -0.466343 H -4.145378 3.255768 0.648453 H -1.491991 3.666011 -2.789047 H -2.442818 5.875462 -3.214203 H -5.047476 5.481056 0.166384 H -4.207961 6.794328 -1.751090 H -1.434949 -6.724325 -3.036301 H -1.149666 -7.200203 -1.342436 H -2.628021 -6.340561 -1.770968 H 4.559661 6.010495 1.565816 H 4.032404 6.349379 -0.102908 H 2.938323 6.637315 1.271932 Table 3, Entry b Co 0.091201 0.456162 -0.490694 N -0.834168 2.229539 -0.229717 N -1.554182 0.053973 -1.570146 C -0.162937 3.255305 0.165708 H -0.732344 4.183556 0.344886 C -1.721945 -1.115013 -2.080527

95

H -2.616142 -1.250341 -2.714388 C 1.287114 3.341387 0.367201 C 3.992283 3.791035 0.808830 C 2.152512 2.246758 0.498862 C 1.778126 4.651862 0.450644 C 3.134194 4.883986 0.651909 C 3.539202 2.455199 0.743005 H 1.117793 5.514791 0.358110 H 5.042045 4.019667 0.992090 C -0.883055 -2.299589 -1.884584 C 0.506294 -4.697930 -1.722277 C -1.489766 -3.496407 -2.295012 C 0.418726 -2.300330 -1.366233 C 1.162540 -3.514988 -1.314607 C -0.810906 -4.704181 -2.188502 H -2.502291 -3.512107 -2.699922 H 1.017212 -5.660150 -1.699214 C -2.298719 2.185577 -0.536416 H -2.751784 1.773013 0.374366 C -2.497771 1.211535 -1.732680 H -2.179974 1.680669 -2.672890 O 1.705979 0.952275 0.491041 O 1.056997 -1.165999 -0.947668 C 4.553231 1.294681 0.935816 C 2.657380 -3.586069 -0.891938 C 4.165074 0.435965 2.158759 H 4.905916 -0.352048 2.339269 H 3.202968 -0.065182 2.042893 H 4.104698 1.049868 3.065280 C 4.606048 0.428830 -0.338580 H 5.324917 -0.391953 -0.231765 H 4.907533 1.025601 -1.207722 H 3.643062 -0.022212 -0.578963 C 2.876859 -3.000575 0.516772 H 2.207201 -3.467847 1.247484 H 2.715733 -1.923707 0.552925 H 3.906186 -3.161689 0.859158 C 3.510473 -2.822029 -1.927731 H 3.415071 -3.272872 -2.922987 H 4.572234 -2.838916 -1.655445 H 3.219057 -1.773333 -2.025854 C 3.236763 -5.025383 -0.835529 H 3.210296 -5.515477 -1.815785 H 2.691110 -5.651143 -0.119461 H 4.287547 -5.016816 -0.520257 C 6.012528 1.756848 1.193115 H 6.682874 0.897302 1.317221 H 6.092210 2.356887 2.107213 H 6.405403 2.346361 0.356394 N -0.797567 -0.317499 1.104698 C 0.001405 -1.060210 2.006525 C -0.608401 0.307230 2.339531 H 1.077949 -1.060698 1.874587 H 0.114937 1.101611 2.487336 H -1.710483 -0.739165 0.946976 C -0.531626 -2.310754 2.672715 C -1.452698 -4.657681 3.959054

C -1.208924 -3.317832 1.964942 C -0.315954 -2.530133 4.045672 C -0.774284 -3.684991 4.684672 C -1.667898 -4.476757 2.597284 H -1.381442 -3.215673 0.900461 H 0.223641 -1.792651 4.637379 H -0.594940 -3.829207 5.748222 H -2.186335 -5.244861 2.027923 H -1.804578 -5.560288 4.454360 C -1.761776 0.469609 3.277626 H -1.415328 0.430807 4.314818 H -2.531285 -0.296405 3.139285 H -2.231489 1.445085 3.115569 Cl 0.946564 1.300530 -2.281729 C -1.446682 -5.988393 -2.643283 C 3.666409 6.285577 0.768861 C -2.904315 3.552890 -0.818791 C -4.056393 6.074469 -1.269876 C -3.891556 4.056082 0.046292 C -2.509009 4.337018 -1.920608 C -3.083599 5.589798 -2.138933 C -4.460943 5.309030 -0.180553 H -4.249558 3.487498 0.904782 H -1.753551 4.010389 -2.633401 H -2.781893 6.196718 -2.992260 H -5.231479 5.692253 0.487972 H -4.508622 7.049918 -1.445991 C -3.952493 0.775857 -1.845304 C -6.635037 -0.007291 -2.117589 C -4.681866 1.106666 -3.000232 C -4.596632 0.051366 -0.823026 C -5.929054 -0.337306 -0.964632 C -6.013984 0.714789 -3.132286 H -4.241852 1.680988 -3.815539 H -4.095299 -0.230163 0.101812 H -6.430060 -0.895520 -0.174157 H -6.578752 0.978093 -4.026280 H -7.677360 -0.306157 -2.223538 H -1.094625 -6.831965 -2.040264 H -2.535555 -5.945112 -2.535161 H -1.202588 -6.174656 -3.693599 H 4.683999 6.350234 0.369490 H 3.675081 6.595041 1.818443 H 3.049171 6.987473 0.198288 Table 3, Entry c Co -0.104928 0.280078 -0.615657 N -1.177847 2.085106 -0.485288 N -1.697051 -0.152349 -1.921454 C -0.578960 3.112375 0.008041 H -1.182334 4.031198 0.092054 C -1.909197 -1.385231 -2.227542 H -2.781363 -1.590053 -2.869758 C 0.833321 3.215706 0.412310 C 3.454755 3.771746 1.154664 C 1.738208 2.156770 0.572934 C 1.252824 4.538887 0.635315

96

C 2.565773 4.846726 1.010709 C 3.084763 2.420993 0.947514 H 0.550659 5.364197 0.514070 H 4.477043 3.999506 1.444011 C -1.112824 -2.550643 -1.811393 C 0.248145 -4.927817 -1.368717 C -1.748362 -3.784659 -2.019247 C 0.201892 -2.505525 -1.330870 C 0.939448 -3.708645 -1.167700 C -1.094356 -4.997768 -1.773438 H -2.775151 -3.816773 -2.383402 H 0.778215 -5.864342 -1.218082 C -2.578508 2.000666 -1.067864 C -2.476902 1.081377 -2.340716 O 1.386753 0.837922 0.464654 O 0.857239 -1.340926 -1.044924 C -3.908193 0.771359 -2.823731 H -3.891438 0.142354 -3.723286 H -4.463045 0.196898 -2.071857 C -3.146159 3.364526 -1.513637 H -2.464766 3.868384 -2.209958 H -3.252068 4.045332 -0.659154 C -4.532156 3.221179 -2.173365 H -4.783939 4.159889 -2.682319 H -5.290658 3.114416 -1.388527 C -4.691719 2.055514 -3.160543 H -5.756490 1.809059 -3.256206 H -4.393507 2.404331 -4.156495 C 4.150588 1.300807 1.130647 C 2.462556 -3.734201 -0.840925 C 3.753801 0.373651 2.298641 H 4.518656 -0.392468 2.472728 H 2.816896 -0.156138 2.122795 H 3.634841 0.942833 3.228268 C 4.308232 0.490114 -0.174565 H 5.091971 -0.270443 -0.076172 H 4.581657 1.143880 -1.011322 H 3.398809 -0.038761 -0.462441 C 2.753623 -3.095267 0.530157 H 2.181626 -3.586356 1.324715 H 2.515620 -2.031967 0.554793 H 3.816148 -3.177860 0.788758 C 3.246254 -2.986539 -1.945123 H 3.050410 -3.425916 -2.930550 H 4.326923 -3.038942 -1.766661 H 2.991965 -1.925333 -2.006856 C 3.077133 -5.158672 -0.781045 H 2.962035 -5.690938 -1.732606 H 2.622277 -5.762644 0.012876 H 4.152909 -5.117068 -0.569812 C 5.574324 1.819994 1.469988 H 6.284589 0.989651 1.568663 H 5.592646 2.364114 2.421604 H 5.962798 2.479404 0.684920 N -1.077800 -0.568775 0.938939 C -0.263366 -1.264785 1.856084 C -0.978174 0.035467 2.205283

H 0.815661 -1.204744 1.814828 H -0.313270 0.889305 2.307365 C -0.685860 -2.582745 2.422718 H -1.758549 -2.769214 2.324162 H -0.418979 -2.640490 3.482455 H -0.169544 -3.394072 1.901527 C -2.128430 0.062620 3.197751 C -4.200714 0.234510 5.133322 C -3.386106 -0.533356 2.991649 C -1.950764 0.738767 4.422006 C -2.968540 0.827561 5.376256 C -4.409515 -0.449981 3.942287 H -3.589034 -1.101489 2.089811 H -0.993164 1.202347 4.655625 H -2.794440 1.349159 6.315428 H -5.367088 -0.934013 3.761778 H -4.990836 0.291261 5.879299 H -1.895845 -1.116795 0.694402 C -1.832201 -6.337619 -1.984881 C -0.992476 -7.585746 -1.629525 H -0.672028 -7.570819 -0.581236 H -0.099425 -7.665672 -2.260218 H -1.570637 -8.505892 -1.777343 C -3.096833 -6.378424 -1.098505 H -2.840416 -6.248641 -0.040321 H -3.620044 -7.336505 -1.200012 H -3.815120 -5.594375 -1.361476 C -2.244594 -6.470579 -3.466582 H -1.369847 -6.416743 -4.125505 H -2.938152 -5.681238 -3.776431 H -2.744572 -7.428190 -3.653279 C 2.986251 6.314093 1.245631 C 4.465295 6.491090 1.658584 H 4.708183 7.549315 1.813388 H 5.147720 6.114991 0.887466 H 4.687533 5.970183 2.597226 C 2.777207 7.125635 -0.051528 H 3.100481 8.165387 0.076273 H 1.726341 7.153608 -0.359482 H 3.351844 6.697098 -0.881240 C 2.124923 6.924889 2.372657 H 2.426101 7.957445 2.584915 H 2.225917 6.350278 3.301042 H 1.060418 6.949497 2.115479 Cl 0.999665 1.102375 -2.274255 C -3.484901 1.455080 0.061954 H -3.325632 0.393983 0.240005 H -4.551632 1.541252 -0.160821 H -3.318676 1.993527 1.002493 C -1.692114 1.700678 -3.531626 H -0.799838 2.242730 -3.214847 H -2.275249 2.437042 -4.090914 H -1.385538 0.933034 -4.252683 Table 3, Entry d Co -0.291962 0.516254 -0.506144 N -1.346834 2.340414 -0.424725

97

N -1.956102 0.031883 -1.702557 C -0.707899 3.392478 -0.047102 H -1.296147 4.323195 0.007948 C -2.166414 -1.206778 -1.980718 H -3.061112 -1.427015 -2.585723 C 0.728114 3.506533 0.257893 C 3.394674 4.079639 0.798255 C 1.630469 2.450056 0.444529 C 1.173524 4.836759 0.351545 C 2.509860 5.153325 0.622554 C 2.999240 2.722463 0.719584 H 0.473710 5.660548 0.208667 H 4.434592 4.313937 1.008835 C -1.346340 -2.359660 -1.585153 C 0.019132 -4.731447 -1.130709 C -1.979489 -3.598535 -1.781997 C -0.026248 -2.305321 -1.121386 C 0.709257 -3.508814 -0.942223 C -1.322870 -4.808465 -1.532088 H -3.009206 -3.636890 -2.137651 H 0.550315 -5.665475 -0.969580 C -2.781121 2.232411 -0.913246 C -2.758231 1.245825 -2.136502 O 1.259567 1.132470 0.455161 O 0.638747 -1.138967 -0.867098 C -4.216595 0.917955 -2.516283 H -4.256050 0.243923 -3.381762 H -4.725459 0.384952 -1.703859 C -3.369890 3.573975 -1.400918 H -2.731358 4.033186 -2.165347 H -3.419805 4.303049 -0.581790 C -4.794674 3.403072 -1.963805 H -5.075943 4.314013 -2.506609 H -5.502588 3.342918 -1.128342 C -5.016753 2.186272 -2.873959 H -6.085876 1.940792 -2.891393 H -4.778485 2.478757 -3.903685 C 4.062427 1.604422 0.929950 C 2.230490 -3.535810 -0.606379 C 3.722886 0.775121 2.186308 H 4.490303 0.015847 2.378253 H 2.774174 0.243895 2.102400 H 3.658858 1.415791 3.073844 C 4.137488 0.693403 -0.314612 H 4.918599 -0.067872 -0.202008 H 4.367576 1.276451 -1.214275 H 3.207943 0.156439 -0.506774 C 2.524321 -2.836394 0.734396 H 1.909103 -3.251802 1.539999 H 2.346289 -1.762043 0.691658 H 3.575146 -2.956840 1.024148 C 3.022086 -2.849538 -1.743265 H 2.840682 -3.347900 -2.703112 H 4.100780 -2.883223 -1.549527 H 2.758104 -1.796738 -1.872047 C 2.830668 -4.961681 -0.474171 H 2.726385 -5.535001 -1.402835

H 2.357353 -5.525282 0.338487 H 3.903739 -4.920287 -0.249495 C 5.508191 2.127490 1.148498 H 6.214344 1.297049 1.272591 H 5.585408 2.743572 2.052078 H 5.858803 2.718090 0.293906 N -1.166219 -0.215654 1.149756 C -0.306464 -0.853611 2.080341 C -1.005495 0.482177 2.348298 H 0.764020 -0.787523 1.928398 H -0.343386 1.335627 2.436641 H -2.024634 -0.738838 1.003374 C -0.728789 -2.086297 2.855357 C -1.417117 -4.386701 4.357415 C -1.481567 -3.131109 2.294801 C -0.322165 -2.242661 4.194133 C -0.663612 -3.374099 4.939335 C -1.825104 -4.267219 3.033682 H -1.810443 -3.076976 1.264537 H 0.277074 -1.470598 4.673920 H -0.336736 -3.467217 5.972939 H -2.407429 -5.063847 2.576903 H -1.680862 -5.270296 4.934721 C -2.125938 0.587973 3.333509 H -1.742586 0.505231 4.355204 H -2.891194 -0.180353 3.184890 H -2.610166 1.564631 3.242636 Cl 0.716789 1.218788 -2.277153 C -2.058247 -6.151241 -1.730196 C -2.470432 -6.298160 -3.210530 H -1.595739 -6.249635 -3.869939 H -3.164502 -5.512036 -3.527425 H -2.969626 -7.257834 -3.388487 C -3.322875 -6.187145 -0.843600 H -3.066608 -6.049812 0.213358 H -3.844744 -7.146673 -0.938093 H -4.042427 -5.406130 -1.111843 C -1.216085 -7.394250 -1.362995 H -0.895563 -7.368408 -0.314899 H -0.322977 -7.478631 -1.993012 H -1.792503 -8.316884 -1.501784 C 2.958892 6.628047 0.715957 C 2.678781 7.339565 -0.625781 H 3.019929 8.381131 -0.599639 H 1.611311 7.359358 -0.870829 H 3.196888 6.839375 -1.452611 C 2.174691 7.337215 1.841653 H 2.498712 8.378559 1.953662 H 2.326805 6.835012 2.804422 H 1.096689 7.357515 1.648215 C 4.462262 6.814482 1.023454 H 4.725058 7.877790 1.079241 H 5.092084 6.368943 0.244610 H 4.736425 6.365334 1.985162 C -3.623970 1.765619 0.300067 H -3.429459 0.733329 0.582430 H -4.700756 1.803504 0.114702

98

H -3.437899 2.400051 1.174342 C -2.045023 1.796556 -3.404682 H -1.126645 2.338220 -3.172845 H -2.654852 2.513957 -3.960214 H -1.795494 0.990983 -4.106149 Table 3, Entry e Co -0.241645 0.371520 -0.708547 N -1.287848 2.121796 -0.558967 N -1.788213 -0.085708 -1.981009 C -0.692386 3.177822 -0.125172 H -1.301367 4.094765 -0.062872 C -1.995675 -1.315814 -2.300085 H -2.866902 -1.520687 -2.943762 C 0.725252 3.307010 0.247416 C 3.350718 3.870886 0.957104 C 1.621418 2.249152 0.447438 C 1.153352 4.635101 0.407583 C 2.471306 4.946947 0.762221 C 2.967582 2.515365 0.815516 H 0.455569 5.458478 0.253676 H 4.375584 4.102094 1.234824 C -1.201029 -2.480080 -1.883728 C 0.158899 -4.846712 -1.398088 C -1.828752 -3.716853 -2.096421 C 0.105179 -2.424536 -1.385078 C 0.840818 -3.623220 -1.188788 C -1.173680 -4.925412 -1.833253 H -2.849248 -3.754698 -2.477219 H 0.688629 -5.780217 -1.228414 C -2.682196 1.984993 -1.076874 H -3.240154 1.453220 -0.296736 C -2.579205 1.126134 -2.357181 H -1.987428 1.641168 -3.126242 O 1.250316 0.933335 0.381998 O 0.750075 -1.248530 -1.121098 C -3.971555 0.825484 -2.904502 H -3.907951 0.251523 -3.836572 H -4.546454 0.219798 -2.191904 C -3.380781 3.307044 -1.379684 H -2.791942 3.905201 -2.087104 H -3.493877 3.905351 -0.467798 C -4.770859 3.049645 -1.967735 H -5.234801 4.003034 -2.244790 H -5.409248 2.597233 -1.198500 C -4.725398 2.128160 -3.186072 H -5.746308 1.898593 -3.511680 H -4.237811 2.654139 -4.016409 C 4.016590 1.392577 1.059843 C 2.350323 -3.642131 -0.808161 C 3.581820 0.501632 2.243585 H 4.336600 -0.263792 2.459839 H 2.645909 -0.028539 2.060559 H 3.443407 1.098743 3.152806 C 4.196272 0.545620 -0.218418 H 4.955844 -0.231986 -0.074938 H 4.514460 1.170775 -1.061257

H 3.281632 0.036169 -0.524392 C 2.586853 -2.969521 0.557447 H 1.969361 -3.429429 1.337130 H 2.363450 -1.902932 0.540618 H 3.634711 -3.058233 0.868308 C 3.173827 -2.922550 -1.901024 H 3.021606 -3.393285 -2.879674 H 4.246449 -2.961148 -1.676643 H 2.914255 -1.866218 -2.006740 C 2.960953 -5.064349 -0.688115 H 2.886079 -5.619559 -1.630531 H 2.472449 -5.649172 0.100150 H 4.027004 -5.017047 -0.433280 C 5.435593 1.908416 1.421812 H 6.132232 1.074506 1.573236 H 5.431315 2.489647 2.351412 H 5.856195 2.532122 0.624236 N -1.257629 -0.420369 0.822451 C -0.501170 -1.151538 1.752818 C -1.160799 0.186662 2.088976 H 0.580736 -1.146307 1.732333 H -0.460885 1.006461 2.228932 C -1.010340 -2.447310 2.300490 H -2.101976 -2.520043 2.273244 H -0.681976 -2.572126 3.336933 H -0.608992 -3.281359 1.717244 C -2.341112 0.234646 3.037914 C -4.472469 0.372804 4.895064 C -3.682376 0.247700 2.615485 C -2.109085 0.293498 4.426347 C -3.159451 0.361655 5.347754 C -4.738993 0.314197 3.531396 H -3.929821 0.182490 1.562710 H -1.088885 0.280496 4.809319 H -2.945015 0.401785 6.413830 H -5.768642 0.311141 3.180656 H -2.127223 -0.889172 0.581431 C -1.900530 -6.269864 -2.053726 C -1.059375 -7.512666 -1.683450 H -0.757748 -7.495942 -0.629620 H -0.154746 -7.586711 -2.298166 H -1.629035 -8.436435 -1.841339 C -3.178442 -6.315942 -1.186997 H -2.939120 -6.183321 -0.125167 H -3.695086 -7.276852 -1.295153 H -3.896453 -5.535848 -1.462242 C -2.289196 -6.408021 -3.541427 H -1.404709 -6.349966 -4.186851 H -2.982823 -5.623670 -3.863515 H -2.780327 -7.369041 -3.734023 C 2.906787 6.419728 0.926018 C 4.390930 6.601858 1.317802 H 4.645114 7.663875 1.419339 H 5.062979 6.182107 0.560214 H 4.616424 6.124874 2.278745 C 2.693645 7.173061 -0.405194 H 3.027543 8.214441 -0.327929

99

H 1.640394 7.197077 -0.705209 H 3.256948 6.701539 -1.219215 C 2.060534 7.089130 2.030861 H 2.372076 8.127714 2.192755 H 2.164931 6.557004 2.983864 H 0.994052 7.110905 1.781703 Cl 0.753928 1.233590 -2.417313 Cl -5.769765 0.459222 6.016604 Table 3, Entry f Co -0.434242 0.667883 -0.520927 N -1.431213 2.427718 -0.223011 N -2.096603 0.289802 -1.677217 C -0.773294 3.469303 0.151925 H -1.354539 4.396426 0.286767 C -2.319607 -0.908320 -2.089464 H -3.231842 -1.060435 -2.689439 C 0.677673 3.567444 0.376982 C 3.370102 4.068291 0.836677 C 1.563754 2.488327 0.492134 C 1.149718 4.885014 0.492598 C 2.502374 5.165216 0.720165 C 2.943529 2.722024 0.735852 H 0.459925 5.724475 0.403687 H 4.421546 4.275087 1.017457 C -1.503052 -2.100202 -1.830076 C -0.157979 -4.512033 -1.579721 C -2.146441 -3.311211 -2.134788 C -0.182202 -2.095388 -1.368808 C 0.540926 -3.315893 -1.283628 C -1.498586 -4.543106 -1.992532 H -3.177174 -3.310045 -2.489681 H 0.365192 -5.461009 -1.498675 C -2.877038 2.311391 -0.573486 H -3.339320 1.739274 0.242340 C -2.923433 1.517924 -1.897425 H -2.422989 2.072509 -2.703084 O 1.155625 1.182057 0.456209 O 0.491638 -0.953319 -1.039549 C -4.371366 1.239021 -2.292601 H -4.419408 0.717373 -3.255698 H -4.857682 0.591528 -1.551419 C -3.604303 3.643600 -0.725094 H -3.104930 4.277819 -1.469020 H -3.604272 4.196448 0.221904 C -5.054826 3.408020 -1.153919 H -5.548596 4.371274 -1.325016 H -5.596561 2.913527 -0.337934 C -5.154379 2.549484 -2.414164 H -6.206705 2.329916 -2.627236 H -4.769785 3.120239 -3.268699 C 3.983358 1.574787 0.888437 C 2.056803 -3.385261 -0.933816 C 3.629790 0.686417 2.100972 H 4.387345 -0.091229 2.255142 H 2.674982 0.170067 1.990379 H 3.572716 1.282211 3.019702

C 4.034036 0.730689 -0.402577 H 4.784113 -0.065409 -0.326709 H 4.293599 1.352074 -1.267957 H 3.084069 0.245231 -0.629134 C 2.340976 -2.776084 0.452833 H 1.710337 -3.234768 1.222611 H 2.174127 -1.699398 0.478086 H 3.386603 -2.926711 0.747138 C 2.868854 -2.639756 -2.016832 H 2.701746 -3.082933 -3.005937 H 3.944056 -2.688429 -1.807778 H 2.608374 -1.581008 -2.091804 C 2.637138 -4.824395 -0.883208 H 2.545402 -5.334995 -1.849038 H 2.140232 -5.433280 -0.118720 H 3.705934 -4.811617 -0.635880 C 5.439037 2.056655 1.131574 H 6.126197 1.206500 1.224763 H 5.524969 2.636341 2.058174 H 5.806958 2.671554 0.301776 N -1.322783 -0.146615 1.068501 C -0.511895 -0.880486 1.964538 C -1.141350 0.475431 2.306987 H 0.563488 -0.862842 1.823991 H -0.429968 1.279756 2.457919 H -2.237583 -0.560589 0.902905 C -1.016153 -2.134419 2.648500 C -1.871640 -4.484047 3.970729 C -1.751058 -3.126848 1.978536 C -0.713182 -2.369422 4.003670 C -1.138391 -3.527882 4.662588 C -2.178436 -4.289432 2.628886 H -1.997791 -3.009551 0.930470 H -0.130255 -1.640920 4.565491 H -0.889372 -3.678985 5.710746 H -2.744098 -5.041794 2.084776 C -2.293071 0.612041 3.251157 H -1.941557 0.567141 4.286452 H -3.052105 -0.163524 3.108435 H -2.777092 1.582387 3.101097 Cl 0.425298 1.557046 -2.288827 C -2.243314 -5.857880 -2.309568 C -2.668469 -5.864453 -3.793614 H -1.799035 -5.757698 -4.453117 H -3.361972 -5.050047 -4.029983 H -3.173259 -6.801567 -4.056031 C -3.500630 -5.968965 -1.419008 H -3.234377 -5.934516 -0.356143 H -4.030784 -6.911479 -1.599418 H -4.215909 -5.160617 -1.605282 C -1.405698 -7.134214 -2.067741 H -1.080532 -7.211136 -1.023593 H -0.515736 -7.161225 -2.707225 H -1.987350 -8.036606 -2.291673 C 2.986693 6.627209 0.836876 C 2.664975 7.384443 -0.470119 H 3.029703 8.417485 -0.428485

100

H 1.588686 7.433806 -0.667816 H 3.136065 6.898752 -1.332936 C 2.266467 7.317635 2.015613 H 2.616640 8.348619 2.143571 H 2.449159 6.784029 2.955910 H 1.181815 7.364615 1.869769 C 4.505508 6.773875 1.083903 H 4.793716 7.829573 1.156270 H 5.091496 6.336474 0.267153 H 4.810599 6.293344 2.020803 Cl -2.396855 -5.910610 4.769758 Table 3, Entry g Co -0.313663 0.554077 -0.674082 N -1.217800 2.334735 -0.239096 N -2.087728 0.265182 -1.687583 C -0.492636 3.334883 0.122999 H -1.024341 4.277847 0.331692 C -2.396615 -0.918100 -2.088228 H -3.376729 -1.030948 -2.579986 C 0.972801 3.364831 0.257366 C 3.704704 3.736115 0.598235 C 1.819098 2.248171 0.268197 C 1.505276 4.655232 0.411097 C 2.878694 4.870600 0.578199 C 3.217179 2.414832 0.456338 H 0.847349 5.524443 0.401398 H 4.771657 3.891786 0.733776 C -1.585712 -2.135984 -1.961723 C -0.255405 -4.570876 -2.015232 C -2.278265 -3.321324 -2.256576 C -0.222603 -2.173108 -1.651704 C 0.489605 -3.401008 -1.729987 C -1.636575 -4.565320 -2.263435 H -3.343700 -3.290034 -2.484880 H 0.259388 -5.526879 -2.056137 C -2.692402 2.282604 -0.467618 H -3.108212 1.710063 0.372128 C -2.884566 1.526627 -1.799942 H -2.436181 2.085624 -2.632820 O 1.363802 0.960592 0.176667 O 0.502413 -1.067388 -1.313424 C -4.370702 1.311475 -2.073093 H -4.522018 0.815610 -3.039159 H -4.816258 0.664814 -1.306014 C -3.375237 3.645425 -0.526357 H -2.915672 4.278796 -1.296164 H -3.272449 4.173384 0.429228 C -4.865664 3.476407 -0.832901 H -5.332902 4.461878 -0.940008 H -5.354787 2.983343 0.016535 C -5.108498 2.653289 -2.097474 H -6.183270 2.479044 -2.221962 H -4.777175 3.229973 -2.970150 C 4.211268 1.218993 0.507546 C 2.035796 -3.497932 -1.568811 C 3.855751 0.269857 1.674043

H 4.587858 -0.542108 1.758941 H 2.879798 -0.206369 1.561792 H 3.845887 0.809831 2.628334 C 4.188606 0.457684 -0.834553 H 4.898817 -0.377548 -0.828651 H 4.459209 1.119634 -1.665835 H 3.209350 0.036711 -1.066283 C 2.489431 -3.003361 -0.180776 H 1.981730 -3.551869 0.620058 H 2.298353 -1.941268 -0.028238 H 3.568599 -3.142260 -0.043704 C 2.722754 -2.668351 -2.677587 H 2.430251 -3.026033 -3.672157 H 3.814472 -2.740784 -2.606059 H 2.473509 -1.605284 -2.632707 C 2.603296 -4.936669 -1.704478 H 2.387176 -5.368399 -2.688796 H 2.198623 -5.604753 -0.935087 H 3.694435 -4.943868 -1.590437 C 5.691811 1.626000 0.736249 H 6.343961 0.744239 0.764675 H 5.825014 2.150806 1.689586 H 6.065538 2.269065 -0.069228 N -1.114028 -0.227304 0.925251 C -0.404114 -1.149517 1.717963 C -0.696515 0.259829 2.183350 H 0.622754 -1.388335 1.473438 H 0.190941 0.873755 2.298562 C -1.075659 -2.252150 2.539142 C -1.751391 0.424319 3.236391 C -3.812453 0.682407 5.137452 C -1.983439 1.647338 3.884300 C -2.557104 -0.669478 3.588762 C -3.592084 -0.542209 4.512445 C -3.004473 1.775002 4.829726 H -1.356651 2.510346 3.676640 H -4.213559 -1.399413 4.761024 H -3.166035 2.722246 5.341313 H -4.604218 0.778959 5.878227 H -2.102539 -0.465675 0.852759 C -2.436353 -5.852637 -2.557885 C -1.594169 -7.147592 -2.503694 H -1.138941 -7.291682 -1.516857 H -0.794069 -7.141170 -3.253044 H -2.213433 -8.030117 -2.704797 C -3.567348 -6.005938 -1.516854 H -3.163570 -6.032845 -0.497667 H -4.129822 -6.933110 -1.677742 H -4.289201 -5.183296 -1.562663 C -3.052179 -5.767706 -3.971000 H -2.275069 -5.626982 -4.731620 H -3.759530 -4.936725 -4.066407 H -3.599916 -6.684377 -4.219146 C 3.428892 6.305017 0.737527 C 4.963677 6.380012 0.905258 H 5.299159 7.418849 1.010453 H 5.485600 5.960366 0.037342

101

H 5.298985 5.842840 1.800123 C 3.068462 7.139104 -0.511315 H 3.477800 8.153694 -0.440683 H 1.986035 7.240490 -0.645397 H 3.471185 6.679421 -1.421688 C 2.802944 6.962486 1.986796 H 3.201785 7.971471 2.144247 H 3.014321 6.375615 2.888558 H 1.714816 7.058396 1.904713 Cl 0.454555 1.455256 -2.477088 O -2.407771 -1.896575 2.994450 C -1.275820 -3.494281 1.664931 H -0.330586 -3.863321 1.257727 H -1.950964 -3.273549 0.832183 H -1.746859 -4.303785 2.234519 C -0.207282 -2.632903 3.748169 H 0.770080 -3.014754 3.433534 H -0.701686 -3.394852 4.361097 H -0.028655 -1.771623 4.401219 Table 3, Entry h Co -0.269935 0.646040 -0.737553 N -1.187179 2.437351 -0.398889 N -1.975726 0.333966 -1.848182 C -0.489265 3.429345 0.032446 H -1.030001 4.375952 0.196327 C -2.299190 -0.868830 -2.174381 H -3.261917 -0.998365 -2.695560 C 0.958660 3.448456 0.294821 C 3.657288 3.801257 0.854853 C 1.797348 2.328367 0.354371 C 1.481935 4.733354 0.513689 C 2.838523 4.939376 0.793166 C 3.177951 2.485424 0.650012 H 0.830028 5.605924 0.466963 H 4.711101 3.949465 1.075048 C -1.515724 -2.088533 -1.934606 C -0.202837 -4.529841 -1.838168 C -2.218708 -3.283191 -2.151689 C -0.153953 -2.116934 -1.617280 C 0.551425 -3.350121 -1.625835 C -1.586014 -4.529826 -2.080017 H -3.282098 -3.255838 -2.388905 H 0.305725 -5.489977 -1.826061 C -2.635826 2.408443 -0.770806 H -3.145436 1.877580 0.043583 C -2.724535 1.604592 -2.086050 H -2.185593 2.118971 -2.893547 O 1.347896 1.044491 0.211325 O 0.571504 -0.994538 -1.333279 C -4.182484 1.413616 -2.492719 H -4.253663 0.877452 -3.446540 H -4.719009 0.814513 -1.745509 C -3.272835 3.783742 -0.947258 H -2.721107 4.375636 -1.689014 H -3.252051 4.346045 -0.006170 C -4.730253 3.640246 -1.394812

H -5.155130 4.632187 -1.585861 H -5.314979 3.195875 -0.579609 C -4.873351 2.771684 -2.644210 H -5.935596 2.620532 -2.867274 H -4.440952 3.302059 -3.501875 C 4.161510 1.283809 0.750179 C 2.097098 -3.445257 -1.461554 C 3.722550 0.319499 1.875007 H 4.441655 -0.499593 1.995075 H 2.752426 -0.146395 1.691255 H 3.653280 0.844622 2.835135 C 4.229797 0.542865 -0.602541 H 4.936722 -0.294146 -0.560282 H 4.559110 1.217024 -1.402262 H 3.268959 0.127273 -0.910058 C 2.542843 -2.922533 -0.082101 H 2.039504 -3.462398 0.727437 H 2.336453 -1.860423 0.050150 H 3.623188 -3.046840 0.059036 C 2.794495 -2.638973 -2.581660 H 2.486636 -2.996672 -3.571480 H 3.884863 -2.735955 -2.517502 H 2.574127 -1.569325 -2.540782 C 2.661431 -4.887516 -1.567707 H 2.433892 -5.341999 -2.539135 H 2.264511 -5.536676 -0.778349 H 3.753511 -4.893761 -1.463110 C 5.624308 1.680373 1.086539 H 6.270308 0.795457 1.143250 H 5.694056 2.187151 2.056243 H 6.053711 2.336500 0.320304 N -1.175508 -0.103461 0.824225 C -0.540605 -1.136801 1.547864 C -0.761421 0.244743 2.125737 H 0.497434 -1.385284 1.355990 H 0.125335 0.843451 2.292789 H -2.181660 -0.235087 0.729105 C -1.416807 -2.224949 2.109170 C -3.155573 -4.203887 3.118045 C -1.188877 -3.584288 1.853891 C -2.525479 -1.889347 2.907683 C -3.399950 -2.860983 3.390880 C -2.047316 -4.566048 2.356084 H -0.333598 -3.897803 1.262133 H -4.258669 -2.577017 3.993990 H -1.850808 -5.617561 2.155113 H -3.822589 -4.969534 3.509203 C -1.714659 0.326015 3.313688 Cl 0.616828 1.522414 -2.497593 C -2.393169 -5.826532 -2.306165 C -2.939944 -5.841844 -3.749456 H -2.125465 -5.775696 -4.480568 H -3.622287 -5.006549 -3.941906 H -3.495829 -6.764773 -3.951892 C -3.576077 -5.890190 -1.314270 H -3.223174 -5.847807 -0.277734 H -4.142939 -6.820901 -1.434718

102

H -4.284659 -5.067089 -1.455100 C -1.573962 -7.122456 -2.109658 H -1.151946 -7.182270 -1.099574 H -0.751099 -7.195141 -2.830230 H -2.200482 -8.011232 -2.252194 C 3.378634 6.368080 1.022813 C 3.123246 7.226133 -0.235615 H 3.528610 8.237416 -0.113461 H 2.055564 7.334755 -0.455086 H 3.597067 6.781106 -1.118631 C 2.655753 7.005982 2.229195 H 3.044039 8.009961 2.436989 H 2.791287 6.401862 3.134150 H 1.578210 7.108847 2.061065 C 4.894992 6.432733 1.315746 H 5.224006 7.467789 1.468080 H 5.484331 6.027584 0.484894 H 5.154967 5.876767 2.224088 O -2.836082 -0.582118 3.199968 C -0.972797 0.072171 4.635245 H -0.189302 0.818925 4.804062 H -0.493339 -0.912769 4.645307 H -1.666582 0.093284 5.483129 C -2.326569 1.733263 3.354540 H -1.556513 2.508606 3.428838 H -3.013334 1.838399 4.202140 H -2.916212 1.927075 2.451980 Table 3, Entry i Co -0.314933 0.585417 -0.664185 N -1.100166 2.377006 -0.066131 N -2.154474 0.449177 -1.587624 C -0.305852 3.316905 0.312224 H -0.776347 4.269762 0.606153 C -2.542382 -0.687846 -2.048942 H -3.552269 -0.721738 -2.489690 C 1.163895 3.267613 0.366424 C 3.925128 3.484872 0.578137 C 1.951306 2.114077 0.255316 C 1.768683 4.517458 0.577075 C 3.158031 4.655472 0.681894 C 3.364222 2.201323 0.374406 H 1.156602 5.415623 0.663410 H 5.004303 3.580573 0.663600 C -1.784829 -1.946149 -2.054607 C -0.577076 -4.425374 -2.363159 C -2.549543 -3.076143 -2.385939 C -0.408567 -2.064226 -1.835247 C 0.238701 -3.312286 -2.045981 C -1.969139 -4.342783 -2.520133 H -3.624021 -2.982597 -2.544263 H -0.111571 -5.396984 -2.504653 C -2.585838 2.410757 -0.213172 H -2.983166 1.804636 0.612068 C -2.889837 1.752438 -1.576097 H -2.459693 2.341645 -2.397655 O 1.427434 0.858485 0.105490

O 0.387105 -1.018574 -1.465459 C -4.397892 1.626638 -1.774758 H -4.627650 1.202344 -2.759256 H -4.832940 0.953442 -1.024664 C -3.200296 3.805289 -0.146673 H -2.752223 4.464941 -0.901020 H -3.018009 4.264337 0.832365 C -4.712058 3.727555 -0.375604 H -5.133496 4.738988 -0.393748 H -5.178093 3.204116 0.468622 C -5.066124 3.000848 -1.672594 H -6.153644 2.886474 -1.744792 H -4.754309 3.616574 -2.525563 C 4.298331 0.960076 0.286182 C 1.785730 -3.486702 -1.994527 C 3.959051 -0.052918 1.402695 H 4.653845 -0.901200 1.390050 H 2.956436 -0.475376 1.312976 H 4.026324 0.417325 2.390963 C 4.164939 0.299249 -1.101938 H 4.830041 -0.567463 -1.194045 H 4.425176 1.005506 -1.899389 H 3.154102 -0.056035 -1.306575 C 2.347852 -3.118641 -0.606969 H 1.865352 -3.703799 0.183449 H 2.217415 -2.063880 -0.365653 H 3.425605 -3.313665 -0.551389 C 2.440732 -2.605206 -3.082440 H 2.069484 -2.872854 -4.079033 H 3.530049 -2.729970 -3.088908 H 2.246331 -1.538881 -2.943098 C 2.275100 -4.933726 -2.272139 H 1.976779 -5.280170 -3.268616 H 1.889164 -5.640462 -1.528072 H 3.369724 -4.995630 -2.232030 C 5.807698 1.280364 0.457165 H 6.415150 0.369483 0.387084 H 6.018388 1.728566 1.435296 H 6.169427 1.961538 -0.322035 N -1.058250 -0.279597 0.940031 C -0.333372 -1.291609 1.600778 C -0.527586 0.086047 2.194921 H 0.660654 -1.547577 1.257437 H 0.391206 0.656641 2.285778 C -0.982208 -2.433593 2.385094 C -1.489533 0.201704 3.339960 C -3.387138 0.387916 5.422983 C -1.635405 1.385175 4.079022 C -2.299117 -0.889521 3.686151 C -3.248177 -0.799536 4.704429 C -2.579505 1.482842 5.112812 H -1.004435 2.243783 3.856527 H -3.874335 -1.656823 4.944890 H -4.125803 0.447696 6.221982 H -2.058848 -0.472292 0.914730 C -2.845346 -5.569959 -2.851883 C -2.064006 -6.900724 -2.939559

103

H -1.557639 -7.134056 -1.995635 H -1.311020 -6.875790 -3.735871 H -2.735528 -7.739098 -3.160845 C -3.918623 -5.748356 -1.755203 H -3.456836 -5.865468 -0.767508 H -4.532993 -6.636516 -1.943974 H -4.602131 -4.894203 -1.699160 C -3.539141 -5.357408 -4.214505 H -2.802692 -5.196511 -5.010747 H -4.210367 -4.491730 -4.208067 H -4.143788 -6.229283 -4.490384 C 3.787927 6.047591 0.908309 C 5.331175 6.038138 0.995601 H 5.724020 7.049899 1.153116 H 5.785348 5.657333 0.073377 H 5.684743 5.423366 1.831551 C 3.405995 6.984328 -0.258673 H 3.869479 7.970940 -0.141551 H 2.324621 7.145818 -0.325401 H 3.737029 6.572040 -1.219248 C 3.261927 6.643334 2.232393 H 3.719220 7.618651 2.436243 H 3.489702 5.984519 3.078771 H 2.177300 6.796024 2.217431 Cl 0.386009 1.576887 -2.446869 O -2.249465 -2.070352 2.993094 C -1.316824 -3.586233 1.433182 H -0.428619 -3.958757 0.915899 H -2.047580 -3.266087 0.683651 H -1.777858 -4.421049 1.973675 C -0.029000 -2.950714 3.473681 H 0.898845 -3.340098 3.040660 H -0.501505 -3.743995 4.063713 H 0.244286 -2.156287 4.176899 C -2.726831 2.725057 5.812002 N -2.825177 3.771881 6.299730 Table 3, Entry j Co -0.174174 0.587584 -0.885222 N -1.270042 2.311341 -0.889065 N -1.674671 -0.002098 -2.168364 C -0.720559 3.406401 -0.493668 H -1.352031 4.309742 -0.518783 C -1.854626 -1.258889 -2.383466 H -2.717569 -1.536025 -3.011087 C 0.670139 3.591621 -0.049146 C 3.228754 4.259405 0.804303 C 1.579572 2.569853 0.252282 C 1.053433 4.936761 0.078728 C 2.337394 5.300583 0.502868 C 2.889654 2.889331 0.699273 H 0.346743 5.733021 -0.156199 H 4.227023 4.530896 1.137186 C -1.026174 -2.364901 -1.882687 C 0.435032 -4.645844 -1.288044 C -1.605210 -3.635318 -2.019425 C 0.278017 -2.230685 -1.394851

C 1.067143 -3.385965 -1.150406 C -0.900351 -4.800501 -1.694849 H -2.624203 -3.734071 -2.393487 H 1.006559 -5.547423 -1.084283 C -2.642799 2.104974 -1.447209 H -3.220619 1.617435 -0.651450 C -2.476489 1.159874 -2.657226 H -1.867277 1.632460 -3.439853 O 1.257819 1.240968 0.211129 O 0.871602 -1.019819 -1.174259 C -3.840408 0.789714 -3.231765 H -3.729870 0.150032 -4.115462 H -4.431213 0.226093 -2.498004 C -3.354455 3.386653 -1.870300 H -2.749578 3.945957 -2.595735 H -3.514889 4.045387 -1.008553 C -4.715453 3.058487 -2.490693 H -5.185202 3.979587 -2.853844 H -5.375357 2.649747 -1.715206 C -4.606336 2.052395 -3.636028 H -5.609576 1.778545 -3.981693 H -4.096663 2.526985 -4.483874 C 3.944738 1.805579 1.064756 C 2.582046 -3.319381 -0.795110 C 3.437607 0.931536 2.233677 H 4.197460 0.202431 2.539392 H 2.541488 0.358464 1.987973 H 3.198082 1.548618 3.107884 C 4.254634 0.932297 -0.170251 H 5.014691 0.176396 0.060071 H 4.633515 1.544331 -0.997519 H 3.381050 0.395641 -0.543666 C 2.808127 -2.597449 0.547327 H 2.257982 -3.086943 1.358162 H 2.495944 -1.553504 0.519399 H 3.869610 -2.595791 0.822613 C 3.353952 -2.591360 -1.920229 H 3.198474 -3.086825 -2.886033 H 4.431970 -2.585533 -1.719462 H 3.054457 -1.547003 -2.039129 C 3.262642 -4.706716 -0.647899 H 3.193530 -5.292689 -1.571944 H 2.820169 -5.290304 0.167988 H 4.330234 -4.601325 -0.418238 C 5.312007 2.374585 1.530654 H 6.014063 1.567003 1.772600 H 5.209402 2.987339 2.433992 H 5.785961 2.982371 0.750928 N -1.225188 -0.084904 0.631265 C -0.597746 -0.942681 1.561469 C -1.040278 0.461024 1.917451 H 0.477027 -1.086515 1.535784 H -0.253721 1.178879 2.114794 H -2.188861 -0.339840 0.419765 C -1.428183 -2.055502 2.146305 C -3.094457 -4.102217 3.160967 C -1.028282 -3.398055 2.104180

104

C -2.668757 -1.765261 2.742652 C -3.506074 -2.770780 3.226171 C -1.849264 -4.412950 2.608054 H -0.068643 -3.673524 1.674944 H -4.470136 -2.510894 3.660069 H -1.512759 -5.448705 2.560257 C -2.157212 0.566710 2.950773 Cl 0.873677 1.356104 -2.606573 C -1.573801 -6.183005 -1.837181 C -1.901420 -6.439081 -3.323366 H -0.995348 -6.399689 -3.939606 H -2.603562 -5.699985 -3.724790 H -2.357446 -7.426100 -3.463335 C -2.881735 -6.220108 -1.015081 H -2.688474 -6.006543 0.042121 H -3.357121 -7.206354 -1.073444 H -3.619172 -5.491905 -1.369003 C -0.703591 -7.362023 -1.345533 H -0.426641 -7.244969 -0.291223 H 0.216517 -7.459871 -1.933233 H -1.240559 -8.313973 -1.436175 C 2.724233 6.790884 0.626381 C 2.578430 7.478737 -0.748638 H 2.880501 8.531413 -0.698045 H 1.546412 7.460213 -1.115395 H 3.204588 6.987779 -1.503063 C 1.791923 7.484096 1.643794 H 2.066016 8.537153 1.777454 H 1.848149 6.997528 2.624796 H 0.743493 7.464814 1.326993 C 4.175010 7.031589 1.102447 H 4.395517 8.103748 1.170637 H 4.904754 6.597335 0.409139 H 4.349927 6.604429 2.096786 O -3.149522 -0.479748 2.818082 C -1.589627 0.563737 4.378672 H -0.920347 1.414850 4.544984 H -1.016789 -0.347579 4.582317 H -2.395886 0.600954 5.119788 C -2.913045 1.883009 2.722958 H -2.247106 2.750066 2.789102 H -3.720311 2.003952 3.454272 H -3.385878 1.893586 1.734989 C -3.949816 -5.145908 3.643289 N -4.650835 -5.993448 4.009460 Table 3, Entry k Co -0.336460 0.406694 -0.803382 N -1.671656 1.754093 -0.043233 N -1.901614 0.053147 -2.086375 C -1.244841 2.716219 0.696379 H -2.007079 3.413356 1.080974 C -1.914405 -1.033789 -2.776460 H -2.795375 -1.202979 -3.417091 C 0.150545 3.007351 1.057344 C 2.668942 3.828600 1.891769 C 1.245338 2.156083 0.862079

C 0.328825 4.259141 1.669117 C 1.586598 4.697053 2.099569 C 2.541874 2.556428 1.283388 H -0.524566 4.920229 1.820450 H 3.650278 4.157714 2.222670 C -0.890348 -2.088088 -2.780112 C 0.896280 -4.185596 -3.090105 C -1.308093 -3.299311 -3.352847 C 0.423813 -1.935531 -2.324987 C 1.369233 -2.975898 -2.525359 C -0.432713 -4.381707 -3.497975 H -2.335105 -3.415659 -3.698422 H 1.592435 -5.007839 -3.231221 C -3.064438 1.481818 -0.502721 H -3.412908 0.620090 0.081992 C -2.947089 1.119067 -2.000029 H -2.555958 1.967250 -2.578543 O 1.131893 0.893135 0.347307 O 0.875879 -0.788037 -1.735938 C -4.309894 0.712181 -2.553279 H -4.245001 0.494046 -3.625879 H -4.672633 -0.199337 -2.060621 C -4.035118 2.643240 -0.311577 H -3.658825 3.549955 -0.802769 H -4.154511 2.879187 0.752626 C -5.408041 2.287823 -0.888179 H -6.075809 3.152929 -0.806785 H -5.853918 1.484569 -0.288300 C -5.326734 1.838043 -2.346416 H -6.315119 1.506862 -2.684630 H -5.047523 2.695110 -2.971968 C 3.801717 1.660020 1.108011 C 2.883078 -2.823662 -2.196242 C 3.652671 0.367152 1.938593 H 4.549389 -0.258802 1.859318 H 2.811190 -0.250962 1.621395 H 3.501007 0.598732 2.999660 C 4.019679 1.323687 -0.383527 H 4.931284 0.731351 -0.526606 H 4.119388 2.237945 -0.980637 H 3.202979 0.744041 -0.815867 C 3.097515 -2.551988 -0.695099 H 2.609700 -3.317355 -0.080741 H 2.709489 -1.580158 -0.390013 H 4.163763 -2.549052 -0.439039 C 3.487761 -1.672561 -3.032410 H 3.346057 -1.851213 -4.105008 H 4.564803 -1.576269 -2.850572 H 3.044191 -0.699835 -2.805071 C 3.737086 -4.077928 -2.523596 H 3.692665 -4.333025 -3.588937 H 3.414035 -4.950000 -1.942949 H 4.794369 -3.910647 -2.283164 C 5.125807 2.316774 1.583592 H 5.979430 1.646908 1.421611 H 5.104133 2.545472 2.655600 H 5.338634 3.242070 1.035340

105

N -1.028029 -0.974123 0.411262 C -0.122363 -1.778675 1.111710 C -0.962924 -0.706597 1.791966 H 0.940240 -1.592554 1.027708 H -0.372259 0.099710 2.211253 C -0.382543 -3.223533 1.421659 H 0.427121 -3.579150 2.071150 H -0.325450 -3.813317 0.499921 Cl 0.315868 1.934634 -2.179327 C -0.929664 -5.709171 -4.110213 C 0.144645 -6.818687 -4.173740 H 0.527413 -7.066893 -3.176896 H 0.992499 -6.525143 -4.803580 H -0.265773 -7.741818 -4.600560 C -2.099797 -6.262061 -3.266762 H -1.796051 -6.415059 -2.224318 H -2.448357 -7.225238 -3.657597 H -2.963903 -5.588886 -3.262072 C -1.415760 -5.461296 -5.554452 H -0.614512 -5.039886 -6.173060 H -2.261429 -4.766080 -5.594046 H -1.745759 -6.394345 -6.026035 C 1.742171 6.077548 2.773391 C 0.876447 6.126955 4.051579 H 1.159740 5.330810 4.750348 H -0.191046 6.009448 3.835456 H 0.993743 7.084906 4.571626 C 1.278385 7.183875 1.800963 H 1.852626 7.153796 0.867367 H 1.410580 8.178773 2.242125 H 0.219093 7.089419 1.538494 C 3.190396 6.418669 3.192059 H 3.866059 6.438653 2.329010 H 3.581878 5.696161 3.917664 H 3.242619 7.407405 3.663713 C -2.153458 -1.069091 2.655763 H -3.042929 -1.067918 2.010689 C -1.976165 -2.476096 3.241137 H -2.882387 -2.764243 3.786545 H -1.144597 -2.500292 3.956126 C -1.714267 -3.487189 2.123170 H -2.532672 -3.446169 1.393832 H -1.710265 -4.503111 2.534427 C -2.400078 -0.012743 3.744994 O -1.312612 0.080197 4.663547 C -1.119285 1.476893 4.904424 C -2.306316 2.153762 4.262357 O -2.605973 1.290977 3.152297 H -3.303575 -0.274034 4.311533 H -1.033690 1.679231 5.975044 H -0.186275 1.767914 4.410714 H -2.090740 3.167619 3.916268 H -3.175013 2.176228 4.929816 H -1.843588 -1.488528 0.085448 Table 3, Entry l Co -0.199148 0.626564 -0.219886

N -1.360065 2.282365 0.078342 N -1.758089 0.158196 -1.481562 C -0.818314 3.369323 0.503640 H -1.485212 4.239362 0.620548 C -1.740970 -0.949944 -2.130883 H -2.591559 -1.126171 -2.809177 C 0.597272 3.581881 0.831814 C 3.179977 4.282324 1.563499 C 1.548367 2.572060 1.015018 C 0.949678 4.930597 1.004078 C 2.247579 5.311517 1.363085 C 2.870216 2.908350 1.413481 H 0.205436 5.713888 0.860245 H 4.188156 4.565820 1.853062 C -0.717205 -1.999060 -2.091254 C 1.038056 -4.136819 -2.312499 C -1.088749 -3.166314 -2.781656 C 0.536160 -1.908704 -1.476181 C 1.463935 -2.980345 -1.612853 C -0.231656 -4.265382 -2.891396 H -2.071896 -3.235147 -3.247649 H 1.725172 -4.971609 -2.419257 C -2.780613 2.032600 -0.298518 H -3.193966 1.392662 0.490999 C -2.734028 1.283101 -1.641503 H -2.309268 1.925772 -2.425448 O 1.256879 1.241237 0.893830 O 0.948452 -0.845783 -0.720707 C -4.141861 0.853230 -2.048297 H -4.138147 0.357282 -3.025329 H -4.554333 0.138226 -1.326941 C -3.642622 3.285282 -0.416468 H -3.212172 3.988502 -1.141099 H -3.702693 3.809005 0.545044 C -5.059534 2.907026 -0.856485 H -5.653145 3.815889 -1.006440 H -5.546238 2.338136 -0.054331 C -5.066185 2.072208 -2.136583 H -6.088261 1.742564 -2.355083 H -4.749592 2.702479 -2.977109 C 3.972748 1.843228 1.677923 C 2.927327 -2.913612 -1.081892 C 3.524362 0.844956 2.768854 H 4.335933 0.155799 3.031693 H 2.685218 0.219437 2.460011 H 3.225374 1.370750 3.683235 C 4.290900 1.097655 0.367483 H 5.066852 0.338461 0.519785 H 4.647727 1.790300 -0.404073 H 3.418236 0.586517 -0.040382 C 2.975425 -2.607215 0.429517 H 2.316089 -3.279406 0.990471 H 2.688791 -1.581346 0.661696 H 3.989982 -2.727089 0.828451 C 3.692668 -1.830901 -1.873351 H 3.738750 -2.084052 -2.939560 H 4.722136 -1.729000 -1.510871

106

H 3.223870 -0.846012 -1.803412 C 3.735698 -4.227517 -1.260584 H 3.846009 -4.500316 -2.316646 H 3.264565 -5.064610 -0.732064 H 4.751934 -4.124546 -0.860152 C 5.322333 2.425648 2.176873 H 6.053980 1.628488 2.358117 H 5.202545 2.970932 3.120446 H 5.772313 3.101117 1.439864 N -1.036581 -0.190567 1.385964 C -1.344873 -1.549769 1.395779 C -0.189988 -0.976173 2.202270 H -1.051379 -2.211897 0.593350 H 0.806986 -1.244672 1.880611 C -2.561573 -2.109277 2.090611 H -2.446511 -3.202637 2.080831 Cl 0.650542 1.616175 -1.938445 C -0.685740 -5.537183 -3.638724 C 0.362128 -6.673329 -3.649326 H 0.619032 -6.994576 -2.633150 H 1.284896 -6.367499 -4.155983 H -0.016849 -7.555166 -4.179903 C -1.958650 -6.102539 -2.970008 H -1.780917 -6.327287 -1.911583 H -2.283249 -7.029040 -3.458014 H -2.800943 -5.403947 -3.020381 C -0.995889 -5.188732 -5.110466 H -0.118905 -4.755733 -5.606113 H -1.814869 -4.467022 -5.202406 H -1.290981 -6.081449 -5.674247 C 2.602889 6.804299 1.535562 C 1.728527 7.417556 2.650862 H 1.869115 6.885423 3.599198 H 0.660785 7.381113 2.408802 H 1.982766 8.470748 2.818362 C 2.340053 7.555414 0.211851 H 2.922142 7.121228 -0.609691 H 2.617976 8.612648 0.295317 H 1.284946 7.525295 -0.080965 C 4.077657 7.064350 1.918647 H 4.766137 6.682178 1.155933 H 4.334402 6.598353 2.877131 H 4.275555 8.138163 2.021397 C -0.284189 -0.878270 3.698563 H -0.524972 0.152156 3.986964 C -1.321457 -1.835719 4.277222 H -1.444164 -1.633985 5.347273 H -0.967788 -2.869809 4.182433 C -2.664585 -1.687984 3.565560 H -3.005341 -0.648049 3.645775 H -3.413710 -2.306300 4.074163 H 0.694457 -1.101120 4.139513 C -3.847106 -1.763296 1.317745 O -3.701657 -2.069281 -0.089430 C -4.485048 -3.261461 -0.258030 C -5.602231 -3.084966 0.734172 O -4.956387 -2.482281 1.853592

H -4.060345 -0.691265 1.389948 H -4.828874 -3.349626 -1.291409 H -3.851561 -4.120101 -0.010393 H -6.358891 -2.384805 0.364415 H -6.083394 -4.023206 1.020389 H -1.612969 0.435084 1.944941 Table 3, Entry m Co -0.455975 0.403269 -0.465004 N -1.443429 2.207634 -0.303552 N -2.187656 -0.044637 -1.530730 C -0.762766 3.274995 -0.073760 H -1.330024 4.219228 -0.026775 C -2.315903 -1.204348 -2.068041 H -3.233558 -1.363868 -2.657593 C 0.690164 3.372194 0.124227 C 3.373372 3.889050 0.609494 C 1.554043 2.299600 0.377657 C 1.180869 4.688260 0.099112 C 2.531174 4.975318 0.328696 C 2.925492 2.546324 0.657500 H 0.505844 5.520834 -0.099877 H 4.421229 4.101583 0.803237 C -1.376679 -2.330286 -2.014271 C 0.176884 -4.626816 -2.172157 C -1.880677 -3.502319 -2.606890 C -0.085906 -2.311450 -1.473945 C 0.733506 -3.472775 -1.567833 C -1.124564 -4.676029 -2.688515 H -2.888868 -3.516277 -3.022706 H 0.783632 -5.524412 -2.254143 C -2.912892 2.057557 -0.509635 H -3.298104 1.575146 0.395813 C -3.077181 1.144602 -1.733871 H -2.691898 1.640534 -2.635930 O 1.139480 0.997352 0.437834 O 0.465508 -1.243524 -0.823019 C -4.552277 0.803166 -1.935639 H -4.699205 0.192685 -2.833565 H -4.935999 0.221602 -1.088502 C -3.668055 3.366209 -0.717825 H -3.262000 3.919948 -1.574145 H -3.573572 4.015494 0.160738 C -5.153246 3.077898 -0.955087 H -5.679519 4.014047 -1.173203 H -5.593006 2.673254 -0.034851 C -5.378219 2.084546 -2.094746 H -6.442398 1.829928 -2.155973 H -5.112539 2.565282 -3.044702 C 3.936787 1.416008 1.005974 C 2.218364 -3.509822 -1.094652 C 3.465298 0.618480 2.242939 H 4.224718 -0.106905 2.558741 H 2.555951 0.043132 2.060867 H 3.270623 1.286312 3.090314 C 4.098066 0.477100 -0.204901 H 4.813421 -0.326143 0.006720

107

H 4.459728 1.024215 -1.083610 H 3.158278 0.001476 -0.487028 C 2.368100 -3.061705 0.375424 H 1.660638 -3.590872 1.024041 H 2.215075 -1.990367 0.510318 H 3.378414 -3.262172 0.752252 C 3.050596 -2.597477 -2.020704 H 3.030181 -2.964181 -3.054214 H 4.098600 -2.559537 -1.701871 H 2.677452 -1.570245 -2.044322 C 2.878197 -4.914007 -1.163025 H 2.927168 -5.295275 -2.189652 H 2.337714 -5.642004 -0.546681 H 3.912033 -4.883983 -0.797055 C 5.364662 1.916237 1.352737 H 6.027384 1.078339 1.602429 H 5.357848 2.588004 2.219166 H 5.828658 2.441074 0.509429 N -1.196813 -0.094417 1.247859 C -1.672867 -1.411485 1.463937 C -0.460289 -0.843909 2.182831 H -1.433309 -2.234696 0.806537 H 0.490652 -1.267242 1.872514 C -3.091940 -1.437146 1.910101 C -0.498490 -0.439357 3.638587 C -0.506993 0.300257 6.368512 C -0.195896 0.873614 4.044891 C -0.775391 -1.374804 4.649515 C -0.788561 -1.010387 5.998364 C -0.204797 1.243309 5.392244 H 0.067247 1.624263 3.306000 H -0.981320 -2.413222 4.395459 H -1.008791 -1.753376 6.762439 H 0.035682 2.262587 5.685983 H -0.509199 0.581296 7.419765 H -1.742317 0.630954 1.713151 C -1.717431 -5.943654 -3.341118 C -0.766343 -7.162185 -3.336578 H -0.486870 -7.452009 -2.316918 H 0.152191 -6.960136 -3.899802 H -1.240769 -8.035215 -3.800830 C -2.996192 -6.365847 -2.584560 H -2.784121 -6.549788 -1.524614 H -3.418564 -7.286099 -3.004909 H -3.780681 -5.603048 -2.635355 C -2.071926 -5.648290 -4.814632 H -1.188940 -5.315928 -5.373325 H -2.834070 -4.867203 -4.909769 H -2.465432 -6.541831 -5.313259 C 3.037288 6.433539 0.283919 C 4.554277 6.585708 0.538719 H 4.859812 7.637750 0.487226 H 5.145287 6.042285 -0.207735 H 4.835956 6.219011 1.532675 C 2.749452 7.039405 -1.107356 H 3.131530 8.064519 -1.178857 H 1.677494 7.082691 -1.328514

H 3.225507 6.449828 -1.899849 C 2.309238 7.265633 1.361856 H 2.672923 8.299773 1.375449 H 2.468938 6.842556 2.360746 H 1.227823 7.309236 1.192599 Cl 0.329910 1.064973 -2.361671 O -3.932745 -0.816269 1.267809 O -3.292652 -2.244144 2.972137 C -4.645114 -2.295893 3.432729 H -4.993115 -1.296241 3.711102 H -4.677484 -2.935350 4.318973 H -5.290820 -2.730496 2.663564 Table 3, Entry n Co -0.202922 0.675439 -0.691269 N -1.030670 2.533356 -0.342599 N -1.893620 0.513739 -1.868368 C -0.279178 3.475481 0.109962 H -0.765405 4.449357 0.285419 C -2.260511 -0.647419 -2.283717 H -3.186347 -0.686895 -2.880844 C 1.168493 3.406329 0.371092 C 3.886943 3.603840 0.916080 C 1.944205 2.239886 0.422009 C 1.765240 4.658323 0.592807 C 3.132924 4.786353 0.864855 C 3.333603 2.317775 0.708680 H 1.163155 5.566534 0.554228 H 4.948504 3.692018 1.131196 C -1.586245 -1.928737 -2.039278 C -0.517333 -4.479700 -1.844311 C -2.364299 -3.054340 -2.356204 C -0.269177 -2.080587 -1.592076 C 0.314674 -3.374833 -1.538496 C -1.857026 -4.353239 -2.242017 H -3.391714 -2.931206 -2.698948 H -0.103547 -5.482581 -1.783931 C -2.466967 2.594356 -0.750725 H -3.031669 2.061680 0.022136 C -2.555337 1.837841 -2.091901 H -1.958579 2.341403 -2.864757 O 1.421678 0.982291 0.285659 O 0.531592 -1.027815 -1.249085 C -4.007751 1.745648 -2.552519 H -4.076206 1.249958 -3.528116 H -4.601686 1.150554 -1.846653 C -3.023312 4.007281 -0.896756 H -2.418649 4.592813 -1.601422 H -3.000094 4.535271 0.064001 C -4.471280 3.958968 -1.391366 H -4.836797 4.978504 -1.558348 H -5.104290 3.518104 -0.611105 C -4.618561 3.144303 -2.675734 H -5.679235 3.059972 -2.938102 H -4.129219 3.679664 -3.499016 C 4.249121 1.062645 0.802035 C 1.818883 -3.618316 -1.216288

108

C 3.779833 0.142686 1.950880 H 4.446096 -0.721103 2.061817 H 2.775511 -0.257534 1.799069 H 3.772442 0.681939 2.905634 C 4.244505 0.296791 -0.538620 H 4.918608 -0.567280 -0.503403 H 4.574082 0.943314 -1.360638 H 3.259513 -0.087995 -0.806518 C 2.186516 -3.082870 0.180821 H 1.516435 -3.487216 0.947989 H 2.143323 -1.994848 0.234095 H 3.211625 -3.358514 0.456115 C 2.694652 -2.933843 -2.290443 H 2.459707 -3.317777 -3.290422 H 3.760057 -3.115804 -2.105957 H 2.561088 -1.849467 -2.322196 C 2.239109 -5.112853 -1.215437 H 2.074791 -5.582567 -2.192342 H 1.692382 -5.685556 -0.457044 H 3.307002 -5.223682 -0.989655 C 5.739929 1.378654 1.098319 H 6.336799 0.459346 1.145556 H 5.863542 1.885688 2.062490 H 6.184563 2.005771 0.316620 N -1.168528 -0.052419 0.862441 C -0.560750 -0.982945 1.720772 C -0.814302 0.452253 2.148485 H 0.483498 -1.225025 1.550990 H 0.082408 1.036079 2.309761 H -2.171100 -0.183980 0.735688 C -1.351448 -2.108363 2.351408 C -2.752865 -4.239899 3.580822 C -2.363281 -2.809074 1.674246 C -1.055388 -2.526746 3.662053 C -1.748198 -3.574711 4.273376 C -3.060003 -3.859201 2.279454 H -2.621994 -2.548151 0.655500 H -0.270620 -2.029130 4.229876 H -1.500108 -3.874438 5.289601 H -3.839966 -4.387478 1.736171 H -3.290613 -5.058809 4.054143 C -1.968427 0.952407 2.945543 Cl 0.762399 1.510633 -2.430074 C -2.747041 -5.570492 -2.573269 C -3.199610 -5.494079 -4.047434 H -2.336833 -5.463735 -4.723413 H -3.807014 -4.605193 -4.249732 H -3.806673 -6.365262 -4.320211 C -3.990929 -5.565756 -1.657756 H -3.701146 -5.595333 -0.601000 H -4.628526 -6.436040 -1.852682 H -4.612423 -4.675696 -1.803793 C -2.049763 -6.936423 -2.380240 H -1.718065 -7.077234 -1.344863 H -1.178470 -7.041972 -3.037077 H -2.729994 -7.763817 -2.615805 C 3.753546 6.181447 1.097989

C 3.539242 7.058853 -0.154762 H 4.001386 8.045197 -0.030321 H 2.478058 7.228265 -0.367122 H 3.982145 6.592465 -1.042788 C 3.074719 6.852716 2.311833 H 3.519915 7.832287 2.521979 H 3.181523 6.237358 3.213053 H 2.003667 7.016673 2.150871 C 5.272862 6.159617 1.381822 H 5.660252 7.173850 1.536935 H 5.833643 5.726255 0.545459 H 5.506656 5.585445 2.285944 O -2.733810 1.770829 2.449088 O -1.975576 0.473313 4.206930 C -3.072393 0.920672 5.007097 H -4.023657 0.642427 4.542768 H -3.016005 2.003323 5.155688 H -3.003895 0.429738 5.981616 Table 4, Top, Quadrant I/II Co 0.475490 0.401669 -0.344599 N 2.060328 1.733719 -0.111534 N -0.183551 1.826928 -1.710680 C 3.173208 1.340069 0.398548 H 3.969422 2.098463 0.479008 C -1.315890 1.694239 -2.304447 H -1.588691 2.489977 -3.016720 C 3.499234 -0.012055 0.870787 C 4.399236 -2.443571 1.855761 C 2.580004 -1.051599 1.057438 C 4.857568 -0.200460 1.174138 C 5.338549 -1.418395 1.667315 C 3.018780 -2.301173 1.570759 H 5.569218 0.612474 1.029703 H 4.761299 -3.391769 2.243758 C -2.266561 0.583450 -2.173268 C -4.193829 -1.409406 -2.236273 C -3.481911 0.787071 -2.846682 C -2.022215 -0.619054 -1.499878 C -2.982006 -1.664743 -1.548503 C -4.477449 -0.195364 -2.879637 H -3.671237 1.727908 -3.363827 H -4.948496 -2.189959 -2.281072 C 1.640821 3.072344 -0.626666 H 0.966372 3.492000 0.129116 C 0.901124 2.837005 -1.953572 H 1.570718 2.376204 -2.692956 O 1.247690 -0.901922 0.806356 O -0.894462 -0.836501 -0.767393 C 0.372413 4.161284 -2.508001 H -0.103178 4.014567 -3.484707 H -0.391005 4.581412 -1.840494 C 2.809057 4.037375 -0.824658 H 3.558058 3.606535 -1.501879 H 3.314161 4.236206 0.128240 C 2.312456 5.365674 -1.397724 H 3.166163 6.024253 -1.593523

109

H 1.685557 5.870059 -0.651810 C 1.509167 5.171280 -2.680892 H 1.099015 6.133510 -3.007822 H 2.180289 4.825127 -3.476902 C 2.062101 -3.501178 1.819117 C -2.737527 -3.072911 -0.933978 C 0.972238 -3.119939 2.842952 H 0.333350 -3.979023 3.079956 H 0.308617 -2.333373 2.483332 H 1.419117 -2.768296 3.780372 C 1.421085 -3.940879 0.487909 H 0.750641 -4.796063 0.632883 H 2.186667 -4.236226 -0.239430 H 0.829962 -3.148854 0.027489 C -2.389348 -2.985616 0.566141 H -3.123933 -2.379421 1.108561 H -1.402884 -2.557732 0.743929 H -2.369899 -3.979395 1.029552 C -1.593797 -3.760689 -1.710152 H -1.864001 -3.900808 -2.763880 H -1.368213 -4.747895 -1.290544 H -0.666966 -3.181272 -1.696386 C -3.955400 -4.031616 -1.020574 H -4.239863 -4.239496 -2.058699 H -4.827213 -3.622768 -0.496360 H -3.728648 -5.001786 -0.561256 C 2.751427 -4.767679 2.394210 H 2.026637 -5.577052 2.546719 H 3.215938 -4.569424 3.367327 H 3.519545 -5.156327 1.715267 C -0.975140 0.420247 2.137383 H -1.158800 -0.632036 1.955972 C -1.807573 1.369845 1.299279 H -2.485077 0.860026 0.623283 Cl 1.548457 -0.460570 -2.004495 C -2.388343 2.644380 1.871936 C -3.549150 4.999335 2.926854 C -2.051491 3.915071 1.373678 C -3.345164 2.594503 2.901427 C -3.915525 3.755599 3.428476 C -2.618816 5.080939 1.896376 H -1.340113 4.011477 0.564635 H -3.660192 1.634387 3.307910 H -4.649759 3.688254 4.229188 H -2.343879 6.056819 1.502678 H -3.995430 5.903170 3.337256 C -0.660041 0.653654 3.580760 H -1.487980 0.308301 4.207431 H -0.468652 1.706174 3.811654 H 0.232754 0.084325 3.858482 C -5.808001 0.067103 -3.617997 C -6.815177 -1.103071 -3.543467 H -7.086003 -1.336775 -2.507202 H -6.413882 -2.012033 -4.006596 H -7.744528 -0.858505 -4.071943 C -5.525462 0.330676 -5.112870 H -5.002998 -0.517674 -5.570690

H -4.905522 1.220499 -5.267521 H -6.456767 0.488669 -5.669283 C -6.504834 1.302372 -3.005963 H -6.688030 1.160547 -1.934219 H -7.471582 1.490079 -3.487752 H -5.909687 2.214894 -3.119876 C 6.839220 -1.592570 1.986896 C 7.215937 -2.995676 2.514827 H 6.978274 -3.778678 1.785297 H 6.694423 -3.228690 3.450507 H 8.290855 -3.064479 2.721262 C 7.671937 -1.350967 0.708817 H 7.374245 -2.039135 -0.091233 H 8.740935 -1.502793 0.898910 H 7.557892 -0.331418 0.324849 C 7.258866 -0.572837 3.067988 H 6.662820 -0.697614 3.979818 H 7.134218 0.462656 2.733039 H 8.313842 -0.696213 3.339502 N -0.407315 1.238543 1.136902 H 0.081684 2.000078 1.608575 Table 4, Top, Quadrant II/III Co 0.468200 0.689534 -0.679833 N 2.034672 2.068749 -0.450338 N -0.259202 2.131049 -2.005378 C 3.136272 1.708078 0.107579 H 3.919374 2.480508 0.180191 C -1.413323 1.988125 -2.555321 H -1.719295 2.777036 -3.261730 C 3.467390 0.388861 0.662609 C 4.346832 -1.952511 1.868656 C 2.581845 -0.684913 0.792295 C 4.789915 0.274151 1.121976 C 5.261440 -0.898201 1.724915 C 3.003717 -1.882810 1.427256 H 5.480696 1.110979 1.017992 H 4.696369 -2.862492 2.348800 C -2.350148 0.869579 -2.379770 C -4.259411 -1.143356 -2.340698 C -3.606243 1.067557 -2.974634 C -2.054129 -0.338612 -1.738212 C -3.003081 -1.394092 -1.738248 C -4.593047 0.074656 -2.953684 H -3.834784 2.009877 -3.472595 H -5.008206 -1.930976 -2.342070 C 1.637048 3.385558 -1.038442 H 1.018775 3.880169 -0.283425 C 0.834910 3.111317 -2.322137 H 1.466373 2.613594 -3.070678 O 1.294712 -0.634375 0.359018 O -0.873210 -0.560740 -1.099393 C 0.311643 4.423636 -2.907959 H -0.221432 4.248780 -3.849641 H -0.400706 4.895891 -2.219029 C 2.827720 4.296112 -1.344733 H 3.527969 3.801282 -2.030176

110

H 3.384944 4.531270 -0.430155 C 2.349208 5.611179 -1.964099 H 3.214671 6.224170 -2.240075 H 1.784405 6.178537 -1.213770 C 1.467758 5.386353 -3.189716 H 1.070138 6.346159 -3.538519 H 2.081656 4.982287 -4.004444 C 2.051276 -3.088685 1.668214 C -2.699190 -2.801228 -1.149547 C 0.877952 -2.660303 2.577842 H 0.211354 -3.505503 2.786400 H 0.259245 -1.873998 2.139991 H 1.246365 -2.282044 3.538983 C 1.521327 -3.631569 0.325369 H 0.887494 -4.513457 0.476158 H 2.346954 -3.922894 -0.334602 H 0.916465 -2.902598 -0.214413 C -2.354818 -2.712391 0.351296 H -3.178347 -2.257549 0.913229 H -1.458033 -2.125458 0.552156 H -2.175028 -3.707521 0.775473 C -1.534828 -3.444072 -1.935139 H -1.795853 -3.561844 -2.993900 H -1.292343 -4.437706 -1.540421 H -0.617051 -2.852930 -1.899485 C -3.878990 -3.805701 -1.246497 H -4.171881 -3.990970 -2.286631 H -4.758616 -3.450575 -0.696787 H -3.605757 -4.778001 -0.818024 C 2.715440 -4.298695 2.378008 H 1.997440 -5.115890 2.520351 H 3.090385 -4.030364 3.372696 H 3.547599 -4.705673 1.791588 C -1.772983 1.422656 1.112378 H -2.466637 1.537418 0.290414 C -0.754998 2.543408 1.268610 H -0.889255 3.308724 0.509275 Cl 1.533428 -0.015956 -2.416655 C -0.362062 3.097333 2.620465 C 0.340411 4.236813 5.114159 C 0.835988 2.753937 3.273646 C -1.193994 4.033268 3.261754 C -0.850092 4.596884 4.492980 C 1.183597 3.312920 4.506746 H 1.506887 2.017616 2.844071 H -2.137665 4.329627 2.806401 H -1.516265 5.311207 4.973406 H 2.104493 3.018665 5.006028 H 0.603035 4.667164 6.078788 C -2.469265 0.825204 2.294938 H -3.265632 1.493271 2.637621 H -1.796369 0.634039 3.136728 H -2.928340 -0.125855 2.012084 C -5.969360 0.329434 -3.606291 C -6.959667 -0.850359 -3.477319 H -7.163196 -1.093210 -2.427842 H -6.580213 -1.752610 -3.970972

H -7.922286 -0.610889 -3.945092 C -5.782212 0.604734 -5.113967 H -5.281866 -0.236056 -5.608931 H -5.180631 1.500995 -5.300653 H -6.747503 0.757819 -5.610617 C -6.637786 1.554468 -2.944154 H -6.752881 1.404488 -1.864083 H -7.634192 1.736113 -3.363846 H -6.058995 2.473131 -3.088781 C 6.723563 -0.990448 2.212982 C 7.097137 -2.352899 2.840253 H 6.969603 -3.174558 2.125827 H 6.488665 -2.570577 3.725768 H 8.145728 -2.365614 3.161330 C 7.682234 -0.761919 1.023789 H 7.503135 -1.493799 0.227205 H 8.728885 -0.857709 1.335722 H 7.570430 0.235546 0.585110 C 6.977995 0.089748 3.286721 H 6.290623 -0.026365 4.133082 H 6.847490 1.104149 2.894330 H 8.000764 0.026554 3.676397 N -0.402578 1.232206 0.899575 H -0.050608 0.717466 1.711351 Table 4, Top, Quadrant III/IV Co 0.409643 0.486643 -0.755953 N 1.939890 1.868864 -0.439152 N -0.221057 1.894910 -2.170608 C 3.005113 1.519095 0.192964 H 3.767142 2.303209 0.334371 C -1.389835 1.801317 -2.700744 H -1.658814 2.574389 -3.439236 C 3.332199 0.181545 0.709355 C 4.246798 -2.237398 1.717715 C 2.457602 -0.910776 0.761436 C 4.651770 0.054098 1.172756 C 5.136976 -1.152904 1.689461 C 2.908016 -2.160932 1.262371 H 5.330339 0.906378 1.136965 H 4.614557 -3.179969 2.113969 C -2.403834 0.777918 -2.415542 C -4.478940 -1.033366 -2.108046 C -3.688587 1.083819 -2.889500 C -2.154918 -0.440406 -1.772303 C -3.196119 -1.392029 -1.626632 C -4.756662 0.192723 -2.733882 H -3.876090 2.032778 -3.391371 H -5.297085 -1.740226 -1.998912 C 1.568179 3.171534 -1.082768 H 0.854916 3.653779 -0.403257 C 0.900306 2.853806 -2.434500 H 1.596996 2.328491 -3.101110 O 1.148318 -0.812492 0.397797 O -0.913480 -0.774768 -1.313578 C 0.433050 4.141145 -3.114418 H 0.001697 3.925966 -4.099312

111

H -0.351343 4.628699 -2.520723 C 2.764173 4.102788 -1.283034 H 3.545523 3.607195 -1.873940 H 3.212760 4.371478 -0.319161 C 2.333615 5.389165 -1.990334 H 3.212861 6.013620 -2.185071 H 1.676016 5.963902 -1.326245 C 1.603107 5.108843 -3.300993 H 1.237459 6.049895 -3.727225 H 2.310304 4.685262 -4.025009 C 2.007172 -3.427794 1.322683 C -2.979222 -2.791662 -0.987723 C 0.846391 -3.205877 2.312375 H 0.218784 -4.101049 2.394880 H 0.189515 -2.387948 2.013265 H 1.223809 -2.970338 3.314544 C 1.458908 -3.766717 -0.080160 H 0.872795 -4.693318 -0.063823 H 2.275429 -3.901430 -0.799389 H 0.800817 -2.992824 -0.476540 C -2.454917 -2.653450 0.455624 H -3.122673 -2.029004 1.060755 H -1.461656 -2.207700 0.498204 H -2.376031 -3.631033 0.945862 C -1.986904 -3.606179 -1.845734 H -2.370822 -3.742450 -2.863958 H -1.818764 -4.601373 -1.417566 H -1.008332 -3.129208 -1.935580 C -4.263457 -3.657006 -0.884810 H -4.692541 -3.867740 -1.871431 H -5.029961 -3.171294 -0.269495 H -4.049444 -4.627939 -0.421041 C 2.736542 -4.711223 1.803704 H 2.060192 -5.575052 1.800178 H 3.107526 -4.608177 2.830196 H 3.581482 -4.964411 1.152532 C -1.549444 2.105196 0.754696 H -1.442829 2.958777 0.097503 C -0.391207 1.892239 1.728699 H 0.425202 2.595697 1.614259 Cl 1.661410 -0.226060 -2.361685 C -0.626913 1.502270 3.171395 C -1.010151 0.824196 5.892039 C -0.090481 0.324766 3.717093 C -1.340283 2.343322 4.044507 C -1.536890 2.007654 5.386808 C -0.283056 -0.017609 5.058055 H 0.490128 -0.345931 3.094649 H -1.758457 3.280821 3.683958 H -2.100739 2.670412 6.040264 H 0.134486 -0.940565 5.454662 H -1.163627 0.560678 6.936549 C -2.983644 1.931446 1.153137 H -3.336213 2.819605 1.686337 H -3.146621 1.057353 1.791424 H -3.605878 1.812341 0.261440 C -6.163405 0.564802 -3.250418

C -7.239317 -0.514439 -2.992041 H -7.359384 -0.716381 -1.921244 H -6.994069 -1.457764 -3.493780 H -8.217804 -0.195230 -3.370801 C -6.109358 0.797409 -4.775897 H -5.741310 -0.094035 -5.297555 H -5.451932 1.630997 -5.045893 H -7.103074 1.031407 -5.175491 C -6.643133 1.857683 -2.554645 H -6.659275 1.735905 -1.465018 H -7.656340 2.126727 -2.875498 H -5.999132 2.714669 -2.779983 C 6.592556 -1.255577 2.195026 C 6.977279 -2.650009 2.739900 H 6.884178 -3.424433 1.969591 H 6.351056 -2.937126 3.592658 H 8.017821 -2.665439 3.086068 C 7.565044 -0.936041 1.038750 H 7.410597 -1.618096 0.194226 H 8.608290 -1.034825 1.360935 H 7.442327 0.085521 0.662855 C 6.814425 -0.244284 3.340991 H 6.114892 -0.424086 4.165983 H 6.676968 0.791920 3.013401 H 7.831426 -0.319733 3.743420 N -0.699995 1.000476 0.676470 H -1.171725 0.181595 1.075396 Table 4, Top, Quadrant IV/I Co 0.594948 0.543395 -0.495784 N 2.081954 1.945052 -0.145915 N -0.065098 1.973383 -1.872594 C 3.194975 1.585070 0.390572 H 3.951177 2.375744 0.527415 C -1.224625 1.864799 -2.417761 H -1.514987 2.668542 -3.114238 C 3.572145 0.227593 0.816395 C 4.557092 -2.208278 1.710998 C 2.699854 -0.864147 0.927527 C 4.927975 0.086909 1.151921 C 5.451085 -1.131399 1.601383 C 3.180819 -2.116475 1.390665 H 5.605004 0.936941 1.066471 H 4.952735 -3.157014 2.063663 C -2.199237 0.785918 -2.215138 C -4.190915 -1.139257 -2.115587 C -3.466455 1.043784 -2.761887 C -1.933082 -0.435550 -1.586186 C -2.923051 -1.452509 -1.567011 C -4.496138 0.098226 -2.703141 H -3.671189 1.999702 -3.243931 H -4.973958 -1.892308 -2.093114 C 1.627399 3.270886 -0.666590 H 0.876472 3.637709 0.045628 C 0.998527 3.015566 -2.049278 H 1.733418 2.578144 -2.738816 O 1.366068 -0.762031 0.654823

112

O -0.736072 -0.709009 -0.998699 C 0.461439 4.319462 -2.641114 H 0.066321 4.153403 -3.650448 H -0.366488 4.706856 -2.032817 C 2.756922 4.295389 -0.767138 H 3.578269 3.907960 -1.384204 H 3.173993 4.509222 0.224442 C 2.245871 5.601933 -1.375472 H 3.080017 6.302102 -1.497348 H 1.534827 6.070469 -0.683717 C 1.564594 5.376138 -2.722692 H 1.142735 6.320572 -3.084674 H 2.314402 5.059738 -3.458492 C 2.270971 -3.366738 1.552539 C -2.659607 -2.885372 -1.021384 C 1.167530 -3.091232 2.595995 H 0.543751 -3.978713 2.755779 H 0.493495 -2.286052 2.301010 H 1.602996 -2.811724 3.562738 C 1.646674 -3.748664 0.194287 H 1.026844 -4.648846 0.281561 H 2.423791 -3.949900 -0.552651 H 1.005537 -2.965448 -0.211393 C -2.214978 -2.852864 0.453837 H -2.920311 -2.280967 1.067266 H -1.225166 -2.415191 0.581280 H -2.152923 -3.864029 0.873760 C -1.576946 -3.566429 -1.887748 H -1.901958 -3.642721 -2.932418 H -1.364870 -4.580903 -1.530273 H -0.629057 -3.022219 -1.887859 C -3.894571 -3.824817 -1.063652 H -4.256594 -3.977093 -2.087215 H -4.719860 -3.433254 -0.457311 H -3.649677 -4.818267 -0.667786 C 3.009581 -4.639459 2.046926 H 2.319311 -5.487675 2.134604 H 3.455621 -4.490973 3.037382 H 3.800780 -4.944907 1.352128 C -0.033949 1.428018 2.202963 H 0.864274 0.917246 2.533867 C -1.182433 0.507817 1.819833 H -0.944968 -0.550968 1.834621 Cl 1.812342 -0.245987 -2.091523 C -2.589344 0.820120 2.286776 C -5.214232 1.327339 3.220021 C -3.618272 1.205098 1.411822 C -2.927959 0.681837 3.645856 C -4.220831 0.936602 4.110451 C -4.914812 1.458965 1.868705 H -3.424213 1.305472 0.351894 H -2.174772 0.364398 4.365128 H -4.454531 0.822284 5.167046 H -5.696084 1.751439 1.170968 H -6.222977 1.519797 3.579427 C -0.231881 2.688966 2.983640 H -0.325634 2.462666 4.050176

H -1.117640 3.249930 2.669544 H 0.637822 3.340906 2.853274 C -5.888169 0.423858 -3.285843 C -6.923460 -0.712709 -3.126204 H -7.088904 -0.962522 -2.071654 H -6.608128 -1.623102 -3.649158 H -7.895026 -0.423549 -3.544807 C -5.761499 0.716316 -4.796464 H -5.322679 -0.136751 -5.327467 H -5.131128 1.588992 -4.999050 H -6.741839 0.919093 -5.243344 C -6.467525 1.665711 -2.572838 H -6.539314 1.501048 -1.491168 H -7.472763 1.900464 -2.942018 H -5.853650 2.559362 -2.729180 C 6.949045 -1.252147 1.957821 C 7.376092 -2.659901 2.432345 H 7.196888 -3.417664 1.660682 H 6.839291 -2.960426 3.339703 H 8.446655 -2.689117 2.668656 C 7.804810 -0.913142 0.717686 H 7.562111 -1.575820 -0.121497 H 8.874031 -1.024904 0.932663 H 7.653815 0.117053 0.377370 C 7.290202 -0.266390 3.096540 H 6.675172 -0.460675 3.983254 H 7.127075 0.777026 2.805629 H 8.341716 -0.354612 3.393957 N -0.499715 1.329992 0.880341 H -1.093114 2.124396 0.640030 Table 4, Bottom, Quadrant I/II C -2.430688 0.601950 2.353767 C -2.053319 2.827113 3.482738 C -3.958675 1.344217 4.225448 C -3.462479 2.777392 4.068759 C -3.854802 0.559255 2.918927 C -1.975986 2.057948 2.161098 H -1.342787 2.408206 4.206890 H -3.368701 0.838429 4.999928 H -4.148083 3.330160 3.414639 H -2.626581 2.561042 1.431625 H -1.770385 3.874992 3.328377 H -4.998802 1.349526 4.570338 H -3.475149 3.280824 5.042001 H -1.770614 0.094880 3.063082 N -2.314900 -0.055524 1.078880 H -4.564473 0.968278 2.188463 N -0.644424 2.023556 1.615644 H -4.156557 -0.476839 3.110987 C -3.111106 -0.937683 0.487040 H -3.975245 -1.327886 1.051227 C -2.976069 -1.413019 -0.896586 C -3.008963 -2.473129 -3.459302 C -1.836428 -1.291366 -1.694573 C -4.123236 -2.060283 -1.388090 C -4.170127 -2.599870 -2.675018

113

C -1.828376 -1.834785 -3.009576 H -4.991199 -2.126839 -0.737044 H -3.044301 -2.895404 -4.459813 C 0.455093 2.709706 1.903211 H 0.430321 3.414629 2.751612 C 1.725950 2.616435 1.174936 C 4.201603 2.794218 -0.070894 C 2.803226 3.251937 1.810367 C 1.894518 2.030330 -0.079090 C 3.139829 2.153431 -0.757647 C 4.068255 3.337783 1.216280 H 2.644583 3.689389 2.794404 H 5.166653 2.879799 -0.557668 O -0.687251 -0.720524 -1.235809 O 0.894401 1.353624 -0.706096 Co -0.618804 0.590039 0.134243 Cl -1.816155 1.862519 -1.135887 C 3.355790 1.647323 -2.209058 C 2.384929 2.373510 -3.167417 H 2.542317 3.458380 -3.134918 H 1.333594 2.195964 -2.929914 H 2.534600 2.046912 -4.203344 C 4.777842 1.912479 -2.773244 H 5.012968 2.983117 -2.795694 H 4.868757 1.546677 -3.803569 H 5.548779 1.400102 -2.185716 C 3.153248 0.122284 -2.293676 H 3.818760 -0.403674 -1.599577 H 3.363047 -0.251225 -3.303019 H 2.132436 -0.177555 -2.059842 C -0.595619 -1.752131 -3.946538 C -0.823341 -2.358246 -5.358019 H 0.075728 -2.261032 -5.979200 H -1.635449 -1.849779 -5.890994 H -1.058072 -3.428041 -5.308246 C -0.201586 -0.280302 -4.188968 H 0.646455 -0.205178 -4.879894 H 0.093943 0.235876 -3.275616 H -1.036103 0.283202 -4.623060 C 0.583800 -2.539937 -3.338770 H 1.459695 -2.511805 -3.997626 H 0.315143 -3.592289 -3.187054 H 0.904175 -2.149851 -2.371903 C 5.226768 4.025999 1.961521 C 6.566229 4.017179 1.190074 H 7.358916 4.506028 1.769246 H 6.487949 4.554846 0.237941 H 6.903864 2.995552 0.979998 C 4.864999 5.502764 2.230245 H 5.687399 6.026249 2.731751 H 3.982842 5.603592 2.871923 H 4.653174 6.033327 1.294338 C 5.476181 3.310353 3.307575 H 6.322436 3.757503 3.842242 H 5.702336 2.248550 3.153322 H 4.610357 3.368403 3.976115 C -5.416814 -3.306098 -3.239195

C -5.906753 -2.565528 -4.502683 H -5.162531 -2.577369 -5.306400 H -6.134662 -1.516158 -4.280941 H -6.816903 -3.027102 -4.903322 C -5.065972 -4.764192 -3.607555 H -4.303560 -4.822899 -4.391935 H -5.947152 -5.301254 -3.977715 H -4.684256 -5.309838 -2.736433 C -6.606951 -3.360060 -2.254076 H -6.349283 -3.906384 -1.339233 H -7.467719 -3.871152 -2.701974 H -6.941758 -2.355531 -1.970128 N 0.397865 -0.464025 1.326262 H 0.678332 0.006897 2.180249 C 0.156021 -1.834742 1.543804 H -0.592029 -2.296004 0.906179 C 1.407652 -1.304286 0.846197 H 1.485237 -1.523119 -0.209760 C 0.317385 -2.513761 2.893239 C 0.622569 -3.875896 5.360764 C 0.636893 -3.884250 2.946842 C 0.153228 -1.854632 4.122502 C 0.303920 -2.522097 5.342054 C 0.789587 -4.559554 4.161341 H 0.768521 -4.436345 2.018590 H -0.089910 -0.795504 4.135141 H 0.170479 -1.978738 6.273556 H 1.036166 -5.617655 4.167022 H 0.738561 -4.395693 6.307587 C 2.756094 -1.306386 1.489877 H 3.424297 -0.622644 0.958047 H 3.194058 -2.308137 1.440603 H 2.730336 -0.993442 2.538261 Table 4, Bottom, Quadrant II/III C -2.825427 0.690465 2.230397 C -2.348053 2.884532 3.373421 C -4.439696 1.586746 3.955617 C -3.798564 2.966101 3.845911 C -4.293854 0.781744 2.664521 C -2.240556 2.100344 2.062518 H -1.735275 2.409865 4.150363 H -3.971511 1.035027 4.780326 H -4.375247 3.578398 3.141536 H -2.807911 2.648681 1.297272 H -1.963231 3.902421 3.240450 H -5.501292 1.692169 4.206133 H -3.842342 3.472028 4.816957 H -2.286960 0.142530 3.011162 N -2.658601 -0.010707 0.983365 H -4.895464 1.243996 1.871577 N -0.884852 1.976468 1.592490 H -4.704699 -0.220285 2.832941 C -3.444055 -0.876970 0.353730 H -4.381737 -1.180871 0.849574 C -3.200368 -1.461868 -0.972245 C -3.032023 -2.775880 -3.413036

114

C -2.005682 -1.405260 -1.691052 C -4.306506 -2.160409 -1.490766 C -4.254641 -2.821461 -2.720026 C -1.890111 -2.092886 -2.932443 H -5.223485 -2.172267 -0.907194 H -2.984697 -3.300710 -4.363151 C 0.233267 2.602331 1.939236 H 0.215204 3.267041 2.819520 C 1.509228 2.510723 1.221954 C 4.011472 2.653256 0.022658 C 2.585271 3.126488 1.879272 C 1.688441 1.937845 -0.037060 C 2.953702 2.027118 -0.683426 C 3.861038 3.199730 1.306557 H 2.418035 3.556575 2.865125 H 4.988303 2.718466 -0.443358 O -0.905476 -0.745887 -1.243185 O 0.684765 1.295614 -0.695674 Co -0.850071 0.541704 0.107178 Cl -2.024220 1.891147 -1.103723 C 3.203478 1.464364 -2.107269 C 2.254698 2.135459 -3.125552 H 2.394344 3.223185 -3.130642 H 1.198333 1.949309 -2.921513 H 2.445613 1.771234 -4.142046 C 4.636980 1.711443 -2.650123 H 4.870155 2.781323 -2.705748 H 4.750512 1.307090 -3.663641 H 5.396950 1.222986 -2.028939 C 3.012392 -0.065482 -2.110250 H 3.691165 -0.548377 -1.397081 H 3.213338 -0.488911 -3.101316 H 1.999119 -0.362600 -1.839730 C -0.571205 -2.127149 -3.748385 C -0.663194 -2.925625 -5.077038 H 0.295520 -2.916281 -5.610317 H -1.409298 -2.497033 -5.756568 H -0.917909 -3.977595 -4.902331 C -0.149198 -0.699355 -4.152643 H 0.761247 -0.712992 -4.763448 H 0.059859 -0.058706 -3.295790 H -0.935843 -0.208813 -4.738258 C 0.539909 -2.815349 -2.924490 H 1.478451 -2.861910 -3.489324 H 0.255393 -3.842977 -2.667676 H 0.761253 -2.303912 -1.985352 C 5.014524 3.870459 2.074915 C 6.367643 3.845262 1.328159 H 7.155524 4.324209 1.921973 H 6.313467 4.383778 0.374841 H 6.696435 2.819505 1.124151 C 4.666619 5.351406 2.338891 H 5.485841 5.863808 2.856749 H 3.773582 5.462616 2.963600 H 4.479568 5.885796 1.399856 C 5.230621 3.150264 3.424322 H 6.068735 3.590475 3.977268

H 5.453455 2.087764 3.272306 H 4.351826 3.212345 4.075229 C -5.456776 -3.579797 -3.312343 C -5.828975 -2.974386 -4.683592 H -5.019640 -3.072855 -5.415192 H -6.062233 -1.906834 -4.592827 H -6.707398 -3.472615 -5.110313 C -5.092729 -5.069216 -3.495458 H -4.266567 -5.211429 -4.200600 H -5.945179 -5.639640 -3.882595 H -4.793438 -5.521842 -2.542664 C -6.727280 -3.526498 -2.433278 H -6.556691 -3.978389 -1.449174 H -7.553893 -4.075846 -2.899843 H -7.070455 -2.496344 -2.282150 N 0.212704 -0.661871 1.079043 H 1.042926 -0.949689 0.567388 C 0.430614 -0.674159 2.465039 H -0.157334 0.017502 3.057296 C -0.347509 -1.766167 1.733829 H -1.404001 -1.810964 1.961047 C 1.776614 -1.013640 3.079433 C 4.247078 -1.646466 4.313817 C 1.833115 -1.690802 4.311786 C 3.002822 -0.660702 2.493451 C 4.224356 -0.972235 3.097477 C 3.049759 -2.006856 4.923196 H 0.905223 -1.975384 4.804298 H 3.009814 -0.133943 1.544649 H 5.153869 -0.683302 2.614827 H 3.058076 -2.531050 5.874937 H 5.194901 -1.888511 4.786282 C 0.191240 -3.137001 1.491116 H -0.358056 -3.608435 0.669807 H 0.060104 -3.756267 2.383903 H 1.252923 -3.139473 1.225197 Table 4, Bottom, Quadrant III/IV C -2.618603 1.060861 2.315141 C -2.009720 3.175934 3.524986 C -4.309190 2.145583 3.842375 C -3.481547 3.428541 3.856969 C -4.110593 1.330983 2.560768 C -1.885097 2.401942 2.211346 H -1.533761 2.618985 4.341706 H -4.027666 1.529030 4.705308 H -3.899063 4.131674 3.125371 H -2.359782 3.015696 1.432103 H -1.495748 4.141471 3.453072 H -5.370655 2.390539 3.961854 H -3.561412 3.908912 4.838661 H -2.259119 0.488209 3.175374 N -2.365593 0.294411 1.122879 H -4.546558 1.863894 1.706452 N -0.525429 2.183666 1.793038 H -4.665140 0.392441 2.666026 C -3.128361 -0.636482 0.563736

115

H -4.029869 -0.964294 1.108461 C -2.907520 -1.262037 -0.744750 C -2.789813 -2.598752 -3.175351 C -1.778259 -1.107934 -1.546241 C -3.971947 -2.079644 -1.168105 C -3.942552 -2.760881 -2.386919 C -1.692861 -1.791037 -2.793021 H -4.838181 -2.169342 -0.517753 H -2.760329 -3.134111 -4.120203 C 0.613911 2.735075 2.189576 H 0.635830 3.278185 3.149582 C 1.843187 2.765371 1.383781 C 4.235652 3.148015 0.024658 C 2.896005 3.482931 1.972803 C 1.997702 2.200436 0.116094 C 3.199058 2.423160 -0.614978 C 4.119296 3.675923 1.319553 H 2.751013 3.906444 2.964985 H 5.166664 3.312003 -0.506393 O -0.712228 -0.353355 -1.179509 O 1.050314 1.417496 -0.466381 Co -0.549664 0.794838 0.278822 Cl -1.534499 2.323443 -0.886561 C 3.388773 1.935694 -2.077133 C 2.319920 2.582493 -2.986772 H 2.394344 3.676359 -2.960302 H 1.298250 2.325190 -2.698473 H 2.444291 2.265965 -4.029131 C 4.757706 2.313964 -2.704516 H 4.905041 3.399998 -2.733952 H 4.830422 1.956469 -3.739189 H 5.593228 1.865243 -2.154418 C 3.304791 0.399360 -2.158412 H 4.042716 -0.069348 -1.497189 H 3.498140 0.043937 -3.177525 H 2.322970 0.016891 -1.879568 C -0.446613 -1.700457 -3.713240 C -0.595389 -2.451065 -5.064124 H 0.305907 -2.339315 -5.679560 H -1.435499 -2.062120 -5.651508 H -0.743290 -3.527587 -4.918648 C -0.141030 -0.234611 -4.089049 H 0.689450 -0.173156 -4.802549 H 0.148104 0.374121 -3.231991 H -1.013297 0.242388 -4.551245 C 0.764411 -2.341454 -3.003180 H 1.663755 -2.288358 -3.627741 H 0.574819 -3.398636 -2.781395 H 1.003314 -1.856689 -2.054814 C 5.251379 4.456971 2.012297 C 6.548554 4.560328 1.177989 H 7.324734 5.112727 1.721283 H 6.380542 5.090677 0.233387 H 6.959350 3.570519 0.946959 C 4.781663 5.898308 2.305352 H 5.580842 6.487756 2.769841 H 3.925841 5.924835 2.988712

H 4.482107 6.410452 1.383253 C 5.623482 3.763173 3.341368 H 6.454384 4.278549 3.837302 H 5.929296 2.723999 3.171233 H 4.788892 3.748427 4.050733 C -5.097008 -3.657058 -2.871446 C -5.640103 -3.124571 -4.215532 H -4.884741 -3.149631 -5.008478 H -5.981684 -2.087097 -4.119312 H -6.489051 -3.724295 -4.564188 C -4.586896 -5.101724 -3.065029 H -3.808210 -5.168189 -3.832640 H -5.399228 -5.769443 -3.375180 H -4.165537 -5.499023 -2.133952 C -6.292335 -3.724121 -1.893460 H -5.995362 -4.132093 -0.920238 H -7.086700 -4.371456 -2.284219 H -6.735380 -2.734906 -1.729238 N 0.286154 -0.618880 1.192861 H 0.230926 -1.501033 0.689028 C 1.412774 -0.582995 2.035103 H 1.810470 0.377423 2.332136 C 0.026090 -0.855550 2.554083 H -0.333188 -0.071657 3.206722 C 2.459325 -1.675643 1.967673 C 4.457021 -3.677284 1.873735 C 3.021056 -2.206988 3.142049 C 2.943420 -2.171938 0.746627 C 3.926963 -3.162963 0.694614 C 4.005153 -3.198509 3.099695 H 2.681832 -1.839971 4.108604 H 2.537994 -1.777640 -0.180330 H 4.275881 -3.530125 -0.266524 H 4.416932 -3.593514 4.024474 H 5.221493 -4.448502 1.837544 C -0.440783 -2.196949 3.010872 H -1.534879 -2.228524 3.007935 H -0.102202 -2.385293 4.034395 H -0.082102 -3.013213 2.375912 Table 4, Bottom, Quadrant IV/I C -2.142472 0.638030 2.498972 C -1.583455 2.755210 3.740253 C -3.499458 1.297598 4.520294 C -2.945631 2.715225 4.431501 C -3.526540 0.613702 3.154992 C -1.634021 2.078600 2.366126 H -0.834844 2.264256 4.375127 H -2.881534 0.708756 5.209495 H -3.651516 3.345617 3.876487 H -2.320109 2.653461 1.726804 H -1.278653 3.803123 3.638491 H -4.511037 1.321945 4.940906 H -2.861097 3.142202 5.437190 H -1.463411 0.056588 3.134994 N -2.140480 0.064697 1.178914 H -4.261660 1.112231 2.510368

116

N -0.354167 2.051958 1.700713 H -3.866024 -0.420449 3.285810 C -3.026725 -0.688840 0.539686 H -3.963272 -0.948512 1.062079 C -2.881914 -1.212957 -0.824969 C -2.894135 -2.421414 -3.322532 C -1.706522 -1.220320 -1.578801 C -4.057038 -1.794205 -1.334525 C -4.095431 -2.401127 -2.591378 C -1.684789 -1.856143 -2.852294 H -4.952479 -1.760300 -0.719270 H -2.920141 -2.901673 -4.296735 C 0.726087 2.797285 1.896256 H 0.735312 3.492809 2.752305 C 1.920909 2.813298 1.044405 C 4.268071 3.156373 -0.402526 C 2.942562 3.653800 1.516891 C 2.083775 2.111225 -0.148815 C 3.263574 2.303055 -0.925391 C 4.142276 3.833174 0.818888 H 2.792812 4.182935 2.456648 H 5.178846 3.307387 -0.971155 O -0.542788 -0.678262 -1.127118 O 1.161641 1.230377 -0.618459 Co -0.396607 0.613637 0.231038 Cl -1.464492 2.038488 -0.990160 C 3.459061 1.663466 -2.327733 C 2.400170 2.236944 -3.294510 H 2.515929 3.322316 -3.402415 H 1.376211 2.061624 -2.955752 H 2.493070 1.792289 -4.292158 C 4.836254 1.960640 -2.981205 H 4.988423 3.034093 -3.143947 H 4.918873 1.481286 -3.964603 H 5.663090 1.581506 -2.369072 C 3.359754 0.125921 -2.267108 H 4.048952 -0.284700 -1.520138 H 3.608343 -0.327539 -3.234174 H 2.357319 -0.222804 -2.021264 C -0.405889 -1.943107 -3.725620 C -0.592713 -2.718600 -5.057678 H 0.343820 -2.755557 -5.627901 H -1.337070 -2.241049 -5.705673 H -0.900661 -3.756118 -4.882092 C 0.050714 -0.526518 -4.125050 H 0.949502 -0.560477 -4.751768 H 0.287964 0.094312 -3.260955 H -0.731006 -0.005285 -4.690446 C 0.719661 -2.683906 -2.970929 H 1.607632 -2.803019 -3.603175 H 0.392798 -3.684912 -2.665363 H 1.050152 -2.161447 -2.071847 C 5.238086 4.754100 1.386747 C 6.510268 4.833790 0.512329 H 7.261284 5.491385 0.966542 H 6.291734 5.237283 -0.483263 H 6.976828 3.849508 0.388371

C 4.688764 6.190605 1.523858 H 5.460423 6.875060 1.895300 H 3.847053 6.248090 2.222647 H 4.340433 6.573363 0.557205 C 5.676551 4.242584 2.776809 H 6.483584 4.859771 3.188781 H 6.041965 3.210329 2.719564 H 4.857647 4.261571 3.504151 C -5.372163 -3.034391 -3.174275 C -5.739284 -2.335406 -4.501547 H -4.963742 -2.459449 -5.265164 H -5.885174 -1.258885 -4.352791 H -6.667194 -2.743137 -4.919488 C -5.133263 -4.536869 -3.439163 H -4.344909 -4.708126 -4.180203 H -6.040531 -5.020043 -3.820404 H -4.839204 -5.057278 -2.519932 C -6.605272 -2.926398 -2.248185 H -6.438377 -3.436852 -1.292476 H -7.487077 -3.387754 -2.708970 H -6.861890 -1.881520 -2.037982 N 0.364966 -0.688356 1.329978 H -0.314853 -1.352696 1.692599 C 1.562799 -1.355795 0.999900 H 2.187454 -0.920531 0.227788 C 1.398111 -0.493491 2.244310 H 1.952276 0.432465 2.255739 C 1.668003 -2.863329 1.097197 C 1.937092 -5.676877 1.231156 C 2.848535 -3.465893 1.567113 C 0.631029 -3.719626 0.688938 C 0.758860 -5.109401 0.756212 C 2.984041 -4.855114 1.637185 H 3.677706 -2.838079 1.886771 H -0.298593 -3.293346 0.318030 H -0.064837 -5.743632 0.439844 H 3.906573 -5.292316 2.009500 H 2.037923 -6.757294 1.286685 C 1.302874 -1.061022 3.621281 H 0.850240 -0.325338 4.293807 H 2.302296 -1.294055 4.001525 H 0.697761 -1.971923 3.667324 Table 5, Entry a Co -0.304387 0.249231 -0.628782 N -1.426109 1.830435 -0.040976 N -2.003284 -0.219878 -1.630055 C -0.843083 2.897747 0.380231 H -1.493518 3.747635 0.644281 C -2.149834 -1.401314 -2.119096 H -3.087735 -1.597920 -2.663740 C 0.604780 3.106902 0.526695 C 3.260867 3.769913 0.970586 C 1.569710 2.091590 0.527662 C 0.978669 4.443357 0.733998 C 2.313365 4.805932 0.949407 C 2.930587 2.406354 0.778648

117

H 0.223370 5.229134 0.733651 H 4.298045 4.039066 1.151711 C -1.221678 -2.532034 -1.984292 C 0.307678 -4.841106 -1.826978 C -1.777345 -3.778319 -2.314451 C 0.111417 -2.438361 -1.570723 C 0.915749 -3.605853 -1.496052 C -1.030144 -4.959263 -2.235202 H -2.815864 -3.846226 -2.638190 H 0.901075 -5.749958 -1.774370 C -2.878523 1.600997 -0.280733 H -3.210491 0.915866 0.507137 C -2.970687 0.922181 -1.665525 H -2.610331 1.594439 -2.456316 O 1.251601 0.768781 0.374966 O 0.715090 -1.242756 -1.293132 C -4.414510 0.519985 -1.954285 H -4.504123 0.078323 -2.953686 H -4.757734 -0.236255 -1.236354 C -3.742828 2.856143 -0.242220 H -3.382880 3.600155 -0.964499 H -3.706197 3.323993 0.748841 C -5.197449 2.501428 -0.561870 H -5.799245 3.416494 -0.599220 H -5.604957 1.885832 0.249907 C -5.333624 1.743278 -1.882203 H -6.374395 1.428757 -2.019582 H -5.094871 2.421281 -2.711196 C 4.044912 1.325783 0.863642 C 2.413658 -3.573367 -1.081643 C 3.746950 0.346230 2.020946 H 4.540809 -0.404002 2.116864 H 2.811815 -0.202988 1.892364 H 3.676995 0.880369 2.976186 C 4.153944 0.566688 -0.474371 H 4.957744 -0.178327 -0.443660 H 4.368504 1.255087 -1.300431 H 3.240056 0.030851 -0.731315 C 2.568886 -2.968699 0.330077 H 1.979044 -3.529854 1.064626 H 2.247750 -1.928482 0.385422 H 3.615240 -2.988823 0.657184 C 3.226202 -2.762449 -2.114222 H 3.148680 -3.211725 -3.111688 H 4.288572 -2.732419 -1.844914 H 2.893067 -1.726491 -2.205768 C 3.090632 -4.968741 -1.012234 H 3.088323 -5.471188 -1.986656 H 2.596593 -5.622473 -0.283791 H 4.140182 -4.883407 -0.704380 C 5.464324 1.888162 1.143953 H 6.206289 1.081424 1.191525 H 5.509365 2.416841 2.103368 H 5.791985 2.574320 0.354111 N -0.898409 -0.826427 0.993818 C -1.477211 -1.969632 1.569356 C -0.901179 -0.865761 2.422268

H -0.900652 -2.890466 1.528973 H 0.053533 -1.125584 2.882809 C -2.922776 -2.236930 1.366989 H -3.488299 -1.342224 1.095328 H -3.359323 -2.672253 2.270919 H -3.058607 -2.962378 0.558592 C -1.602711 0.310049 3.058903 C -2.790614 2.610548 4.224851 C -2.964258 0.343316 3.397042 C -0.847403 1.454217 3.392737 C -1.428124 2.592994 3.957520 C -3.556740 1.481531 3.956689 H -3.590838 -0.534890 3.271818 H 0.232688 1.444524 3.246779 H -0.810105 3.446079 4.232764 H -4.611380 1.468572 4.229020 H -3.245621 3.478550 4.699440 Cl 0.303604 1.388879 -2.358008 C -1.675600 -6.315142 -2.594776 C -0.726431 -7.526565 -2.451150 H -0.364706 -7.636227 -1.422111 H 0.143063 -7.439158 -3.113041 H -1.236540 -8.461244 -2.713735 C -2.883428 -6.573456 -1.667392 H -2.579743 -6.566360 -0.613794 H -3.341019 -7.547559 -1.876303 H -3.668912 -5.819499 -1.787925 C -2.156922 -6.286266 -4.061703 H -1.326269 -6.072357 -4.744724 H -2.926383 -5.525329 -4.231592 H -2.590092 -7.249843 -4.354609 C 2.692336 6.286901 1.167776 C 1.970127 6.823697 2.422717 H 2.230138 6.233673 3.309606 H 0.880014 6.796251 2.318074 H 2.246333 7.865685 2.622343 C 2.263541 7.118349 -0.061147 H 2.733454 6.739397 -0.976485 H 2.553402 8.169586 0.052136 H 1.179410 7.101728 -0.216911 C 4.204825 6.530074 1.373570 H 4.788423 6.197976 0.507017 H 4.581054 6.008092 2.261116 H 4.417658 7.596573 1.515248 Table 5, Entry b Co -0.099005 0.460758 -0.545746 N -1.279295 2.032916 -0.051708 N -1.688634 0.015639 -1.730248 C -0.749567 3.076575 0.484075 H -1.428283 3.915311 0.710061 C -1.796239 -1.162194 -2.236909 H -2.671877 -1.344585 -2.881190 C 0.673064 3.281943 0.793850 C 3.272216 3.947676 1.501578 C 1.646613 2.276449 0.837226 C 1.011826 4.611006 1.093337

118

C 2.317469 4.975099 1.443371 C 2.977252 2.591934 1.218933 H 0.251920 5.391597 1.057050 H 4.285838 4.217060 1.786004 C -0.903173 -2.305602 -2.002856 C 0.572871 -4.623732 -1.677703 C -1.440252 -3.546824 -2.386670 C 0.382775 -2.223148 -1.455956 C 1.162252 -3.396941 -1.294289 C -0.720814 -4.731382 -2.222377 H -2.438866 -3.588603 -2.816513 H 1.135787 -5.549209 -1.564898 C -2.696972 1.826061 -0.475563 H -3.131186 1.138006 0.256798 C -2.621753 1.174493 -1.872718 H -2.144000 1.853577 -2.592548 O 1.363155 0.959297 0.598490 O 0.969473 -1.029723 -1.135138 C -4.016622 0.815440 -2.373874 H -3.971136 0.402263 -3.388452 H -4.474700 0.050214 -1.737507 C -3.540931 3.095371 -0.525463 H -3.075484 3.848085 -1.174833 H -3.631369 3.541469 0.472111 C -4.944871 2.775079 -1.045709 H -5.523087 3.701541 -1.136422 H -5.466100 2.145073 -0.314036 C -4.913223 2.056432 -2.394120 H -5.930968 1.769154 -2.681620 H -4.549973 2.750355 -3.162471 C 4.095063 1.519130 1.350664 C 2.611179 -3.381258 -0.735026 C 3.722267 0.503614 2.453327 H 4.508143 -0.250848 2.577089 H 2.796756 -0.037187 2.245365 H 3.589055 1.006641 3.418692 C 4.312623 0.800514 0.002904 H 5.130237 0.072914 0.068792 H 4.566518 1.516706 -0.787568 H 3.433043 0.249721 -0.330773 C 2.634322 -2.769073 0.681188 H 1.963690 -3.313884 1.356290 H 2.327662 -1.723204 0.695303 H 3.641921 -2.803742 1.112171 C 3.533068 -2.586420 -1.684924 H 3.544599 -3.036290 -2.685034 H 4.564842 -2.573449 -1.314290 H 3.227902 -1.544984 -1.807620 C 3.257301 -4.785457 -0.592918 H 3.343065 -5.293618 -1.560587 H 2.684268 -5.427683 0.086243 H 4.272619 -4.713335 -0.183654 C 5.484117 2.085194 1.750739 H 6.231094 1.284815 1.821668 H 5.455783 2.577900 2.729730 H 5.856865 2.803804 1.011347 N -0.848787 -0.616886 1.000479

C -1.616140 -1.587817 1.714826 C -0.610408 -0.685433 2.384480 H -1.277719 -2.619805 1.610642 H 0.316892 -1.155284 2.702282 C -0.924621 0.493589 3.230806 H -1.693934 1.138174 2.797463 H -0.026000 1.104844 3.364278 H -1.251707 0.171430 4.224007 C -3.109323 -1.398544 1.594516 C -5.915193 -1.119274 1.251894 C -3.802707 -2.044447 0.550291 C -3.892964 -0.662258 2.497304 C -5.272985 -0.507368 2.321847 C -5.182291 -1.905843 0.372998 H -3.266182 -2.725045 -0.106499 H -3.452712 -0.224800 3.388841 H -5.854957 0.055066 3.050813 H -5.694525 -2.447013 -0.420359 H -6.994726 -1.030782 1.141063 C -1.279267 -6.115814 -2.616241 C -1.313353 -7.034662 -1.375373 H -0.313951 -7.220301 -0.967268 H -1.744835 -8.012487 -1.619530 H -1.918817 -6.593189 -0.574832 C -0.379175 -6.751138 -3.697885 H 0.640651 -6.927534 -3.339095 H -0.309785 -6.105825 -4.581624 H -0.775831 -7.720197 -4.022672 C -2.715441 -6.071694 -3.186507 H -2.768742 -5.468589 -4.100380 H -3.425130 -5.657423 -2.460809 H -3.069048 -7.077212 -3.444639 C 2.657965 6.448186 1.758119 C 2.335691 7.327812 0.530177 H 2.892955 6.991680 -0.352288 H 2.601638 8.375460 0.713630 H 1.270983 7.309450 0.273366 C 1.816972 6.926553 2.961604 H 2.000025 6.301338 3.843573 H 0.741616 6.896444 2.754972 H 2.062434 7.960998 3.229139 C 4.142098 6.693362 2.113813 H 4.807168 6.404604 1.291566 H 4.440662 6.135230 3.008858 H 4.328562 7.754102 2.320834 Cl 0.682812 1.623894 -2.186947 Table 5, Entry c Co 0.269768 0.032347 -0.607828 N -0.833505 1.616183 -0.013996 N -1.435805 -0.454522 -1.558119 C -0.245218 2.667309 0.441928 H -0.889936 3.503449 0.761475 C -1.582450 -1.637106 -2.046899 H -2.521772 -1.841547 -2.587754 C 1.201265 2.889213 0.551989 C 3.871630 3.560393 0.914494

119

C 2.176077 1.882562 0.502550 C 1.566497 4.224814 0.767518 C 2.904090 4.570667 0.926245 C 3.546052 2.201316 0.713724 H 0.819870 5.017998 0.815807 H 4.903174 3.872090 1.077482 C -0.649982 -2.763946 -1.926699 C 0.910195 -5.059485 -1.803860 C -1.205825 -4.010216 -2.247936 C 0.693584 -2.662305 -1.540254 C 1.513722 -3.823629 -1.484781 C -0.435832 -5.165634 -2.168898 H -2.245940 -4.105675 -2.560918 H 1.484642 -5.985459 -1.786284 C -2.303454 1.445955 -0.269178 H -2.655274 0.813543 0.554707 C -2.422282 0.678418 -1.621881 H -2.046695 1.312199 -2.436639 O 1.858660 0.560960 0.344361 O 1.291963 -1.460055 -1.277596 C 4.668680 1.129387 0.750841 C 3.019742 -3.779462 -1.109935 C 4.419778 0.143096 1.913409 H 5.216637 -0.607813 1.971034 H 3.478834 -0.403562 1.821127 H 4.390463 0.671255 2.874094 C 4.734258 0.377430 -0.593742 H 5.545273 -0.360356 -0.596715 H 4.911434 1.071263 -1.424100 H 3.816236 -0.165643 -0.818435 C 3.208791 -3.166956 0.293868 H 2.642603 -3.727976 1.046879 H 2.882184 -2.128665 0.352079 H 4.263648 -3.178632 0.592830 C 3.799095 -2.968955 -2.167602 H 3.701959 -3.426286 -3.159687 H 4.867280 -2.926689 -1.924330 H 3.452505 -1.937330 -2.258660 C 3.703336 -5.171843 -1.052063 H 3.679905 -5.677517 -2.024497 H 3.228153 -5.825126 -0.310808 H 4.759453 -5.081642 -0.769164 C 6.091947 1.704006 0.980951 H 6.843235 0.904650 0.992745 H 6.168930 2.225140 1.942425 H 6.380974 2.400913 0.185479 N -0.248213 -1.032753 1.047192 C -0.770820 -2.197525 1.634352 C -0.214822 -1.075251 2.475298 H -0.163905 -3.097375 1.575018 H 0.760808 -1.296387 2.911221 C -2.210805 -2.512803 1.473018 H -2.814227 -1.624355 1.278369 H -2.593734 -3.011889 2.368249 H -2.355302 -3.196989 0.631530 C -0.958240 0.054779 3.144902 C -2.231189 2.260004 4.400858

C -2.291098 -0.014517 3.578951 C -0.269705 1.252180 3.429641 C -0.894294 2.345654 4.035551 C -2.925878 1.074836 4.186798 H -2.855073 -0.939632 3.499579 H 0.796750 1.320218 3.217216 H -0.326383 3.244780 4.268562 H -3.953705 0.981868 4.535257 H -2.716048 3.093443 4.906738 Cl 0.820254 1.161501 -2.362584 C -1.015246 -6.503055 -2.538745 C 3.304446 5.997346 1.182146 C -3.834746 0.238959 -1.969872 C -6.413158 -0.596060 -2.718446 C -4.307980 0.442910 -3.280029 C -4.683999 -0.389260 -1.042041 C -5.963522 -0.802301 -1.418087 C -5.587708 0.027234 -3.648053 H -3.702306 0.935103 -4.041197 H -4.396355 -0.570839 -0.010073 H -6.624697 -1.280329 -0.695811 H -5.951930 0.196083 -4.661058 H -7.415328 -0.911706 -3.006181 C -3.077317 2.754654 -0.261431 C -4.511046 5.168930 -0.149436 C -3.943918 3.028163 0.811590 C -2.942793 3.718158 -1.279369 C -3.657950 4.915354 -1.219141 C -4.654266 4.227249 0.864363 H -4.091959 2.318358 1.624773 H -2.289120 3.580092 -2.138466 H -3.559748 5.658585 -2.009958 H -5.329807 4.430558 1.694515 H -5.072815 6.101379 -0.108793 H -0.562670 -7.301957 -1.942009 H -0.837934 -6.706246 -3.599275 H -2.093489 -6.528109 -2.349101 H 4.287522 6.209623 0.748955 H 2.591857 6.691599 0.724515 H 3.341057 6.187211 2.259217 Table 5, Entry d Co 0.300379 0.065815 -0.610639 N -0.832032 1.640597 -0.084300 N -1.310343 -0.392918 -1.710409 C -0.312626 2.617026 0.574369 H -1.000490 3.416407 0.900767 C -1.436093 -1.577971 -2.199640 H -2.322450 -1.768909 -2.828548 C 1.105920 2.817919 0.881612 C 3.728160 3.475824 1.515473 C 2.099603 1.834347 0.793819 C 1.425982 4.121588 1.286030 C 2.739406 4.461820 1.589301 C 3.448842 2.148934 1.120407 H 0.662795 4.896389 1.365941 H 4.738987 3.779918 1.786416

120

C -0.542555 -2.720612 -1.983123 C 0.988157 -5.027073 -1.769401 C -1.099643 -3.964597 -2.307921 C 0.781086 -2.627246 -1.533154 C 1.592754 -3.792287 -1.447556 C -0.346138 -5.126357 -2.178438 H -2.125089 -4.052362 -2.667767 H 1.553239 -5.957785 -1.721551 C -2.255306 1.563937 -0.552124 H -2.777253 1.020640 0.240623 C -2.276533 0.742292 -1.872263 H -1.857829 1.332607 -2.697810 O 1.814787 0.531594 0.489993 O 1.366513 -1.427517 -1.232807 C 4.601220 1.108578 1.073984 C 3.092325 -3.753580 -1.046669 C 4.362581 0.017312 2.137289 H 5.174021 -0.719883 2.137449 H 3.434445 -0.532811 1.976328 H 4.307846 0.453001 3.142115 C 4.709007 0.480197 -0.331392 H 5.556576 -0.212842 -0.392116 H 4.853749 1.251750 -1.096848 H 3.823303 -0.090985 -0.610041 C 3.252815 -3.178840 0.374378 H 2.694292 -3.775672 1.104975 H 2.896604 -2.151930 0.455163 H 4.304519 -3.172642 0.684074 C 3.890261 -2.909582 -2.064722 H 3.795854 -3.324498 -3.075467 H 4.956939 -2.890468 -1.811634 H 3.560046 -1.869761 -2.113761 C 3.781111 -5.144125 -1.018007 H 3.763504 -5.626338 -2.002436 H 3.305758 -5.816871 -0.294504 H 4.835153 -5.056688 -0.726624 C 6.005557 1.697923 1.374281 H 6.781389 0.925423 1.304163 H 6.065568 2.111505 2.387789 H 6.273486 2.486848 0.661657 N -0.449704 -1.027090 0.930066 C -1.496646 -1.498144 1.765698 C -0.070183 -1.951884 1.928277 H -2.137017 -2.259938 1.319833 H 0.155132 -2.964856 1.607935 C 0.797821 -1.539787 3.061805 H 1.141261 -0.506552 2.976951 H 1.693047 -2.169946 3.091597 H 0.278272 -1.665409 4.016621 C -2.225037 -0.436012 2.561531 C -3.736858 1.544209 3.931108 C -3.623237 -0.536791 2.714056 C -1.617799 0.691009 3.146412 C -2.357860 1.669104 3.819814 C -4.371246 0.437082 3.382556 H -4.154166 -1.405890 2.325441 H -0.541015 0.818432 3.111384

H -1.855262 2.511701 4.291923 H -5.446843 0.314894 3.502190 H -4.313241 2.287626 4.479503 C -0.924966 -6.463755 -2.549464 C 3.088486 5.849460 2.051417 Cl 1.036840 1.242311 -2.261939 C -2.902706 2.930101 -0.728722 C -4.131114 5.442601 -0.977766 C -3.992299 3.280272 0.087832 C -2.440430 3.863896 -1.676179 C -3.054449 5.111296 -1.795203 C -4.599892 4.529075 -0.038587 H -4.396523 2.593683 0.832030 H -1.601891 3.660700 -2.340327 H -2.701520 5.834020 -2.530407 H -5.448441 4.793870 0.591377 H -4.612613 6.414765 -1.077157 C -3.683542 0.295538 -2.241648 C -6.265673 -0.513324 -2.995466 C -4.210574 0.653528 -3.494673 C -4.479436 -0.473052 -1.370209 C -5.761185 -0.873123 -1.749541 C -5.493044 0.249438 -3.865809 H -3.648013 1.259844 -4.204778 H -4.136644 -0.781044 -0.384936 H -6.380648 -1.462773 -1.074628 H -5.900841 0.535767 -4.834951 H -7.269316 -0.820204 -3.287775 H -0.712547 -6.684044 -3.600087 H -0.501256 -7.257910 -1.925807 H -2.009374 -6.476060 -2.397452 H 4.091683 6.131125 1.714623 H 2.390076 6.586229 1.640824 H 3.052280 5.898966 3.143985 Table 5, Entry e Co -0.172498 0.226796 -0.638552 N -1.325026 1.904067 -0.155040 N -1.911362 -0.253110 -1.668075 C -0.722885 2.938178 0.318454 H -1.358423 3.806569 0.557239 C -2.069387 -1.460487 -2.085922 H -3.006885 -1.676286 -2.623860 C 0.723324 3.100029 0.538336 C 3.374362 3.722268 1.087879 C 1.678273 2.073470 0.546076 C 1.109444 4.426047 0.795814 C 2.439343 4.767995 1.067406 C 3.035895 2.369223 0.844885 H 0.366319 5.223644 0.789312 H 4.407881 3.974541 1.309176 C -1.142615 -2.586632 -1.910201 C 0.396083 -4.889174 -1.729590 C -1.708117 -3.844621 -2.172946 C 0.204873 -2.478967 -1.548274 C 1.015740 -3.642463 -1.471939 C -0.957756 -5.022312 -2.075491

121

H -2.757562 -3.924162 -2.456411 H 0.992298 -5.795546 -1.667396 C -2.790565 1.751795 -0.510027 C -2.842767 0.931460 -1.851090 O 1.368201 0.754025 0.355754 O 0.816169 -1.277960 -1.315078 C -4.307738 0.530196 -2.119796 H -4.397731 -0.014187 -3.068926 H -4.676589 -0.159602 -1.351217 C -3.528286 3.085281 -0.741437 H -3.032298 3.687227 -1.512202 H -3.522859 3.704241 0.164978 C -4.998188 2.849564 -1.139732 H -5.429231 3.793839 -1.494425 H -5.572591 2.593083 -0.241156 C -5.237051 1.758849 -2.194322 H -6.279338 1.422051 -2.133418 H -5.145389 2.215086 -3.187284 C 4.139972 1.276106 0.927235 C 2.531528 -3.593505 -1.128032 C 3.811098 0.275330 2.057359 H 4.595993 -0.484358 2.152354 H 2.873675 -0.261564 1.899068 H 3.727381 0.789618 3.022328 C 4.272041 0.544746 -0.425007 H 5.073511 -0.202877 -0.394817 H 4.504408 1.250235 -1.231607 H 3.363255 0.015492 -0.712430 C 2.741261 -2.992203 0.277276 H 2.210409 -3.576838 1.037916 H 2.386334 -1.964425 0.355889 H 3.803491 -2.979420 0.548609 C 3.291909 -2.769081 -2.190392 H 3.155892 -3.199936 -3.189644 H 4.367873 -2.751108 -1.979949 H 2.966340 -1.728081 -2.243535 C 3.227060 -4.981134 -1.097411 H 3.171796 -5.484451 -2.069844 H 2.785327 -5.639701 -0.340309 H 4.291649 -4.883785 -0.850851 C 5.558594 1.819677 1.247644 H 6.293434 1.006015 1.287624 H 5.590713 2.322453 2.221395 H 5.905487 2.523546 0.481960 N -0.620159 -0.918846 1.054668 C -1.028134 -2.133352 1.642141 C -0.485578 -1.003651 2.477422 H -0.362771 -2.982704 1.506332 H 0.531666 -1.171316 2.834024 C -2.440463 -2.582494 1.610429 H -3.171467 -1.776962 1.656353 H -2.632597 -3.256861 2.451382 H -2.635260 -3.146531 0.693762 C -1.254322 0.019864 3.270753 C -2.585255 2.008845 4.796085 C -2.461757 -0.248387 3.934763 C -0.707347 1.305334 3.459700

C -1.363055 2.292855 4.199948 C -3.129254 0.734694 4.674077 H -2.892167 -1.246565 3.918879 H 0.285456 1.523562 3.074269 H -0.899062 3.264473 4.356632 H -4.058357 0.491812 5.187391 H -3.089655 2.759759 5.401530 Cl 0.595431 1.303491 -2.342778 C -1.616793 -6.390809 -2.353015 C -0.663465 -7.596986 -2.193738 H -0.261840 -7.662360 -1.175788 H 0.179533 -7.540657 -2.892262 H -1.183985 -8.541047 -2.395213 C -2.788832 -6.607201 -1.370488 H -2.445607 -6.555404 -0.330346 H -3.254013 -7.588600 -1.520046 H -3.578345 -5.857871 -1.493507 C -2.153070 -6.422901 -3.800608 H -1.348643 -6.239918 -4.522875 H -2.927852 -5.668048 -3.973437 H -2.597598 -7.397029 -4.035917 C 2.825977 6.237836 1.340719 C 2.062505 6.749541 2.581697 H 2.281508 6.132431 3.461196 H 0.976957 6.738953 2.435116 H 2.342983 7.782146 2.820338 C 2.453730 7.107133 0.119620 H 2.954362 6.747494 -0.787185 H 2.750343 8.151425 0.272657 H 1.376274 7.107443 -0.077790 C 4.332073 6.457118 1.610614 H 4.944775 6.143811 0.757253 H 4.668579 5.904893 2.495811 H 4.550693 7.516456 1.791722 C -3.438370 1.064700 0.709264 H -2.979301 0.104135 0.910755 H -4.507463 0.871843 0.590733 H -3.330548 1.683109 1.607375 C -2.323664 1.697355 -3.101781 H -1.438912 2.300273 -2.892229 H -3.052871 2.408518 -3.499073 H -2.080516 1.010436 -3.921665 Table 5, Entry f Co 0.018066 0.444131 -0.517170 N -1.152469 2.130283 -0.138080 N -1.604974 0.006386 -1.740437 C -0.597169 3.139698 0.435525 H -1.247603 4.008545 0.628482 C -1.718364 -1.182838 -2.219339 H -2.582309 -1.365099 -2.878995 C 0.816536 3.278939 0.819674 C 3.406885 3.874628 1.628940 C 1.764857 2.248639 0.883737 C 1.178700 4.594461 1.157202 C 2.477512 4.922867 1.562384 C 3.092561 2.531919 1.307220

122

H 0.441318 5.395860 1.106507 H 4.416199 4.116427 1.950553 C -0.837682 -2.330698 -1.963772 C 0.611767 -4.664800 -1.621373 C -1.381542 -3.568473 -2.352449 C 0.444551 -2.260148 -1.407440 C 1.210941 -3.442693 -1.238508 C -0.677769 -4.760543 -2.176420 H -2.376587 -3.601985 -2.791462 H 1.163369 -5.595871 -1.499691 C -2.574503 2.009913 -0.652281 C -2.496860 1.206100 -2.001601 O 1.472439 0.936772 0.624738 O 1.046635 -1.076284 -1.082876 C -3.931493 0.829958 -2.424852 H -3.931574 0.296061 -3.384017 H -4.387987 0.138978 -1.705931 C -3.258896 3.359727 -0.944833 H -2.671568 3.960795 -1.649178 H -3.341106 3.968846 -0.035545 C -4.681463 3.156210 -1.502325 H -5.052061 4.110824 -1.895609 H -5.355145 2.909017 -0.672697 C -4.828939 2.074438 -2.583003 H -5.877230 1.754539 -2.630721 H -4.629813 2.534499 -3.558379 C 4.191569 1.438080 1.439382 C 2.658161 -3.440947 -0.672928 C 3.789421 0.418364 2.526336 H 4.561781 -0.349364 2.653325 H 2.859661 -0.105162 2.297779 H 3.649414 0.913276 3.494866 C 4.414825 0.729332 0.086732 H 5.225933 -0.005535 0.153166 H 4.681485 1.450389 -0.695037 H 3.534836 0.187102 -0.259618 C 2.682661 -2.829174 0.743198 H 2.005166 -3.367708 1.416344 H 2.386059 -1.780480 0.755858 H 3.688560 -2.873209 1.177287 C 3.592078 -2.655218 -1.618962 H 3.600472 -3.102904 -2.620069 H 4.623062 -2.655791 -1.245862 H 3.300576 -1.609620 -1.739629 C 3.290295 -4.851378 -0.528559 H 3.373822 -5.360645 -1.495846 H 2.709310 -5.487752 0.149355 H 4.305108 -4.789011 -0.116431 C 5.586057 1.975796 1.860551 H 6.320147 1.162921 1.923887 H 5.557749 2.451224 2.848043 H 5.975582 2.701340 1.136730 N -0.634917 -0.701857 1.108619 C -1.216024 -1.757023 1.888454 C -0.392053 -0.652243 2.495215 H -0.697793 -2.713701 1.813283 H 0.602707 -0.930789 2.831461

C -0.913690 0.494962 3.279914 H -1.857645 0.884815 2.896285 H -0.189357 1.315456 3.267702 H -1.057656 0.203110 4.324711 C -2.718329 -1.868355 1.911852 C -5.543383 -2.141885 1.883101 C -3.395692 -2.490865 0.845116 C -3.510458 -1.453109 2.995485 C -4.904460 -1.570561 2.977614 C -4.787403 -2.618039 0.819359 H -2.823131 -2.938781 0.040781 H -3.049796 -1.052184 3.895008 H -5.489054 -1.245630 3.836741 H -5.280951 -3.127504 -0.005320 H -6.625341 -2.260229 1.885511 C -1.249673 -6.140344 -2.566573 C -1.306489 -7.050023 -1.319759 H -0.313207 -7.245091 -0.901228 H -1.747863 -8.024114 -1.561120 H -1.913667 -6.595444 -0.527855 C -0.347909 -6.794136 -3.635685 H 0.666306 -6.980968 -3.266439 H -0.262366 -6.155661 -4.522966 H -0.753807 -7.760283 -3.957716 C -2.680062 -6.082338 -3.149983 H -2.717809 -5.484405 -4.068019 H -3.391091 -5.654913 -2.433252 H -3.043636 -7.085087 -3.405013 C 2.838039 6.381278 1.919811 C 2.587416 7.290781 0.697003 H 3.173574 6.958284 -0.167947 H 2.868826 8.328380 0.911798 H 1.534286 7.301740 0.395832 C 1.958886 6.857195 3.096821 H 2.090213 6.211194 3.973012 H 0.892678 6.857332 2.845499 H 2.217193 7.880144 3.394761 C 4.311160 6.584671 2.341635 H 5.003440 6.298910 1.541086 H 4.559851 6.000343 3.235215 H 4.512130 7.636137 2.580016 Cl 0.980029 1.531278 -2.112582 C -3.363155 1.324517 0.482521 H -2.954221 0.347363 0.704239 H -4.419984 1.166654 0.253456 H -3.327225 1.917976 1.404010 C -1.839777 1.979140 -3.181284 H -0.969295 2.560426 -2.873776 H -2.511645 2.710315 -3.638806 H -1.527742 1.299204 -3.983486 Table 5, Entry g Co -0.306163 0.246396 -0.641354 N -1.428110 1.830101 -0.062536 N -2.004529 -0.225958 -1.646186 C -0.845748 2.899346 0.354837 H -1.496561 3.751576 0.610709

123

C -2.149017 -1.408105 -2.134182 H -3.084762 -1.605496 -2.682321 C 0.601317 3.107600 0.509164 C 3.254325 3.770071 0.971703 C 1.566523 2.092443 0.513097 C 0.973427 4.443464 0.723395 C 2.306448 4.805639 0.949117 C 2.925922 2.407151 0.772317 H 0.218295 5.229603 0.721060 H 4.290281 4.039251 1.159962 C -1.221619 -2.538623 -1.993196 C 0.306296 -4.847810 -1.824233 C -1.776764 -3.785636 -2.321413 C 0.110169 -2.444291 -1.575546 C 0.913831 -3.611854 -1.495030 C -1.030281 -4.966623 -2.236317 H -2.814137 -3.854189 -2.648771 H 0.899234 -5.756753 -1.767518 C -2.880386 1.600391 -0.304647 H -3.212505 0.919318 0.487220 C -2.971344 0.916477 -1.687163 H -2.609873 1.585653 -2.480016 O 1.250670 0.769460 0.357219 O 0.713616 -1.248362 -1.299141 C -4.415008 0.513496 -1.975390 H -4.504067 0.068174 -2.973208 H -4.758791 -0.240086 -1.254927 C -3.744567 2.855778 -0.270765 H -3.383896 3.597519 -0.995000 H -3.708773 3.326530 0.719042 C -5.198903 2.500104 -0.590625 H -5.800551 3.415105 -0.631767 H -5.607281 1.887438 0.222930 C -5.333942 1.737254 -1.908399 H -6.374647 1.422438 -2.045611 H -5.094318 2.412280 -2.739566 C 4.040683 1.327023 0.859362 C 2.410656 -3.578792 -1.076551 C 3.739941 0.347521 2.015938 H 4.532802 -0.403625 2.112831 H 2.804184 -0.200301 1.885826 H 3.669126 0.881479 2.971224 C 4.153561 0.567757 -0.478345 H 4.959121 -0.175309 -0.446163 H 4.367792 1.256458 -1.304231 H 3.241610 0.029257 -0.736630 C 2.562207 -2.969997 0.333795 H 1.969343 -3.528099 1.068234 H 2.242304 -1.929174 0.384795 H 3.607503 -2.990391 0.664255 C 3.226417 -2.771072 -2.109104 H 3.151210 -3.222860 -3.105609 H 4.288097 -2.741009 -1.837088 H 2.894200 -1.735119 -2.204105 C 3.086839 -4.974223 -1.001208 H 3.087083 -5.479466 -1.974186 H 2.590462 -5.625642 -0.272283

H 4.135552 -4.888445 -0.690639 C 5.459224 1.889957 1.142934 H 6.201696 1.083678 1.190371 H 5.502500 2.416889 2.103388 H 5.787478 2.577816 0.354819 N -0.897426 -0.828187 0.990631 C -1.488393 -1.971394 1.554071 C -0.886102 -0.891012 2.418629 H -0.927176 -2.900614 1.492962 H 0.069799 -1.171798 2.864290 C -2.940281 -2.212543 1.363807 H -3.496982 -1.302588 1.127343 H -3.370548 -2.668283 2.260673 H -3.097400 -2.911632 0.536294 C -1.565098 0.283687 3.080902 C -2.718111 2.587055 4.264392 C -2.918112 0.318581 3.454567 C -0.796597 1.424183 3.397922 C -1.361261 2.567771 3.971084 C -3.496340 1.461166 4.023169 H -3.549974 -0.558094 3.341112 H 0.279340 1.411580 3.223147 H -0.733813 3.423595 4.213419 H -4.548637 1.453118 4.303276 Cl 0.301943 1.380227 -2.374067 C -1.674948 -6.323300 -2.594542 C -0.726885 -7.534719 -2.443756 H -0.369000 -7.641414 -1.413064 H 0.145077 -7.449737 -3.102709 H -1.236462 -8.469952 -2.705399 C -2.886494 -6.578497 -1.671149 H -2.586919 -6.568510 -0.616399 H -3.343649 -7.553019 -1.879061 H -3.671217 -5.824605 -1.796907 C -2.150533 -6.298348 -4.063405 H -1.317121 -6.086770 -4.743785 H -2.918945 -5.537514 -4.238434 H -2.583030 -7.262542 -4.355269 C 2.683076 6.285941 1.176729 C 1.951724 6.816664 2.429004 H 2.205723 6.222680 3.314996 H 0.862383 6.789236 2.316572 H 2.226024 7.857843 2.635352 C 2.262504 7.122657 -0.051434 H 2.739057 6.748043 -0.965123 H 2.551002 8.173519 0.068599 H 1.179509 7.106191 -0.214914 C 4.193931 6.528915 1.394344 H 4.783813 6.201270 0.530357 H 4.564172 6.002887 2.282021 H 4.405167 7.594838 1.542590 Cl -3.432192 4.002845 4.918586 Table 5, Entry h Co -0.095960 0.464042 -0.535947 N -1.271511 2.039009 -0.046600 N -1.682780 0.023023 -1.727675

124

C -0.738457 3.086177 0.479259 H -1.414587 3.928738 0.698918 C -1.783612 -1.149510 -2.247857 H -2.652741 -1.326109 -2.902554 C 0.685195 3.289327 0.786617 C 3.286276 3.950459 1.490937 C 1.654850 2.280184 0.839397 C 1.028878 4.619517 1.074813 C 2.335720 4.981239 1.422794 C 2.986270 2.593461 1.219823 H 0.272224 5.402908 1.031152 H 4.300752 4.218383 1.773816 C -0.893724 -2.295167 -2.013856 C 0.571975 -4.618871 -1.682690 C -1.428825 -3.532818 -2.411985 C 0.385530 -2.218887 -1.450804 C 1.159454 -3.395755 -1.284854 C -0.714532 -4.720095 -2.245203 H -2.421541 -3.569932 -2.855807 H 1.131282 -5.546399 -1.568337 C -2.690163 1.828670 -0.463557 H -3.117200 1.135418 0.269395 C -2.620518 1.180200 -1.863097 H -2.150224 1.861944 -2.585189 O 1.366002 0.962164 0.610666 O 0.972475 -1.028719 -1.119001 C -4.018316 0.814189 -2.352200 H -3.980064 0.403861 -3.368192 H -4.465489 0.044339 -1.713314 C -3.540817 3.093376 -0.503405 H -3.085720 3.849468 -1.156136 H -3.624236 3.537481 0.495674 C -4.947534 2.765041 -1.011027 H -5.532580 3.687869 -1.094575 H -5.457926 2.130114 -0.275890 C -4.923363 2.049237 -2.361118 H -5.941800 1.755654 -2.639706 H -4.571958 2.747164 -3.131341 C 4.099956 1.517638 1.361267 C 2.601522 -3.387154 -0.707758 C 3.721202 0.509843 2.468992 H 4.505339 -0.245106 2.600640 H 2.795847 -0.031069 2.260721 H 3.585059 1.019252 3.430582 C 4.317835 0.790201 0.018415 H 5.131879 0.059230 0.090735 H 4.577051 1.500517 -0.775623 H 3.436347 0.241778 -0.314125 C 2.611993 -2.773354 0.708051 H 1.927755 -3.311163 1.375054 H 2.315492 -1.724518 0.717331 H 3.613599 -2.816757 1.152053 C 3.538103 -2.598410 -1.648143 H 3.561693 -3.051975 -2.646381 H 4.564878 -2.586787 -1.263888 H 3.236756 -1.556837 -1.778986 C 3.238258 -4.794646 -0.556089

H 3.335423 -5.303671 -1.522217 H 2.652066 -5.433572 0.114907 H 4.248065 -4.727655 -0.132567 C 5.489974 2.081268 1.761332 H 6.233736 1.278618 1.839966 H 5.460601 2.580996 2.736728 H 5.867640 2.793200 1.017988 N -0.850601 -0.619336 1.015699 C -1.598882 -1.594905 1.745556 C -0.615522 -0.659404 2.401814 H -1.238628 -2.620928 1.656515 H 0.321185 -1.102714 2.730177 C -0.960243 0.525611 3.228002 H -1.753075 1.136980 2.788817 H -0.080328 1.166947 3.343165 H -1.269929 0.212433 4.229629 C -3.095920 -1.437416 1.626429 C -5.898265 -1.186856 1.271572 C -3.773755 -2.079880 0.569884 C -3.894684 -0.730295 2.540750 C -5.276428 -0.587005 2.359026 C -5.154341 -1.953920 0.384682 H -3.222423 -2.738878 -0.096919 H -3.462439 -0.298660 3.439758 H -5.863638 -0.030774 3.088033 H -5.648502 -2.478572 -0.430577 C -1.270735 -6.100831 -2.655225 C -1.323058 -7.027472 -1.420797 H -0.329495 -7.217975 -1.000851 H -1.753436 -8.002747 -1.676813 H -1.937987 -6.589724 -0.625439 C -0.357887 -6.731218 -3.729023 H 0.656780 -6.912097 -3.358043 H -0.275572 -6.080451 -4.607638 H -0.752281 -7.697327 -4.065154 C -2.699234 -6.049898 -3.243901 H -2.739264 -5.441049 -4.154637 H -3.417420 -5.638488 -2.524964 H -3.051654 -7.052988 -3.512872 C 2.682043 6.455689 1.724863 C 2.364353 7.325780 0.488959 H 2.920921 6.979598 -0.390054 H 2.634466 8.373901 0.663396 H 1.299780 7.309533 0.231445 C 1.842065 6.948062 2.923396 H 2.021853 6.329883 3.810979 H 0.766759 6.920542 2.716147 H 2.091557 7.983806 3.182030 C 4.166885 6.697914 2.079612 H 4.831417 6.399201 1.260492 H 4.462449 6.146484 2.979792 H 4.357532 7.759667 2.277429 Cl 0.690040 1.623377 -2.177688 Cl -7.583228 -0.983860 1.022218 Table 5, Entry i Co -0.131060 0.382749 -0.949704

125

N -1.297937 1.942667 -0.351072 N -1.797236 -0.063191 -2.018934 C -0.757370 2.946212 0.244872 H -1.436679 3.754561 0.561017 C -1.970516 -1.264591 -2.448515 H -2.900344 -1.466519 -3.005026 C 0.672513 3.149779 0.512737 C 3.288330 3.820651 1.154328 C 1.670418 2.174531 0.405570 C 0.993671 4.449464 0.936990 C 2.304656 4.815137 1.262594 C 3.013918 2.494884 0.739350 H 0.212242 5.204385 1.024657 H 4.308460 4.090803 1.413193 C -1.074760 -2.407800 -2.226277 C 0.420725 -4.722015 -1.929685 C -1.665122 -3.662981 -2.431760 C 0.272620 -2.307050 -1.859779 C 1.063386 -3.476249 -1.727526 C -0.935569 -4.847199 -2.274293 H -2.714518 -3.733972 -2.717030 H 1.000155 -5.635229 -1.822784 C -2.729640 1.766021 -0.743329 H -3.166082 1.081795 -0.011267 C -2.712549 1.109706 -2.139004 H -2.251514 1.776274 -2.880597 O 1.412778 0.873943 0.071431 O 0.887369 -1.095951 -1.682523 C -4.131945 0.769157 -2.581933 H -4.131649 0.334371 -3.588533 H -4.582802 0.027015 -1.910581 C -3.545422 3.054858 -0.774102 H -3.077745 3.795227 -1.435857 H -3.602360 3.504884 0.224031 C -4.970878 2.769097 -1.255969 H -5.524649 3.710717 -1.343342 H -5.490272 2.163981 -0.502214 C -4.998419 2.031562 -2.594446 H -6.031224 1.765729 -2.846626 H -4.641995 2.705533 -3.383463 C 4.167718 1.452753 0.693743 C 2.575398 -3.436682 -1.373179 C 3.920882 0.365291 1.761453 H 4.718696 -0.386498 1.751641 H 2.978192 -0.167037 1.619147 H 3.889114 0.803854 2.766223 C 4.283471 0.820465 -0.710252 H 5.140784 0.139163 -0.768416 H 4.418506 1.591828 -1.477642 H 3.408279 0.233471 -0.989786 C 2.770138 -2.805557 0.020058 H 2.220979 -3.365106 0.786711 H 2.421760 -1.773529 0.064074 H 3.828075 -2.795444 0.307346 C 3.359114 -2.641134 -2.440718 H 3.214934 -3.076868 -3.436606 H 4.434671 -2.648338 -2.227226

H 3.062495 -1.591826 -2.501336 C 3.254600 -4.830510 -1.305614 H 3.194482 -5.357255 -2.265266 H 2.804461 -5.464822 -0.532938 H 4.319576 -4.739343 -1.058458 C 5.572965 2.038372 0.998754 H 6.346998 1.263928 0.930021 H 5.632403 2.449933 2.013139 H 5.844416 2.827497 0.287668 N -0.738808 -0.739785 0.627526 C -1.353715 -1.717003 1.449260 C -0.399095 -0.714880 2.007238 H -1.014387 -2.740177 1.333548 H 0.590409 -1.077210 2.271871 C -2.790796 -1.595854 1.909925 C -0.991092 0.419173 2.779345 C -2.171265 2.608439 4.100579 C -2.383131 0.612666 2.769141 C -0.206817 1.333789 3.496684 C -0.791201 2.421077 4.150787 C -2.970901 1.704302 3.405525 H 0.872374 1.200136 3.560806 H -0.170935 3.110775 4.722216 H -4.050836 1.833799 3.394208 H -2.626116 3.441893 4.634060 Cl 0.515443 1.593732 -2.614492 C -1.618666 -6.215427 -2.488002 C -0.688717 -7.429519 -2.264363 H -0.292419 -7.451540 -1.242473 H 0.157947 -7.423598 -2.960689 H -1.225977 -8.372656 -2.421285 C -2.798943 -6.361335 -1.502114 H -2.459398 -6.264568 -0.463964 H -3.281758 -7.340146 -1.605603 H -3.573783 -5.604499 -1.665941 C -2.149119 -6.308697 -3.935023 H -1.338258 -6.176420 -4.661148 H -2.908778 -5.548949 -4.148732 H -2.610868 -7.284790 -4.124563 C 2.618903 6.252874 1.729262 C 1.827630 6.559370 3.019663 H 2.073333 5.842542 3.812230 H 0.744301 6.516551 2.862721 H 2.057086 7.563561 3.394915 C 2.208664 7.256615 0.629597 H 2.728705 7.043645 -0.311923 H 2.454062 8.284564 0.921214 H 1.133029 7.231757 0.424006 C 4.111750 6.505835 2.039873 H 4.741495 6.337174 1.158532 H 4.471769 5.858256 2.847831 H 4.278415 7.541208 2.360823 O -3.222638 -0.215234 2.061464 C -3.008481 -2.347281 3.231998 H -2.360584 -1.960599 4.026303 H -2.793458 -3.415990 3.124333 H -4.039729 -2.229891 3.583435

126

C -3.714648 -2.199066 0.843965 H -3.465743 -3.244880 0.634402 H -3.644819 -1.638683 -0.093315 H -4.763527 -2.144609 1.157203 Table 5, Entry j Co -0.035764 0.520316 -0.707983 N -1.181104 2.127619 -0.218020 N -1.687477 0.069903 -1.824404 C -0.614116 3.174555 0.271612 H -1.267003 4.036564 0.485166 C -1.831443 -1.116336 -2.301125 H -2.741337 -1.302941 -2.894453 C 0.818328 3.353504 0.553257 C 3.440329 3.973636 1.219380 C 1.770299 2.328036 0.601056 C 1.190204 4.679512 0.826551 C 2.507687 5.020655 1.154868 C 3.112027 2.620466 0.962858 H 0.446815 5.475759 0.787645 H 4.463015 4.225177 1.487056 C -0.929649 -2.258928 -2.110336 C 0.558116 -4.578085 -1.855223 C -1.487778 -3.500512 -2.460599 C 0.383904 -2.175574 -1.635281 C 1.169444 -3.350225 -1.511529 C -0.763640 -4.685902 -2.327370 H -2.508921 -3.541101 -2.834405 H 1.124770 -5.504096 -1.767958 C -2.610499 1.952377 -0.608124 H -3.050403 1.310166 0.153873 C -2.601983 1.241351 -1.974118 H -2.145059 1.879225 -2.743128 O 1.461055 1.014464 0.379782 O 0.987468 -0.984347 -1.340566 C -4.026481 0.886113 -2.391547 H -4.037870 0.419460 -3.383545 H -4.468176 0.165034 -1.692119 C -3.420176 3.242740 -0.685532 H -2.959509 3.950536 -1.386625 H -3.461721 3.736865 0.292396 C -4.852253 2.938570 -1.135170 H -5.406776 3.876137 -1.255051 H -5.362119 2.366077 -0.350079 C -4.896476 2.145500 -2.440734 H -5.932057 1.867645 -2.667337 H -4.553123 2.787368 -3.261721 C 4.207387 1.524869 1.097922 C 2.645624 -3.333847 -1.028132 C 3.818537 0.521933 2.207115 H 4.593028 -0.243428 2.335990 H 2.885530 -0.007586 2.002802 H 3.693012 1.033235 3.169151 C 4.404795 0.795771 -0.247314 H 5.202736 0.046879 -0.179160 H 4.677302 1.502126 -1.040462 H 3.510113 0.268357 -0.579009

C 2.736720 -2.737414 0.392227 H 2.111456 -3.300094 1.095669 H 2.415031 -1.696731 0.436520 H 3.766579 -2.762472 0.767620 C 3.516445 -2.525033 -2.014053 H 3.473473 -2.959608 -3.020034 H 4.566700 -2.518772 -1.699258 H 3.208388 -1.481156 -2.103967 C 3.303686 -4.736641 -0.935464 H 3.335599 -5.235763 -1.911091 H 2.772869 -5.387291 -0.230508 H 4.340194 -4.664011 -0.583409 C 5.609030 2.064093 1.491144 H 6.338389 1.248237 1.568758 H 5.592230 2.566931 2.465245 H 5.997026 2.766989 0.744533 N -0.681868 -0.556115 0.892880 C -1.318197 -1.736304 1.357093 C -0.751218 -0.721056 2.298903 H -0.764799 -2.665781 1.255075 H 0.175736 -0.957251 2.809326 C -1.753992 0.010238 3.164963 C -2.807347 -1.753995 1.220674 C -5.608843 -1.668103 0.932055 C -3.493237 -2.777452 0.552101 C -3.568620 -0.711623 1.778907 C -4.951858 -0.651809 1.620877 C -4.881923 -2.734244 0.405123 H -2.950573 -3.638610 0.165692 H -5.523674 0.160341 2.063993 H -5.404852 -3.550033 -0.092555 H -6.693811 -1.650578 0.838597 C -1.348026 -6.071067 -2.677744 C -1.316986 -6.978077 -1.428075 H -0.297244 -7.164256 -1.074119 H -1.765173 -7.956211 -1.638535 H -1.875472 -6.526292 -0.599547 C -0.511784 -6.719840 -3.801576 H 0.525706 -6.897263 -3.498225 H -0.489124 -6.082798 -4.693704 H -0.929454 -7.690093 -4.094914 C -2.813704 -6.025694 -3.167202 H -2.915738 -5.430221 -4.081930 H -3.480146 -5.602189 -2.406579 H -3.184978 -7.031873 -3.396289 C 2.883637 6.490843 1.441273 C 2.563891 7.357735 0.203645 H 3.101949 6.995702 -0.680493 H 2.854695 8.402142 0.366735 H 1.495694 7.358437 -0.038928 C 2.069135 7.006109 2.647739 H 2.250624 6.391145 3.537210 H 0.990716 6.995755 2.455626 H 2.340050 8.039158 2.895360 C 4.377290 6.709557 1.773608 H 5.024992 6.393026 0.947726 H 4.675704 6.159788 2.673864

127

H 4.589215 7.769239 1.960576 Cl 0.682920 1.658274 -2.395257 O -2.974250 0.337522 2.444693 C -1.158540 1.349468 3.616054 H -0.227270 1.211706 4.175924 H -1.866470 1.902467 4.243925 H -0.941891 1.990327 2.758672 C -2.097404 -0.808872 4.420972 H -1.210364 -0.979751 5.040733 H -2.510348 -1.790773 4.165521 H -2.855206 -0.297613 5.025305 Table 5, Entry k Co -0.130581 0.321712 -1.071583 N -1.312274 1.885678 -0.514797 N -1.786987 -0.154549 -2.146553 C -0.790827 2.890328 0.095093 H -1.481442 3.698498 0.386368 C -1.956968 -1.368527 -2.540771 H -2.884860 -1.588855 -3.093645 C 0.626204 3.093656 0.419883 C 3.210314 3.768689 1.175233 C 1.638719 2.134405 0.307959 C 0.915758 4.376965 0.912248 C 2.208296 4.741633 1.304210 C 2.969355 2.461761 0.685838 H 0.123144 5.119825 1.006142 H 4.218011 4.040728 1.477490 C -1.055142 -2.500829 -2.288801 C 0.459984 -4.797013 -1.955355 C -1.636952 -3.764171 -2.466510 C 0.293073 -2.382548 -1.929196 C 1.094172 -3.542711 -1.781087 C -0.897263 -4.939400 -2.289683 H -2.686348 -3.849021 -2.748065 H 1.047347 -5.703571 -1.835364 C -2.737783 1.703584 -0.930567 H -3.188251 1.040776 -0.185450 C -2.697863 1.015427 -2.310153 H -2.221921 1.664295 -3.058005 O 1.410472 0.839551 -0.066223 O 0.899254 -1.163980 -1.774010 C -4.108776 0.668595 -2.773641 H -4.089273 0.209576 -3.769267 H -4.576690 -0.055445 -2.094530 C -3.548143 2.994306 -1.008782 H -3.063651 3.717317 -1.677592 H -3.624643 3.468054 -0.023048 C -4.964867 2.702640 -1.512934 H -5.512594 3.644114 -1.633690 H -5.502029 2.117682 -0.755725 C -4.969291 1.933592 -2.833822 H -5.998046 1.665854 -3.100133 H -4.594336 2.587127 -3.631393 C 4.144850 1.444826 0.613650 C 2.609044 -3.485011 -1.440993 C 3.922205 0.333518 1.660760

H 4.726535 -0.410390 1.625213 H 2.981193 -0.201912 1.518199 H 3.899104 0.750257 2.674987 C 4.271619 0.839384 -0.802037 H 5.154645 0.193608 -0.879090 H 4.368663 1.627294 -1.558203 H 3.419641 0.219505 -1.082809 C 2.808951 -2.836217 -0.057086 H 2.272107 -3.392199 0.720761 H 2.449700 -1.807490 -0.023463 H 3.869069 -2.811598 0.221048 C 3.376974 -2.692961 -2.522802 H 3.221967 -3.134623 -3.514405 H 4.455127 -2.695489 -2.322579 H 3.077162 -1.644523 -2.584573 C 3.302017 -4.871491 -1.364530 H 3.236116 -5.409997 -2.317249 H 2.866619 -5.500781 -0.579411 H 4.368697 -4.767611 -1.130076 C 5.538604 2.055060 0.923671 H 6.330688 1.302676 0.823045 H 5.600262 2.434368 1.950365 H 5.781884 2.873641 0.236094 N -0.747212 -0.771427 0.528069 C -1.417018 -1.702190 1.360294 C -0.329419 -0.825311 1.886143 H -1.198451 -2.752609 1.205036 H 0.630346 -1.296175 2.080072 C -2.808053 -1.433343 1.894816 C -0.756499 0.337321 2.725072 C -1.624442 2.608482 4.157972 C -2.116132 0.691249 2.777757 C 0.153822 1.123427 3.445442 C -0.273099 2.251815 4.153255 C -2.550470 1.822230 3.467993 H 1.212329 0.865159 3.458304 H 0.457400 2.849101 4.700737 H -3.609037 2.078039 3.481922 Cl 0.521982 1.506862 -2.751740 C -1.569608 -6.317074 -2.476257 C -0.629869 -7.519179 -2.229802 H -0.231503 -7.517203 -1.208481 H 0.215405 -7.521085 -2.927833 H -1.160090 -8.469427 -2.366465 C -2.748260 -6.453851 -1.487164 H -2.409112 -6.334452 -0.451257 H -3.222943 -7.438461 -1.571608 H -3.529516 -5.706895 -1.665132 C -2.099927 -6.442207 -3.920909 H -1.290416 -6.317747 -4.649918 H -2.865381 -5.692418 -4.148693 H -2.554302 -7.425250 -4.091383 C 2.482569 6.155542 1.860731 C 1.636276 6.379059 3.133609 H 1.860722 5.621671 3.894174 H 0.560640 6.331860 2.931354 H 1.836128 7.363222 3.573283

128

C 2.101153 7.213462 0.802522 H 2.661036 7.059766 -0.127612 H 2.319553 8.226606 1.159965 H 1.034973 7.186417 0.552760 C 3.957925 6.409160 2.245195 H 4.624436 6.300197 1.381677 H 4.295535 5.720241 3.028261 H 4.096098 7.426211 2.631570 O -3.070628 -0.012599 2.080028 C -3.045131 -2.177569 3.217718 H -2.321114 -1.880050 3.984094 H -2.956827 -3.261653 3.087484 H -4.038940 -1.951699 3.620304 C -3.841718 -1.916818 0.869031 H -3.735489 -2.986675 0.659441 H -3.735113 -1.377368 -0.076853 H -4.862278 -1.727579 1.220677 C -2.054340 3.798865 4.829620 N -2.405735 4.794758 5.306154 Table 5, Entry l Co 0.036202 0.551032 -0.709681 N -1.100787 2.162234 -0.222393 N -1.611859 0.111584 -1.836802 C -0.528216 3.210747 0.257942 H -1.176462 4.078084 0.464372 C -1.754076 -1.069617 -2.326507 H -2.656908 -1.247325 -2.933312 C 0.905093 3.383014 0.540293 C 3.529556 3.990532 1.207920 C 1.850688 2.351727 0.596564 C 1.284676 4.708320 0.805754 C 2.603663 5.043040 1.134670 C 3.193422 2.637827 0.959287 H 0.546691 5.509255 0.759979 H 4.553335 4.237535 1.475846 C -0.862174 -2.218490 -2.129447 C 0.605592 -4.548053 -1.858638 C -1.426694 -3.455917 -2.483973 C 0.447561 -2.144344 -1.642650 C 1.223471 -3.324376 -1.511603 C -0.712850 -4.646551 -2.342234 H -2.443621 -3.489377 -2.869779 H 1.165098 -5.478094 -1.766933 C -2.531446 1.986571 -0.605829 H -2.964883 1.335006 0.154219 C -2.527060 1.284985 -1.977798 H -2.073732 1.927484 -2.744954 O 1.533615 1.038721 0.381681 O 1.056388 -0.956612 -1.344612 C -3.953715 0.928673 -2.388282 H -3.970447 0.469491 -3.383657 H -4.388306 0.200666 -1.691166 C -3.345684 3.274391 -0.667969 H -2.892621 3.988835 -1.367266 H -3.381597 3.761152 0.313897 C -4.779453 2.967836 -1.110236

H -5.338739 3.903934 -1.218869 H -5.281624 2.386646 -0.326524 C -4.828539 2.185247 -2.421977 H -5.864457 1.905329 -2.644509 H -4.492527 2.834988 -3.239794 C 4.282049 1.536541 1.102398 C 2.696835 -3.318120 -1.019206 C 3.884210 0.539884 2.214086 H 4.654870 -0.228236 2.349411 H 2.949994 0.013246 2.007885 H 3.756801 1.055691 3.173456 C 4.479160 0.801197 -0.239435 H 5.271835 0.047256 -0.165817 H 4.759023 1.502764 -1.034272 H 3.581938 0.278722 -0.572137 C 2.784324 -2.719940 0.400622 H 2.151836 -3.277480 1.101659 H 2.469274 -1.677093 0.441645 H 3.812012 -2.751156 0.781476 C 3.579243 -2.517343 -2.001374 H 3.539236 -2.953485 -3.006802 H 4.627613 -2.517875 -1.680306 H 3.278971 -1.471522 -2.095043 C 3.343901 -4.725584 -0.920395 H 3.378311 -5.226373 -1.895081 H 2.803802 -5.371245 -0.217907 H 4.378679 -4.660093 -0.561911 C 5.685483 2.069270 1.498002 H 6.409703 1.249477 1.581987 H 5.668177 2.576857 2.469628 H 6.080362 2.766248 0.749456 N -0.614683 -0.536668 0.893844 C -1.212182 -1.730431 1.375677 C -0.688673 -0.677544 2.302354 H -0.623113 -2.639883 1.292256 H 0.242675 -0.871109 2.823036 C -1.722741 0.031720 3.149789 C -2.700198 -1.810866 1.240207 C -5.509598 -1.842968 0.953025 C -3.344808 -2.879160 0.601381 C -3.503077 -0.786900 1.773265 C -4.888439 -0.782977 1.616062 C -4.736243 -2.895923 0.454353 H -2.766136 -3.724624 0.230457 H -5.480981 0.030942 2.031593 H -5.214863 -3.743746 -0.037711 C -1.303907 -6.027808 -2.697444 C -1.287256 -6.935835 -1.448182 H -0.271194 -7.129292 -1.087638 H -1.740698 -7.910756 -1.662269 H -1.848108 -6.480824 -0.623026 C -0.464374 -6.681154 -3.816059 H 0.569992 -6.865033 -3.505939 H -0.431904 -6.043827 -4.707678 H -0.886098 -7.648657 -4.112645 C -2.766086 -5.972493 -3.196255 H -2.858172 -5.377023 -4.112033

129

H -3.434311 -5.543741 -2.440131 H -3.142919 -6.976195 -3.427110 C 2.988582 6.512733 1.412108 C 2.677365 7.373305 0.167916 H 3.215111 7.001823 -0.712484 H 2.974580 8.416878 0.324656 H 1.609763 7.379297 -0.077189 C 2.174664 7.041412 2.613156 H 2.350048 6.431263 3.507156 H 1.096652 7.036836 2.418565 H 2.451771 8.074307 2.854489 C 4.482847 6.723969 1.746516 H 5.130398 6.397842 0.924258 H 4.775603 6.178220 2.651065 H 4.701200 7.783469 1.927010 Cl 0.761278 1.689121 -2.393896 O -2.950400 0.298253 2.415857 C -1.182172 1.400485 3.580141 H -0.247572 1.308999 4.143894 H -1.913133 1.934728 4.197812 H -0.989745 2.036053 2.713402 C -2.042332 -0.776781 4.419168 H -1.153439 -0.900844 5.047372 H -2.414513 -1.778918 4.180245 H -2.823709 -0.284525 5.009092 C -6.929768 -1.834948 0.761860 N -8.069202 -1.787936 0.557598 Table 5, Entry m Co -0.082321 0.698549 -0.505192 N -1.287264 2.245082 0.021476 N -1.693739 0.206567 -1.628690 C -0.772159 3.292577 0.563820 H -1.466119 4.111162 0.815691 C -1.785779 -0.975046 -2.126605 H -2.705835 -1.202088 -2.689657 C 0.649590 3.526145 0.853573 C 3.246757 4.233735 1.528315 C 1.643611 2.541574 0.863970 C 0.965784 4.856612 1.170767 C 2.269756 5.241715 1.505276 C 2.974178 2.877317 1.227775 H 0.189112 5.621202 1.161349 H 4.260132 4.519297 1.797248 C -0.793336 -2.053353 -2.034588 C 0.919858 -4.229391 -2.182964 C -1.259798 -3.300498 -2.481725 C 0.531267 -1.901743 -1.613586 C 1.440221 -2.987564 -1.743759 C -0.423792 -4.421003 -2.537747 H -2.297099 -3.415595 -2.796081 H 1.588449 -5.082365 -2.260771 C -2.712633 2.001347 -0.356998 H -3.111752 1.313374 0.396912 C -2.664870 1.335335 -1.746011 H -2.228528 2.020718 -2.486312 O 1.385014 1.224976 0.605591

O 1.034047 -0.740589 -1.100261 C -4.063436 0.938105 -2.205588 H -4.034827 0.515703 -3.217110 H -4.487095 0.168171 -1.550921 C -3.583462 3.253149 -0.400573 H -3.149446 4.006637 -1.070530 H -3.657448 3.710326 0.593280 C -4.994348 2.900225 -0.880024 H -5.590660 3.815220 -0.970425 H -5.486122 2.274550 -0.125151 C -4.986966 2.159500 -2.216754 H -6.006345 1.846618 -2.469672 H -4.661590 2.848549 -3.006238 C 4.118008 1.826343 1.305178 C 2.966562 -2.852044 -1.468666 C 3.771003 0.721352 2.328600 H 4.599360 0.011196 2.438235 H 2.895778 0.131594 2.048267 H 3.569872 1.152629 3.316456 C 4.360606 1.212692 -0.088936 H 5.177440 0.481853 -0.064339 H 4.627372 1.986802 -0.818300 H 3.483839 0.693900 -0.478293 C 3.230398 -2.488426 0.004705 H 2.809382 -3.247019 0.674483 H 2.802992 -1.525636 0.287021 H 4.305385 -2.424701 0.211365 C 3.572939 -1.781213 -2.404318 H 3.412159 -2.045661 -3.456455 H 4.653921 -1.685896 -2.247261 H 3.145159 -0.787326 -2.255581 C 3.782762 -4.146408 -1.733166 H 3.694234 -4.476731 -2.774845 H 3.463852 -4.967397 -1.080255 H 4.850936 -3.985977 -1.540973 C 5.486492 2.401411 1.758940 H 6.250760 1.615473 1.801231 H 5.427818 2.843071 2.760692 H 5.857355 3.164383 1.064456 N -0.828885 -0.284794 1.101073 C -0.445851 -0.821535 2.347011 C -1.880375 -0.808009 1.895601 H -0.130554 -0.102867 3.096308 H -2.535779 -0.112020 2.405710 C 0.281322 -2.116772 2.488460 H 0.404018 -2.308758 3.562144 H 1.290837 -2.021306 2.081502 Cl 0.644448 1.836015 -2.188335 C -0.978604 -5.785250 -2.999752 C 0.058156 -6.931334 -2.975467 H 0.460603 -7.089765 -1.968110 H 0.896946 -6.732273 -3.652611 H -0.392728 -7.878558 -3.295223 C -2.141193 -6.208728 -2.074529 H -1.812970 -6.264267 -1.029683 H -2.530775 -7.194360 -2.354998 H -2.983223 -5.509380 -2.117537

130

C -1.497153 -5.668851 -4.449117 H -0.700918 -5.339557 -5.127218 H -2.321687 -4.953216 -4.538705 H -1.868998 -6.633280 -4.814455 C 2.585237 6.715880 1.840183 C 1.754634 7.156184 3.065230 H 1.964846 6.519879 3.933099 H 0.676853 7.107534 2.875472 H 1.983421 8.190735 3.346779 C 2.224873 7.609491 0.633120 H 2.774369 7.300196 -0.263911 H 2.472217 8.659154 0.830542 H 1.156692 7.573307 0.393158 C 4.069707 6.985545 2.176214 H 4.726876 6.725547 1.338170 H 4.394459 6.417761 3.055940 H 4.237734 8.046069 2.399490 C -2.550705 -2.078591 1.429370 H -2.373965 -2.176425 0.353492 C -1.930230 -3.292560 2.130270 H -2.380709 -4.214386 1.744052 H -2.121269 -3.262270 3.209987 C -0.424139 -3.321972 1.875365 H -0.241858 -3.348868 0.797353 H 0.006504 -4.242396 2.286017 C -4.071913 -2.023111 1.615073 O -4.447744 -1.845395 2.976191 C -5.763831 -1.304560 2.871563 C -5.634126 -0.364826 1.696626 O -4.625597 -0.937655 0.840370 H -4.522313 -2.953391 1.244334 H -6.465512 -2.120331 2.664893 H -6.056121 -0.801972 3.796820 H -5.263540 0.614612 2.016305 H -6.568880 -0.227383 1.147015 Table 5, Entry n Co 0.039014 0.627548 -0.687988 N -1.220779 2.063672 0.017906 N -1.579296 0.203818 -1.838706 C -0.739063 3.044461 0.697810 H -1.461495 3.797457 1.053273 C -1.704510 -0.969534 -2.351679 H -2.624247 -1.167262 -2.926296 C 0.676613 3.297491 1.006219 C 3.253096 4.060576 1.705945 C 1.727017 2.387791 0.835085 C 0.927637 4.579824 1.521934 C 2.217473 4.991615 1.877438 C 3.051004 2.754677 1.197441 H 0.108836 5.287175 1.654005 H 4.257167 4.365999 1.987465 C -0.752222 -2.079852 -2.219797 C 0.865651 -4.326763 -2.124237 C -1.277290 -3.342264 -2.528690 C 0.591593 -1.937888 -1.850273 C 1.444839 -3.069442 -1.823818

C -0.486103 -4.495164 -2.469522 H -2.323818 -3.443205 -2.814989 H 1.492809 -5.213873 -2.095145 C -2.629857 1.877007 -0.463652 H -3.073403 1.118310 0.186914 C -2.508620 1.364982 -1.913142 H -2.001029 2.111510 -2.539774 O 1.542163 1.106450 0.395529 O 1.140495 -0.715440 -1.561609 C -3.867435 1.077921 -2.535542 H -3.755503 0.782398 -3.585861 H -4.367890 0.249683 -2.028738 C -3.484687 3.140701 -0.421476 H -2.994711 3.960655 -0.962482 H -3.627447 3.477456 0.612183 C -4.859860 2.876497 -1.041773 H -5.441116 3.805466 -1.052837 H -5.409151 2.164468 -0.413114 C -4.758919 2.319618 -2.461721 H -5.760403 2.075247 -2.833561 H -4.354156 3.094752 -3.124370 C 4.260691 1.784062 1.075314 C 2.956733 -2.978353 -1.478467 C 4.069679 0.592914 2.038626 H 4.913193 -0.104630 1.976728 H 3.165309 0.017343 1.832372 H 3.998239 0.937443 3.077356 C 4.419377 1.287367 -0.378245 H 5.309633 0.656240 -0.486084 H 4.523042 2.130552 -1.071406 H 3.575810 0.687452 -0.721025 C 3.134432 -2.471060 -0.033566 H 2.625310 -3.128921 0.680833 H 2.732175 -1.467870 0.109162 H 4.193708 -2.430343 0.245988 C 3.682569 -2.042382 -2.470727 H 3.544837 -2.384996 -3.503220 H 4.760380 -2.014929 -2.270551 H 3.333350 -1.008607 -2.423305 C 3.712246 -4.332102 -1.549594 H 3.664253 -4.770122 -2.553508 H 3.311119 -5.059538 -0.834109 H 4.774685 -4.204798 -1.307555 C 5.629394 2.415695 1.447537 H 6.444655 1.691721 1.325721 H 5.655994 2.744196 2.493150 H 5.865519 3.274269 0.807888 N -0.439635 -0.713231 0.787589 C -0.962986 -1.871214 1.396958 C -0.021265 -0.946349 2.121966 H -0.553967 -2.819797 1.058522 H 1.003880 -1.268234 2.266573 C -2.362605 -2.022913 1.917583 H -2.310692 -2.862976 2.626758 Cl 0.630615 2.032363 -2.216654 C -1.100821 -5.875779 -2.785312 C -0.109439 -7.054531 -2.657796

131

H 0.295549 -7.133126 -1.642116 H 0.730340 -6.953440 -3.355138 H -0.599902 -8.009173 -2.883350 C -2.265533 -6.155881 -1.809597 H -1.924189 -6.120482 -0.768122 H -2.698741 -7.147474 -1.985501 H -3.079049 -5.429516 -1.913053 C -1.636138 -5.884872 -4.233415 H -0.838030 -5.657044 -4.949906 H -2.434104 -5.150004 -4.385795 H -2.050058 -6.865590 -4.495608 C 2.456427 6.410950 2.437012 C 1.643661 6.597389 3.736777 H 1.920316 5.845787 4.485664 H 0.564720 6.511496 3.568020 H 1.820875 7.586400 4.175373 C 2.002781 7.459835 1.398129 H 2.538941 7.332793 0.450149 H 2.193777 8.478516 1.755548 H 0.931129 7.393618 1.181129 C 3.932908 6.718009 2.776200 H 4.575187 6.639283 1.891290 H 4.320975 6.037992 3.543501 H 4.045067 7.737381 3.164912 C -0.500998 -0.011098 3.187286 H -0.614504 0.997156 2.777680 C -1.819005 -0.455845 3.809312 H -2.211254 0.345261 4.445886 H -1.647758 -1.324422 4.457292 C -2.843074 -0.816030 2.735205 H -3.014207 0.053975 2.095696 H -3.797668 -1.051536 3.219046 H 0.258136 0.062957 3.974723 C -3.344691 -2.457926 0.818667 O -4.469822 -3.115696 1.407940 C -5.609908 -2.341403 1.056336 C -5.185128 -1.654632 -0.210876 O -3.794800 -1.348898 0.006640 H -2.867636 -3.183969 0.150433 H -6.490436 -2.976471 0.932473 H -5.795162 -1.620879 1.859418 H -5.248679 -2.323064 -1.076467 H -5.752129 -0.742809 -0.412647 Table 5, Entry o Co -0.151173 0.364278 -0.758221 N -1.513296 1.751462 -0.164149 N -1.745142 -0.272977 -1.875592 C -1.100273 2.849575 0.364678 H -1.872074 3.584689 0.645564 C -1.734620 -1.457478 -2.378524 H -2.619014 -1.754674 -2.965438 C 0.297418 3.237932 0.608690 C 2.813843 4.230140 1.229101 C 1.398551 2.372140 0.579587 C 0.468393 4.591664 0.937914 C 1.727688 5.119325 1.246459

C 2.691137 2.855266 0.913705 H -0.391300 5.261370 0.961191 H 3.794098 4.626935 1.479178 C -0.693555 -2.477064 -2.190217 C 1.080363 -4.584723 -1.934414 C -1.105204 -3.786715 -2.488444 C 0.611598 -2.220799 -1.751359 C 1.543594 -3.282759 -1.634975 C -0.233082 -4.868367 -2.356229 H -2.125709 -3.962216 -2.823143 H 1.761498 -5.430464 -1.850413 C -2.911631 1.361688 -0.518483 H -3.211255 0.609845 0.218314 C -2.829759 0.752570 -1.934452 H -2.487091 1.503594 -2.659756 O 1.285725 1.033666 0.317146 O 1.059044 -0.955844 -1.481902 C -4.191883 0.222515 -2.372086 H -4.147100 -0.163647 -3.397347 H -4.515694 -0.606832 -1.731796 C -3.917125 2.509031 -0.491175 H -3.589631 3.330012 -1.142096 H -4.011704 2.918630 0.521619 C -5.293051 2.018386 -0.949249 H -5.990492 2.862862 -0.985917 H -5.688478 1.310921 -0.209602 C -5.239880 1.337634 -2.316615 H -6.225993 0.927127 -2.561649 H -5.008670 2.087913 -3.083073 C 3.947315 1.940143 0.962591 C 3.019981 -3.070049 -1.202716 C 3.767345 0.859108 2.051487 H 4.651341 0.213798 2.116627 H 2.911870 0.204389 1.871871 H 3.617321 1.318100 3.036170 C 4.193760 1.288049 -0.414136 H 5.104403 0.677353 -0.406205 H 4.310165 2.049960 -1.194006 H 3.381979 0.629814 -0.724591 C 3.075335 -2.469737 0.217288 H 2.560692 -3.116255 0.938108 H 2.609658 -1.485881 0.277981 H 4.110747 -2.349110 0.557026 C 3.743736 -2.149018 -2.209364 H 3.715465 -2.575703 -3.219191 H 4.796709 -2.014665 -1.934613 H 3.306725 -1.150109 -2.271064 C 3.862244 -4.372364 -1.142224 H 3.918887 -4.864627 -2.120224 H 3.453315 -5.086628 -0.417892 H 4.893421 -4.161664 -0.832649 C 5.265942 2.679439 1.315638 H 6.116205 1.986247 1.327505 H 5.220591 3.139723 2.309651 H 5.501374 3.459828 0.582422 N -0.630250 -0.836369 0.825127 C -1.110049 -2.078071 1.321886

132

C -0.703422 -0.960375 2.240231 H -0.415268 -2.910476 1.251855 H 0.247698 -1.138192 2.744403 C -2.511058 -2.455706 1.035458 C -1.560035 0.107247 2.880629 C -3.037874 2.227864 4.056059 C -2.947465 0.016726 3.075317 C -0.936701 1.283387 3.350003 C -1.659897 2.333188 3.922359 C -3.680456 1.066211 3.642415 H -3.493945 -0.886831 2.822940 H 0.148731 1.373908 3.299515 H -1.142774 3.213088 4.301889 H -4.752598 0.957856 3.802019 H -3.605083 3.025417 4.533442 Cl 0.361050 1.657982 -2.408323 C -0.648708 -6.323910 -2.659894 C -0.462013 -7.191335 -1.395779 H -1.045875 -6.795126 -0.556404 H 0.584141 -7.239337 -1.074708 H -0.789121 -8.222700 -1.572443 C -2.123308 -6.474756 -3.098645 H -2.813103 -6.121413 -2.323230 H -2.371313 -7.524659 -3.295961 H -2.329463 -5.917875 -4.020122 C 0.225844 -6.887715 -3.800454 H 1.286769 -6.926527 -3.530627 H 0.138746 -6.273213 -4.704353 H -0.075198 -7.909151 -4.061109 C 1.879659 6.614689 1.600361 C 1.038928 6.934918 2.855526 H 1.346425 6.313332 3.704876 H -0.030895 6.763680 2.693647 H 1.153853 7.984357 3.151071 C 1.383538 7.479559 0.420889 H 1.938870 7.250504 -0.496392 H 1.513507 8.547547 0.631733 H 0.320190 7.323581 0.209129 C 3.331843 7.049889 1.901810 H 3.990625 6.880169 1.042166 H 3.744904 6.510856 2.762381 H 3.382332 8.119338 2.139546 O -3.157710 -1.905048 0.149455 O -2.930778 -3.454867 1.843906 C -4.268899 -3.902127 1.608883 H -4.977452 -3.084942 1.775408 H -4.488163 -4.705275 2.317465 H -4.364374 -4.296049 0.592321 Table 5, Entry p Co -0.056457 0.489315 -0.585350 N -1.170770 2.116254 -0.107893 N -1.712277 0.051238 -1.689318 C -0.592469 3.162051 0.370190 H -1.239252 4.025315 0.596621 C -1.841787 -1.116132 -2.212809 H -2.745888 -1.284231 -2.820358

C 0.844405 3.331900 0.627429 C 3.482090 3.934840 1.242789 C 1.785155 2.296416 0.680812 C 1.234141 4.658362 0.870803 C 2.560044 4.990972 1.172437 C 3.135248 2.580453 1.017665 H 0.497212 5.460444 0.829640 H 4.511272 4.180311 1.490265 C -0.936069 -2.261125 -2.057117 C 0.533635 -4.598220 -1.851409 C -1.473842 -3.481134 -2.506049 C 0.352802 -2.207289 -1.515559 C 1.125903 -3.393027 -1.408020 C -0.758813 -4.674733 -2.402107 H -2.475514 -3.499251 -2.931003 H 1.093769 -5.529784 -1.784456 C -2.612753 1.922576 -0.433009 H -3.011968 1.265102 0.345125 C -2.642116 1.217648 -1.803214 H -2.214010 1.863217 -2.582571 O 1.455124 0.982165 0.491563 O 0.957016 -1.037686 -1.147398 C -4.075500 0.851797 -2.178550 H -4.114777 0.397512 -3.175470 H -4.485425 0.116799 -1.475460 C -3.440846 3.201962 -0.472353 H -3.015673 3.920232 -1.185143 H -3.451983 3.689481 0.509723 C -4.883520 2.880683 -0.872294 H -5.455734 3.810904 -0.962552 H -5.356149 2.292666 -0.075474 C -4.962224 2.100450 -2.183919 H -6.001390 1.811594 -2.378096 H -4.655297 2.755124 -3.009218 C 4.221074 1.476409 1.157960 C 2.576468 -3.410936 -0.850895 C 3.837728 0.496789 2.289546 H 4.607887 -0.272094 2.423449 H 2.898902 -0.029527 2.104732 H 3.726968 1.026219 3.243520 C 4.390797 0.721474 -0.176184 H 5.182074 -0.034293 -0.106686 H 4.657552 1.410219 -0.986560 H 3.485153 0.197815 -0.482697 C 2.621243 -2.819292 0.574574 H 1.932181 -3.350142 1.242124 H 2.355139 -1.762666 0.606451 H 3.627143 -2.896094 1.004315 C 3.504818 -2.620246 -1.797118 H 3.517767 -3.069773 -2.797428 H 4.535338 -2.611560 -1.423185 H 3.201049 -1.578621 -1.922218 C 3.197221 -4.828664 -0.729440 H 3.283616 -5.321133 -1.705095 H 2.606597 -5.472631 -0.067203 H 4.210537 -4.781624 -0.311647 C 5.633651 2.007499 1.521689

133

H 6.355380 1.185374 1.604329 H 5.635714 2.528343 2.486425 H 6.018670 2.692206 0.756860 N -0.748007 -0.540626 1.043803 C -1.397903 -1.595435 1.741703 C -0.717954 -0.469967 2.465430 H -0.839761 -2.532054 1.793851 H 0.242087 -0.707589 2.916029 C -1.435191 0.611039 3.174534 C -2.856791 -1.760000 1.370912 C -5.542010 -2.204973 0.541810 C -3.220978 -2.851065 0.553546 C -3.908868 -0.931111 1.794163 C -5.230645 -1.141505 1.380210 C -4.536242 -3.069925 0.134438 H -2.465016 -3.581776 0.264961 H -3.742953 -0.113195 2.486646 H -6.027058 -0.495560 1.747420 H -4.781297 -3.940377 -0.471768 H -6.574675 -2.388440 0.249770 C -1.324629 -6.035839 -2.860093 C -1.369427 -7.008077 -1.660973 H -0.372764 -7.217527 -1.257675 H -1.805954 -7.971464 -1.949466 H -1.975391 -6.598233 -0.844067 C -0.425032 -6.628543 -3.965912 H 0.592154 -6.828295 -3.611949 H -0.347805 -5.944804 -4.819589 H -0.827284 -7.579202 -4.335150 C -2.758578 -5.956621 -3.432236 H -2.805333 -5.310327 -4.316458 H -3.468678 -5.573559 -2.689927 H -3.116753 -6.946760 -3.738921 C 2.955725 6.461939 1.425596 C 2.624447 7.309636 0.177726 H 3.143928 6.925911 -0.708372 H 2.928753 8.353662 0.316870 H 1.552423 7.317376 -0.047206 C 2.166705 7.007628 2.635596 H 2.356703 6.407138 3.533142 H 1.085191 7.005024 2.461442 H 2.452191 8.042129 2.859656 C 4.456884 6.670743 1.729223 H 5.087433 6.331859 0.898947 H 4.764450 6.134719 2.634672 H 4.682940 7.731387 1.892711 Cl 0.685552 1.574130 -2.297166 O -1.635949 0.297372 4.474797 C -2.307808 1.300330 5.242123 H -1.725811 2.227046 5.249767 H -2.400555 0.937016 6.269090 H -3.310691 1.476381 4.841123 O -1.779750 1.642160 2.606709 Table 6, Entry a Mn 0.550458 -0.055887 -0.393030 N 2.099367 1.177714 -0.305935

N 1.920482 -1.433588 -0.001745 C 2.013335 2.453397 -0.158999 H 2.935262 3.035258 -0.117687 C 1.674867 -2.698244 -0.000003 H 2.507589 -3.388561 0.143147 C 0.799671 3.211520 -0.037158 C -1.426534 4.851106 0.158126 C -0.506153 2.625747 -0.121058 C 0.954000 4.600920 0.156394 C -0.147291 5.420452 0.258992 C -1.653354 3.489759 -0.028273 H 1.959104 5.011449 0.223172 H -2.278838 5.515142 0.234086 C 0.382974 -3.311513 -0.123851 C -2.033714 -4.670230 -0.120255 C 0.361122 -4.722436 -0.178147 C -0.840159 -2.562669 -0.085061 C -2.087824 -3.282450 -0.037263 C -0.835158 -5.400995 -0.200519 H 1.305956 -5.261010 -0.200278 H -2.959821 -5.232339 -0.110009 C 3.364538 0.451669 -0.494878 H 3.400865 0.187791 -1.562443 C 3.247503 -0.863805 0.304669 H 3.204095 -0.593007 1.366785 O -0.704086 1.335423 -0.297293 O -0.870489 -1.248723 -0.086022 C 4.458191 -1.770656 0.054870 H 4.396070 -2.675462 0.669382 H 4.471100 -2.090578 -0.996694 C 4.650321 1.201593 -0.130773 H 4.607478 1.510354 0.922754 H 4.746446 2.111743 -0.734590 C 5.874139 0.301457 -0.367097 H 6.784602 0.834457 -0.069627 H 5.969059 0.095763 -1.442584 C 5.759239 -1.023107 0.397301 H 6.620154 -1.665127 0.177035 H 5.784184 -0.823891 1.477565 C -3.086267 2.936929 -0.148769 C -3.431485 -2.547965 0.123351 C -3.276711 2.291333 -1.543349 H -4.289165 1.879118 -1.631184 H -2.561489 1.485037 -1.711152 H -3.147043 3.038448 -2.336050 C -3.345350 1.901702 0.970256 H -4.365848 1.508109 0.883960 H -3.246307 2.367980 1.957784 H -2.645194 1.069749 0.914931 C -3.653147 -1.553026 -1.041294 H -3.656138 -2.079848 -2.003871 H -2.880803 -0.785565 -1.069065 H -4.626096 -1.059575 -0.926382 C -3.438991 -1.807333 1.483990 H -3.383736 -2.526119 2.310433 H -4.369908 -1.237495 1.594576 H -2.600101 -1.116235 1.577367

134

C -4.630192 -3.518491 0.120671 H -4.586539 -4.241921 0.943456 H -4.715050 -4.070613 -0.823287 H -5.553189 -2.941271 0.243940 C -4.152447 4.043004 -0.005394 H -5.146111 3.589242 -0.089545 H -4.075557 4.805224 -0.790324 H -4.102424 4.542461 0.969397 Cl 0.714208 0.185888 2.064577 H -0.861600 -6.484814 -0.255966 H -0.036254 6.489483 0.411309 O 0.747394 -0.219350 -1.930125 Table 6, Entry b Mn 0.471107 -0.051730 -0.132229 N 2.052595 1.158436 -0.366784 N 1.894542 -1.421741 0.148073 C 1.992469 2.449215 -0.332865 H 2.925172 3.008290 -0.418564 C 1.685458 -2.697283 0.072873 H 2.548609 -3.359889 0.148630 C 0.810934 3.246877 -0.186489 C -1.388416 4.908801 0.068505 C -0.502719 2.683275 -0.223620 C 0.990825 4.640189 -0.033100 C -0.098917 5.468714 0.100651 C -1.638214 3.548670 -0.094544 H 2.001794 5.041272 -0.014472 H -2.229798 5.582615 0.178370 C 0.422881 -3.353231 -0.086595 C -1.954194 -4.762596 -0.279976 C 0.443460 -4.756451 -0.264809 C -0.821233 -2.647349 -0.008031 C -2.049650 -3.386996 -0.093707 C -0.733538 -5.457829 -0.372610 H 1.402825 -5.266463 -0.318475 H -2.865272 -5.344688 -0.355401 C 3.301547 0.402942 -0.567372 H 3.267332 0.021945 -1.597639 C 3.217455 -0.817196 0.377891 H 3.191889 -0.432987 1.406311 O -0.689800 1.394028 -0.428525 O -0.855812 -1.350846 0.195998 C 4.426513 -1.742924 0.207539 H 4.379308 -2.569551 0.926060 H 4.416653 -2.183119 -0.799690 C 4.606236 1.180618 -0.360108 H 4.608758 1.626821 0.643958 H 4.675745 2.002184 -1.082804 C 5.820390 0.249992 -0.520271 H 6.740150 0.815434 -0.329896 H 5.876659 -0.097313 -1.561545 C 5.732336 -0.959812 0.417855 H 6.588447 -1.625730 0.259308 H 5.787766 -0.619588 1.461184 C -3.074699 2.993270 -0.135556 C -3.414000 -2.683706 0.033933

C -3.345429 2.348082 -1.516506 H -4.367592 1.951374 -1.548319 H -2.653784 1.529503 -1.722934 H -3.248121 3.091833 -2.316937 C -3.274132 1.954457 0.994008 H -4.296169 1.557025 0.955645 H -3.129097 2.419112 1.976305 H -2.576947 1.120805 0.909299 C -3.573176 -1.620928 -1.079608 H -3.518746 -2.087284 -2.070806 H -2.803682 -0.850522 -1.019686 H -4.552725 -1.135075 -0.990052 C -3.528111 -2.021571 1.428912 H -3.469567 -2.777466 2.221316 H -4.493940 -1.509820 1.521823 H -2.734779 -1.291177 1.592555 C -4.588562 -3.673211 -0.107731 H -4.581201 -4.446372 0.670035 H -4.598403 -4.167796 -1.086412 H -5.530813 -3.122885 -0.010981 C -4.128574 4.100491 0.071356 H -5.126591 3.649028 0.051432 H -4.099847 4.861454 -0.718142 H -4.016376 4.602764 1.039576 Cl 0.586684 0.435912 2.157979 H -0.731615 -6.533503 -0.518715 H 0.025353 6.539322 0.230779 O 0.553186 -0.449402 -1.842111 Table 6, Entry c Mn -0.333238 -0.366455 0.082145 N -2.287343 -0.553086 0.330155 N -0.409753 -2.343152 -0.149778 C -3.138938 0.424155 0.292859 H -4.195947 0.186159 0.412849 C 0.609657 -3.138990 -0.164608 H 0.422683 -4.208722 -0.261687 C -2.841799 1.811409 0.115131 C -2.390976 4.540475 -0.129689 C -1.495956 2.311537 0.118816 C -3.933717 2.701343 -0.000938 C -3.713766 4.052344 -0.130631 C -1.271255 3.729241 -0.001518 H -4.944722 2.300480 0.006742 H -2.254746 5.610425 -0.234927 C 1.992244 -2.769072 -0.076257 C 4.699389 -2.177763 0.082623 C 2.943363 -3.811264 -0.064395 C 2.415119 -1.402023 -0.004988 C 3.819302 -1.100974 0.076632 C 4.287425 -3.521816 0.015977 H 2.598096 -4.841386 -0.117431 H 5.763572 -1.983257 0.143254 C -2.676136 -1.952297 0.593580 H -2.368652 -2.162025 1.626266 C -1.795964 -2.816706 -0.335962 H -2.053405 -2.546044 -1.369125

135

O -0.479129 1.508403 0.270360 O 1.545072 -0.425959 -0.019213 C -2.047094 -4.313691 -0.121310 H -1.468550 -4.904212 -0.840903 H -1.711738 -4.604238 0.884692 C -4.163197 -2.282523 0.430302 H -4.496531 -1.993464 -0.576548 H -4.761436 -1.709809 1.148685 C -4.410134 -3.784635 0.644587 H -5.471412 -4.006637 0.482505 H -4.192477 -4.046187 1.689696 C -3.540549 -4.636642 -0.286936 H -3.707169 -5.702833 -0.094331 H -3.837086 -4.456486 -1.329690 C 0.154756 4.309292 -0.003155 C 4.323230 0.353313 0.136728 C 0.856826 3.985368 1.338477 H 1.876407 4.389952 1.330119 H 0.916787 2.910770 1.513568 H 0.320075 4.443841 2.178104 C 0.959200 3.717179 -1.186236 H 1.970058 4.143297 -1.196931 H 0.480275 3.961097 -2.141637 H 1.041204 2.632089 -1.116878 C 3.728536 1.075787 1.370921 H 4.011359 0.559270 2.296195 H 2.640418 1.126258 1.325606 H 4.120932 2.099098 1.424549 C 3.922897 1.094288 -1.162324 H 4.400457 0.632421 -2.034975 H 4.253213 2.138986 -1.110145 H 2.843518 1.083760 -1.318086 C 5.859264 0.425085 0.257539 H 6.366100 -0.030451 -0.601307 H 6.226482 -0.055232 1.172356 H 6.163803 1.476726 0.293774 C 0.152881 5.843154 -0.164923 H 1.187984 6.201475 -0.157949 H -0.373624 6.347035 0.654380 H -0.297637 6.159447 -1.113125 Cl -0.628004 -0.183181 -2.247944 H 5.027754 -4.315853 0.027259 H -4.544485 4.743892 -0.232547 O -0.215971 -0.570991 1.839083 Table 7, Entry a C 0.669225 0.000000 -0.668187 H 1.169774 0.000000 -1.637322 C -0.669225 0.000000 -0.668187 H -1.169774 0.000000 -1.637322 C -1.592476 0.000000 0.518279 H -1.059056 0.000000 1.472957 H -2.249660 -0.880177 0.502462 H -2.249660 0.880177 0.502462 C 1.592476 0.000000 0.518279 H 2.249660 0.880177 0.502462 H 2.249660 -0.880177 0.502462

H 1.059056 0.000000 1.472957 Table 7, Entry b O 0.535717 -1.135211 0.000000 C -0.427735 -0.363645 -0.737910 C -0.427735 -0.363645 0.737910 H -1.191811 -0.979721 -1.220917 H -1.191811 -0.979721 1.220917 C 0.095728 0.754599 -1.604997 H 0.855590 1.348749 -1.091162 H -0.722445 1.418558 -1.909734 H 0.550390 0.343654 -2.514030 C 0.095728 0.754599 1.604997 H 0.550390 0.343654 2.514030 H -0.722445 1.418558 1.909734 H 0.855590 1.348749 1.091162 Table 8, Entry a Mn 0.542007 -0.061267 0.332604 N 2.147877 1.138336 -0.004980 N 1.844368 -1.404100 -0.089041 C 2.124252 2.427037 -0.014558 H 3.056047 2.980325 -0.152691 C 1.553269 -2.647426 -0.386656 H 2.383639 -3.327772 -0.576146 C 0.932787 3.231643 0.061167 C -1.280977 4.884443 -0.084555 C -0.353983 2.655110 -0.140191 C 1.085589 4.625914 0.189821 C -0.017318 5.451607 0.137425 C -1.492923 3.514841 -0.248658 H 2.083482 5.035796 0.330262 H -2.131274 5.554267 -0.136318 C 0.262961 -3.239955 -0.456674 C -2.169665 -4.578437 -0.475860 C 0.201045 -4.602648 -0.852917 C -0.932858 -2.537575 -0.070334 C -2.187801 -3.252816 -0.070494 C -0.999112 -5.263076 -0.872882 H 1.121864 -5.109067 -1.134023 H -3.098398 -5.137312 -0.487338 C 3.380191 0.417392 -0.376932 H 3.364705 0.326335 -1.475572 C 3.236780 -0.996270 0.191927 H 3.292682 -0.915214 1.287208 O -0.504996 1.337595 -0.263782 O -0.891650 -1.283874 0.292148 C 4.370542 -1.906295 -0.290628 H 4.282866 -2.903847 0.155477 H 4.313298 -2.031900 -1.381739 C 4.719154 1.041644 0.038564 H 4.733408 1.168376 1.129491 H 4.845735 2.036135 -0.403621 C 5.882422 0.141188 -0.412242 H 6.832126 0.565361 -0.065372 H 5.927794 0.134571 -1.510896 C 5.729248 -1.296846 0.099619

136

H 6.539621 -1.925764 -0.287420 H 5.822235 -1.305624 1.194587 C -2.906362 2.954357 -0.497223 C -3.497635 -2.563858 0.355628 C -2.932491 2.152549 -1.821263 H -3.939467 1.755665 -1.999783 H -2.232137 1.317524 -1.797617 H -2.672321 2.799480 -2.668395 C -3.318896 2.057975 0.694312 H -4.319345 1.641800 0.524426 H -3.350029 2.644113 1.620467 H -2.620656 1.232072 0.834617 C -3.809516 -1.406846 -0.621811 H -3.959443 -1.790979 -1.638439 H -3.003768 -0.673391 -0.645304 H -4.731058 -0.896738 -0.315794 C -3.377547 -2.031218 1.804519 H -3.194889 -2.855127 2.505162 H -4.314842 -1.543225 2.099240 H -2.566241 -1.310063 1.907495 C -4.700374 -3.528146 0.320213 H -4.572891 -4.378992 1.000096 H -4.892339 -3.917294 -0.686851 H -5.599082 -2.987351 0.636522 C -3.962184 4.071682 -0.625021 H -4.939020 3.617395 -0.824384 H -3.743191 4.755989 -1.453199 H -4.059823 4.661154 0.294180 Cl 0.904157 0.193648 2.521266 H -1.059489 -6.304213 -1.175154 H 0.084424 6.526628 0.251579 Table 8, Entry b Mn 0.506258 -0.059989 0.158535 N 2.063089 1.047349 -0.355978 N 1.861245 -1.499236 0.109975 C 2.039067 2.343240 -0.475803 H 2.973321 2.857218 -0.704021 C 1.626803 -2.775734 0.078393 H 2.472975 -3.460705 0.145435 C 0.898027 3.194940 -0.338901 C -1.235956 4.946916 -0.091358 C -0.425198 2.673603 -0.174009 C 1.117500 4.591456 -0.400300 C 0.061172 5.462564 -0.280547 C -1.524727 3.587628 -0.033624 H 2.132153 4.960151 -0.535542 H -2.044980 5.659933 0.018480 C 0.344193 -3.403902 -0.037040 C -2.075385 -4.734198 -0.274743 C 0.313291 -4.816819 -0.062967 C -0.866620 -2.648086 -0.131040 C -2.116527 -3.342989 -0.259101 C -0.885832 -5.480293 -0.179851 H 1.249427 -5.366179 0.012107 H -3.003773 -5.286456 -0.362714 C 3.311292 0.282862 -0.590331

H 3.279294 -0.066123 -1.635009 C 3.219200 -0.960824 0.310265 H 3.242975 -0.611579 1.352279 O -0.636899 1.375904 -0.192027 O -0.839717 -1.331409 -0.125482 C 4.398911 -1.910081 0.078135 H 4.349126 -2.761636 0.766187 H 4.359248 -2.314028 -0.943822 C 4.633042 1.029993 -0.369009 H 4.650337 1.436859 0.651270 H 4.720110 1.877982 -1.057783 C 5.827012 0.084402 -0.583950 H 6.760184 0.622396 -0.379210 H 5.865274 -0.213886 -1.641529 C 5.727946 -1.167967 0.295215 H 6.565860 -1.843990 0.088272 H 5.811634 -0.879786 1.352428 C -2.960272 3.079273 0.200449 C -3.448661 -2.577942 -0.379816 C -3.424916 2.229021 -1.005471 H -4.443048 1.858948 -0.831154 H -2.770741 1.371240 -1.164957 H -3.439422 2.831897 -1.922015 C -3.011278 2.240044 1.500572 H -4.032336 1.875904 1.670488 H -2.723517 2.849283 2.365535 H -2.342820 1.380004 1.455333 C -3.439319 -1.715660 -1.665198 H -3.338833 -2.348436 -2.555824 H -2.620153 -0.994849 -1.657538 H -4.382737 -1.162553 -1.751043 C -3.661088 -1.679978 0.862832 H -3.684519 -2.284613 1.777464 H -4.620646 -1.154096 0.782186 H -2.869600 -0.937335 0.960870 C -4.658974 -3.529280 -0.472942 H -4.757044 -4.165037 0.414970 H -4.613957 -4.174833 -1.358066 H -5.575113 -2.933170 -0.549421 C -3.965866 4.236894 0.362682 H -4.964307 3.819446 0.533498 H -4.024177 4.867150 -0.532861 H -3.728345 4.876982 1.220667 Cl 0.749564 0.206391 2.372007 H -0.923900 -6.565270 -0.197210 H 0.216260 6.536500 -0.320054 Table 8, Entry c Mn 0.481218 -0.043928 0.292441 N 2.054983 1.039771 -0.419545 N 1.845384 -1.489616 0.231372 C 2.010453 2.318755 -0.635710 H 2.925196 2.822195 -0.954808 C 1.613359 -2.764953 0.140763 H 2.469112 -3.440701 0.172097 C 0.871921 3.175812 -0.484376 C -1.230863 4.954808 -0.181046

137

C -0.437230 2.675109 -0.187898 C 1.088322 4.564319 -0.648046 C 0.047227 5.450083 -0.500058 C -1.517967 3.602439 -0.016905 H 2.090670 4.916820 -0.881643 H -2.029062 5.676952 -0.053656 C 0.342604 -3.401632 -0.005044 C -2.049417 -4.755436 -0.345838 C 0.329265 -4.817073 -0.048751 C -0.874331 -2.654451 -0.135073 C -2.109224 -3.366331 -0.322596 C -0.855621 -5.492316 -0.211294 H 1.268844 -5.355927 0.054114 H -2.967555 -5.317064 -0.474807 C 3.291102 0.248225 -0.610951 H 3.245130 -0.181817 -1.624155 C 3.200423 -0.925680 0.388026 H 3.222471 -0.497147 1.399707 O -0.668927 1.380730 -0.117639 O -0.871033 -1.345050 -0.106208 C 4.379310 -1.890284 0.230064 H 4.320505 -2.690675 0.976981 H 4.346812 -2.365265 -0.761262 C 4.617230 1.004123 -0.452483 H 4.633683 1.494320 0.530489 H 4.705860 1.792382 -1.208813 C 5.810530 0.041342 -0.583883 H 6.743443 0.593799 -0.421219 H 5.851783 -0.345602 -1.612085 C 5.706193 -1.132305 0.397284 H 6.545412 -1.822457 0.252745

H 5.781154 -0.757031 1.427059 C -2.935260 3.119359 0.349094 C -3.442135 -2.612606 -0.495540 C -3.490620 2.206128 -0.769829 H -4.502181 1.872376 -0.507182 H -2.866703 1.323528 -0.914802 H -3.552408 2.751208 -1.719874 C -2.899453 2.354074 1.694859 H -3.905443 1.993180 1.943375 H -2.567514 3.011941 2.506566 H -2.225640 1.497504 1.660378 C -3.380217 -1.729538 -1.765763 H -3.232691 -2.346084 -2.661150 H -2.567622 -1.003499 -1.706487 H -4.322807 -1.181514 -1.886234 C -3.725310 -1.734170 0.747859 H -3.778241 -2.350057 1.653514 H -4.689559 -1.224070 0.630380 H -2.951143 -0.979803 0.889352 C -4.634258 -3.577306 -0.662009 H -4.770870 -4.223940 0.212905 H -4.533565 -4.213042 -1.549741 H -5.552584 -2.991757 -0.781250 C -3.921825 4.293144 0.514266 H -4.904520 3.893592 0.787225 H -4.049290 4.866248 -0.412369 H -3.617762 4.984937 1.308864 Cl 0.735973 0.295138 2.616922 H -0.882275 -6.577229 -0.238418 H 0.202145 6.518437 -0.614992